
Copyright © 2010-2021 Arm Limited (or its affiliates). All rights reserved.
DDI 0596 (ID061021)

% PostScript code to insert PDF bookmark for title
[/Dest /BookTitle /DEST FmPD2
[/Dest /BookTitle /Title <FEFF00410072006D002000410036003400200049006E0073007400720075006300740069006F006E00200053006500740020004100720063006800690074006500630074007500720065002000410072006D00760038002C00200066006F0072002000410072006D00760038002D00410020006100720063006800690074006500630074007500720065002000700072006F00660069006C0065> /F 2 /OUT FmPD2

Arm® A64 Instruction Set Architecture
Armv8, for Armv8-A architecture profile

ii Copyright © 2010-2021 Arm Limited (or its affiliates). All rights reserved. DDI 0596
Non-Confidential ID061021

Arm A64 Instruction Set Architecture
Armv8, for Armv8-A architecture profile

Copyright © 2010-2021 Arm Limited (or its affiliates). All rights reserved.

Release Information

For information on the change history and known issues for this release, see the Release Notes in the A64 ISA XML for
Armv8.7 (2021-06).

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ™ or © are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2010-2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is at Beta quality. Beta quality means that all major features of the specification are included,
some details might be missing.

Web Address

http://www.arm.com

Progressive Terminology Commitment

DDI 0596 Copyright © 2010-2021 Arm Limited (or its affiliates). All rights reserved. iii
ID061021 Non-Confidential

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives
to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find offensive terms
in this document, please contact terms@arm.com.

iv Copyright © 2010-2021 Arm Limited (or its affiliates). All rights reserved. DDI 0596
Non-Confidential ID061021

A64 -- Base Instructions (alphabetic order)

ADC: Add with Carry.

ADCS: Add with Carry, setting flags.

ADD (extended register): Add (extended register).

ADD (immediate): Add (immediate).

ADD (shifted register): Add (shifted register).

ADDG: Add with Tag.

ADDS (extended register): Add (extended register), setting flags.

ADDS (immediate): Add (immediate), setting flags.

ADDS (shifted register): Add (shifted register), setting flags.

ADR: Form PC-relative address.

ADRP: Form PC-relative address to 4KB page.

AND (immediate): Bitwise AND (immediate).

AND (shifted register): Bitwise AND (shifted register).

ANDS (immediate): Bitwise AND (immediate), setting flags.

ANDS (shifted register): Bitwise AND (shifted register), setting flags.

ASR (immediate): Arithmetic Shift Right (immediate): an alias of SBFM.

ASR (register): Arithmetic Shift Right (register): an alias of ASRV.

ASRV: Arithmetic Shift Right Variable.

AT: Address Translate: an alias of SYS.

AUTDA, AUTDZA: Authenticate Data address, using key A.

AUTDB, AUTDZB: Authenticate Data address, using key B.

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA: Authenticate Instruction address, using key A.

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB: Authenticate Instruction address, using key B.

AXFLAG: Convert floating-point condition flags from Arm to external format.

B: Branch.

B.cond: Branch conditionally.

BFC: Bitfield Clear: an alias of BFM.

BFI: Bitfield Insert: an alias of BFM.

BFM: Bitfield Move.

BFXIL: Bitfield extract and insert at low end: an alias of BFM.

BIC (shifted register): Bitwise Bit Clear (shifted register).

BICS (shifted register): Bitwise Bit Clear (shifted register), setting flags.

BL: Branch with Link.

BLR: Branch with Link to Register.

A64 -- Base Instructions (alphabetic order)

Page 2

BLRAA, BLRAAZ, BLRAB, BLRABZ: Branch with Link to Register, with pointer authentication.

BR: Branch to Register.

BRAA, BRAAZ, BRAB, BRABZ: Branch to Register, with pointer authentication.

BRK: Breakpoint instruction.

BTI: Branch Target Identification.

CAS, CASA, CASAL, CASL: Compare and Swap word or doubleword in memory.

CASB, CASAB, CASALB, CASLB: Compare and Swap byte in memory.

CASH, CASAH, CASALH, CASLH: Compare and Swap halfword in memory.

CASP, CASPA, CASPAL, CASPL: Compare and Swap Pair of words or doublewords in memory.

CBNZ: Compare and Branch on Nonzero.

CBZ: Compare and Branch on Zero.

CCMN (immediate): Conditional Compare Negative (immediate).

CCMN (register): Conditional Compare Negative (register).

CCMP (immediate): Conditional Compare (immediate).

CCMP (register): Conditional Compare (register).

CFINV: Invert Carry Flag.

CFP: Control Flow Prediction Restriction by Context: an alias of SYS.

CINC: Conditional Increment: an alias of CSINC.

CINV: Conditional Invert: an alias of CSINV.

CLREX: Clear Exclusive.

CLS: Count Leading Sign bits.

CLZ: Count Leading Zeros.

CMN (extended register): Compare Negative (extended register): an alias of ADDS (extended register).

CMN (immediate): Compare Negative (immediate): an alias of ADDS (immediate).

CMN (shifted register): Compare Negative (shifted register): an alias of ADDS (shifted register).

CMP (extended register): Compare (extended register): an alias of SUBS (extended register).

CMP (immediate): Compare (immediate): an alias of SUBS (immediate).

CMP (shifted register): Compare (shifted register): an alias of SUBS (shifted register).

CMPP: Compare with Tag: an alias of SUBPS.

CNEG: Conditional Negate: an alias of CSNEG.

CPP: Cache Prefetch Prediction Restriction by Context: an alias of SYS.

CRC32B, CRC32H, CRC32W, CRC32X: CRC32 checksum.

CRC32CB, CRC32CH, CRC32CW, CRC32CX: CRC32C checksum.

CSDB: Consumption of Speculative Data Barrier.

CSEL: Conditional Select.

CSET: Conditional Set: an alias of CSINC.

A64 -- Base Instructions (alphabetic order)

Page 3

CSETM: Conditional Set Mask: an alias of CSINV.

CSINC: Conditional Select Increment.

CSINV: Conditional Select Invert.

CSNEG: Conditional Select Negation.

DC: Data Cache operation: an alias of SYS.

DCPS1: Debug Change PE State to EL1..

DCPS2: Debug Change PE State to EL2..

DCPS3: Debug Change PE State to EL3.

DGH: Data Gathering Hint.

DMB: Data Memory Barrier.

DRPS: Debug restore process state.

DSB: Data Synchronization Barrier.

DVP: Data Value Prediction Restriction by Context: an alias of SYS.

EON (shifted register): Bitwise Exclusive OR NOT (shifted register).

EOR (immediate): Bitwise Exclusive OR (immediate).

EOR (shifted register): Bitwise Exclusive OR (shifted register).

ERET: Exception Return.

ERETAA, ERETAB: Exception Return, with pointer authentication.

ESB: Error Synchronization Barrier.

EXTR: Extract register.

GMI: Tag Mask Insert.

HINT: Hint instruction.

HLT: Halt instruction.

HVC: Hypervisor Call.

IC: Instruction Cache operation: an alias of SYS.

IRG: Insert Random Tag.

ISB: Instruction Synchronization Barrier.

LD64B: Single-copy Atomic 64-byte Load.

LDADD, LDADDA, LDADDAL, LDADDL: Atomic add on word or doubleword in memory.

LDADDB, LDADDAB, LDADDALB, LDADDLB: Atomic add on byte in memory.

LDADDH, LDADDAH, LDADDALH, LDADDLH: Atomic add on halfword in memory.

LDAPR: Load-Acquire RCpc Register.

LDAPRB: Load-Acquire RCpc Register Byte.

LDAPRH: Load-Acquire RCpc Register Halfword.

LDAPUR: Load-Acquire RCpc Register (unscaled).

LDAPURB: Load-Acquire RCpc Register Byte (unscaled).

A64 -- Base Instructions (alphabetic order)

Page 4

LDAPURH: Load-Acquire RCpc Register Halfword (unscaled).

LDAPURSB: Load-Acquire RCpc Register Signed Byte (unscaled).

LDAPURSH: Load-Acquire RCpc Register Signed Halfword (unscaled).

LDAPURSW: Load-Acquire RCpc Register Signed Word (unscaled).

LDAR: Load-Acquire Register.

LDARB: Load-Acquire Register Byte.

LDARH: Load-Acquire Register Halfword.

LDAXP: Load-Acquire Exclusive Pair of Registers.

LDAXR: Load-Acquire Exclusive Register.

LDAXRB: Load-Acquire Exclusive Register Byte.

LDAXRH: Load-Acquire Exclusive Register Halfword.

LDCLR, LDCLRA, LDCLRAL, LDCLRL: Atomic bit clear on word or doubleword in memory.

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB: Atomic bit clear on byte in memory.

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH: Atomic bit clear on halfword in memory.

LDEOR, LDEORA, LDEORAL, LDEORL: Atomic exclusive OR on word or doubleword in memory.

LDEORB, LDEORAB, LDEORALB, LDEORLB: Atomic exclusive OR on byte in memory.

LDEORH, LDEORAH, LDEORALH, LDEORLH: Atomic exclusive OR on halfword in memory.

LDG: Load Allocation Tag.

LDGM: Load Tag Multiple.

LDLAR: Load LOAcquire Register.

LDLARB: Load LOAcquire Register Byte.

LDLARH: Load LOAcquire Register Halfword.

LDNP: Load Pair of Registers, with non-temporal hint.

LDP: Load Pair of Registers.

LDPSW: Load Pair of Registers Signed Word.

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRAA, LDRAB: Load Register, with pointer authentication.

LDRB (immediate): Load Register Byte (immediate).

LDRB (register): Load Register Byte (register).

LDRH (immediate): Load Register Halfword (immediate).

LDRH (register): Load Register Halfword (register).

LDRSB (immediate): Load Register Signed Byte (immediate).

LDRSB (register): Load Register Signed Byte (register).

LDRSH (immediate): Load Register Signed Halfword (immediate).

A64 -- Base Instructions (alphabetic order)

Page 5

LDRSH (register): Load Register Signed Halfword (register).

LDRSW (immediate): Load Register Signed Word (immediate).

LDRSW (literal): Load Register Signed Word (literal).

LDRSW (register): Load Register Signed Word (register).

LDSET, LDSETA, LDSETAL, LDSETL: Atomic bit set on word or doubleword in memory.

LDSETB, LDSETAB, LDSETALB, LDSETLB: Atomic bit set on byte in memory.

LDSETH, LDSETAH, LDSETALH, LDSETLH: Atomic bit set on halfword in memory.

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL: Atomic signed maximum on word or doubleword in memory.

LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB: Atomic signed maximum on byte in memory.

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH: Atomic signed maximum on halfword in memory.

LDSMIN, LDSMINA, LDSMINAL, LDSMINL: Atomic signed minimum on word or doubleword in memory.

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB: Atomic signed minimum on byte in memory.

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH: Atomic signed minimum on halfword in memory.

LDTR: Load Register (unprivileged).

LDTRB: Load Register Byte (unprivileged).

LDTRH: Load Register Halfword (unprivileged).

LDTRSB: Load Register Signed Byte (unprivileged).

LDTRSH: Load Register Signed Halfword (unprivileged).

LDTRSW: Load Register Signed Word (unprivileged).

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL: Atomic unsigned maximum on word or doubleword in memory.

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB: Atomic unsigned maximum on byte in memory.

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH: Atomic unsigned maximum on halfword in memory.

LDUMIN, LDUMINA, LDUMINAL, LDUMINL: Atomic unsigned minimum on word or doubleword in memory.

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB: Atomic unsigned minimum on byte in memory.

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH: Atomic unsigned minimum on halfword in memory.

LDUR: Load Register (unscaled).

LDURB: Load Register Byte (unscaled).

LDURH: Load Register Halfword (unscaled).

LDURSB: Load Register Signed Byte (unscaled).

LDURSH: Load Register Signed Halfword (unscaled).

LDURSW: Load Register Signed Word (unscaled).

LDXP: Load Exclusive Pair of Registers.

LDXR: Load Exclusive Register.

LDXRB: Load Exclusive Register Byte.

LDXRH: Load Exclusive Register Halfword.

LSL (immediate): Logical Shift Left (immediate): an alias of UBFM.

A64 -- Base Instructions (alphabetic order)

Page 6

LSL (register): Logical Shift Left (register): an alias of LSLV.

LSLV: Logical Shift Left Variable.

LSR (immediate): Logical Shift Right (immediate): an alias of UBFM.

LSR (register): Logical Shift Right (register): an alias of LSRV.

LSRV: Logical Shift Right Variable.

MADD: Multiply-Add.

MNEG: Multiply-Negate: an alias of MSUB.

MOV (bitmask immediate): Move (bitmask immediate): an alias of ORR (immediate).

MOV (inverted wide immediate): Move (inverted wide immediate): an alias of MOVN.

MOV (register): Move (register): an alias of ORR (shifted register).

MOV (to/from SP): Move between register and stack pointer: an alias of ADD (immediate).

MOV (wide immediate): Move (wide immediate): an alias of MOVZ.

MOVK: Move wide with keep.

MOVN: Move wide with NOT.

MOVZ: Move wide with zero.

MRS: Move System Register.

MSR (immediate): Move immediate value to Special Register.

MSR (register): Move general-purpose register to System Register.

MSUB: Multiply-Subtract.

MUL: Multiply: an alias of MADD.

MVN: Bitwise NOT: an alias of ORN (shifted register).

NEG (shifted register): Negate (shifted register): an alias of SUB (shifted register).

NEGS: Negate, setting flags: an alias of SUBS (shifted register).

NGC: Negate with Carry: an alias of SBC.

NGCS: Negate with Carry, setting flags: an alias of SBCS.

NOP: No Operation.

ORN (shifted register): Bitwise OR NOT (shifted register).

ORR (immediate): Bitwise OR (immediate).

ORR (shifted register): Bitwise OR (shifted register).

PACDA, PACDZA: Pointer Authentication Code for Data address, using key A.

PACDB, PACDZB: Pointer Authentication Code for Data address, using key B.

PACGA: Pointer Authentication Code, using Generic key.

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA: Pointer Authentication Code for Instruction address, using key A.

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB: Pointer Authentication Code for Instruction address, using key B.

PRFM (immediate): Prefetch Memory (immediate).

PRFM (literal): Prefetch Memory (literal).

A64 -- Base Instructions (alphabetic order)

Page 7

PRFM (register): Prefetch Memory (register).

PRFUM: Prefetch Memory (unscaled offset).

PSB CSYNC: Profiling Synchronization Barrier.

PSSBB: Physical Speculative Store Bypass Barrier: an alias of DSB.

RBIT: Reverse Bits.

RET: Return from subroutine.

RETAA, RETAB: Return from subroutine, with pointer authentication.

REV: Reverse Bytes.

REV16: Reverse bytes in 16-bit halfwords.

REV32: Reverse bytes in 32-bit words.

REV64: Reverse Bytes: an alias of REV.

RMIF: Rotate, Mask Insert Flags.

ROR (immediate): Rotate right (immediate): an alias of EXTR.

ROR (register): Rotate Right (register): an alias of RORV.

RORV: Rotate Right Variable.

SB: Speculation Barrier.

SBC: Subtract with Carry.

SBCS: Subtract with Carry, setting flags.

SBFIZ: Signed Bitfield Insert in Zero: an alias of SBFM.

SBFM: Signed Bitfield Move.

SBFX: Signed Bitfield Extract: an alias of SBFM.

SDIV: Signed Divide.

SETF8, SETF16: Evaluation of 8 or 16 bit flag values.

SEV: Send Event.

SEVL: Send Event Local.

SMADDL: Signed Multiply-Add Long.

SMC: Secure Monitor Call.

SMNEGL: Signed Multiply-Negate Long: an alias of SMSUBL.

SMSUBL: Signed Multiply-Subtract Long.

SMULH: Signed Multiply High.

SMULL: Signed Multiply Long: an alias of SMADDL.

SSBB: Speculative Store Bypass Barrier: an alias of DSB.

ST2G: Store Allocation Tags.

ST64B: Single-copy Atomic 64-byte Store without Return.

ST64BV: Single-copy Atomic 64-byte Store with Return.

ST64BV0: Single-copy Atomic 64-byte EL0 Store with Return.

A64 -- Base Instructions (alphabetic order)

Page 8

STADD, STADDL: Atomic add on word or doubleword in memory, without return: an alias of LDADD, LDADDA,
LDADDAL, LDADDL.

STADDB, STADDLB: Atomic add on byte in memory, without return: an alias of LDADDB, LDADDAB, LDADDALB,
LDADDLB.

STADDH, STADDLH: Atomic add on halfword in memory, without return: an alias of LDADDH, LDADDAH, LDADDALH,
LDADDLH.

STCLR, STCLRL: Atomic bit clear on word or doubleword in memory, without return: an alias of LDCLR, LDCLRA,
LDCLRAL, LDCLRL.

STCLRB, STCLRLB: Atomic bit clear on byte in memory, without return: an alias of LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB.

STCLRH, STCLRLH: Atomic bit clear on halfword in memory, without return: an alias of LDCLRH, LDCLRAH,
LDCLRALH, LDCLRLH.

STEOR, STEORL: Atomic exclusive OR on word or doubleword in memory, without return: an alias of LDEOR,
LDEORA, LDEORAL, LDEORL.

STEORB, STEORLB: Atomic exclusive OR on byte in memory, without return: an alias of LDEORB, LDEORAB,
LDEORALB, LDEORLB.

STEORH, STEORLH: Atomic exclusive OR on halfword in memory, without return: an alias of LDEORH, LDEORAH,
LDEORALH, LDEORLH.

STG: Store Allocation Tag.

STGM: Store Tag Multiple.

STGP: Store Allocation Tag and Pair of registers.

STLLR: Store LORelease Register.

STLLRB: Store LORelease Register Byte.

STLLRH: Store LORelease Register Halfword.

STLR: Store-Release Register.

STLRB: Store-Release Register Byte.

STLRH: Store-Release Register Halfword.

STLUR: Store-Release Register (unscaled).

STLURB: Store-Release Register Byte (unscaled).

STLURH: Store-Release Register Halfword (unscaled).

STLXP: Store-Release Exclusive Pair of registers.

STLXR: Store-Release Exclusive Register.

STLXRB: Store-Release Exclusive Register Byte.

STLXRH: Store-Release Exclusive Register Halfword.

STNP: Store Pair of Registers, with non-temporal hint.

STP: Store Pair of Registers.

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).

STRB (register): Store Register Byte (register).

STRH (immediate): Store Register Halfword (immediate).

A64 -- Base Instructions (alphabetic order)

Page 9

STRH (register): Store Register Halfword (register).

STSET, STSETL: Atomic bit set on word or doubleword in memory, without return: an alias of LDSET, LDSETA,
LDSETAL, LDSETL.

STSETB, STSETLB: Atomic bit set on byte in memory, without return: an alias of LDSETB, LDSETAB, LDSETALB,
LDSETLB.

STSETH, STSETLH: Atomic bit set on halfword in memory, without return: an alias of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

STSMAX, STSMAXL: Atomic signed maximum on word or doubleword in memory, without return: an alias of LDSMAX,
LDSMAXA, LDSMAXAL, LDSMAXL.

STSMAXB, STSMAXLB: Atomic signed maximum on byte in memory, without return: an alias of LDSMAXB,
LDSMAXAB, LDSMAXALB, LDSMAXLB.

STSMAXH, STSMAXLH: Atomic signed maximum on halfword in memory, without return: an alias of LDSMAXH,
LDSMAXAH, LDSMAXALH, LDSMAXLH.

STSMIN, STSMINL: Atomic signed minimum on word or doubleword in memory, without return: an alias of LDSMIN,
LDSMINA, LDSMINAL, LDSMINL.

STSMINB, STSMINLB: Atomic signed minimum on byte in memory, without return: an alias of LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB.

STSMINH, STSMINLH: Atomic signed minimum on halfword in memory, without return: an alias of LDSMINH,
LDSMINAH, LDSMINALH, LDSMINLH.

STTR: Store Register (unprivileged).

STTRB: Store Register Byte (unprivileged).

STTRH: Store Register Halfword (unprivileged).

STUMAX, STUMAXL: Atomic unsigned maximum on word or doubleword in memory, without return: an alias of
LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL.

STUMAXB, STUMAXLB: Atomic unsigned maximum on byte in memory, without return: an alias of LDUMAXB,
LDUMAXAB, LDUMAXALB, LDUMAXLB.

STUMAXH, STUMAXLH: Atomic unsigned maximum on halfword in memory, without return: an alias of LDUMAXH,
LDUMAXAH, LDUMAXALH, LDUMAXLH.

STUMIN, STUMINL: Atomic unsigned minimum on word or doubleword in memory, without return: an alias of
LDUMIN, LDUMINA, LDUMINAL, LDUMINL.

STUMINB, STUMINLB: Atomic unsigned minimum on byte in memory, without return: an alias of LDUMINB,
LDUMINAB, LDUMINALB, LDUMINLB.

STUMINH, STUMINLH: Atomic unsigned minimum on halfword in memory, without return: an alias of LDUMINH,
LDUMINAH, LDUMINALH, LDUMINLH.

STUR: Store Register (unscaled).

STURB: Store Register Byte (unscaled).

STURH: Store Register Halfword (unscaled).

STXP: Store Exclusive Pair of registers.

STXR: Store Exclusive Register.

STXRB: Store Exclusive Register Byte.

STXRH: Store Exclusive Register Halfword.

STZ2G: Store Allocation Tags, Zeroing.

STZG: Store Allocation Tag, Zeroing.

STZGM: Store Tag and Zero Multiple.

A64 -- Base Instructions (alphabetic order)

Page 10

SUB (extended register): Subtract (extended register).

SUB (immediate): Subtract (immediate).

SUB (shifted register): Subtract (shifted register).

SUBG: Subtract with Tag.

SUBP: Subtract Pointer.

SUBPS: Subtract Pointer, setting Flags.

SUBS (extended register): Subtract (extended register), setting flags.

SUBS (immediate): Subtract (immediate), setting flags.

SUBS (shifted register): Subtract (shifted register), setting flags.

SVC: Supervisor Call.

SWP, SWPA, SWPAL, SWPL: Swap word or doubleword in memory.

SWPB, SWPAB, SWPALB, SWPLB: Swap byte in memory.

SWPH, SWPAH, SWPALH, SWPLH: Swap halfword in memory.

SXTB: Signed Extend Byte: an alias of SBFM.

SXTH: Sign Extend Halfword: an alias of SBFM.

SXTW: Sign Extend Word: an alias of SBFM.

SYS: System instruction.

SYSL: System instruction with result.

TBNZ: Test bit and Branch if Nonzero.

TBZ: Test bit and Branch if Zero.

TLBI: TLB Invalidate operation: an alias of SYS.

TSB CSYNC: Trace Synchronization Barrier.

TST (immediate): Test bits (immediate): an alias of ANDS (immediate).

TST (shifted register): Test (shifted register): an alias of ANDS (shifted register).

UBFIZ: Unsigned Bitfield Insert in Zero: an alias of UBFM.

UBFM: Unsigned Bitfield Move.

UBFX: Unsigned Bitfield Extract: an alias of UBFM.

UDF: Permanently Undefined.

UDIV: Unsigned Divide.

UMADDL: Unsigned Multiply-Add Long.

UMNEGL: Unsigned Multiply-Negate Long: an alias of UMSUBL.

UMSUBL: Unsigned Multiply-Subtract Long.

UMULH: Unsigned Multiply High.

UMULL: Unsigned Multiply Long: an alias of UMADDL.

UXTB: Unsigned Extend Byte: an alias of UBFM.

UXTH: Unsigned Extend Halfword: an alias of UBFM.

A64 -- Base Instructions (alphabetic order)

Page 11

WFE: Wait For Event.

WFET: Wait For Event with Timeout.

WFI: Wait For Interrupt.

WFIT: Wait For Interrupt with Timeout.

XAFLAG: Convert floating-point condition flags from external format to Arm format.

XPACD, XPACI, XPACLRI: Strip Pointer Authentication Code.

YIELD: YIELD.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

A64 -- Base Instructions (alphabetic order)

Page 12

ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

op S

32-bit (sf == 0)

ADC <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ADC <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;

if sub_op then
operand2 = NOT(operand2);

(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

ADC Page 13

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC Page 14

ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the destination
register. It updates the condition flags based on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

op S

32-bit (sf == 0)

ADCS <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ADCS <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;

if sub_op then
operand2 = NOT(operand2);

(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

ADCS Page 15

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADCS Page 16

ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left
shift amount, and writes the result to the destination register. The argument that is extended from the <Rm> register
can be a byte, halfword, word, or doubleword.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

op S

32-bit (sf == 0)

ADD <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then UNDEFINED;

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

ADD (extended register) Page 17

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (extended register) Page 18

ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the
destination register.

This instruction is used by the alias MOV (to/from SP).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 0 1 0 sh imm12 Rn Rd

op S

32-bit (sf == 0)

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
bits(datasize) imm;

case sh of
when '0' imm = ZeroExtend(imm12, datasize);
when '1' imm = ZeroExtend(imm12 : Zeros(12), datasize);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #12

Alias Conditions

Alias Is preferred when
MOV (to/from
SP)

sh == '0' && imm12 == '000000000000' && (Rd == '11111' || Rn == '11111')

ADD (immediate) Page 19

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = imm;
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate) Page 20

ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

op S

32-bit (sf == 0)

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

ADD (shifted register) Page 21

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (shifted register) Page 22

ADDG

Add with Tag adds an immediate value scaled by the Tag granule to the address in the source register, modifies the
Logical Address Tag of the address using an immediate value, and writes the result to the destination register. Tags
specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical Address Tag.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd

op3

ADDG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
bits(4) tag_offset = uimm4;
bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);
boolean ADD = TRUE;

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
bits(16) exclude = GCR_EL1.Exclude;
bits(64) result;
bits(4) rtag;

if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
rtag = AArch64.ChooseNonExcludedTag(start_tag, tag_offset, exclude);

else
rtag = '0000';

if ADD then
(result, -) = AddWithCarry(operand1, offset, '0');

else
(result, -) = AddWithCarry(operand1, NOT(offset), '1');

result = AArch64.AddressWithAllocationTag(result, AccType_NORMAL, rtag);

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDG Page 23

ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by an
optional left shift amount, and writes the result to the destination register. The argument that is extended from the
<Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMN (extended register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

op S

32-bit (sf == 0)

ADDS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

ADDS (extended register) Page 24

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Alias Conditions

Alias Is preferred when
CMN (extended register) Rd == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

ADDS (extended register) Page 25

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (extended register) Page 26

ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result
to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 0 1 0 sh imm12 Rn Rd

op S

32-bit (sf == 0)

ADDS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
bits(datasize) imm;

case sh of
when '0' imm = ZeroExtend(imm12, datasize);
when '1' imm = ZeroExtend(imm12 : Zeros(12), datasize);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #12

Alias Conditions

Alias Is preferred when
CMN (immediate) Rd == '11111'

ADDS (immediate) Page 27

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = imm;
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (immediate) Page 28

ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the result
to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

op S

32-bit (sf == 0)

ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Alias Conditions

Alias Is preferred when
CMN (shifted register) Rd == '11111'

ADDS (shifted register) Page 29

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (shifted register) Page 30

ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result
to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 immlo 1 0 0 0 0 immhi Rd
op

ADR <Xd>, <label>

integer d = UInt(Rd);
boolean page = (op == '1');
bits(64) imm;

if page then
imm = SignExtend(immhi:immlo:Zeros(12), 64);

else
imm = SignExtend(immhi:immlo, 64);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction, in
the range +/-1MB, is encoded in "immhi:immlo".

Operation

bits(64) base = PC[];

if page then
base<11:0> = Zeros(12);

X[d] = base + imm;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 31

ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to form a
PC-relative address, with the bottom 12 bits masked out, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 immlo 1 0 0 0 0 immhi Rd
op

ADRP <Xd>, <label>

integer d = UInt(Rd);
boolean page = (op == '1');
bits(64) imm;

if page then
imm = SignExtend(immhi:immlo:Zeros(12), 64);

else
imm = SignExtend(immhi:immlo, 64);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of
this instruction, in the range +/-4GB, is encoded as "immhi:immlo" times 4096.

Operation

bits(64) base = PC[];

if page then
base<11:0> = Zeros(12);

X[d] = base + imm;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADRP Page 32

AND (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to
the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 0 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

AND <Wd|WSP>, <Wn>, #<imm>

64-bit (sf == 1)

AND <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

bits(datasize) imm;
if sf == '0' && N != '0' then UNDEFINED;
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

AND (immediate) Page 33

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = imm;

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (immediate) Page 34

AND (shifted register)

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value, and
writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

AND <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

AND <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

AND (shifted register) Page 35

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (shifted register) Page 36

ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 0 0 1 0 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

ANDS <Wd>, <Wn>, #<imm>

64-bit (sf == 1)

ANDS <Xd>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

bits(datasize) imm;
if sf == '0' && N != '0' then UNDEFINED;
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias Conditions

Alias Is preferred when
TST (immediate) Rd == '11111'

ANDS (immediate) Page 37

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = imm;

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (immediate) Page 38

ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted
register value, and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

ANDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ANDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

ANDS (shifted register) Page 39

Alias Conditions

Alias Is preferred when
TST (shifted register) Rd == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (shifted register) Page 40

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The remainder obtained by dividing the second source register by
the data size defines the number of bits by which the first source register is right-shifted.

This is an alias of ASRV. This means:

• The encodings in this description are named to match the encodings of ASRV.
• The description of ASRV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd

op2

32-bit (sf == 0)

ASR <Wd>, <Wn>, <Wm>

is equivalent to

ASRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

ASR <Xd>, <Xn>, <Xm>

is equivalent to

ASRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of ASRV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

ASR (register) Page 41

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (register) Page 42

ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of
the sign bit in the upper bits and zeros in the lower bits, and writes the result to the destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd

opc imms

32-bit (sf == 0 && N == 0 && imms == 011111)

ASR <Wd>, <Wn>, #<shift>

is equivalent to

SBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1 && imms == 111111)

ASR <Xd>, <Xn>, #<shift>

is equivalent to

SBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate) Page 43

ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The remainder obtained by dividing the second source register by
the data size defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ASR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd

op2

32-bit (sf == 0)

ASRV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ASRV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRV Page 44

AT

Address Translate. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 1 0 0 x op2 Rt

L CRn CRm

AT <at_op>, <Xt>

is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_AT.

Assembler Symbols

<at_op> Is an AT instruction name, as listed for the AT system instruction group, encoded in
“op1:CRm<0>:op2”:

op1 CRm<0> op2 <at_op> Architectural Feature
000 0 000 S1E1R -
000 0 001 S1E1W -
000 0 010 S1E0R -
000 0 011 S1E0W -
000 1 000 S1E1RP FEAT_PAN2
000 1 001 S1E1WP FEAT_PAN2
100 0 000 S1E2R -
100 0 001 S1E2W -
100 0 100 S12E1R -
100 0 101 S12E1W -
100 0 110 S12E0R -
100 0 111 S12E0W -
110 0 000 S1E3R -
110 0 001 S1E3W -

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT Page 45

AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDA.
• The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 0 Rn Rd

AUTDA (Z == 0)

AUTDA <Xd>, <Xn|SP>

AUTDZA (Z == 1 && Rn == 11111)

AUTDZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // AUTDA
if n == 31 then source_is_sp = TRUE;

else // AUTDZA
if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

auth_then_branch = FALSE;

if HavePACExt() then
if source_is_sp then

X[d] = AuthDA(X[d], SP[], auth_then_branch);
else

X[d] = AuthDA(X[d], X[n], auth_then_branch);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDA, AUTDZA Page 46

AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDB.
• The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 1 Rn Rd

AUTDB (Z == 0)

AUTDB <Xd>, <Xn|SP>

AUTDZB (Z == 1 && Rn == 11111)

AUTDZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // AUTDB
if n == 31 then source_is_sp = TRUE;

else // AUTDZB
if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

auth_then_branch = FALSE;

if HavePACExt() then
if source_is_sp then

X[d] = AuthDB(X[d], SP[], auth_then_branch);
else

X[d] = AuthDB(X[d], X[n], auth_then_branch);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDB, AUTDZB Page 47

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier
and key A.
The address is:

• In the general-purpose register that is specified by <Xd> for AUTIA and AUTIZA.
• In X17, for AUTIA1716.
• In X30, for AUTIASP and AUTIAZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIA.
• The value zero, for AUTIZA and AUTIAZ.
• In X16, for AUTIA1716.
• In SP, for AUTIASP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 0 Rn Rd

AUTIA (Z == 0)

AUTIA <Xd>, <Xn|SP>

AUTIZA (Z == 1 && Rn == 11111)

AUTIZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // AUTIA
if n == 31 then source_is_sp = TRUE;

else // AUTIZA
if n != 31 then UNDEFINED;

System
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 0 x 1 1 1 1 1

CRm op2

AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA Page 48

AUTIA1716 (CRm == 0001 && op2 == 100)

AUTIA1716

AUTIASP (CRm == 0011 && op2 == 101)

AUTIASP

AUTIAZ (CRm == 0011 && op2 == 100)

AUTIAZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 100' // AUTIAZ

d = 30;
n = 31;

when '0011 101' // AUTIASP
d = 30;
source_is_sp = TRUE;

when '0001 100' // AUTIA1716
d = 17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 110' SEE "AUTIB";
when '0011 00x' SEE "PACIA";
when '0011 01x' SEE "PACIB";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

auth_then_branch = FALSE;

if HavePACExt() then
if source_is_sp then

X[d] = AuthIA(X[d], SP[], auth_then_branch);
else

X[d] = AuthIA(X[d], X[n], auth_then_branch);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA Page 49

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier
and key B.
The address is:

• In the general-purpose register that is specified by <Xd> for AUTIB and AUTIZB.
• In X17, for AUTIB1716.
• In X30, for AUTIBSP and AUTIBZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIB.
• The value zero, for AUTIZB and AUTIBZ.
• In X16, for AUTIB1716.
• In SP, for AUTIBSP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the
authentication fails, the upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 1 Rn Rd

AUTIB (Z == 0)

AUTIB <Xd>, <Xn|SP>

AUTIZB (Z == 1 && Rn == 11111)

AUTIZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // AUTIB
if n == 31 then source_is_sp = TRUE;

else // AUTIZB
if n != 31 then UNDEFINED;

System
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 1 x 1 1 1 1 1

CRm op2

AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB Page 50

AUTIB1716 (CRm == 0001 && op2 == 110)

AUTIB1716

AUTIBSP (CRm == 0011 && op2 == 111)

AUTIBSP

AUTIBZ (CRm == 0011 && op2 == 110)

AUTIBZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 110' // AUTIBZ

d = 30;
n = 31;

when '0011 111' // AUTIBSP
d = 30;
source_is_sp = TRUE;

when '0001 110' // AUTIB1716
d = 17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 100' SEE "AUTIA";
when '0011 00x' SEE "PACIA";
when '0011 01x' SEE "PACIB";
when '0011 10x' SEE "AUTIA";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

auth_then_branch = FALSE;

if HavePACExt() then
if source_is_sp then

X[d] = AuthIB(X[d], SP[], auth_then_branch);
else

X[d] = AuthIB(X[d], X[n], auth_then_branch);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB Page 51

AXFLAG

Convert floating-point condition flags from Arm to external format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from a form representing the result of an Arm floating-point scalar compare instruction to an
alternative representation required by some software.

System
(FEAT_FlagM2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 1 0 1 1 1 1 1

CRm

AXFLAG

if !HaveFlagFormatExt() then UNDEFINED;

Operation

bit N = '0';
bit Z = PSTATE.Z OR PSTATE.V;
bit C = PSTATE.C AND NOT(PSTATE.V);
bit V = '0';

PSTATE.N = N;
PSTATE.Z = Z;
PSTATE.C = C;
PSTATE.V = V;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AXFLAG Page 52

B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 0 imm19 0 cond

B.<cond> <label>

bits(64) offset = SignExtend(imm19:'00', 64);
bits(4) condition = cond;

Assembler Symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in
the range +/-1MB, is encoded as "imm19" times 4.

Operation

boolean branch_conditional = TRUE;
if ConditionHolds(condition) then

BranchTo(PC[] + offset, BranchType_DIR, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B.cond Page 53

B

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call or
return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 0 1 imm26
op

B <label>

BranchType branch_type = if op == '1' then BranchType_DIRCALL else BranchType_DIR;
bits(64) offset = SignExtend(imm26:'00', 64);

Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in
the range +/-128MB, is encoded as "imm26" times 4.

Operation

if branch_type == BranchType_DIRCALL then
X[30] = PC[] + 4;

boolean branch_conditional = FALSE;
BranchTo(PC[] + offset, branch_type, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B Page 54

BFC

Bitfield Clear sets a bitfield of <width> bits at bit position <lsb> of the destination register to zero, leaving the other
destination bits unchanged.

This is an alias of BFM. This means:

• The encodings in this description are named to match the encodings of BFM.
• The description of BFM gives the operational pseudocode for this instruction.

Leaving other bits unchanged
(FEAT_ASMv8p2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 1 1 0 N immr imms 1 1 1 1 1 Rd

opc Rn

32-bit (sf == 0 && N == 0)

BFC <Wd>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, WZR, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

BFC <Xd>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, XZR, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.
For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

BFC Page 55

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFC Page 56

BFI

Bitfield Insert copies a bitfield of <width> bits from the least significant bits of the source register to bit position
<lsb> of the destination register, leaving the other destination bits unchanged.

This is an alias of BFM. This means:

• The encodings in this description are named to match the encodings of BFM.
• The description of BFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 1 1 0 N immr imms != 11111 Rd

opc Rn

32-bit (sf == 0 && N == 0)

BFI <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

BFI <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.
For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

BFI Page 57

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFI Page 58

BFM

Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.
If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit
position <immr> in the source register to the least significant bits of the destination register.
If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.
In both cases the other bits of the destination register remain unchanged.

This instruction is used by the aliases BFC, BFI, and BFXIL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

BFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit (sf == 1 && N == 1)

BFM <Xd>, <Xn>, #<immr>, #<imms>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

boolean inzero;
boolean extend;
integer R;
integer S;
bits(datasize) wmask;
bits(datasize) tmask;

case opc of
when '00' inzero = TRUE; extend = TRUE; // SBFM
when '01' inzero = FALSE; extend = FALSE; // BFM
when '10' inzero = TRUE; extend = FALSE; // UBFM
when '11' UNDEFINED;

if sf == '1' && N != '1' then UNDEFINED;
if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

R = UInt(immr);
S = UInt(imms);
(wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.
For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.
For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

BFM Page 59

Alias Conditions

Alias Is preferred when
BFC Rn == '11111' && UInt(imms) < UInt(immr)
BFI Rn != '11111' && UInt(imms) < UInt(immr)
BFXIL UInt(imms) >= UInt(immr)

Operation

bits(datasize) dst = if inzero then Zeros() else X[d];
bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, R) AND wmask);

// determine extension bits (sign, zero or dest register)
bits(datasize) top = if extend then Replicate(src<S>) else dst;

// combine extension bits and result bits
X[d] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFM Page 60

BFXIL

Bitfield Extract and Insert Low copies a bitfield of <width> bits starting from bit position <lsb> in the source register
to the least significant bits of the destination register, leaving the other destination bits unchanged.

This is an alias of BFM. This means:

• The encodings in this description are named to match the encodings of BFM.
• The description of BFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

BFXIL <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

64-bit (sf == 1 && N == 1)

BFXIL <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.
For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

BFXIL Page 61

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFXIL Page 62

BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an optionally-
shifted register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

BIC <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

BIC <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

BIC (shifted register) Page 63

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (shifted register) Page 64

BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It updates the condition flags based
on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

BICS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

BICS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

BICS (shifted register) Page 65

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BICS (shifted register) Page 66

BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a
subroutine call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 1 imm26
op

BL <label>

BranchType branch_type = if op == '1' then BranchType_DIRCALL else BranchType_DIR;
bits(64) offset = SignExtend(imm26:'00', 64);

Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in
the range +/-128MB, is encoded as "imm26" times 4.

Operation

if branch_type == BranchType_DIRCALL then
X[30] = PC[] + 4;

boolean branch_conditional = FALSE;
BranchTo(PC[] + offset, branch_type, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BL Page 67

BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

Z op A M Rm

BLR <Xn>

integer n = UInt(Rn);
BranchType branch_type;
integer m = UInt(Rm);
boolean pac = (A == '1');
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !pac && m != 0 then
UNDEFINED;

elsif pac && !HavePACExt() then
UNDEFINED;

case op of
when '00' branch_type = BranchType_INDIR;
when '01' branch_type = BranchType_INDCALL;
when '10' branch_type = BranchType_RET;
otherwise UNDEFINED;

if pac then
if Z == '0' && m != 31 then

UNDEFINED;

if branch_type == BranchType_RET then
if n != 31 then UNDEFINED;
n = 30;
source_is_sp = TRUE;

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

BLR Page 68

Operation

bits(64) target = X[n];
boolean auth_then_branch = TRUE;

if pac then
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier, auth_then_branch);

else
target = AuthIB(target, modifier, auth_then_branch);

if branch_type == BranchType_INDCALL then
X[30] = PC[] + 4;

// Value in BTypeNext will be used to set PSTATE.BTYPE
case branch_type of

when BranchType_INDIR // BR, BRAA, BRAB, BRAAZ, BRABZ
if InGuardedPage then

if n == 16 || n == 17 then
BTypeNext = '01';

else
BTypeNext = '11';

else
BTypeNext = '01';

when BranchType_INDCALL // BLR, BLRAA, BLRAB, BLRAAZ, BLRABZ
BTypeNext = '10';

when BranchType_RET // RET, RETAA, RETAB
BTypeNext = '00';

boolean branch_conditional = FALSE;
BranchTo(target, branch_type, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLR Page 69

BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the general-
purpose register that is specified by <Xn>, using a modifier and the specified key, and calls a subroutine at the
authenticated address, setting register X30 to PC+4.
The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP> for BLRAA and BLRAB.
• The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ, and key B is used for BLRAB and BLRABZ.
If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.
The authenticated address is not written back to the general-purpose register.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 Z 0 0 1 1 1 1 1 1 0 0 0 0 1 M Rn Rm

op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)

BLRAAZ <Xn>

Key A, register modifier (Z == 1 && M == 0)

BLRAA <Xn>, <Xm|SP>

Key B, zero modifier (Z == 0 && M == 1 && Rm == 11111)

BLRABZ <Xn>

Key B, register modifier (Z == 1 && M == 1)

BLRAB <Xn>, <Xm|SP>

integer n = UInt(Rn);
BranchType branch_type;
integer m = UInt(Rm);
boolean pac = (A == '1');
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !pac && m != 0 then
UNDEFINED;

elsif pac && !HavePACExt() then
UNDEFINED;

case op of
when '00' branch_type = BranchType_INDIR;
when '01' branch_type = BranchType_INDCALL;
when '10' branch_type = BranchType_RET;
otherwise UNDEFINED;

if pac then
if Z == '0' && m != 31 then

UNDEFINED;

if branch_type == BranchType_RET then
if n != 31 then UNDEFINED;
n = 30;
source_is_sp = TRUE;

BLRAA, BLRAAZ, BLRAB,
BLRABZ Page 70

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded
in the "Rm" field.

Operation

bits(64) target = X[n];
boolean auth_then_branch = TRUE;

if pac then
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier, auth_then_branch);

else
target = AuthIB(target, modifier, auth_then_branch);

if branch_type == BranchType_INDCALL then
X[30] = PC[] + 4;

// Value in BTypeNext will be used to set PSTATE.BTYPE
case branch_type of

when BranchType_INDIR // BR, BRAA, BRAB, BRAAZ, BRABZ
if InGuardedPage then

if n == 16 || n == 17 then
BTypeNext = '01';

else
BTypeNext = '11';

else
BTypeNext = '01';

when BranchType_INDCALL // BLR, BLRAA, BLRAB, BLRAAZ, BLRABZ
BTypeNext = '10';

when BranchType_RET // RET, RETAA, RETAB
BTypeNext = '00';

boolean branch_conditional = FALSE;
BranchTo(target, branch_type, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLRAA, BLRAAZ, BLRAB,
BLRABZ Page 71

BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

Z op A M Rm

BR <Xn>

integer n = UInt(Rn);
BranchType branch_type;
integer m = UInt(Rm);
boolean pac = (A == '1');
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !pac && m != 0 then
UNDEFINED;

elsif pac && !HavePACExt() then
UNDEFINED;

case op of
when '00' branch_type = BranchType_INDIR;
when '01' branch_type = BranchType_INDCALL;
when '10' branch_type = BranchType_RET;
otherwise UNDEFINED;

if pac then
if Z == '0' && m != 31 then

UNDEFINED;

if branch_type == BranchType_RET then
if n != 31 then UNDEFINED;
n = 30;
source_is_sp = TRUE;

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

BR Page 72

Operation

bits(64) target = X[n];
boolean auth_then_branch = TRUE;

if pac then
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier, auth_then_branch);

else
target = AuthIB(target, modifier, auth_then_branch);

if branch_type == BranchType_INDCALL then
X[30] = PC[] + 4;

// Value in BTypeNext will be used to set PSTATE.BTYPE
case branch_type of

when BranchType_INDIR // BR, BRAA, BRAB, BRAAZ, BRABZ
if InGuardedPage then

if n == 16 || n == 17 then
BTypeNext = '01';

else
BTypeNext = '11';

else
BTypeNext = '01';

when BranchType_INDCALL // BLR, BLRAA, BLRAB, BLRAAZ, BLRABZ
BTypeNext = '10';

when BranchType_RET // RET, RETAA, RETAB
BTypeNext = '00';

boolean branch_conditional = FALSE;
BranchTo(target, branch_type, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BR Page 73

BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose
register that is specified by <Xn>, using a modifier and the specified key, and branches to the authenticated address.
The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP> for BRAA and BRAB.
• The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ, and key B is used for BRAB and BRABZ.
If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.
The authenticated address is not written back to the general-purpose register.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 Z 0 0 0 1 1 1 1 1 0 0 0 0 1 M Rn Rm

op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)

BRAAZ <Xn>

Key A, register modifier (Z == 1 && M == 0)

BRAA <Xn>, <Xm|SP>

Key B, zero modifier (Z == 0 && M == 1 && Rm == 11111)

BRABZ <Xn>

Key B, register modifier (Z == 1 && M == 1)

BRAB <Xn>, <Xm|SP>

integer n = UInt(Rn);
BranchType branch_type;
integer m = UInt(Rm);
boolean pac = (A == '1');
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !pac && m != 0 then
UNDEFINED;

elsif pac && !HavePACExt() then
UNDEFINED;

case op of
when '00' branch_type = BranchType_INDIR;
when '01' branch_type = BranchType_INDCALL;
when '10' branch_type = BranchType_RET;
otherwise UNDEFINED;

if pac then
if Z == '0' && m != 31 then

UNDEFINED;

if branch_type == BranchType_RET then
if n != 31 then UNDEFINED;
n = 30;
source_is_sp = TRUE;

BRAA, BRAAZ, BRAB, BRABZ Page 74

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded
in the "Rm" field.

Operation

bits(64) target = X[n];
boolean auth_then_branch = TRUE;

if pac then
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier, auth_then_branch);

else
target = AuthIB(target, modifier, auth_then_branch);

if branch_type == BranchType_INDCALL then
X[30] = PC[] + 4;

// Value in BTypeNext will be used to set PSTATE.BTYPE
case branch_type of

when BranchType_INDIR // BR, BRAA, BRAB, BRAAZ, BRABZ
if InGuardedPage then

if n == 16 || n == 17 then
BTypeNext = '01';

else
BTypeNext = '11';

else
BTypeNext = '01';

when BranchType_INDCALL // BLR, BLRAA, BLRAB, BLRAAZ, BLRABZ
BTypeNext = '10';

when BranchType_RET // RET, RETAA, RETAB
BTypeNext = '00';

boolean branch_conditional = FALSE;
BranchTo(target, branch_type, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRAA, BRAAZ, BRAB, BRABZ Page 75

BRK

Breakpoint instruction. A BRK instruction generates a Breakpoint Instruction exception. The PE records the exception
in ESR_ELx, using the EC value 0x3c, and captures the value of the immediate argument in ESR_ELx.ISS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 0 0 1 imm16 0 0 0 0 0

BRK #<imm>

bits(16) comment = imm16;
if HaveBTIExt() then

SetBTypeCompatible(TRUE);

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.SoftwareBreakpoint(comment);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRK Page 76

BTI

Branch Target Identification. A BTI instruction is used to guard against the execution of instructions which are not the
intended target of a branch.
Outside of a guarded memory region, a BTI instruction executes as a NOP. Within a guarded memory region while
PSTATE.BTYPE != 0b00, a BTI instruction compatible with the current value of PSTATE.BTYPE will not generate a
Branch Target Exception and will allow execution of subsequent instructions within the memory region.
The operand <targets> passed to a BTI instruction determines the values of PSTATE.BTYPE which the BTI instruction
is compatible with.
Within a guarded memory region, when PSTATE.BTYPE != 0b00, all instructions will generate a Branch Target
Exception, other than BRK, BTI, HLT, PACIASP, and PACIBSP, which might not. See the individual instructions for more
information.

System
(FEAT_BTI)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 x x 0 1 1 1 1 1

CRm op2

BTI Page 77

BTI {<targets>}

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

Assembler Symbols

<targets> Is the type of indirection, encoded in “op2<2:1>”:

op2<2:1> <targets>
00 (omitted)
01 c
10 j
11 jc

BTI Page 78

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BTI Page 79

CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and
compares it against the value held in a first register. If the comparison is equal, the value in a second register is
written to memory. If the write is performed, the read and write occur atomically such that no other modification of
the memory location can take place between the read and write.

• CASA and CASAL load from memory with acquire semantics.
• CASL and CASAL store to memory with release semantics.
• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.
If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, or
<Xs>, is restored to the value held in the register before the instruction was executed.

No offset
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
size

CAS, CASA, CASAL, CASL Page 80

32-bit CAS (size == 10 && L == 0 && o0 == 0)

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASA (size == 10 && L == 1 && o0 == 0)

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASAL (size == 10 && L == 1 && o0 == 1)

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit CASL (size == 10 && L == 0 && o0 == 1)

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit CAS (size == 11 && L == 0 && o0 == 0)

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASA (size == 11 && L == 1 && o0 == 0)

CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASAL (size == 11 && L == 1 && o0 == 1)

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit CASL (size == 11 && L == 0 && o0 == 1)

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CAS, CASA, CASAL, CASL Page 81

Operation

bits(64) address;
bits(datasize) comparevalue;
bits(datasize) newvalue;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

X[s] = ZeroExtend(data, regsize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CAS, CASA, CASAL, CASL Page 82

CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a first
register. If the comparison is equal, the value in a second register is written to memory. If the write is performed, the
read and write occur atomically such that no other modification of the memory location can take place between the
read and write.

• CASAB and CASALB load from memory with acquire semantics.
• CASLB and CASALB store to memory with release semantics.
• CASB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.
If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
size

CASAB (L == 1 && o0 == 0)

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALB (L == 1 && o0 == 1)

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASB (L == 0 && o0 == 0)

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLB (L == 0 && o0 == 1)

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASB, CASAB, CASALB,
CASLB Page 83

Operation

bits(64) address;
bits(datasize) comparevalue;
bits(datasize) newvalue;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

X[s] = ZeroExtend(data, regsize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASB, CASAB, CASALB,
CASLB Page 84

CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value held
in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is
performed, the read and write occur atomically such that no other modification of the memory location can take place
between the read and write.

• CASAH and CASALH load from memory with acquire semantics.
• CASLH and CASALH store to memory with release semantics.
• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.
If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
size

CASAH (L == 1 && o0 == 0)

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASALH (L == 1 && o0 == 1)

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASH (L == 0 && o0 == 0)

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]

CASLH (L == 0 && o0 == 1)

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASH, CASAH, CASALH,
CASLH Page 85

Operation

bits(64) address;
bits(datasize) comparevalue;
bits(datasize) newvalue;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

comparevalue = X[s];
newvalue = X[t];

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

X[s] = ZeroExtend(data, regsize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASH, CASAH, CASALH,
CASLH Page 86

CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords from
memory, and compares them against the values held in the first pair of registers. If the comparison is equal, the values
in the second pair of registers are written to memory. If the writes are performed, the reads and writes occur
atomically such that no other modification of the memory location can take place between the reads and writes.

• CASPA and CASPAL load from memory with acquire semantics.
• CASPL and CASPAL store to memory with release semantics.
• CAS has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.
If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws>
and <W(s+1)>, or <Xs> and <X(s+1)>, are restored to the values held in the registers before the instruction was
executed.

No offset
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 sz 0 0 1 0 0 0 0 L 1 Rs o0 1 1 1 1 1 Rn Rt

Rt2

CASP, CASPA, CASPAL,
CASPL Page 87

32-bit CASP (sz == 0 && L == 0 && o0 == 0)

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPA (sz == 0 && L == 1 && o0 == 0)

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPAL (sz == 0 && L == 1 && o0 == 1)

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit CASPL (sz == 0 && L == 0 && o0 == 1)

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

64-bit CASP (sz == 1 && L == 0 && o0 == 0)

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPA (sz == 1 && L == 1 && o0 == 0)

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPAL (sz == 1 && L == 1 && o0 == 1)

CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit CASPL (sz == 1 && L == 0 && o0 == 1)

CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UNDEFINED;
if Rs<0> == '1' then UNDEFINED;
if Rt<0> == '1' then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 32 << UInt(sz);
integer regsize = datasize;
AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs"
field. <Ws> must be an even-numbered register.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Wt> must be an even-numbered register.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs"
field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

CASP, CASPA, CASPAL,
CASPL Page 88

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt"
field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(2*datasize) comparevalue;
bits(2*datasize) newvalue;
bits(2*datasize) data;

bits(datasize) s1 = X[s];
bits(datasize) s2 = X[s+1];
bits(datasize) t1 = X[t];
bits(datasize) t2 = X[t+1];
comparevalue = if BigEndian(ldacctype) then s1:s2 else s2:s1;
newvalue = if BigEndian(stacctype) then t1:t2 else t2:t1;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomicCompareAndSwap(address, comparevalue, newvalue, ldacctype, stacctype);

if BigEndian(ldacctype) then
X[s] = data<2*datasize-1:datasize>;
X[s+1] = data<datasize-1:0>;

else
X[s] = data<datasize-1:0>;
X[s+1] = data<2*datasize-1:datasize>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASP, CASPA, CASPAL,
CASPL Page 89

CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label at a
PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return. This
instruction does not affect the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 1 0 1 imm19 Rt

op

32-bit (sf == 0)

CBNZ <Wt>, <label>

64-bit (sf == 1)

CBNZ <Xt>, <label>

integer t = UInt(Rt);
integer datasize = if sf == '1' then 64 else 32;
boolean iszero = (op == '0');
bits(64) offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in
the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(datasize) operand1 = X[t];
boolean branch_conditional = TRUE;
if IsZero(operand1) == iszero then

BranchTo(PC[] + offset, BranchType_DIR, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBNZ Page 90

CBZ

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a PC-
relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This instruction
does not affect condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 1 0 0 imm19 Rt

op

32-bit (sf == 0)

CBZ <Wt>, <label>

64-bit (sf == 1)

CBZ <Xt>, <label>

integer t = UInt(Rt);
integer datasize = if sf == '1' then 64 else 32;
boolean iszero = (op == '0');
bits(64) offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in
the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(datasize) operand1 = X[t];
boolean branch_conditional = TRUE;
if IsZero(operand1) == iszero then

BranchTo(PC[] + offset, BranchType_DIR, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBZ Page 91

CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of a
register value and a negated immediate value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv

op

32-bit (sf == 0)

CCMN <Wn>, #<imm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMN <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
bits(4) condition = cond;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(condition) then
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = imm;
bit carry_in = '0';
if sub_op then

operand2 = NOT(operand2);
carry_in = '1';

(-, flags) = AddWithCarry(operand1, operand2, carry_in);
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (immediate) Page 92

CCMN (register)

Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a
register value and the inverse of another register value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv

op

32-bit (sf == 0)

CCMN <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMN <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
bits(4) condition = cond;
bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(condition) then
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bit carry_in = '0';
if sub_op then

operand2 = NOT(operand2);
carry_in = '1';

(-, flags) = AddWithCarry(operand1, operand2, carry_in);
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (register) Page 93

CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register
value and an immediate value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv

op

32-bit (sf == 0)

CCMP <Wn>, #<imm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMP <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
bits(4) condition = cond;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(condition) then
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = imm;
bit carry_in = '0';
if sub_op then

operand2 = NOT(operand2);
carry_in = '1';

(-, flags) = AddWithCarry(operand1, operand2, carry_in);
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (immediate) Page 94

CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers if
the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv

op

32-bit (sf == 0)

CCMP <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMP <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
bits(4) condition = cond;
bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

if ConditionHolds(condition) then
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bit carry_in = '0';
if sub_op then

operand2 = NOT(operand2);
carry_in = '1';

(-, flags) = AddWithCarry(operand1, operand2, carry_in);
PSTATE.<N,Z,C,V> = flags;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (register) Page 95

CFINV

Invert Carry Flag. This instruction inverts the value of the PSTATE.C flag.

System
(FEAT_FlagM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 0 1 1 1 1 1

CRm

CFINV

if !HaveFlagManipulateExt() then UNDEFINED;

Operation

PSTATE.C = NOT(PSTATE.C);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CFINV Page 96

CFP

Control Flow Prediction Restriction by Context prevents control flow predictions that predict execution addresses
based on information gathered from earlier execution within a particular execution context. Control flow predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.
For more information, see CFP RCTX, Control Flow Prediction Restriction by Context.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

System
(FEAT_SPECRES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 Rt

L op1 CRn CRm op2

CFP RCTX, <Xt>

is equivalent to

SYS #3, C7, C3, #4, <Xt>

and is always the preferred disassembly.

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CFP Page 97

CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the
condition is TRUE, and otherwise returns the value of the source register.

This is an alias of CSINC. This means:

• The encodings in this description are named to match the encodings of CSINC.
• The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 0 0 != 11111 != 111x 0 1 != 11111 Rd

op Rm cond o2 Rn

32-bit (sf == 0)

CINC <Wd>, <Wn>, <cond>

is equivalent to

CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1)

CINC <Xd>, <Xn>, <cond>

is equivalent to

CSINC <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINC Page 98

CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the
condition is TRUE, and otherwise returns the value of the source register.

This is an alias of CSINV. This means:

• The encodings in this description are named to match the encodings of CSINV.
• The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 0 0 != 11111 != 111x 0 0 != 11111 Rd

op Rm cond o2 Rn

32-bit (sf == 0)

CINV <Wd>, <Wn>, <cond>

is equivalent to

CSINV <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1)

CINV <Xd>, <Xn>, <cond>

is equivalent to

CSINV <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINV Page 99

CLREX

Clear Exclusive clears the local monitor of the executing PE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 0 1 0 1 1 1 1 1

CLREX {#<imm>}

// CRm field is ignored

Assembler Symbols

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

ClearExclusiveLocal(ProcessorID());

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLREX Page 100

CLS

Count Leading Sign bits counts the number of leading bits of the source register that have the same value as the most
significant bit of the register, and writes the result to the destination register. This count does not include the most
significant bit of the source register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 Rn Rd

op

32-bit (sf == 0)

CLS <Wd>, <Wn>

64-bit (sf == 1)

CLS <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
CountOp opcode = if op == '0' then CountOp_CLZ else CountOp_CLS;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

integer result;
bits(datasize) operand1 = X[n];

if opcode == CountOp_CLZ then
result = CountLeadingZeroBits(operand1);

else
result = CountLeadingSignBits(operand1);

X[d] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS Page 101

CLZ

Count Leading Zeros counts the number of binary zero bits before the first binary one bit in the value of the source
register, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Rn Rd

op

32-bit (sf == 0)

CLZ <Wd>, <Wn>

64-bit (sf == 1)

CLZ <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
CountOp opcode = if op == '0' then CountOp_CLZ else CountOp_CLS;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

integer result;
bits(datasize) operand1 = X[n];

if opcode == CountOp_CLZ then
result = CountLeadingZeroBits(operand1);

else
result = CountLeadingSignBits(operand1);

X[d] = result<datasize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ Page 102

CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by an
optional left shift amount. The argument that is extended from the <Rm> register can be a byte, halfword, word, or
doubleword. It updates the condition flags based on the result, and discards the result.

This is an alias of ADDS (extended register). This means:

• The encodings in this description are named to match the encodings of ADDS (extended register).
• The description of ADDS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1

op S Rd

32-bit (sf == 0)

CMN <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

is equivalent to

ADDS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit (sf == 1)

CMN <Xn|SP>, <R><m>{, <extend> {#<amount>}}

is equivalent to

ADDS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

CMN (extended register) Page 103

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Operation

The description of ADDS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (extended register) Page 104

CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the
condition flags based on the result, and discards the result.

This is an alias of ADDS (immediate). This means:

• The encodings in this description are named to match the encodings of ADDS (immediate).
• The description of ADDS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1

op S Rd

32-bit (sf == 0)

CMN <Wn|WSP>, #<imm>{, <shift>}

is equivalent to

ADDS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMN <Xn|SP>, #<imm>{, <shift>}

is equivalent to

ADDS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #12

Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

CMN (immediate) Page 105

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (immediate) Page 106

CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

This is an alias of ADDS (shifted register). This means:

• The encodings in this description are named to match the encodings of ADDS (shifted register).
• The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1

op S Rd

32-bit (sf == 0)

CMN <Wn>, <Wm>{, <shift> #<amount>}

is equivalent to

ADDS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMN <Xn>, <Xm>{, <shift> #<amount>}

is equivalent to

ADDS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

CMN (shifted register) Page 107

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (shifted register) Page 108

CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value. The argument that is extended from the <Rm> register can be a byte, halfword, word,
or doubleword. It updates the condition flags based on the result, and discards the result.

This is an alias of SUBS (extended register). This means:

• The encodings in this description are named to match the encodings of SUBS (extended register).
• The description of SUBS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1

op S Rd

32-bit (sf == 0)

CMP <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

is equivalent to

SUBS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit (sf == 1)

CMP <Xn|SP>, <R><m>{, <extend> {#<amount>}}

is equivalent to

SUBS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

CMP (extended register) Page 109

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Operation

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (extended register) Page 110

CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition
flags based on the result, and discards the result.

This is an alias of SUBS (immediate). This means:

• The encodings in this description are named to match the encodings of SUBS (immediate).
• The description of SUBS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 0 0 0 1 0 sh imm12 Rn 1 1 1 1 1

op S Rd

32-bit (sf == 0)

CMP <Wn|WSP>, #<imm>{, <shift>}

is equivalent to

SUBS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMP <Xn|SP>, #<imm>{, <shift>}

is equivalent to

SUBS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #12

Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

CMP (immediate) Page 111

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (immediate) Page 112

CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the condition
flags based on the result, and discards the result.

This is an alias of SUBS (shifted register). This means:

• The encodings in this description are named to match the encodings of SUBS (shifted register).
• The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1

op S Rd

32-bit (sf == 0)

CMP <Wn>, <Wm>{, <shift> #<amount>}

is equivalent to

SUBS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMP <Xn>, <Xm>{, <shift> #<amount>}

is equivalent to

SUBS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

CMP (shifted register) Page 113

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (shifted register) Page 114

CMPP

Compare with Tag subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, updates the condition flags based on the result of the subtraction, and discards the result.

This is an alias of SUBPS. This means:

• The encodings in this description are named to match the encodings of SUBPS.
• The description of SUBPS gives the operational pseudocode for this instruction.

Integer
(Armv8.5)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn 1 1 1 1 1

Xd

CMPP <Xn|SP>, <Xm|SP>

is equivalent to

SUBPS XZR, <Xn|SP>, <Xm|SP>

and is always the preferred disassembly.

Assembler Symbols

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Xm"
field.

Operation

The description of SUBPS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMPP Page 115

CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is
TRUE, and otherwise returns the value of the source register.

This is an alias of CSNEG. This means:

• The encodings in this description are named to match the encodings of CSNEG.
• The description of CSNEG gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 0 0 Rm != 111x 0 1 Rn Rd

op cond o2

32-bit (sf == 0)

CNEG <Wd>, <Wn>, <cond>

is equivalent to

CSNEG <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1)

CNEG <Xd>, <Xn>, <cond>

is equivalent to

CSNEG <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSNEG gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNEG Page 116

CPP

Cache Prefetch Prediction Restriction by Context prevents cache allocation predictions that predict execution
addresses based on information gathered from earlier execution within a particular execution context. Cache
allocation predictions determined by the actions of code in the target execution context or contexts appearing in
program order before the instruction cannot be used to exploitatively control speculative execution occurring after the
instruction is complete and synchronized.
For more information, see CPP RCTX, Cache Prefetch Prediction Restriction by Context.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

System
(FEAT_SPECRES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 Rt

L op1 CRn CRm op2

CPP RCTX, <Xt>

is equivalent to

SYS #3, C7, C3, #7, <Xt>

and is always the preferred disassembly.

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPP Page 117

CRC32B, CRC32H, CRC32W, CRC32X

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register.
It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source
operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align with
common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is
used for the CRC calculation.
In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement it.
ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 0 sz Rn Rd

C

CRC32B (sf == 0 && sz == 00)

CRC32B <Wd>, <Wn>, <Wm>

CRC32H (sf == 0 && sz == 01)

CRC32H <Wd>, <Wn>, <Wm>

CRC32W (sf == 0 && sz == 10)

CRC32W <Wd>, <Wn>, <Wm>

CRC32X (sf == 1 && sz == 11)

CRC32X <Wd>, <Wn>, <Xm>

if !HaveCRCExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sf == '1' && sz != '11' then UNDEFINED;
if sf == '0' && sz == '11' then UNDEFINED;
integer size = 8 << UInt(sz); // 2-bit size field -> 8, 16, 32, 64
boolean crc32c = (C == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

bits(32) acc = X[n]; // accumulator
bits(size) val = X[m]; // input value
bits(32) poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;

bits(32+size) tempacc = BitReverse(acc) : Zeros(size);
bits(size+32) tempval = BitReverse(val) : Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

CRC32B, CRC32H, CRC32W,
CRC32X Page 118

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32B, CRC32H, CRC32W,
CRC32X Page 119

CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register.
It takes an input CRC value in the first source operand, performs a CRC on the input value in the second source
operand, and returns the output CRC value. The second source operand can be 8, 16, 32, or 64 bits. To align with
common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41 is
used for the CRC calculation.
In Armv8-A, this is an OPTIONAL instruction, and in Armv8.1 it is mandatory for all implementations to implement it.
ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 1 sz Rn Rd

C

CRC32CB (sf == 0 && sz == 00)

CRC32CB <Wd>, <Wn>, <Wm>

CRC32CH (sf == 0 && sz == 01)

CRC32CH <Wd>, <Wn>, <Wm>

CRC32CW (sf == 0 && sz == 10)

CRC32CW <Wd>, <Wn>, <Wm>

CRC32CX (sf == 1 && sz == 11)

CRC32CX <Wd>, <Wn>, <Xm>

if !HaveCRCExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sf == '1' && sz != '11' then UNDEFINED;
if sf == '0' && sz == '11' then UNDEFINED;
integer size = 8 << UInt(sz); // 2-bit size field -> 8, 16, 32, 64
boolean crc32c = (C == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

bits(32) acc = X[n]; // accumulator
bits(size) val = X[m]; // input value
bits(32) poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;

bits(32+size) tempacc = BitReverse(acc) : Zeros(size);
bits(size+32) tempval = BitReverse(val) : Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

CRC32CB, CRC32CH,
CRC32CW, CRC32CX Page 120

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32CB, CRC32CH,
CRC32CW, CRC32CX Page 121

CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value
prediction.
No instruction other than branch instructions appearing in program order after the CSDB can be speculatively
executed using the results of any:

• Data value predictions of any instructions.
• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions appearing in

program order before the CSDB that have not been architecturally resolved.
• Predictions of SVE predication state for any SVE instructions.

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:
• Control flow speculation before and after the CSDB.
• Speculative execution of conditional data processing instructions after the CSDB, unless they use the results

of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before the CSDB
that have not been architecturally resolved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1

CRm op2

CSDB Page 122

CSDB

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

CSDB Page 123

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSDB Page 124

CSEL

If the condition is true, Conditional Select writes the value of the first source register to the destination register. If the
condition is false, it writes the value of the second source register to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd

op o2

32-bit (sf == 0)

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSEL <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) condition = cond;
boolean else_inv = (op == '1');
boolean else_inc = (o2 == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) result;
if ConditionHolds(condition) then

result = X[n];
else

result = X[m];
if else_inv then result = NOT(result);
if else_inc then result = result + 1;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

CSEL Page 125

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSEL Page 126

CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

This is an alias of CSINC. This means:

• The encodings in this description are named to match the encodings of CSINC.
• The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 != 111x 0 1 1 1 1 1 1 Rd

op Rm cond o2 Rn

32-bit (sf == 0)

CSET <Wd>, <cond>

is equivalent to

CSINC <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit (sf == 1)

CSET <Xd>, <cond>

is equivalent to

CSINC <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSET Page 127

CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits to
0.

This is an alias of CSINV. This means:

• The encodings in this description are named to match the encodings of CSINV.
• The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 != 111x 0 0 1 1 1 1 1 Rd

op Rm cond o2 Rn

32-bit (sf == 0)

CSETM <Wd>, <cond>

is equivalent to

CSINV <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit (sf == 1)

CSETM <Xd>, <cond>

is equivalent to

CSINV <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least
significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSETM Page 128

CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition
is TRUE, and otherwise returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC, and CSET.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd

op o2

32-bit (sf == 0)

CSINC <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINC <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) condition = cond;
boolean else_inv = (op == '1');
boolean else_inc = (o2 == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when
CINC Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm
CSET Rm == '11111' && cond != '111x' && Rn == '11111'

Operation

bits(datasize) result;
if ConditionHolds(condition) then

result = X[n];
else

result = X[m];
if else_inv then result = NOT(result);
if else_inc then result = result + 1;

X[d] = result;

CSINC Page 129

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINC Page 130

CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV, and CSETM.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd

op o2

32-bit (sf == 0)

CSINV <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINV <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) condition = cond;
boolean else_inv = (op == '1');
boolean else_inc = (o2 == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when
CINV Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm
CSETM Rm == '11111' && cond != '111x' && Rn == '11111'

Operation

bits(datasize) result;
if ConditionHolds(condition) then

result = X[n];
else

result = X[m];
if else_inv then result = NOT(result);
if else_inc then result = result + 1;

X[d] = result;

CSINV Page 131

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINV Page 132

CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition is
TRUE, and otherwise returns the negated value of the second source register.

This instruction is used by the alias CNEG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd

op o2

32-bit (sf == 0)

CSNEG <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSNEG <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) condition = cond;
boolean else_inv = (op == '1');
boolean else_inc = (o2 == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when
CNEG cond != '111x' && Rn == Rm

Operation

bits(datasize) result;
if ConditionHolds(condition) then

result = X[n];
else

result = X[m];
if else_inv then result = NOT(result);
if else_inc then result = result + 1;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

CSNEG Page 133

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSNEG Page 134

DC

Data Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt

L CRn

DC <dc_op>, <Xt>

is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_DC.

Assembler Symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in “op1:CRm:op2”:

op1 CRm op2 <dc_op> Architectural Feature
000 0110 001 IVAC -
000 0110 010 ISW -
000 0110 011 IGVAC FEAT_MTE2
000 0110 100 IGSW FEAT_MTE2
000 0110 101 IGDVAC FEAT_MTE2
000 0110 110 IGDSW FEAT_MTE2
000 1010 010 CSW -
000 1010 100 CGSW FEAT_MTE2
000 1010 110 CGDSW FEAT_MTE2
000 1110 010 CISW -
000 1110 100 CIGSW FEAT_MTE2
000 1110 110 CIGDSW FEAT_MTE2
011 0100 001 ZVA -
011 0100 011 GVA FEAT_MTE
011 0100 100 GZVA FEAT_MTE
011 1010 001 CVAC -
011 1010 011 CGVAC FEAT_MTE
011 1010 101 CGDVAC FEAT_MTE
011 1011 001 CVAU -
011 1100 001 CVAP FEAT_DPB
011 1100 011 CGVAP FEAT_MTE
011 1100 101 CGDVAP FEAT_MTE
011 1101 001 CVADP FEAT_DPB2
011 1101 011 CGVADP FEAT_MTE
011 1101 101 CGDVADP FEAT_MTE
011 1110 001 CIVAC -
011 1110 011 CIGVAC FEAT_MTE
011 1110 101 CIGDVAC FEAT_MTE

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

DC Page 135

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC Page 136

DCPS1

Debug Change PE State to EL1, when executed in Debug state:
• If executed at EL0 changes the current Exception level and SP to EL1 using SP_EL1.
• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:
• EL1 if the instruction is executed at EL0.
• Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:
• ELR_ELx becomes UNKNOWN.
• SPSR_ELx becomes UNKNOWN.
• ESR_ELx becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at EL0 in Non-secure state if EL2 is implemented and HCR_EL2.TGE == 1.
This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 0 1

LL

DCPS1 {#<imm>}

bits(2) target_level = LL;
if LL == '00' then UNDEFINED;
if !Halted() then UNDEFINED;

Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the
"imm16" field.

Operation

DCPSInstruction(target_level);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS1 Page 137

DCPS2

Debug Change PE State to EL2, when executed in Debug state:
• If executed at EL0 or EL1 changes the current Exception level and SP to EL2 using SP_EL2.
• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:
• EL2 if the instruction is executed at an exception level that is not EL3.
• EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:
• ELR_ELx becomes UNKNOWN.
• SPSR_ELx becomes UNKNOWN.
• ESR_ELx becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at the following exception levels:
• All exception levels if EL2 is not implemented.
• At EL0 and EL1 if EL2 is disabled in the current Security state.

This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 0

LL

DCPS2 {#<imm>}

bits(2) target_level = LL;
if LL == '00' then UNDEFINED;
if !Halted() then UNDEFINED;

Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the
"imm16" field.

Operation

DCPSInstruction(target_level);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS2 Page 138

DCPS3

Debug Change PE State to EL3, when executed in Debug state:
• If executed at EL3 selects SP_EL3.
• Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.
On executing a DCPS3 instruction:

• ELR_EL3 becomes UNKNOWN.
• SPSR_EL3 becomes UNKNOWN.
• ESR_EL3 becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:
• EDSCR.SDD == 1.
• EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 1

LL

DCPS3 {#<imm>}

bits(2) target_level = LL;
if LL == '00' then UNDEFINED;
if !Halted() then UNDEFINED;

Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the
"imm16" field.

Operation

DCPSInstruction(target_level);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS3 Page 139

DGH

DGH is a hint instruction. A DGH instruction is not expected to be performance optimal to merge memory accesses with
Normal Non-cacheable or Device-GRE attributes appearing in program order before the hint instruction with any
memory accesses appearing after the hint instruction into a single memory transaction on an interconnect.

System
(FEAT_DGH)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1

CRm op2

DGH

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

DGH Page 140

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DGH Page 141

DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 1 1 1 1 1 1

opc

DMB <option>|#<imm>

case CRm<3:2> of
when '00' domain = MBReqDomain_OuterShareable;
when '01' domain = MBReqDomain_Nonshareable;
when '10' domain = MBReqDomain_InnerShareable;
when '11' domain = MBReqDomain_FullSystem;

case CRm<1:0> of
when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
when '01' types = MBReqTypes_Reads;
when '10' types = MBReqTypes_Writes;
when '11' types = MBReqTypes_All;

Assembler Symbols

<option> Specifies the limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. This option is referred to as the full system barrier.
Encoded as CRm = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. Encoded as CRm = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0101.

DMB Page 142

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the
#<imm> syntax. All unsupported and reserved options must execute as a full system barrier operation,
but software must not rely on this behavior. For more information on whether an access is before or
after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier (DSB).

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

DataMemoryBarrier(domain, types);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DMB Page 143

DRPS

Debug restore process state

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

DRPS

if !Halted() || PSTATE.EL == EL0 then UNDEFINED;

Operation

DRPSInstruction();

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DRPS Page 144

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier.
A DSB instruction with the nXS qualifier is complete when the subset of these memory accesses with the XS attribute
set to 0 are complete. It does not require that memory accesses with the XS attribute set to 1 are complete.

This instruction is used by the aliases PSSBB, and SSBB.

It has encodings from 2 classes: Memory barrier and Memory nXS barrier

Memory barrier

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 0 1 1 1 1 1

opc

DSB <option>|#<imm>

boolean nXS = FALSE;

case CRm of
when '0000' alias = DSBAlias_SSBB;
when '0100' alias = DSBAlias_PSSBB;
otherwise alias = DSBAlias_DSB;

case CRm<3:2> of
when '00' domain = MBReqDomain_OuterShareable;
when '01' domain = MBReqDomain_Nonshareable;
when '10' domain = MBReqDomain_InnerShareable;
when '11' domain = MBReqDomain_FullSystem;

case CRm<1:0> of
when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
when '01' types = MBReqTypes_Reads;
when '10' types = MBReqTypes_Writes;
when '11' types = MBReqTypes_All;

Memory nXS barrier
(FEAT_XS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 imm2 1 0 0 0 1 1 1 1 1 1

DSB <option>nXS|#<imm>

if !HaveFeatXS() then UNDEFINED;
MBReqTypes types = MBReqTypes_All;
boolean nXS = TRUE;
DSBAlias alias = DSBAlias_DSB;

case imm2 of
when '00' domain = MBReqDomain_OuterShareable;
when '01' domain = MBReqDomain_Nonshareable;
when '10' domain = MBReqDomain_InnerShareable;
when '11' domain = MBReqDomain_FullSystem;

Assembler Symbols

<option> For the memory barrier variant: specifies the limitation on the barrier operation. Values are:

DSB Page 145

SY
Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. This option is referred to as the full system barrier.
Encoded as CRm = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. Encoded as CRm = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b0001.

All other encodings of CRm, other than the values 0b0000 and 0b0100, that are not listed above are
reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more
information on whether an access is before or after a barrier instruction, see Data Memory Barrier
(DMB) or see Data Synchronization Barrier (DSB).
The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.
For the memory nXS barrier variant: specifies the limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. This option is referred to as the full system barrier.
Encoded as CRm<3:2> = 0b11.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm<3:2> = 0b10.

DSB Page 146

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as CRm<3:2> = 0b01.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as CRm<3:2> = 0b00.

<imm> For the memory barrier variant: is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the
"CRm" field.

For the memory nXS barrier variant: is a 5-bit unsigned immediate, encoded in “imm2”:

imm2 <imm>
00 16
01 20
10 24
11 28

Alias Conditions

Alias Is preferred when
PSSBB CRm == '0100'
SSBB CRm == '0000'

Operation

case alias of
when DSBAlias_SSBB

SpeculativeStoreBypassBarrierToVA();
when DSBAlias_PSSBB

SpeculativeStoreBypassBarrierToPA();
when DSBAlias_DSB

if !nXS && HaveFeatXS() && HaveFeatHCX() then
nXS = PSTATE.EL IN {EL0, EL1} && IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1';

DataSynchronizationBarrier(domain, types, nXS);
otherwise

Unreachable();

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSB Page 147

DVP

Data Value Prediction Restriction by Context prevents data value predictions that predict execution addresses based
on information gathered from earlier execution within a particular execution context. Data value predictions
determined by the actions of code in the target execution context or contexts appearing in program order before the
instruction cannot be used to exploitatively control speculative execution occurring after the instruction is complete
and synchronized.
For more information, see DVP RCTX, Data Value Prediction Restriction by Context.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

System
(FEAT_SPECRES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 Rt

L op1 CRn CRm op2

DVP RCTX, <Xt>

is equivalent to

SYS #3, C7, C3, #5, <Xt>

and is always the preferred disassembly.

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DVP Page 148

EON (shifted register)

Bitwise Exclusive OR NOT (shifted register) performs a bitwise Exclusive OR NOT of a register value and an
optionally-shifted register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

EON <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

EON <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

EON (shifted register) Page 149

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EON (shifted register) Page 150

EOR (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and
writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 0 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

EOR <Wd|WSP>, <Wn>, #<imm>

64-bit (sf == 1)

EOR <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

bits(datasize) imm;
if sf == '0' && N != '0' then UNDEFINED;
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

EOR (immediate) Page 151

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = imm;

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (immediate) Page 152

EOR (shifted register)

Bitwise Exclusive OR (shifted register) performs a bitwise Exclusive OR of a register value and an optionally-shifted
register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

EOR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

EOR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

EOR (shifted register) Page 153

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (shifted register) Page 154

ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE
from the SPSR, and branches to the address held in the ELR.
The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from
AArch64 state.
ERET is UNDEFINED at EL0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

A M Rn op4

ERET

if PSTATE.EL == EL0 then UNDEFINED;
boolean pac = (A == '1');
boolean use_key_a = (M == '0');

if !pac && op4 != '00000' then
UNDEFINED;

elsif pac && (!HavePACExt() || op4 != '11111') then
UNDEFINED;

if Rn != '11111' then
UNDEFINED;

Operation

AArch64.CheckForERetTrap(pac, use_key_a);
bits(64) target = ELR[];
boolean auth_then_branch = TRUE;

if pac then
if use_key_a then

target = AuthIA(ELR[], SP[], auth_then_branch);
else

target = AuthIB(ELR[], SP[], auth_then_branch);

AArch64.ExceptionReturn(target, SPSR[]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERET Page 155

ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the
modifier and the specified key, the PE restores PSTATE from the SPSR for the current Exception level, and branches to
the authenticated address.
Key A is used for ERETAA, and key B is used for ERETAB.
If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.
The authenticated address is not written back to ELR.
The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from
AArch64 state.
ERETAA and ERETAB are UNDEFINED at EL0.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1

A Rn op4

ERETAA (M == 0)

ERETAA

ERETAB (M == 1)

ERETAB

if PSTATE.EL == EL0 then UNDEFINED;
boolean pac = (A == '1');
boolean use_key_a = (M == '0');

if !pac && op4 != '00000' then
UNDEFINED;

elsif pac && (!HavePACExt() || op4 != '11111') then
UNDEFINED;

if Rn != '11111' then
UNDEFINED;

Operation

AArch64.CheckForERetTrap(pac, use_key_a);
bits(64) target = ELR[];
boolean auth_then_branch = TRUE;

if pac then
if use_key_a then

target = AuthIA(ELR[], SP[], auth_then_branch);
else

target = AuthIB(ELR[], SP[], auth_then_branch);

AArch64.ExceptionReturn(target, SPSR[]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERETAA, ERETAB Page 156

ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR_EL1 and VDISR_EL2.
This instruction can be used at all Exception levels and in Debug state.
In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the Arm(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for
Armv8-A architecture profile.
If the RAS Extension is not implemented, this instruction executes as a NOP.

System
(FEAT_RAS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1

CRm op2

ESB

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

ESB Page 157

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESB Page 158

EXTR

Extract register extracts a register from a pair of registers.

This instruction is used by the alias ROR (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

32-bit (sf == 0 && N == 0 && imms == 0xxxxx)

EXTR <Wd>, <Wn>, <Wm>, #<lsb>

64-bit (sf == 1 && N == 1)

EXTR <Xd>, <Xn>, <Xm>, #<lsb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
integer lsb;

if N != sf then UNDEFINED;
if sf == '0' && imms<5> == '1' then UNDEFINED;
lsb = UInt(imms);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<lsb> For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31,
encoded in the "imms" field.
For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63,
encoded in the "imms" field.

Alias Conditions

Alias Is preferred when
ROR (immediate) Rn == Rm

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(2*datasize) concat = operand1:operand2;

result = concat<lsb+datasize-1:lsb>;

X[d] = result;

EXTR Page 159

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXTR Page 160

GMI

Tag Mask Insert inserts the tag in the first source register into the excluded set specified in the second source
register, writing the new excluded set to the destination register.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 1 Xn Xd

GMI <Xd>, <Xn|SP>, <Xm>

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field.

Operation

bits(64) address = if n == 31 then SP[] else X[n];
bits(64) mask = X[m];
bits(4) tag = AArch64.AllocationTagFromAddress(address);

mask<UInt(tag)> = '1';
X[d] = mask;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GMI Page 161

HINT

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.
Some encodings described here are not allocated in this revision of the architecture, and behave as NOPs. These
encodings might be allocated to other hint functionality in future revisions of the architecture and therefore must not
be used by software.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1

HINT #<imm>

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

Assembler Symbols

<imm> Is a 7-bit unsigned immediate, in the range 0 to 127 encoded in the "CRm:op2" field.
The encodings that are allocated to architectural hint functionality are described in the "Hints" table in
the "Index by Encoding".
For allocated encodings of "CRm:op2":

HINT Page 162

• A disassembler will disassemble the allocated instruction, rather than the HINT instruction.
• An assembler may support assembly of allocated encodings using HINT with the

corresponding <imm> value, but it is not required to do so.

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HINT Page 163

HLT

Halt instruction. An HLT instruction can generate a Halt Instruction debug event, which causes entry into Debug state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 0 1 0 imm16 0 0 0 0 0

HLT #<imm>

if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
if HaveBTIExt() then

SetBTypeCompatible(TRUE);

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

Halt(DebugHalt_HaltInstruction);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HLT Page 164

HVC

Hypervisor Call causes an exception to EL2. Software executing at EL1 can use this instruction to call the hypervisor
to request a service.
The HVC instruction is UNDEFINED:

• When EL3 is implemented and SCR_EL3.HCE is set to 0.
• When EL3 is not implemented and HCR_EL2.HCD is set to 1.
• When EL2 is not implemented.
• At EL1 if EL2 is not enabled in the current Security state.
• At EL0.

On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in ESR_ELx, using the
EC value 0x16, and the value of the immediate argument.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 0

HVC #<imm>

bits(16) imm = imm16;

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

if !HaveEL(EL2) || PSTATE.EL == EL0 || (PSTATE.EL == EL1 && (!IsSecureEL2Enabled() && IsSecure())) then
UNDEFINED;

hvc_enable = if HaveEL(EL3) then SCR_EL3.HCE else NOT(HCR_EL2.HCD);

if hvc_enable == '0' then
UNDEFINED;

else
AArch64.CallHypervisor(imm);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVC Page 165

IC

Instruction Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and
address translation instructions.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt

L CRn

IC <ic_op>{, <Xt>}

is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_IC.

Assembler Symbols

<ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded in “op1:CRm:op2”:

op1 CRm op2 <ic_op>
000 0001 000 IALLUIS
000 0101 000 IALLU
011 0101 001 IVAU

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the
"Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC Page 166

IRG

Insert Random Tag inserts a random Logical Address Tag into the address in the first source register, and writes the
result to the destination register. Any tags specified in the optional second source register or in GCR_EL1.Exclude are
excluded from the selection of the random Logical Address Tag.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 1 0 0 Xn Xd

IRG <Xd|SP>, <Xn|SP>{, <Xm>}

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Xm" field. Defaults to
XZR if absent.

Operation

bits(64) operand = if n == 31 then SP[] else X[n];
bits(64) exclude_reg = X[m];
bits(16) exclude = exclude_reg<15:0> OR GCR_EL1.Exclude;

if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
if GCR_EL1.RRND == '1' then

RGSR_EL1 = bits(64) UNKNOWN;
if IsOnes(exclude) then

rtag = '0000';
else

rtag = ChooseRandomNonExcludedTag(exclude);
else

bits(4) start = RGSR_EL1.TAG;
bits(4) offset = AArch64.RandomTag();

rtag = AArch64.ChooseNonExcludedTag(start, offset, exclude);

RGSR_EL1.TAG = rtag;
else

rtag = '0000';

bits(64) result = AArch64.AddressWithAllocationTag(operand, AccType_NORMAL, rtag);

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IRG Page 167

ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 1 0 1 1 1 1 1

opc

ISB {<option>|#<imm>}

// No additional decoding required

Assembler Symbols

<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system barrier operation, encoded as CRm = 0b1111. Can be omitted.

All other encodings of CRm are reserved. The corresponding instructions execute as full system barrier
operations, but must not be relied upon by software.

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the
"CRm" field.

Operation

InstructionSynchronizationBarrier();

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISB Page 168

LD64B

Single-copy Atomic 64-byte Load derives an address from a base register value, loads eight 64-bit doublewords from a
memory location, and writes them to consecutive registers, Xt to X(t+7). The data that is loaded is atomic and is
required to be 64-byte aligned.

Integer
(FEAT_LS64)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 Rn Rt

LD64B <Xt>, [<Xn|SP> {,#0}]

if !HaveFeatLS64() then UNDEFINED;
if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;

Assembler Symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

CheckLDST64BEnabled();

bits(512) data;
bits(64) address;
bits(64) value;
acctype = AccType_ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemLoad64B(address, acctype);

for i = 0 to 7
value = data<63+64*i : 64*i>;
if BigEndian(acctype) then value = BigEndianReverse(value);
X[t+i] = value;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD64B Page 169

LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, adds
the value held in a register to it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

• LDADDL and LDADDAL store to memory with release semantics.
• LDADD has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STADD, STADDL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
size opc

LDADD, LDADDA, LDADDAL,
LDADDL Page 170

32-bit LDADD (size == 10 && A == 0 && R == 0)

LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDA (size == 10 && A == 1 && R == 0)

LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDAL (size == 10 && A == 1 && R == 1)

LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDADDL (size == 10 && A == 0 && R == 1)

LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDADD (size == 11 && A == 0 && R == 0)

LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDA (size == 11 && A == 1 && R == 0)

LDADDA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDAL (size == 11 && A == 1 && R == 1)

LDADDAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDADDL (size == 11 && A == 0 && R == 1)

LDADDL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDADD, LDADDA, LDADDAL,
LDADDL Page 171

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STADD, STADDL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADD, LDADDA, LDADDAL,
LDADDL Page 172

LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to it, and
stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.
• LDADDLB and LDADDALB store to memory with release semantics.
• LDADDB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STADDB, STADDLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
size opc

LDADDAB (A == 1 && R == 0)

LDADDAB <Ws>, <Wt>, [<Xn|SP>]

LDADDALB (A == 1 && R == 1)

LDADDALB <Ws>, <Wt>, [<Xn|SP>]

LDADDB (A == 0 && R == 0)

LDADDB <Ws>, <Wt>, [<Xn|SP>]

LDADDLB (A == 0 && R == 1)

LDADDLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

LDADDB, LDADDAB,
LDADDALB, LDADDLB Page 173

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STADDB, STADDLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADDB, LDADDAB,
LDADDALB, LDADDLB Page 174

LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a register
to it, and stores the result back to memory. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.
• LDADDLH and LDADDALH store to memory with release semantics.
• LDADDH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STADDH, STADDLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
size opc

LDADDAH (A == 1 && R == 0)

LDADDAH <Ws>, <Wt>, [<Xn|SP>]

LDADDALH (A == 1 && R == 1)

LDADDALH <Ws>, <Wt>, [<Xn|SP>]

LDADDH (A == 0 && R == 0)

LDADDH <Ws>, <Wt>, [<Xn|SP>]

LDADDLH (A == 0 && R == 1)

LDADDLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDADDH, LDADDAH,
LDADDALH, LDADDLH Page 175

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STADDH, STADDLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADDH, LDADDAH,
LDADDALH, LDADDLH Page 176

LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword
from the derived address in memory, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
size Rs

32-bit (size == 10)

LDAPR <Wt>, [<Xn|SP> {,#0}]

64-bit (size == 11)

LDAPR <Xt>, [<Xn|SP> {,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = AccType_ORDERED;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDAPR Page 177

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPR Page 178

LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived address
in memory, zero-extends it and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
size Rs

LDAPRB <Wt>, [<Xn|SP> {,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = AccType_ORDERED;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPRB Page 179

LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the
derived address in memory, zero-extends it and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
size Rs

LDAPRH <Wt>, [<Xn|SP> {,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = AccType_ORDERED;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPRH Page 180

LDAPUR

Load-Acquire RCpc Register (unscaled) calculates an address from a base register and an immediate offset, loads a
32-bit word or 64-bit doubleword from memory, zero-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt
size opc

32-bit (size == 10)

LDAPUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

LDAPUR <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDAPUR Page 181

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDAPUR Page 182

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPUR Page 183

LDAPURB

Load-Acquire RCpc Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads
a byte from memory, zero-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt
size opc

LDAPURB <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDAPURB Page 184

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDAPURB Page 185

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURB Page 186

LDAPURH

Load-Acquire RCpc Register Halfword (unscaled) calculates an address from a base register and an immediate offset,
loads a halfword from memory, zero-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 1 0 imm9 0 0 Rn Rt
size opc

LDAPURH <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDAPURH Page 187

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDAPURH Page 188

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURH Page 189

LDAPURSB

Load-Acquire RCpc Register Signed Byte (unscaled) calculates an address from a base register and an immediate
offset, loads a signed byte from memory, sign-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt
size opc

32-bit (opc == 11)

LDAPURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDAPURSB <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDAPURSB Page 190

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDAPURSB Page 191

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURSB Page 192

LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) calculates an address from a base register and an immediate
offset, loads a signed halfword from memory, sign-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 1 x 0 imm9 0 0 Rn Rt
size opc

32-bit (opc == 11)

LDAPURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDAPURSH <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDAPURSH Page 193

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDAPURSH Page 194

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURSH Page 195

LDAPURSW

Load-Acquire RCpc Register Signed Word (unscaled) calculates an address from a base register and an immediate
offset, loads a signed word from memory, sign-extends it, and writes it to a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer does
not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 1 1 0 0 imm9 0 0 Rn Rt
size opc

LDAPURSW <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDAPURSW Page 196

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDAPURSW Page 197

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPURSW Page 198

LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from
memory, and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire,
Store-Release. For information about memory accesses, see Load/Store addressing modes.
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDAR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDAR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDAR Page 199

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAR Page 200

LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it
and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-
Release. For information about memory accesses, see Load/Store addressing modes.
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDARB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDARB Page 201

LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory, zero-
extends it, and writes it to a register. The instruction also has memory ordering semantics as described in Load-
Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDARH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDARH Page 202

LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two
64-bit doublewords from memory, and writes them to two registers. For information on single-copy atomicity and
alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. The PE marks
the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics, as described
in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 1 Rt2 Rn Rt

L Rs o0

32-bit (sz == 0)

LDAXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

LDAXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = TRUE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 32 << UInt(sz);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDAXP.

LDAXP Page 203

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDAXP Page 204

Operation

LDAXP Page 205

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDAXP Page 206

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXP Page 207

LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in Load-Acquire,
Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDAXR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDAXR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

LDAXR Page 208

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDAXR Page 209

Operation

LDAXR Page 210

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDAXR Page 211

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXR Page 212

LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-
extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed
as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For
information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDAXRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDAXRB Page 213

Operation

LDAXRB Page 214

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDAXRB Page 215

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXRB Page 216

LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. The instruction also has memory ordering semantics as described in Load-Acquire,
Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDAXRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDAXRH Page 217

Operation

LDAXRH Page 218

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDAXRH Page 219

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXRH Page 220

LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
performs a bitwise AND with the complement of the value held in a register on it, and stores the result back to
memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

• LDCLRL and LDCLRAL store to memory with release semantics.
• LDCLR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STCLR, STCLRL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
size opc

LDCLR, LDCLRA, LDCLRAL,
LDCLRL Page 221

32-bit LDCLR (size == 10 && A == 0 && R == 0)

LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRA (size == 10 && A == 1 && R == 0)

LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRAL (size == 10 && A == 1 && R == 1)

LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDCLRL (size == 10 && A == 0 && R == 1)

LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDCLR (size == 11 && A == 0 && R == 0)

LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRA (size == 11 && A == 1 && R == 0)

LDCLRA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRAL (size == 11 && A == 1 && R == 1)

LDCLRAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDCLRL (size == 11 && A == 0 && R == 1)

LDCLRL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDCLR, LDCLRA, LDCLRAL,
LDCLRL Page 222

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STCLR, STCLRL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLR, LDCLRA, LDCLRAL,
LDCLRL Page 223

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded from
memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.
• LDCLRLB and LDCLRALB store to memory with release semantics.
• LDCLRB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STCLRB, STCLRLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
size opc

LDCLRAB (A == 1 && R == 0)

LDCLRAB <Ws>, <Wt>, [<Xn|SP>]

LDCLRALB (A == 1 && R == 1)

LDCLRALB <Ws>, <Wt>, [<Xn|SP>]

LDCLRB (A == 0 && R == 0)

LDCLRB <Ws>, <Wt>, [<Xn|SP>]

LDCLRLB (A == 0 && R == 1)

LDCLRLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDCLRB, LDCLRAB,
LDCLRALB, LDCLRLB Page 224

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STCLRB, STCLRLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLRB, LDCLRAB,
LDCLRALB, LDCLRLB Page 225

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise AND with
the complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.
• LDCLRLH and LDCLRALH store to memory with release semantics.
• LDCLRH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STCLRH, STCLRLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
size opc

LDCLRAH (A == 1 && R == 0)

LDCLRAH <Ws>, <Wt>, [<Xn|SP>]

LDCLRALH (A == 1 && R == 1)

LDCLRALH <Ws>, <Wt>, [<Xn|SP>]

LDCLRH (A == 0 && R == 0)

LDCLRH <Ws>, <Wt>, [<Xn|SP>]

LDCLRLH (A == 0 && R == 1)

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDCLRH, LDCLRAH,
LDCLRALH, LDCLRLH Page 226

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STCLRH, STCLRLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLRH, LDCLRAH,
LDCLRALH, LDCLRLH Page 227

LDEOR, LDEORA, LDEORAL, LDEORL

Atomic exclusive OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

• LDEORL and LDEORAL store to memory with release semantics.
• LDEOR has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STEOR, STEORL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
size opc

LDEOR, LDEORA, LDEORAL,
LDEORL Page 228

32-bit LDEOR (size == 10 && A == 0 && R == 0)

LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORA (size == 10 && A == 1 && R == 0)

LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORAL (size == 10 && A == 1 && R == 1)

LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDEORL (size == 10 && A == 0 && R == 1)

LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDEOR (size == 11 && A == 0 && R == 0)

LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORA (size == 11 && A == 1 && R == 0)

LDEORA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORAL (size == 11 && A == 1 && R == 1)

LDEORAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDEORL (size == 11 && A == 0 && R == 1)

LDEORL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDEOR, LDEORA, LDEORAL,
LDEORL Page 229

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STEOR, STEORL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEOR, LDEORA, LDEORAL,
LDEORL Page 230

LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic exclusive OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive OR with
the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.
• LDEORLB and LDEORALB store to memory with release semantics.
• LDEORB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STEORB, STEORLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
size opc

LDEORAB (A == 1 && R == 0)

LDEORAB <Ws>, <Wt>, [<Xn|SP>]

LDEORALB (A == 1 && R == 1)

LDEORALB <Ws>, <Wt>, [<Xn|SP>]

LDEORB (A == 0 && R == 0)

LDEORB <Ws>, <Wt>, [<Xn|SP>]

LDEORLB (A == 0 && R == 1)

LDEORLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDEORB, LDEORAB,
LDEORALB, LDEORLB Page 231

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STEORB, STEORLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEORB, LDEORAB,
LDEORALB, LDEORLB Page 232

LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic exclusive OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an exclusive
OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from
memory is returned in the destination register.

• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.
• LDEORLH and LDEORALH store to memory with release semantics.
• LDEORH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STEORH, STEORLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
size opc

LDEORAH (A == 1 && R == 0)

LDEORAH <Ws>, <Wt>, [<Xn|SP>]

LDEORALH (A == 1 && R == 1)

LDEORALH <Ws>, <Wt>, [<Xn|SP>]

LDEORH (A == 0 && R == 0)

LDEORH <Ws>, <Wt>, [<Xn|SP>]

LDEORLH (A == 0 && R == 1)

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDEORH, LDEORAH,
LDEORALH, LDEORLH Page 233

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STEORH, STEORLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEORH, LDEORAH,
LDEORALH, LDEORLH Page 234

LDG

Load Allocation Tag loads an Allocation Tag from a memory address, generates a Logical Address Tag from the
Allocation Tag and merges it into the destination register. The address used for the load is calculated from the base
register and an immediate signed offset scaled by the Tag granule.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 1 1 imm9 0 0 Xn Xt

LDG <Xt>, [<Xn|SP>{, #<simm>}]

if !HaveMTEExt() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and
encoded in the "imm9" field.

Operation

bits(64) address;
bits(4) tag;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;
address = Align(address, TAG_GRANULE);

tag = AArch64.MemTag[address, AccType_NORMAL];
X[t] = AArch64.AddressWithAllocationTag(X[t], AccType_NORMAL, tag);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDG Page 235

LDGM

Load Tag Multiple reads a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and writes the Allocation Tag read from address A to the destination register at
4*A<7:4>+3:4*A<7:4>. Bits of the destination register not written with an Allocation Tag are set to 0.
This instruction is UNDEFINED at EL0.
This instruction generates an Unchecked access.
If ID_AA64PFR1_EL1.MTE != 0b0010, this instruction is UNDEFINED.

Integer
(FEAT_MTE2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

LDGM <Xt>, [<Xn|SP>]

if !HaveMTE2Ext() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

if PSTATE.EL == EL0 then
UNDEFINED;

bits(64) data = Zeros(64);
bits(64) address;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

integer size = 4*(2^(UInt(GMID_EL1.BS)));
address = Align(address,size);
integer count = size >> LOG2_TAG_GRANULE;
integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);

for i = 0 to count-1
bits(4) tag = AArch64.MemTag[address, AccType_NORMAL];
data<(index*4)+3:index*4> = tag;
address = address + TAG_GRANULE;
index = index + 1;

X[t] = data;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDGM Page 236

LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information
about memory accesses, see Load/Store addressing modes.
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDLAR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDLAR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDLAR Page 237

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLAR Page 238

LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction
also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory
accesses, see Load/Store addressing modes.
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDLARB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDLARB Page 239

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLARB Page 240

LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information
about memory accesses, see Load/Store addressing modes.
For this instruction, if the destination is WZR/XZR, it is impossible for software to observe the presence of the acquire
semantic other than its effect on the arrival at endpoints.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDLARH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDLARH Page 241

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLARH Page 242

LDNP

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers.
For information about memory accesses, see Load/Store addressing modes. For information about Non-temporal pair
instructions, see Load/Store Non-temporal pair.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 0 0 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

LDNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDNP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to
252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to
504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_STREAM;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if opc<0> == '1' then UNDEFINED;
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDNP Page 243

Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown && t == n then
data1 = bits(datasize) UNKNOWN;

else
data1 = X[t];

if rt_unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;

else
data2 = X[t2];

Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
if HaveLSE2Ext() then

bits(2*datasize) full_data;
boolean ispair = TRUE;
full_data = Mem[address, 2 * dbytes, AccType_NORMAL, ispair];
if BigEndian(acctype) then

data2 = full_data<(datasize-1) : 0>;
data1 = full_data<(2*datasize-1) : datasize>;

else
data1 = full_data<(datasize-1) : 0>;
data2 = full_data<(2*datasize-1) : datasize>;

else
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];

if rt_unknown then
data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

X[t] = data1;
X[t2] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNP Page 244

LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit
words or two 64-bit doublewords from memory, and writes them to two registers. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

LDP Page 245

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of
4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of
8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.
For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_NORMAL;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if L:opc<0> == '01' || opc == '11' then UNDEFINED;
boolean signed = (opc<0> != '0');
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;
boolean wb_unknown = FALSE;

if memop == MemOp_LOAD && wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDP Page 246

Operation

LDP Page 247

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown && t == n then
data1 = bits(datasize) UNKNOWN;

else
data1 = X[t];

if rt_unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;

else
data2 = X[t2];

if HaveLSE2Ext() then
bits(2*datasize) full_data;
if BigEndian(acctype) then

full_data = data1:data2;
else

full_data = data2:data1;
boolean ispair = TRUE;
Mem[address, 2 * dbytes, AccType_NORMAL, ispair] = full_data;

else
Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
if HaveLSE2Ext() && !signed then

bits(2*datasize) full_data;
boolean ispair = TRUE;
full_data = Mem[address, 2 * dbytes, AccType_NORMAL, ispair];
if BigEndian(acctype) then

data2 = full_data<(datasize-1) : 0>;
data1 = full_data<(2*datasize-1) : datasize>;

else
data1 = full_data<(datasize-1) : 0>;
data2 = full_data<(2*datasize-1) : datasize>;

else
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];

if rt_unknown then
data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

if signed then
X[t] = SignExtend(data1, 64);
X[t2] = SignExtend(data2, 64);

else
X[t] = data1;
X[t2] = data2;

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;

LDP Page 248

else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDP Page 249

LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset, loads
two 32-bit words from memory, sign-extends them, and writes them to two registers. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt
opc L

LDPSW <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt
opc L

LDPSW <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt
opc L

LDPSW <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDPSW.

Assembler Symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4 in the
range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range
-256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

LDPSW Page 250

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_NORMAL;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if L:opc<0> == '01' || opc == '11' then UNDEFINED;
boolean signed = (opc<0> != '0');
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;
boolean wb_unknown = FALSE;

if memop == MemOp_LOAD && wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDPSW Page 251

Operation

LDPSW Page 252

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown && t == n then
data1 = bits(datasize) UNKNOWN;

else
data1 = X[t];

if rt_unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;

else
data2 = X[t2];

if HaveLSE2Ext() then
bits(2*datasize) full_data;
if BigEndian(acctype) then

full_data = data1:data2;
else

full_data = data2:data1;
boolean ispair = TRUE;
Mem[address, 2 * dbytes, AccType_NORMAL, ispair] = full_data;

else
Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
if HaveLSE2Ext() && !signed then

bits(2*datasize) full_data;
boolean ispair = TRUE;
full_data = Mem[address, 2 * dbytes, AccType_NORMAL, ispair];
if BigEndian(acctype) then

data2 = full_data<(datasize-1) : 0>;
data1 = full_data<(2*datasize-1) : datasize>;

else
data1 = full_data<(datasize-1) : 0>;
data2 = full_data<(2*datasize-1) : datasize>;

else
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];

if rt_unknown then
data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

if signed then
X[t] = SignExtend(data1, 64);
X[t2] = SignExtend(data2, 64);

else
X[t] = data1;
X[t2] = data2;

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;

LDPSW Page 253

else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDPSW Page 254

LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that is
used for the load is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/Store addressing modes. The Unsigned offset variant scales the immediate offset value by the size of the
value accessed before adding it to the base register value.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>], #<simm>

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>, #<simm>]!

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 1 0 1 imm12 Rn Rt
size opc

LDR (immediate) Page 255

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDR (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to
16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.
For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to
32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

LDR (immediate) Page 256

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDR (immediate) Page 257

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate) Page 258

LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 x 0 1 1 0 0 0 imm19 Rt
opc

32-bit (opc == 00)

LDR <Wt>, <label>

64-bit (opc == 01)

LDR <Xt>, <label>

integer t = UInt(Rt);
MemOp memop = MemOp_LOAD;
boolean signed = FALSE;
integer size;
bits(64) offset;

case opc of
when '00'

size = 4;
when '01'

size = 8;
when '10'

size = 4;
signed = TRUE;

when '11'
memop = MemOp_PREFETCH;

offset = SignExtend(imm19:'00', 64);
boolean tag_checked = FALSE;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(size*8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

case memop of
when MemOp_LOAD

data = Mem[address, size, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, 64);
else

X[t] = data;

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

LDR (literal) Page 259

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal) Page 260

LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted and extended. For
information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

LDR (register) Page 261

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDR (register) Page 262

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register) Page 263

LDRAA, LDRAB

Load Register, with pointer authentication. This instruction authenticates an address from a base register using a
modifier of zero and the specified key, adds an immediate offset to the authenticated address, and loads a 64-bit
doubleword from memory at this resulting address into a register.
Key A is used for LDRAA, and key B is used for LDRAB.
If the authentication passes, the PE behaves the same as for an LDR instruction. If the authentication fails, a
Translation fault is generated.
The authenticated address is not written back to the base register, unless the pre-indexed variant of the instruction is
used. In this case, the address that is written back to the base register does not include the pointer authentication
code.
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 M S 1 imm9 W 1 Rn Rt
size

Key A, offset (M == 0 && W == 0)

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]

Key A, pre-indexed (M == 0 && W == 1)

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]!

Key B, offset (M == 1 && W == 0)

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]

Key B, pre-indexed (M == 1 && W == 1)

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]!

if !HavePACExt() || size != '11' then UNDEFINED;
integer t = UInt(Rt);
integer n = UInt(Rn);
boolean wback = (W == '1');
boolean use_key_a = (M == '0');
bits(10) S10 = S:imm9;
integer scale = 3;
bits(64) offset = LSL(SignExtend(S10, 64), scale);
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, a multiple of 8 in the range -4096 to 4088, defaulting to 0
and encoded in the "S:imm9" field as <simm>/8.

LDRAA, LDRAB Page 264

Operation

bits(64) address;
bits(64) data;
boolean wb_unknown = FALSE;
boolean auth_then_branch = TRUE;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if n == 31 then
address = SP[];

else
address = X[n];

if use_key_a then
address = AuthDA(address, X[31], auth_then_branch);

else
address = AuthDB(address, X[31], auth_then_branch);

if n == 31 then
CheckSPAlignment();

address = address + offset;
data = Mem[address, 8, AccType_NORMAL];
X[t] = data;

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRAA, LDRAB Page 265

LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
size opc

LDRB <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
size opc

LDRB <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 1 0 1 imm12 Rn Rt
size opc

LDRB <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

LDRB (immediate) Page 266

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRB (immediate) Page 267

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (immediate) Page 268

LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
size opc

Extended register (option != 011)

LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register (option == 011)

LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

LDRB (register) Page 269

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRB (register) Page 270

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (register) Page 271

LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a register.
The address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
size opc

LDRH <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
size opc

LDRH <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 1 0 1 imm12 Rn Rt
size opc

LDRH <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and
encoded in the "imm12" field as <pimm>/2.

LDRH (immediate) Page 272

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRH (immediate) Page 273

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (immediate) Page 274

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
size opc

LDRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

LDRH (register) Page 275

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRH (register) Page 276

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (register) Page 277

LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSB <Wt>, [<Xn|SP>], #<simm>

64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSB <Wt>, [<Xn|SP>, #<simm>]!

64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 1 1 x imm12 Rn Rt
size opc

LDRSB (immediate) Page 278

32-bit (opc == 11)

LDRSB <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRSB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

LDRSB (immediate) Page 279

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRSB (immediate) Page 280

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (immediate) Page 281

LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt
size opc

32-bit with extended register offset (opc == 11 && option != 011)

LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

32-bit with shifted register offset (opc == 11 && option == 011)

LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

64-bit with extended register offset (opc == 10 && option != 011)

LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

64-bit with shifted register offset (opc == 10 && option == 011)

LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

LDRSB (register) Page 282

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRSB (register) Page 283

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (register) Page 284

LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>], #<simm>

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>, #<simm>]!

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 1 1 x imm12 Rn Rt
size opc

LDRSH (immediate) Page 285

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRSH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and
encoded in the "imm12" field as <pimm>/2.

LDRSH (immediate) Page 286

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRSH (immediate) Page 287

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (immediate) Page 288

LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register value,
loads a halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt
size opc

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

LDRSH (register) Page 289

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRSH (register) Page 290

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (register) Page 291

LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the result to
a register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 0 1 0 0 imm9 0 1 Rn Rt
size opc

LDRSW <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 0 1 0 0 imm9 1 1 Rn Rt
size opc

LDRSW <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 1 1 0 imm12 Rn Rt
size opc

LDRSW <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDRSW (immediate).

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0
and encoded in the "imm12" field as <pimm>/4.

LDRSW (immediate) Page 292

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRSW (immediate) Page 293

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (immediate) Page 294

LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 0 0 imm19 Rt
opc

LDRSW <Xt>, <label>

integer t = UInt(Rt);
MemOp memop = MemOp_LOAD;
boolean signed = FALSE;
integer size;
bits(64) offset;

case opc of
when '00'

size = 4;
when '01'

size = 8;
when '10'

size = 4;
signed = TRUE;

when '11'
memop = MemOp_PREFETCH;

offset = SignExtend(imm19:'00', 64);
boolean tag_checked = FALSE;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(size*8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

case memop of
when MemOp_LOAD

data = Mem[address, size, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, 64);
else

X[t] = data;

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (literal) Page 295

LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value,
loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a register. The offset register value
can be shifted left by 0 or 2 bits. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt
size opc

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

LDRSW (register) Page 296

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDRSW (register) Page 297

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (register) Page 298

LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire
semantics.

• LDSETL and LDSETAL store to memory with release semantics.
• LDSET has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSET, STSETL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
size opc

LDSET, LDSETA, LDSETAL,
LDSETL Page 299

32-bit LDSET (size == 10 && A == 0 && R == 0)

LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETA (size == 10 && A == 1 && R == 0)

LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETAL (size == 10 && A == 1 && R == 1)

LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSETL (size == 10 && A == 0 && R == 1)

LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSET (size == 11 && A == 0 && R == 0)

LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETA (size == 11 && A == 1 && R == 0)

LDSETA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETAL (size == 11 && A == 1 && R == 1)

LDSETAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSETL (size == 11 && A == 0 && R == 1)

LDSETL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDSET, LDSETA, LDSETAL,
LDSETL Page 300

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSET, STSETL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSET, LDSETA, LDSETAL,
LDSETL Page 301

LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the value
held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.
• LDSETLB and LDSETALB store to memory with release semantics.
• LDSETB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSETB, STSETLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
size opc

LDSETAB (A == 1 && R == 0)

LDSETAB <Ws>, <Wt>, [<Xn|SP>]

LDSETALB (A == 1 && R == 1)

LDSETALB <Ws>, <Wt>, [<Xn|SP>]

LDSETB (A == 0 && R == 0)

LDSETB <Ws>, <Wt>, [<Xn|SP>]

LDSETLB (A == 0 && R == 1)

LDSETLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDSETB, LDSETAB,
LDSETALB, LDSETLB Page 302

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSETB, STSETLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSETB, LDSETAB,
LDSETALB, LDSETLB Page 303

LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR with the
value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned
in the destination register.

• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.
• LDSETLH and LDSETALH store to memory with release semantics.
• LDSETH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSETH, STSETLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
size opc

LDSETAH (A == 1 && R == 0)

LDSETAH <Ws>, <Wt>, [<Xn|SP>]

LDSETALH (A == 1 && R == 1)

LDSETALH <Ws>, <Wt>, [<Xn|SP>]

LDSETH (A == 0 && R == 0)

LDSETH <Ws>, <Wt>, [<Xn|SP>]

LDSETLH (A == 0 && R == 1)

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDSETH, LDSETAH,
LDSETALH, LDSETLH Page 304

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSETH, STSETLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSETH, LDSETAH,
LDSETALH, LDSETLH Page 305

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire
semantics.

• LDSMAXL and LDSMAXAL store to memory with release semantics.
• LDSMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMAX, STSMAXL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
size opc

LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL Page 306

32-bit LDSMAX (size == 10 && A == 0 && R == 0)

LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXA (size == 10 && A == 1 && R == 0)

LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXAL (size == 10 && A == 1 && R == 1)

LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMAXL (size == 10 && A == 0 && R == 1)

LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMAX (size == 11 && A == 0 && R == 0)

LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXA (size == 11 && A == 1 && R == 0)

LDSMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXAL (size == 11 && A == 1 && R == 1)

LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMAXL (size == 11 && A == 0 && R == 1)

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL Page 307

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMAX, STSMAXL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL Page 308

LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value
held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire semantics.
• LDSMAXLB and LDSMAXALB store to memory with release semantics.
• LDSMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMAXB, STSMAXLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
size opc

LDSMAXAB (A == 1 && R == 0)

LDSMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALB (A == 1 && R == 1)

LDSMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXB (A == 0 && R == 0)

LDSMAXB <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLB (A == 0 && R == 1)

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB Page 309

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMAXB, STSMAXLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB Page 310

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire semantics.
• LDSMAXLH and LDSMAXALH store to memory with release semantics.
• LDSMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMAXH, STSMAXLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
size opc

LDSMAXAH (A == 1 && R == 0)

LDSMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXALH (A == 1 && R == 1)

LDSMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXH (A == 0 && R == 0)

LDSMAXH <Ws>, <Wt>, [<Xn|SP>]

LDSMAXLH (A == 0 && R == 1)

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH Page 311

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMAXH, STSMAXLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH Page 312

LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire
semantics.

• LDSMINL and LDSMINAL store to memory with release semantics.
• LDSMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMIN, STSMINL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
size opc

LDSMIN, LDSMINA,
LDSMINAL, LDSMINL Page 313

32-bit LDSMIN (size == 10 && A == 0 && R == 0)

LDSMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINA (size == 10 && A == 1 && R == 0)

LDSMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINAL (size == 10 && A == 1 && R == 1)

LDSMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDSMINL (size == 10 && A == 0 && R == 1)

LDSMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDSMIN (size == 11 && A == 0 && R == 0)

LDSMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINA (size == 11 && A == 1 && R == 0)

LDSMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINAL (size == 11 && A == 1 && R == 1)

LDSMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDSMINL (size == 11 && A == 0 && R == 1)

LDSMINL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDSMIN, LDSMINA,
LDSMINAL, LDSMINL Page 314

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMIN, STSMINL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMIN, LDSMINA,
LDSMINAL, LDSMINL Page 315

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value
held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.
• LDSMINLB and LDSMINALB store to memory with release semantics.
• LDSMINB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMINB, STSMINLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
size opc

LDSMINAB (A == 1 && R == 0)

LDSMINAB <Ws>, <Wt>, [<Xn|SP>]

LDSMINALB (A == 1 && R == 1)

LDSMINALB <Ws>, <Wt>, [<Xn|SP>]

LDSMINB (A == 0 && R == 0)

LDSMINB <Ws>, <Wt>, [<Xn|SP>]

LDSMINLB (A == 0 && R == 1)

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB Page 316

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMINB, STSMINLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB Page 317

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against
the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.
• LDSMINLH and LDSMINALH store to memory with release semantics.
• LDSMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSMINH, STSMINLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
size opc

LDSMINAH (A == 1 && R == 0)

LDSMINAH <Ws>, <Wt>, [<Xn|SP>]

LDSMINALH (A == 1 && R == 1)

LDSMINALH <Ws>, <Wt>, [<Xn|SP>]

LDSMINH (A == 0 && R == 0)

LDSMINH <Ws>, <Wt>, [<Xn|SP>]

LDSMINLH (A == 0 && R == 1)

LDSMINLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH Page 318

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STSMINH, STSMINLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH Page 319

LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address that is
used for the load is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
size opc

32-bit (size == 10)

LDTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

LDTR <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDTR Page 320

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDTR Page 321

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTR Page 322

LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
size opc

LDTRB <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDTRB Page 323

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDTRB Page 324

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRB Page 325

LDTRH

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
size opc

LDTRH <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDTRH Page 326

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDTRH Page 327

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRH Page 328

LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes
the result to a register. The address that is used for the load is calculated from a base register and an immediate
offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt
size opc

32-bit (opc == 11)

LDTRSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDTRSB <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDTRSB Page 329

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDTRSB Page 330

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSB Page 331

LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and
writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt
size opc

32-bit (opc == 11)

LDTRSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDTRSH Page 332

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDTRSH Page 333

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSH Page 334

LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the result
to a register. The address that is used for the load is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 0 1 0 0 imm9 1 0 Rn Rt
size opc

LDTRSW <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDTRSW Page 335

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDTRSW Page 336

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSW Page 337

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire
semantics.

• LDUMAXL and LDUMAXAL store to memory with release semantics.
• LDUMAX has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMAX, STUMAXL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
size opc

LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL Page 338

32-bit LDUMAX (size == 10 && A == 0 && R == 0)

LDUMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXA (size == 10 && A == 1 && R == 0)

LDUMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXAL (size == 10 && A == 1 && R == 1)

LDUMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMAXL (size == 10 && A == 0 && R == 1)

LDUMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMAX (size == 11 && A == 0 && R == 0)

LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXA (size == 11 && A == 1 && R == 0)

LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXAL (size == 11 && A == 1 && R == 1)

LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMAXL (size == 11 && A == 0 && R == 1)

LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL Page 339

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMAX, STUMAXL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL Page 340

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.
• LDUMAXLB and LDUMAXALB store to memory with release semantics.
• LDUMAXB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMAXB, STUMAXLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
size opc

LDUMAXAB (A == 1 && R == 0)

LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALB (A == 1 && R == 1)

LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXB (A == 0 && R == 0)

LDUMAXB <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLB (A == 0 && R == 1)

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB Page 341

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMAXB, STUMAXLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB Page 342

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.
• LDUMAXLH and LDUMAXALH store to memory with release semantics.
• LDUMAXH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMAXH, STUMAXLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
size opc

LDUMAXAH (A == 1 && R == 0)

LDUMAXAH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXALH (A == 1 && R == 1)

LDUMAXALH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXH (A == 0 && R == 0)

LDUMAXH <Ws>, <Wt>, [<Xn|SP>]

LDUMAXLH (A == 0 && R == 1)

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH Page 343

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMAXH, STUMAXLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH Page 344

LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire
semantics.

• LDUMINL and LDUMINAL store to memory with release semantics.
• LDUMIN has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMIN, STUMINL.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
size opc

LDUMIN, LDUMINA,
LDUMINAL, LDUMINL Page 345

32-bit LDUMIN (size == 10 && A == 0 && R == 0)

LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINA (size == 10 && A == 1 && R == 0)

LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINAL (size == 10 && A == 1 && R == 1)

LDUMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit LDUMINL (size == 10 && A == 0 && R == 1)

LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit LDUMIN (size == 11 && A == 0 && R == 0)

LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINA (size == 11 && A == 1 && R == 0)

LDUMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINAL (size == 11 && A == 1 && R == 1)

LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit LDUMINL (size == 11 && A == 0 && R == 1)

LDUMINL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

LDUMIN, LDUMINA,
LDUMINAL, LDUMINL Page 346

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMIN, STUMINL A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMIN, LDUMINA,
LDUMINAL, LDUMINL Page 347

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.
• LDUMINLB and LDUMINALB store to memory with release semantics.
• LDUMINB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMINB, STUMINLB.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
size opc

LDUMINAB (A == 1 && R == 0)

LDUMINAB <Ws>, <Wt>, [<Xn|SP>]

LDUMINALB (A == 1 && R == 1)

LDUMINALB <Ws>, <Wt>, [<Xn|SP>]

LDUMINB (A == 0 && R == 0)

LDUMINB <Ws>, <Wt>, [<Xn|SP>]

LDUMINLB (A == 0 && R == 1)

LDUMINLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB Page 348

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMINB, STUMINLB A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB Page 349

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.
• LDUMINLH and LDUMINALH store to memory with release semantics.
• LDUMINH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STUMINH, STUMINLH.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
size opc

LDUMINAH (A == 1 && R == 0)

LDUMINAH <Ws>, <Wt>, [<Xn|SP>]

LDUMINALH (A == 1 && R == 1)

LDUMINALH <Ws>, <Wt>, [<Xn|SP>]

LDUMINH (A == 0 && R == 0)

LDUMINH <Ws>, <Wt>, [<Xn|SP>]

LDUMINLH (A == 0 && R == 1)

LDUMINLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
MemAtomicOp op;
case opc of

when '000' op = MemAtomicOp_ADD;
when '001' op = MemAtomicOp_BIC;
when '010' op = MemAtomicOp_EOR;
when '011' op = MemAtomicOp_ORR;
when '100' op = MemAtomicOp_SMAX;
when '101' op = MemAtomicOp_SMIN;
when '110' op = MemAtomicOp_UMAX;
when '111' op = MemAtomicOp_UMIN;

boolean tag_checked = n != 31;

LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH Page 350

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when
STUMINH, STUMINLH A == '0' && Rt == '11111'

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = MemAtomic(address, op, value, ldacctype, stacctype);

if t != 31 then
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH Page 351

LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or
64-bit doubleword from memory, zero-extends it, and writes it to a register. For information about memory accesses,
see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
size opc

32-bit (size == 10)

LDUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

LDUR <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDUR Page 352

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDUR Page 353

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUR Page 354

LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from
memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
size opc

LDURB <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDURB Page 355

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDURB Page 356

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURB Page 357

LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
size opc

LDURH <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDURH Page 358

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDURH Page 359

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURH Page 360

LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a
signed byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt
size opc

32-bit (opc == 11)

LDURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDURSB <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDURSB Page 361

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDURSB Page 362

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSB Page 363

LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
signed halfword from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt
size opc

32-bit (opc == 11)

LDURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDURSH <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDURSH Page 364

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDURSH Page 365

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSH Page 366

LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a
signed word from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt
size opc

LDURSW <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

LDURSW Page 367

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

LDURSW Page 368

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSW Page 369

LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit
doublewords from memory, and writes them to two registers. For information on single-copy atomicity and alignment
requirements, see Requirements for single-copy atomicity and Alignment of data accesses. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions.
See Synchronization and semaphores. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 0 Rt2 Rn Rt

L Rs o0

32-bit (sz == 0)

LDXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

LDXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = TRUE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 32 << UInt(sz);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDXP.

LDXP Page 370

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDXP Page 371

Operation

LDXP Page 372

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDXP Page 373

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXP Page 374

LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword
from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDXR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDXR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDXR Page 375

Operation

LDXR Page 376

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDXR Page 377

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXR Page 378

LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it
and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an
exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDXRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDXRB Page 379

Operation

LDXRB Page 380

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDXRB Page 381

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXRB Page 382

LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory, zero-
extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed
as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

LDXRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDXRH Page 383

Operation

LDXRH Page 384

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

LDXRH Page 385

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXRH Page 386

LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This is an alias of LSLV. This means:

• The encodings in this description are named to match the encodings of LSLV.
• The description of LSLV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd

op2

32-bit (sf == 0)

LSL <Wd>, <Wn>, <Wm>

is equivalent to

LSLV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

LSL <Xd>, <Xn>, <Xm>

is equivalent to

LSLV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSLV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

LSL (register) Page 387

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (register) Page 388

LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes
the result to the destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 1 0 N immr != x11111 Rn Rd

opc imms

32-bit (sf == 0 && N == 0 && imms != 011111)

LSL <Wd>, <Wn>, #<shift>

is equivalent to

UBFM <Wd>, <Wn>, #(-<shift> MOD 32), #(31-<shift>)

and is the preferred disassembly when imms + 1 == immr.

64-bit (sf == 1 && N == 1 && imms != 111111)

LSL <Xd>, <Xn>, #<shift>

is equivalent to

UBFM <Xd>, <Xn>, #(-<shift> MOD 64), #(63-<shift>)

and is the preferred disassembly when imms + 1 == immr.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31.
For the 64-bit variant: is the shift amount, in the range 0 to 63.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (immediate) Page 389

LSLV

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is left-shifted.

This instruction is used by the alias LSL (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd

op2

32-bit (sf == 0)

LSLV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

LSLV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLV Page 390

LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This is an alias of LSRV. This means:

• The encodings in this description are named to match the encodings of LSRV.
• The description of LSRV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

op2

32-bit (sf == 0)

LSR <Wd>, <Wn>, <Wm>

is equivalent to

LSRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

LSR <Xd>, <Xn>, <Xm>

is equivalent to

LSRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of LSRV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

LSR (register) Page 391

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (register) Page 392

LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd

opc imms

32-bit (sf == 0 && N == 0 && imms == 011111)

LSR <Wd>, <Wn>, #<shift>

is equivalent to

UBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1 && imms == 111111)

LSR <Xd>, <Xn>, #<shift>

is equivalent to

UBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (immediate) Page 393

LSRV

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The remainder obtained by dividing the second source register by the data size
defines the number of bits by which the first source register is right-shifted.

This instruction is used by the alias LSR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

op2

32-bit (sf == 0)

LSRV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

LSRV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRV Page 394

MADD

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the destination
register.

This instruction is used by the alias MUL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 1 0 0 0 Rm 0 Ra Rn Rd

o0

32-bit (sf == 0)

MADD <Wd>, <Wn>, <Wm>, <Wa>

64-bit (sf == 1)

MADD <Xd>, <Xn>, <Xm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = if sf == '1' then 64 else 32;
integer datasize = destsize;
boolean sub_op = (o0 == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the addend, encoded in the "Ra"
field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra"
field.

Alias Conditions

Alias Is preferred when
MUL Ra == '11111'

MADD Page 395

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

if sub_op then
result = UInt(operand3) - (UInt(operand1) * UInt(operand2));

else
result = UInt(operand3) + (UInt(operand1) * UInt(operand2));

X[d] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MADD Page 396

MNEG

Multiply-Negate multiplies two register values, negates the product, and writes the result to the destination register.

This is an alias of MSUB. This means:

• The encodings in this description are named to match the encodings of MSUB.
• The description of MSUB gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 1 0 0 0 Rm 1 1 1 1 1 1 Rn Rd

o0 Ra

32-bit (sf == 0)

MNEG <Wd>, <Wn>, <Wm>

is equivalent to

MSUB <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit (sf == 1)

MNEG <Xd>, <Xn>, <Xm>

is equivalent to

MSUB <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of MSUB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

MNEG Page 397

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MNEG Page 398

MOV (to/from SP)

Move between register and stack pointer

: Rd = Rn.

This is an alias of ADD (immediate). This means:

• The encodings in this description are named to match the encodings of ADD (immediate).
• The description of ADD (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

op S sh imm12

32-bit (sf == 0)

MOV <Wd|WSP>, <Wn|WSP>

is equivalent to

ADD <Wd|WSP>, <Wn|WSP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

64-bit (sf == 1)

MOV <Xd|SP>, <Xn|SP>

is equivalent to

ADD <Xd|SP>, <Xn|SP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

Operation

The description of ADD (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (to/from SP) Page 399

MOV (inverted wide immediate)

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

This is an alias of MOVN. This means:

• The encodings in this description are named to match the encodings of MOVN.
• The description of MOVN gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 0 1 hw imm16 Rd

opc

32-bit (sf == 0 && hw == 0x)

MOV <Wd>, #<imm>

is equivalent to

MOVN <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16).

64-bit (sf == 1)

MOV <Xd>, #<imm>

is equivalent to

MOVN <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw", but excluding 0xffff0000 and 0x0000ffff
For the 64-bit variant: is a 64-bit immediate, the bitwise inverse of which can be encoded in
"imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,
encoded in the "hw" field as <shift>/16.
For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVN gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

MOV (inverted wide
immediate) Page 400

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (inverted wide
immediate) Page 401

MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This is an alias of MOVZ. This means:

• The encodings in this description are named to match the encodings of MOVZ.
• The description of MOVZ gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 0 1 hw imm16 Rd

opc

32-bit (sf == 0 && hw == 0x)

MOV <Wd>, #<imm>

is equivalent to

MOVZ <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

64-bit (sf == 1)

MOV <Xd>, #<imm>

is equivalent to

MOVZ <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".
For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,
encoded in the "hw" field as <shift>/16.
For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVZ gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (wide immediate) Page 402

MOV (bitmask immediate)

Move (bitmask immediate) writes a bitmask immediate value to a register.

This is an alias of ORR (immediate). This means:

• The encodings in this description are named to match the encodings of ORR (immediate).
• The description of ORR (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 1 0 0 N immr imms 1 1 1 1 1 Rd

opc Rn

32-bit (sf == 0 && N == 0)

MOV <Wd|WSP>, #<imm>

is equivalent to

ORR <Wd|WSP>, WZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

64-bit (sf == 1)

MOV <Xd|SP>, #<imm>

is equivalent to

ORR <Xd|SP>, XZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr", but excluding values which
could be encoded by MOVZ or MOVN.
For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr", but excluding values which
could be encoded by MOVZ or MOVN.

Operation

The description of ORR (immediate) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (bitmask immediate) Page 403

MOV (register)

Move (register) copies the value in a source register to the destination register.

This is an alias of ORR (shifted register). This means:

• The encodings in this description are named to match the encodings of ORR (shifted register).
• The description of ORR (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

opc shift N imm6 Rn

32-bit (sf == 0)

MOV <Wd>, <Wm>

is equivalent to

ORR <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

MOV <Xd>, <Xm>

is equivalent to

ORR <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of ORR (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (register) Page 404

MOVK

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other bits unchanged.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 0 0 1 0 1 hw imm16 Rd

opc

32-bit (sf == 0 && hw == 0x)

MOVK <Wd>, #<imm>{, LSL #<shift>}

64-bit (sf == 1)

MOVK <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
bits(16) imm = imm16;
integer pos;
MoveWideOp opcode;

case opc of
when '00' opcode = MoveWideOp_N;
when '10' opcode = MoveWideOp_Z;
when '11' opcode = MoveWideOp_K;
otherwise UNDEFINED;

if sf == '0' && hw<1> == '1' then UNDEFINED;
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,
encoded in the "hw" field as <shift>/16.
For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Operation

bits(datasize) result;

if opcode == MoveWideOp_K then
result = X[d];

else
result = Zeros();

result<pos+15:pos> = imm;
if opcode == MoveWideOp_N then

result = NOT(result);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.

MOVK Page 405

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVK Page 406

MOVN

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (inverted wide immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 0 1 hw imm16 Rd

opc

32-bit (sf == 0 && hw == 0x)

MOVN <Wd>, #<imm>{, LSL #<shift>}

64-bit (sf == 1)

MOVN <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
bits(16) imm = imm16;
integer pos;
MoveWideOp opcode;

case opc of
when '00' opcode = MoveWideOp_N;
when '10' opcode = MoveWideOp_Z;
when '11' opcode = MoveWideOp_K;
otherwise UNDEFINED;

if sf == '0' && hw<1> == '1' then UNDEFINED;
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,
encoded in the "hw" field as <shift>/16.
For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Alias Conditions

Alias Of
variant Is preferred when

MOV (inverted wide
immediate)

64-bit ! (IsZero(imm16) && hw != '00')

MOV (inverted wide
immediate)

32-bit ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16)

MOVN Page 407

Operation

bits(datasize) result;

if opcode == MoveWideOp_K then
result = X[d];

else
result = Zeros();

result<pos+15:pos> = imm;
if opcode == MoveWideOp_N then

result = NOT(result);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVN Page 408

MOVZ

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (wide immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 0 1 hw imm16 Rd

opc

32-bit (sf == 0 && hw == 0x)

MOVZ <Wd>, #<imm>{, LSL #<shift>}

64-bit (sf == 1)

MOVZ <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
bits(16) imm = imm16;
integer pos;
MoveWideOp opcode;

case opc of
when '00' opcode = MoveWideOp_N;
when '10' opcode = MoveWideOp_Z;
when '11' opcode = MoveWideOp_K;
otherwise UNDEFINED;

if sf == '0' && hw<1> == '1' then UNDEFINED;
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16,
encoded in the "hw" field as <shift>/16.
For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32
or 48, encoded in the "hw" field as <shift>/16.

Alias Conditions

Alias Is preferred when
MOV (wide immediate) ! (IsZero(imm16) && hw != '00')

MOVZ Page 409

Operation

bits(datasize) result;

if opcode == MoveWideOp_K then
result = X[d];

else
result = Zeros();

result<pos+15:pos> = imm;
if opcode == MoveWideOp_N then

result = NOT(result);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVZ Page 410

MRS

Move System Register allows the PE to read an AArch64 System register into a general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 1 1 o0 op1 CRn CRm op2 Rt

L

MRS <Xt>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op0 = 2 + UInt(o0);
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);
boolean read = (L == '1');

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".
The System register names are defined in 'AArch64 System Registers' in the System Register XML.

<op0> Is an unsigned immediate, encoded in “o0”:

o0 <op0>
0 2
1 3

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

if read then
X[t] = AArch64.SysRegRead(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2);

else
AArch64.SysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRS Page 411

MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more
information, see Process state, PSTATE.
The bits that can be written by this instruction are:

• PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.
• If FEAT_SSBS is implemented, PSTATE.SSBS.
• If FEAT_PAN is implemented, PSTATE.PAN.
• If FEAT_UAO is implemented, PSTATE.UAO.
• If FEAT_DIT is implemented, PSTATE.DIT.
• If FEAT_MTE is implemented, PSTATE.TCO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 1 1 1 1 1

MSR (immediate) Page 412

MSR <pstatefield>, #<imm>

if op1 == '000' && op2 == '000' then SEE "CFINV";
if op1 == '000' && op2 == '001' then SEE "XAFLAG";
if op1 == '000' && op2 == '010' then SEE "AXFLAG";

AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');
bits(2) min_EL;
boolean need_secure = FALSE;

case op1 of
when '00x'

min_EL = EL1;
when '010'

min_EL = EL1;
when '011'

min_EL = EL0;
when '100'

min_EL = EL2;
when '101'

if !HaveVirtHostExt() then
UNDEFINED;

min_EL = EL2;
when '110'

min_EL = EL3;
when '111'

min_EL = EL1;
need_secure = TRUE;

if UInt(PSTATE.EL) < UInt(min_EL) || (need_secure && !IsSecure()) then
UNDEFINED;

bits(4) operand = CRm;
PSTATEField field;
case op1:op2 of

when '000 011'
if !HaveUAOExt() then

UNDEFINED;
field = PSTATEField_UAO;

when '000 100'
if !HavePANExt() then

UNDEFINED;
field = PSTATEField_PAN;

when '000 101' field = PSTATEField_SP;
when '011 010'

if !HaveDITExt() then
UNDEFINED;

field = PSTATEField_DIT;
when '011 100'

if !HaveMTEExt() then
UNDEFINED;

field = PSTATEField_TCO;
when '011 110' field = PSTATEField_DAIFSet;
when '011 111' field = PSTATEField_DAIFClr;
when '011 001'

if !HaveSSBSExt() then
UNDEFINED;

field = PSTATEField_SSBS;
otherwise UNDEFINED;

// Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
if PSTATE.EL == EL0 && field IN {PSTATEField_DAIFSet, PSTATEField_DAIFClr} then

if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0') then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);

MSR (immediate) Page 413

Assembler Symbols

<pstatefield> Is a PSTATE field name, encoded in “op1:op2”:

op1 op2 <pstatefield> Architectural Feature
000 00x SEE PSTATE -
000 010 SEE PSTATE -
000 011 UAO FEAT_UAO
000 100 PAN FEAT_PAN
000 101 SPSel -
000 11x RESERVED -
001 xxx RESERVED -
010 xxx RESERVED -
011 000 RESERVED -
011 001 SSBS FEAT_SSBS
011 010 DIT FEAT_DIT
011 011 RESERVED -
011 100 TCO FEAT_MTE
011 101 RESERVED -
011 110 DAIFSet -
011 111 DAIFClr -
1xx xxx RESERVED -

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

case field of
when PSTATEField_SSBS

PSTATE.SSBS = operand<0>;
when PSTATEField_SP

PSTATE.SP = operand<0>;
when PSTATEField_DAIFSet

PSTATE.D = PSTATE.D OR operand<3>;
PSTATE.A = PSTATE.A OR operand<2>;
PSTATE.I = PSTATE.I OR operand<1>;
PSTATE.F = PSTATE.F OR operand<0>;

when PSTATEField_DAIFClr
PSTATE.D = PSTATE.D AND NOT(operand<3>);
PSTATE.A = PSTATE.A AND NOT(operand<2>);
PSTATE.I = PSTATE.I AND NOT(operand<1>);
PSTATE.F = PSTATE.F AND NOT(operand<0>);

when PSTATEField_PAN
PSTATE.PAN = operand<0>;

when PSTATEField_UAO
PSTATE.UAO = operand<0>;

when PSTATEField_DIT
PSTATE.DIT = operand<0>;

when PSTATEField_TCO
PSTATE.TCO = operand<0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (immediate) Page 414

MSR (register)

Move general-purpose register to System Register allows the PE to write an AArch64 System register from a general-
purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 1 o0 op1 CRn CRm op2 Rt

L

MSR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Xt>

AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op0 = 2 + UInt(o0);
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);
boolean read = (L == '1');

Assembler Symbols

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".
The System register names are defined in 'AArch64 System Registers' in the System Register XML.

<op0> Is an unsigned immediate, encoded in “o0”:

o0 <op0>
0 2
1 3

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

if read then
X[t] = AArch64.SysRegRead(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2);

else
AArch64.SysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (register) Page 415

MSUB

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and writes the
result to the destination register.

This instruction is used by the alias MNEG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 1 0 0 0 Rm 1 Ra Rn Rd

o0

32-bit (sf == 0)

MSUB <Wd>, <Wn>, <Wm>, <Wa>

64-bit (sf == 1)

MSUB <Xd>, <Xn>, <Xm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = if sf == '1' then 64 else 32;
integer datasize = destsize;
boolean sub_op = (o0 == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Alias Conditions

Alias Is preferred when
MNEG Ra == '11111'

MSUB Page 416

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

if sub_op then
result = UInt(operand3) - (UInt(operand1) * UInt(operand2));

else
result = UInt(operand3) + (UInt(operand1) * UInt(operand2));

X[d] = result<destsize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSUB Page 417

MUL

Multiply

: Rd = Rn * Rm.

This is an alias of MADD. This means:

• The encodings in this description are named to match the encodings of MADD.
• The description of MADD gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 1 0 0 0 Rm 0 1 1 1 1 1 Rn Rd

o0 Ra

32-bit (sf == 0)

MUL <Wd>, <Wn>, <Wm>

is equivalent to

MADD <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit (sf == 1)

MUL <Xd>, <Xn>, <Xm>

is equivalent to

MADD <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of MADD gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL Page 418

MVN

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

This is an alias of ORN (shifted register). This means:

• The encodings in this description are named to match the encodings of ORN (shifted register).
• The description of ORN (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 0 shift 1 Rm imm6 1 1 1 1 1 Rd

opc N Rn

32-bit (sf == 0)

MVN <Wd>, <Wm>{, <shift> #<amount>}

is equivalent to

ORN <Wd>, WZR, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

MVN <Xd>, <Xm>{, <shift> #<amount>}

is equivalent to

ORN <Xd>, XZR, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

The description of ORN (shifted register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:

MVN Page 419

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN Page 420

NEG (shifted register)

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the destination register.

This is an alias of SUB (shifted register). This means:

• The encodings in this description are named to match the encodings of SUB (shifted register).
• The description of SUB (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 Rd

op S Rn

32-bit (sf == 0)

NEG <Wd>, <Wm>{, <shift> #<amount>}

is equivalent to

SUB <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

NEG <Xd>, <Xm>{, <shift> #<amount>}

is equivalent to

SUB <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of SUB (shifted register) gives the operational pseudocode for this instruction.

NEG (shifted register) Page 421

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEG (shifted register) Page 422

NEGS

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination register. It
updates the condition flags based on the result.

This is an alias of SUBS (shifted register). This means:

• The encodings in this description are named to match the encodings of SUBS (shifted register).
• The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 != 11111

op S Rn Rd

32-bit (sf == 0)

NEGS <Wd>, <Wm>{, <shift> #<amount>}

is equivalent to

SUBS <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

NEGS <Xd>, <Xm>{, <shift> #<amount>}

is equivalent to

SUBS <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

NEGS Page 423

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEGS Page 424

NGC

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the result to the
destination register.

This is an alias of SBC. This means:

• The encodings in this description are named to match the encodings of SBC.
• The description of SBC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

op S Rn

32-bit (sf == 0)

NGC <Wd>, <Wm>

is equivalent to

SBC <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

NGC <Xd>, <Xm>

is equivalent to

SBC <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBC gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NGC Page 425

NGCS

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag), and writes the
result to the destination register. It updates the condition flags based on the result.

This is an alias of SBCS. This means:

• The encodings in this description are named to match the encodings of SBCS.
• The description of SBCS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd

op S Rn

32-bit (sf == 0)

NGCS <Wd>, <Wm>

is equivalent to

SBCS <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

NGCS <Xd>, <Xm>

is equivalent to

SBCS <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBCS gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NGCS Page 426

NOP

No Operation does nothing, other than advance the value of the program counter by 4. This instruction can be used for
instruction alignment purposes.
The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time, leave
it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1

CRm op2

NOP

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

NOP Page 427

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOP Page 428

ORN (shifted register)

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register.

This instruction is used by the alias MVN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

ORN <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ORN <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

ORN (shifted register) Page 429

Alias Conditions

Alias Is preferred when
MVN Rn == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN (shifted register) Page 430

ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register value, and
writes the result to the destination register.

This instruction is used by the alias MOV (bitmask immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 0 1 0 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

ORR <Wd|WSP>, <Wn>, #<imm>

64-bit (sf == 1)

ORR <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

bits(datasize) imm;
if sf == '0' && N != '0' then UNDEFINED;
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias Conditions

Alias Is preferred when
MOV (bitmask immediate) Rn == '11111' && ! MoveWidePreferred(sf, N, imms, immr)

ORR (immediate) Page 431

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = imm;

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (immediate) Page 432

ORR (shifted register)

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
value, and writes the result to the destination register.

This instruction is used by the alias MOV (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd

opc N

32-bit (sf == 0)

ORR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ORR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean setflags;
LogicalOp op;
case opc of

when '00' op = LogicalOp_AND; setflags = FALSE;
when '01' op = LogicalOp_ORR; setflags = FALSE;
when '10' op = LogicalOp_EOR; setflags = FALSE;
when '11' op = LogicalOp_AND; setflags = TRUE;

if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);
boolean invert = (N == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

ORR (shifted register) Page 433

Alias Conditions

Alias Is preferred when
MOV (register) shift == '00' && imm6 == '000000' && Rn == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND result = operand1 AND operand2;
when LogicalOp_ORR result = operand1 OR operand2;
when LogicalOp_EOR result = operand1 EOR operand2;

if setflags then
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (shifted register) Page 434

PACDA, PACDZA

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key A.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDA.
• The value zero, for PACDZA.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 0 Rn Rd

PACDA (Z == 0)

PACDA <Xd>, <Xn|SP>

PACDZA (Z == 1 && Rn == 11111)

PACDZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // PACDA
if n == 31 then source_is_sp = TRUE;

else // PACDZA
if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if source_is_sp then
X[d] = AddPACDA(X[d], SP[]);

else
X[d] = AddPACDA(X[d], X[n]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACDA, PACDZA Page 435

PACDB, PACDZB

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a pointer
authentication code for a data address, using a modifier and key B.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDB.
• The value zero, for PACDZB.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 1 Rn Rd

PACDB (Z == 0)

PACDB <Xd>, <Xn|SP>

PACDZB (Z == 1 && Rn == 11111)

PACDZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // PACDB
if n == 31 then source_is_sp = TRUE;

else // PACDZB
if n != 31 then UNDEFINED;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if source_is_sp then
X[d] = AddPACDB(X[d], SP[]);

else
X[d] = AddPACDB(X[d], X[n]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACDB, PACDZB Page 436

PACGA

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication code for an
address in the first source register, using a modifier in the second source register, and the Generic key. The computed
pointer authentication code is returned in the upper 32 bits of the destination register.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 1 0 0 Rn Rd

PACGA <Xd>, <Xn>, <Xm|SP>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if !HavePACExt() then
UNDEFINED;

if m == 31 then source_is_sp = TRUE;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Rm"
field.

Operation

if source_is_sp then
X[d] = AddPACGA(X[n], SP[]);

else
X[d] = AddPACGA(X[n], X[m]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACGA Page 437

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key A.
The address is:

• In the general-purpose register that is specified by <Xd> for PACIA and PACIZA.
• In X17, for PACIA1716.
• In X30, for PACIASP and PACIAZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIA.
• The value zero, for PACIZA and PACIAZ.
• In X16, for PACIA1716.
• In SP, for PACIASP.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 0 Rn Rd

PACIA (Z == 0)

PACIA <Xd>, <Xn|SP>

PACIZA (Z == 1 && Rn == 11111)

PACIZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // PACIA
if n == 31 then source_is_sp = TRUE;

else // PACIZA
if n != 31 then UNDEFINED;

System
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 0 x 1 1 1 1 1

CRm op2

PACIA, PACIA1716, PACIASP,
PACIAZ, PACIZA Page 438

PACIA1716 (CRm == 0001 && op2 == 000)

PACIA1716

PACIASP (CRm == 0011 && op2 == 001)

PACIASP

PACIAZ (CRm == 0011 && op2 == 000)

PACIAZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 000' // PACIAZ

d = 30;
n = 31;

when '0011 001' // PACIASP
d = 30;
source_is_sp = TRUE;
if HaveBTIExt() then

// Check for branch target compatibility between PSTATE.BTYPE
// and implicit branch target of PACIASP instruction.
SetBTypeCompatible(BTypeCompatible_PACIXSP());

when '0001 000' // PACIA1716
d = 17;
n = 16;

when '0001 010' SEE "PACIB";
when '0001 100' SEE "AUTIA";
when '0001 110' SEE "AUTIB";
when '0011 01x' SEE "PACIB";
when '0011 10x' SEE "AUTIA";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if HavePACExt() then
if source_is_sp then

X[d] = AddPACIA(X[d], SP[]);
else

X[d] = AddPACIA(X[d], X[n]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACIA, PACIA1716, PACIASP,
PACIAZ, PACIZA Page 439

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a pointer
authentication code for an instruction address, using a modifier and key B.
The address is:

• In the general-purpose register that is specified by <Xd> for PACIB and PACIZB.
• In X17, for PACIB1716.
• In X30, for PACIBSP and PACIBZ.

The modifier is:
• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIB.
• The value zero, for PACIZB and PACIBZ.
• In X16, for PACIB1716.
• In SP, for PACIBSP.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 1 Rn Rd

PACIB (Z == 0)

PACIB <Xd>, <Xn|SP>

PACIZB (Z == 1 && Rn == 11111)

PACIZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if Z == '0' then // PACIB
if n == 31 then source_is_sp = TRUE;

else // PACIZB
if n != 31 then UNDEFINED;

System
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 1 x 1 1 1 1 1

CRm op2

PACIB, PACIB1716, PACIBSP,
PACIBZ, PACIZB Page 440

PACIB1716 (CRm == 0001 && op2 == 010)

PACIB1716

PACIBSP (CRm == 0011 && op2 == 011)

PACIBSP

PACIBZ (CRm == 0011 && op2 == 010)

PACIBZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 010' // PACIBZ

d = 30;
n = 31;

when '0011 011' // PACIBSP
d = 30;
source_is_sp = TRUE;
if HaveBTIExt() then

// Check for branch target compatibility between PSTATE.BTYPE
// and implicit branch target of PACIBSP instruction.
SetBTypeCompatible(BTypeCompatible_PACIXSP());

when '0001 010' // PACIB1716
d = 17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 100' SEE "AUTIA";
when '0001 110' SEE "AUTIB";
when '0011 00x' SEE "PACIA";
when '0011 10x' SEE "AUTIA";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if HavePACExt() then
if source_is_sp then

X[d] = AddPACIB(X[d], SP[]);
else

X[d] = AddPACIB(X[d], X[n]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACIB, PACIB1716, PACIBSP,
PACIBZ, PACIZB Page 441

PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one or
more caches.
The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 1 1 0 imm12 Rn Rt
size opc

PRFM (<prfop>|#<imm5>), [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:
PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:
L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP

Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0
and encoded in the "imm12" field as <pimm>/8.

PRFM (immediate) Page 442

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

PRFM (immediate) Page 443

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (immediate) Page 444

PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are likely to
occur in the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into one or more
caches.
The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 0 imm19 Rt
opc

PRFM (<prfop>|#<imm5>), <label>

integer t = UInt(Rt);
MemOp memop = MemOp_LOAD;
boolean signed = FALSE;
integer size;
bits(64) offset;

case opc of
when '00'

size = 4;
when '01'

size = 8;
when '10'

size = 4;
signed = TRUE;

when '11'
memop = MemOp_PREFETCH;

offset = SignExtend(imm19:'00', 64);
boolean tag_checked = FALSE;

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:
PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:
L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP

Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

PRFM (literal) Page 445

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(size*8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

case memop of
when MemOp_LOAD

data = Mem[address, size, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, 64);
else

X[t] = data;

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (literal) Page 446

PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are likely
to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one or
more caches.
The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt
size opc

PRFM (<prfop>|#<imm5>), [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:
PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:
L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP

Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

PRFM (register) Page 447

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

PRFM (register) Page 448

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (register) Page 449

PRFUM

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up the
memory accesses when they do occur, such as preloading the cache line containing the specified address into one or
more caches.
The effect of an PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt
size opc

PRFUM (<prfop>|#<imm5>), [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.
<type> is one of:
PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:
L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:
KEEP

Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field
as 1.

For more information on these prefetch operations, see Prefetch memory.
For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.
This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

PRFUM Page 450

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

PRFUM Page 451

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFUM Page 452

PSB CSYNC

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data for the
current PE has been formatted, and profiling buffer addresses have been translated such that all writes to the profiling
buffer have been initiated. A following DSB instruction completes when the writes to the profiling buffer have
completed.
If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

System
(FEAT_SPE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1

CRm op2

PSB CSYNC

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

PSB CSYNC Page 453

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PSB CSYNC Page 454

PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing
earlier stores to the same physical address.
The semantics of the Physical Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the PSSBB, then the load does not speculatively
read an entry earlier in the coherence order for that location than the entry generated by the latest store
satisfying all of the following conditions:

◦ The store is to the same location as the load.
◦ The store appears in program order before the PSSBB.

• When a load to a location appears in program order before the PSSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

◦ The store is to the same location as the load.
◦ The store appears in program order after the PSSBB.

This is an alias of DSB. This means:

• The encodings in this description are named to match the encodings of DSB.
• The description of DSB gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1

CRm opc

PSSBB

is equivalent to

DSB #4

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PSSBB Page 455

RBIT

Reverse Bits reverses the bit order in a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

32-bit (sf == 0)

RBIT <Wd>, <Wn>

64-bit (sf == 1)

RBIT <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

for i = 0 to datasize-1
result<datasize-1-i> = operand<i>;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT Page 456

RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine
return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0

Z op A M Rm

RET {<Xn>}

integer n = UInt(Rn);
BranchType branch_type;
integer m = UInt(Rm);
boolean pac = (A == '1');
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !pac && m != 0 then
UNDEFINED;

elsif pac && !HavePACExt() then
UNDEFINED;

case op of
when '00' branch_type = BranchType_INDIR;
when '01' branch_type = BranchType_INDCALL;
when '10' branch_type = BranchType_RET;
otherwise UNDEFINED;

if pac then
if Z == '0' && m != 31 then

UNDEFINED;

if branch_type == BranchType_RET then
if n != 31 then UNDEFINED;
n = 30;
source_is_sp = TRUE;

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in
the "Rn" field. Defaults to X30 if absent.

RET Page 457

Operation

bits(64) target = X[n];
boolean auth_then_branch = TRUE;

if pac then
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier, auth_then_branch);

else
target = AuthIB(target, modifier, auth_then_branch);

if branch_type == BranchType_INDCALL then
X[30] = PC[] + 4;

// Value in BTypeNext will be used to set PSTATE.BTYPE
case branch_type of

when BranchType_INDIR // BR, BRAA, BRAB, BRAAZ, BRABZ
if InGuardedPage then

if n == 16 || n == 17 then
BTypeNext = '01';

else
BTypeNext = '11';

else
BTypeNext = '01';

when BranchType_INDCALL // BLR, BLRAA, BLRAB, BLRAAZ, BLRABZ
BTypeNext = '10';

when BranchType_RET // RET, RETAA, RETAB
BTypeNext = '00';

boolean branch_conditional = FALSE;
BranchTo(target, branch_type, branch_conditional);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RET Page 458

RETAA, RETAB

Return from subroutine, with pointer authentication. This instruction authenticates the address that is held in LR,
using SP as the modifier and the specified key, branches to the authenticated address, with a hint that this instruction
is a subroutine return.
Key A is used for RETAA, and key B is used for RETAB.
If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a
Translation fault is generated.
The authenticated address is not written back to LR.

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1

Z op A Rn Rm

RETAA (M == 0)

RETAA

RETAB (M == 1)

RETAB

integer n = UInt(Rn);
BranchType branch_type;
integer m = UInt(Rm);
boolean pac = (A == '1');
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !pac && m != 0 then
UNDEFINED;

elsif pac && !HavePACExt() then
UNDEFINED;

case op of
when '00' branch_type = BranchType_INDIR;
when '01' branch_type = BranchType_INDCALL;
when '10' branch_type = BranchType_RET;
otherwise UNDEFINED;

if pac then
if Z == '0' && m != 31 then

UNDEFINED;

if branch_type == BranchType_RET then
if n != 31 then UNDEFINED;
n = 30;
source_is_sp = TRUE;

RETAA, RETAB Page 459

Operation

bits(64) target = X[n];
boolean auth_then_branch = TRUE;

if pac then
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier, auth_then_branch);

else
target = AuthIB(target, modifier, auth_then_branch);

if branch_type == BranchType_INDCALL then
X[30] = PC[] + 4;

// Value in BTypeNext will be used to set PSTATE.BTYPE
case branch_type of

when BranchType_INDIR // BR, BRAA, BRAB, BRAAZ, BRABZ
if InGuardedPage then

if n == 16 || n == 17 then
BTypeNext = '01';

else
BTypeNext = '11';

else
BTypeNext = '01';

when BranchType_INDCALL // BLR, BLRAA, BLRAB, BLRAAZ, BLRABZ
BTypeNext = '10';

when BranchType_RET // RET, RETAA, RETAB
BTypeNext = '00';

boolean branch_conditional = FALSE;
BranchTo(target, branch_type, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RETAA, RETAB Page 460

REV

Reverse Bytes reverses the byte order in a register.

This instruction is used by the pseudo-instruction REV64.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 x Rn Rd

opc

32-bit (sf == 0 && opc == 10)

REV <Wd>, <Wn>

64-bit (sf == 1 && opc == 11)

REV <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;
case opc of

when '00'
Unreachable();

when '01'
container_size = 16;

when '10'
container_size = 32;

when '11'
if sf == '0' then UNDEFINED;
container_size = 64;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1

rev_index = index + ((elements_per_container - 1) * 8);
for e = 0 to elements_per_container-1

result<rev_index + 7:rev_index> = operand<index + 7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;

REV Page 461

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV Page 462

REV16

Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 Rn Rd

opc

32-bit (sf == 0)

REV16 <Wd>, <Wn>

64-bit (sf == 1)

REV16 <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;
case opc of

when '00'
Unreachable();

when '01'
container_size = 16;

when '10'
container_size = 32;

when '11'
if sf == '0' then UNDEFINED;
container_size = 64;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1

rev_index = index + ((elements_per_container - 1) * 8);
for e = 0 to elements_per_container-1

result<rev_index + 7:rev_index> = operand<index + 7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;

Operational information

If PSTATE.DIT is 1:

REV16 Page 463

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV16 Page 464

REV32

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rd
sf opc

REV32 <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;
case opc of

when '00'
Unreachable();

when '01'
container_size = 16;

when '10'
container_size = 32;

when '11'
if sf == '0' then UNDEFINED;
container_size = 64;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1

rev_index = index + ((elements_per_container - 1) * 8);
for e = 0 to elements_per_container-1

result<rev_index + 7:rev_index> = operand<index + 7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV32 Page 465

REV64

Reverse Bytes reverses the byte order in a 64-bit general-purpose register.
When assembling for Armv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether an
assembler supports this pseudo-instruction when assembling for an architecture earlier than Armv8.2.

This is a pseudo-instruction of REV. This means:

• The encodings in this description are named to match the encodings of REV.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of REV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 Rn Rd
sf opc

64-bit

REV64 <Xd>, <Xn>

is equivalent to

REV <Xd>, <Xn>

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of REV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV64 Page 466

RMIF

Performs a rotation right of a value held in a general purpose register by an immediate value, and then inserts a
selection of the bottom four bits of the result of the rotation into the PSTATE flags, under the control of a second
immediate mask.

Integer
(FEAT_FlagM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 0 0 0 0 imm6 0 0 0 0 1 Rn 0 mask
sf

RMIF <Xn>, #<shift>, #<mask>

if !HaveFlagManipulateExt() || sf != '1' then UNDEFINED;
integer lsb = UInt(imm6);
integer n = UInt(Rn);

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> Is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

<mask> Is the flag bit mask, an immediate in the range 0 to 15, which selects the bits that are inserted into the
NZCV condition flags, encoded in the "mask" field.

Operation

bits(4) tmp;
bits(64) tmpreg = X[n];
tmp = (tmpreg:tmpreg)<lsb+3:lsb>;
if mask<3> == '1' then PSTATE.N = tmp<3>;
if mask<2> == '1' then PSTATE.Z = tmp<2>;
if mask<1> == '1' then PSTATE.C = tmp<1>;
if mask<0> == '1' then PSTATE.V = tmp<0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RMIF Page 467

ROR (immediate)

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left.

This is an alias of EXTR. This means:

• The encodings in this description are named to match the encodings of EXTR.
• The description of EXTR gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

32-bit (sf == 0 && N == 0 && imms == 0xxxxx)

ROR <Wd>, <Ws>, #<shift>

is equivalent to

EXTR <Wd>, <Ws>, <Ws>, #<shift>

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1 && N == 1)

ROR <Xd>, <Xs>, #<shift>

is equivalent to

EXTR <Xd>, <Xs>, <Xs>, #<shift>

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Ws> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xs> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<shift> For the 32-bit variant: is the amount by which to rotate, in the range 0 to 31, encoded in the "imms"
field.
For the 64-bit variant: is the amount by which to rotate, in the range 0 to 63, encoded in the "imms"
field.

Operation

The description of EXTR gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (immediate) Page 468

ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This is an alias of RORV. This means:

• The encodings in this description are named to match the encodings of RORV.
• The description of RORV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

op2

32-bit (sf == 0)

ROR <Wd>, <Wn>, <Wm>

is equivalent to

RORV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

ROR <Xd>, <Xn>, <Xm>

is equivalent to

RORV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

The description of RORV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

ROR (register) Page 469

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (register) Page 470

RORV

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The remainder obtained by
dividing the second source register by the data size defines the number of bits by which the first source register is
right-shifted.

This instruction is used by the alias ROR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

op2

32-bit (sf == 0)

RORV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

RORV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in
its bottom 5 bits, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in
its bottom 6 bits, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RORV Page 471

SB

Speculation Barrier is a barrier that controls speculation.
The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that
appears later in the program order than the barrier:

• Cannot be performed speculatively to the extent that such speculation can be observed through side-channels
as a result of control flow speculation or data value speculation.

• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception.

In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative
allocation into any caching structure where the allocation of that entry could be indicative of any data value present in
memory or in the registers.
The SB instruction:

• Cannot be speculatively executed as a result of control flow speculation or data value speculation.
• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has

not generated an exception. The potentially exception generating instruction can complete once it is known
not to be speculative, and all data values generated by instructions appearing in program order before the SB
instruction have their predicted values confirmed.

When the prediction of the instruction stream is not informed by data taken from the register outputs of the
speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB
instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 (0) (0) (0) (0) 1 1 1 1 1 1 1 1

CRm opc

SB

if !HaveSBExt() then UNDEFINED;

Operation

SpeculationBarrier();

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SB Page 472

SBC

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value, and writes the
result to the destination register.

This instruction is used by the alias NGC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

op S

32-bit (sf == 0)

SBC <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SBC <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when
NGC Rn == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;

if sub_op then
operand2 = NOT(operand2);

(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

SBC Page 473

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC Page 474

SBCS

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias NGCS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

op S

32-bit (sf == 0)

SBCS <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SBCS <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when
NGCS Rn == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;

if sub_op then
operand2 = NOT(operand2);

(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

SBCS Page 475

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBCS Page 476

SBFIZ

Signed Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register to
bit position <lsb> of the destination register, setting the destination bits below the bitfield to zero, and the bits above
the bitfield to a copy of the most significant bit of the bitfield.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

SBFIZ <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

SBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

SBFIZ <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

SBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.
For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SBFIZ Page 477

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFIZ Page 478

SBFM

Signed Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.
If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit
position <immr> in the source register to the least significant bits of the destination register.
If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.
In both cases the destination bits below the bitfield are set to zero, and the bits above the bitfield are set to a copy of
the most significant bit of the bitfield.

This instruction is used by the aliases ASR (immediate), SBFIZ, SBFX, SXTB, SXTH, and SXTW.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

SBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit (sf == 1 && N == 1)

SBFM <Xd>, <Xn>, #<immr>, #<imms>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

boolean inzero;
boolean extend;
integer R;
integer S;
bits(datasize) wmask;
bits(datasize) tmask;

case opc of
when '00' inzero = TRUE; extend = TRUE; // SBFM
when '01' inzero = FALSE; extend = FALSE; // BFM
when '10' inzero = TRUE; extend = FALSE; // UBFM
when '11' UNDEFINED;

if sf == '1' && N != '1' then UNDEFINED;
if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

R = UInt(immr);
S = UInt(imms);
(wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.
For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.

SBFM Page 479

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

Alias Conditions

Alias Of variant Is preferred when
ASR (immediate) 32-bit imms == '011111'
ASR (immediate) 64-bit imms == '111111'
SBFIZ UInt(imms) < UInt(immr)
SBFX BFXPreferred(sf, opc<1>, imms, immr)
SXTB immr == '000000' && imms == '000111'
SXTH immr == '000000' && imms == '001111'
SXTW immr == '000000' && imms == '011111'

Operation

bits(datasize) dst = if inzero then Zeros() else X[d];
bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, R) AND wmask);

// determine extension bits (sign, zero or dest register)
bits(datasize) top = if extend then Replicate(src<S>) else dst;

// combine extension bits and result bits
X[d] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFM Page 480

SBFX

Signed Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to the
least significant bits of the destination register, and sets destination bits above the bitfield to a copy of the most
significant bit of the bitfield.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

SBFX <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

SBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit (sf == 1 && N == 1)

SBFX <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.
For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SBFX Page 481

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFX Page 482

SDIV

Signed Divide divides a signed integer register value by another signed integer register value, and writes the result to
the destination register. The condition flags are not affected.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd

o1

32-bit (sf == 0)

SDIV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SDIV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean unsigned = (o1 == '0');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
integer result;

if IsZero(operand2) then
result = 0;

else
result = RoundTowardsZero(Real(Int(operand1, unsigned)) / Real(Int(operand2, unsigned)));

X[d] = result<datasize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDIV Page 483

SETF8, SETF16

Set the PSTATE.NZV flags based on the value in the specified general-purpose register. SETF8 treats the value as an 8
bit value, and SETF16 treats the value as an 16 bit value.
The PSTATE.C flag is not affected by these instructions.

Integer
(FEAT_FlagM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 sz 0 0 1 0 Rn 0 1 1 0 1
sf

SETF8 (sz == 0)

SETF8 <Wn>

SETF16 (sz == 1)

SETF16 <Wn>

if !HaveFlagManipulateExt() || sf != '0' then UNDEFINED;
integer msb = if sz=='1' then 15 else 7;
integer n = UInt(Rn);

Assembler Symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(32) tmpreg = X[n];
PSTATE.N = tmpreg<msb>;
PSTATE.Z = if (tmpreg<msb:0> == Zeros(msb+1)) then '1' else '0';
PSTATE.V = tmpreg<msb+1> EOR tmpreg<msb>;
//PSTATE.C unchanged;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SETF8, SETF16 Page 484

SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait for Event mechanism and Send event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1

CRm op2

SEV

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

SEV Page 485

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEV Page 486

SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1

CRm op2

SEVL

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

SEVL Page 487

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEVL Page 488

SMADDL

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result to
the 64-bit destination register.

This instruction is used by the alias SMULL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 0 0 1 Rm 0 Ra Rn Rd

U o0

SMADDL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = 64;
integer datasize = 32;
boolean sub_op = (o0 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra"
field.

Alias Conditions

Alias Is preferred when
SMULL Ra == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

if sub_op then
result = Int(operand3, unsigned) - (Int(operand1, unsigned) * Int(operand2, unsigned));

else
result = Int(operand3, unsigned) + (Int(operand1, unsigned) * Int(operand2, unsigned));

X[d] = result<63:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

SMADDL Page 489

◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMADDL Page 490

SMC

Secure Monitor Call causes an exception to EL3.
SMC is available only for software executing at EL1 or higher. It is UNDEFINED in EL0.
If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1 or higher
generates a Secure Monitor Call exception, recording it in ESR_ELx, using the EC value 0x17, that is taken to EL3.
If the value of HCR_EL2.TSC is 1 and EL2 is enabled in the current Security state, execution of an SMC instruction at
EL1 generates an exception that is taken to EL2, regardless of the value of SCR_EL3.SMD. For more information, see
Traps to EL2 of Non-secure EL1 execution of SMC instructions.
If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 1

SMC #<imm>

bits(16) imm = imm16;

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.CheckForSMCUndefOrTrap(imm);
AArch64.CallSecureMonitor(imm);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMC Page 491

SMNEGL

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the
64-bit destination register.

This is an alias of SMSUBL. This means:

• The encodings in this description are named to match the encodings of SMSUBL.
• The description of SMSUBL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 0 0 1 Rm 1 1 1 1 1 1 Rn Rd

U o0 Ra

SMNEGL <Xd>, <Wn>, <Wm>

is equivalent to

SMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of SMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMNEGL Page 492

SMSUBL

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register value,
and writes the result to the 64-bit destination register.

This instruction is used by the alias SMNEGL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 0 0 1 Rm 1 Ra Rn Rd

U o0

SMSUBL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = 64;
integer datasize = 32;
boolean sub_op = (o0 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Alias Conditions

Alias Is preferred when
SMNEGL Ra == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

if sub_op then
result = Int(operand3, unsigned) - (Int(operand1, unsigned) * Int(operand2, unsigned));

else
result = Int(operand3, unsigned) + (Int(operand1, unsigned) * Int(operand2, unsigned));

X[d] = result<63:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

SMSUBL Page 493

◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMSUBL Page 494

SMULH

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 0 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd

U Ra

SMULH <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra); // ignored by UMULH/SMULH
integer destsize = 64;
integer datasize = destsize;
boolean unsigned = (U == '1');

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

integer result;

result = Int(operand1, unsigned) * Int(operand2, unsigned);

X[d] = result<127:64>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULH Page 495

SMULL

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This is an alias of SMADDL. This means:

• The encodings in this description are named to match the encodings of SMADDL.
• The description of SMADDL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 0 0 1 Rm 0 1 1 1 1 1 Rn Rd

U o0 Ra

SMULL <Xd>, <Wn>, <Wm>

is equivalent to

SMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of SMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL Page 496

SSBB

Speculative Store Bypass Barrier is a memory barrier which prevents speculative loads from bypassing earlier stores
to the same virtual address under certain conditions.
The semantics of the Speculative Store Bypass Barrier are:

• When a load to a location appears in program order after the SSBB, then the load does not speculatively read
an entry earlier in the coherence order for that location than the entry generated by the latest store satisfying
all of the following conditions:

◦ The store is to the same location as the load.
◦ The store uses the same virtual address as the load.
◦ The store appears in program order before the SSBB.

• When a load to a location appears in program order before the SSBB, then the load does not speculatively
read data from any store satisfying all of the following conditions:

◦ The store is to the same location as the load.
◦ The store uses the same virtual address as the load.
◦ The store appears in program order after the SSBB.

This is an alias of DSB. This means:

• The encodings in this description are named to match the encodings of DSB.
• The description of DSB gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1

CRm opc

SSBB

is equivalent to

DSB #0

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSBB Page 497

ST2G

Store Allocation Tags stores an Allocation Tag to two Tag granules of memory. The address used for the store is
calculated from the base register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is
calculated from the Logical Address Tag in the source register.
This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 0 1 imm9 0 1 Xn Xt

ST2G <Xt|SP>, [<Xn|SP>], #<simm>

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;
boolean zero_data = FALSE;

Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 0 1 imm9 1 1 Xn Xt

ST2G <Xt|SP>, [<Xn|SP>, #<simm>]!

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;
boolean zero_data = FALSE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 0 1 imm9 1 0 Xn Xt

ST2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;
boolean zero_data = FALSE;

Assembler Symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

ST2G Page 498

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and
encoded in the "imm9" field.

Operation

bits(64) address;
bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if zero_data then
if address != Align(address, TAG_GRANULE) then

AArch64.Abort(address, AlignmentFault(AccType_NORMAL, TRUE, FALSE));

Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);
Mem[address+TAG_GRANULE, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);

AArch64.MemTag[address, AccType_NORMAL] = tag;
AArch64.MemTag[address+TAG_GRANULE, AccType_NORMAL] = tag;

if writeback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2G Page 499

ST64B

Single-copy Atomic 64-byte Store without Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location. The data that is stored is atomic and is required to be 64-byte-aligned.

Integer
(FEAT_LS64)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 Rn Rt

ST64B <Xt>, [<Xn|SP> {,#0}]

if !HaveFeatLS64() then UNDEFINED;
if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
boolean tag_checked = n != 31;

Assembler Symbols

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

CheckLDST64BEnabled();

bits(512) data;
bits(64) address;
bits(64) value;
acctype = AccType_ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

for i = 0 to 7
value = X[t+i];
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63+64*i : 64*i> = value;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

MemStore64B(address, data, acctype);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST64B Page 500

ST64BV

Single-copy Atomic 64-byte Store with Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location, and writes the status result of the store to a register. The data that is stored is atomic
and is required to be 64-byte aligned.

Integer
(FEAT_LS64_V)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 1 0 0 Rn Rt

ST64BV <Xs>, <Xt>, [<Xn|SP>]

if !HaveFeatLS64() then UNDEFINED;
if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);
boolean tag_checked = n != 31;

Assembler Symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.
The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

0xFFFFFFFF_FFFFFFFF
If the memory location accessed does not support this instruction.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

ST64BV Page 501

Operation

CheckST64BVEnabled();

bits(512) data;
bits(64) address;
bits(64) value;
bits(64) status;
acctype = AccType_ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

for i = 0 to 7
value = X[t+i];
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63+64*i : 64*i> = value;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

status = MemStore64BWithRet(address, data, acctype);

if s != 31 then X[s] = status;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST64BV Page 502

ST64BV0

Single-copy Atomic 64-byte EL0 Store with Return stores eight 64-bit doublewords from consecutive registers, Xt to
X(t+7), to a memory location, with the bottom 32 bits taken from ACCDATA_EL1, and writes the status result of the
store to a register. The data that is stored is atomic and is required to be 64-byte aligned.

Integer
(FEAT_LS64_V)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 0 0 0 1 Rs 1 0 1 0 0 0 Rn Rt

ST64BV0 <Xs>, <Xt>, [<Xn|SP>]

if !HaveFeatLS64() then UNDEFINED;
if Rt<4:3> == '11' || Rt<0> == '1' then UNDEFINED;

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);
boolean tag_checked = n != 31;

Assembler Symbols

<Xs> Is the 64-bit name of the general-purpose register into which the status result of this instruction is
written, encoded in the "Rs" field.
The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

0xFFFFFFFF_FFFFFFFF
If the memory location accessed does not support this instruction.

If XZR is used, then the return value is ignored.

<Xt> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

ST64BV0 Page 503

Operation

CheckST64BV0Enabled();

bits(512) data;
bits(64) address;
bits(64) value;
bits(64) status;
acctype = AccType_ATOMICLS64;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

bits(64) Xt = X[t];
value<31:0> = ACCDATA_EL1<31:0>;
value<63:32> = Xt<63:32>;
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63:0> = value;
for i = 1 to 7

value = X[t+i];
if BigEndian(acctype) then value = BigEndianReverse(value);
data<63+64*i : 64*i> = value;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

status = MemStore64BWithRet(address, data, acctype);

if s != 31 then X[s] = status;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST64BV0 Page 504

STADD, STADDL

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, adds the value held in a register to it, and stores the result back to memory.

• STADD does not have release semantics.
• STADDL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDADD, LDADDA, LDADDAL, LDADDL. This means:

• The encodings in this description are named to match the encodings of LDADD, LDADDA, LDADDAL,
LDADDL.

• The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDADD alias (size == 10 && R == 0)

STADD <Ws>, [<Xn|SP>]

is equivalent to

LDADD <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDADDL alias (size == 10 && R == 1)

STADDL <Ws>, [<Xn|SP>]

is equivalent to

LDADDL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDADD alias (size == 11 && R == 0)

STADD <Xs>, [<Xn|SP>]

is equivalent to

LDADD <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDADDL alias (size == 11 && R == 1)

STADDL <Xs>, [<Xn|SP>]

is equivalent to

LDADDL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STADD, STADDL Page 505

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADD, STADDL Page 506

STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in a
register to it, and stores the result back to memory.

• STADDB does not have release semantics.
• STADDLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDADDB, LDADDAB, LDADDALB, LDADDLB. This means:

• The encodings in this description are named to match the encodings of LDADDB, LDADDAB, LDADDALB,
LDADDLB.

• The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STADDB <Ws>, [<Xn|SP>]

is equivalent to

LDADDB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STADDLB <Ws>, [<Xn|SP>]

is equivalent to

LDADDLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADDB, STADDLB Page 507

STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the value
held in a register to it, and stores the result back to memory.

• STADDH does not have release semantics.
• STADDLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDADDH, LDADDAH, LDADDALH, LDADDLH. This means:

• The encodings in this description are named to match the encodings of LDADDH, LDADDAH, LDADDALH,
LDADDLH.

• The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STADDH <Ws>, [<Xn|SP>]

is equivalent to

LDADDH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STADDLH <Ws>, [<Xn|SP>]

is equivalent to

LDADDLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADDH, STADDLH Page 508

STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and
stores the result back to memory.

• STCLR does not have release semantics.
• STCLRL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDCLR, LDCLRA, LDCLRAL, LDCLRL. This means:

• The encodings in this description are named to match the encodings of LDCLR, LDCLRA, LDCLRAL, LDCLRL.
• The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this

instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDCLR alias (size == 10 && R == 0)

STCLR <Ws>, [<Xn|SP>]

is equivalent to

LDCLR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDCLRL alias (size == 10 && R == 1)

STCLRL <Ws>, [<Xn|SP>]

is equivalent to

LDCLRL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDCLR alias (size == 11 && R == 0)

STCLR <Xs>, [<Xn|SP>]

is equivalent to

LDCLR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDCLRL alias (size == 11 && R == 1)

STCLRL <Xs>, [<Xn|SP>]

is equivalent to

LDCLRL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STCLR, STCLRL Page 509

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLR, STCLRL Page 510

STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRB does not have release semantics.
• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB. This means:

• The encodings in this description are named to match the encodings of LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB.

• The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STCLRB <Ws>, [<Xn|SP>]

is equivalent to

LDCLRB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STCLRLB <Ws>, [<Xn|SP>]

is equivalent to

LDCLRLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLRB, STCLRLB Page 511

STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a
bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRH does not have release semantics.
• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH. This means:

• The encodings in this description are named to match the encodings of LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH.

• The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STCLRH <Ws>, [<Xn|SP>]

is equivalent to

LDCLRH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STCLRLH <Ws>, [<Xn|SP>]

is equivalent to

LDCLRLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLRH, STCLRLH Page 512

STEOR, STEORL

Atomic exclusive OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs an exclusive OR with the value held in a register on it, and stores the result back
to memory.

• STEOR does not have release semantics.
• STEORL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDEOR, LDEORA, LDEORAL, LDEORL. This means:

• The encodings in this description are named to match the encodings of LDEOR, LDEORA, LDEORAL,
LDEORL.

• The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDEOR alias (size == 10 && R == 0)

STEOR <Ws>, [<Xn|SP>]

is equivalent to

LDEOR <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDEORL alias (size == 10 && R == 1)

STEORL <Ws>, [<Xn|SP>]

is equivalent to

LDEORL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDEOR alias (size == 11 && R == 0)

STEOR <Xs>, [<Xn|SP>]

is equivalent to

LDEOR <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDEORL alias (size == 11 && R == 1)

STEORL <Xs>, [<Xn|SP>]

is equivalent to

LDEORL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STEOR, STEORL Page 513

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEOR, STEORL Page 514

STEORB, STEORLB

Atomic exclusive OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEORB does not have release semantics.
• STEORLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDEORB, LDEORAB, LDEORALB, LDEORLB. This means:

• The encodings in this description are named to match the encodings of LDEORB, LDEORAB, LDEORALB,
LDEORLB.

• The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STEORB <Ws>, [<Xn|SP>]

is equivalent to

LDEORB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STEORLB <Ws>, [<Xn|SP>]

is equivalent to

LDEORLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEORB, STEORLB Page 515

STEORH, STEORLH

Atomic exclusive OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
an exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEORH does not have release semantics.
• STEORLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDEORH, LDEORAH, LDEORALH, LDEORLH. This means:

• The encodings in this description are named to match the encodings of LDEORH, LDEORAH, LDEORALH,
LDEORLH.

• The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STEORH <Ws>, [<Xn|SP>]

is equivalent to

LDEORH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STEORLH <Ws>, [<Xn|SP>]

is equivalent to

LDEORLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEORH, STEORLH Page 516

STG

Store Allocation Tag stores an Allocation Tag to memory. The address used for the store is calculated from the base
register and an immediate signed offset scaled by the Tag granule. The Allocation Tag is calculated from the Logical
Address Tag in the source register.
This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 0 1 imm9 0 1 Xn Xt

STG <Xt|SP>, [<Xn|SP>], #<simm>

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;
boolean zero_data = FALSE;

Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 0 1 imm9 1 1 Xn Xt

STG <Xt|SP>, [<Xn|SP>, #<simm>]!

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;
boolean zero_data = FALSE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 0 1 imm9 1 0 Xn Xt

STG <Xt|SP>, [<Xn|SP>{, #<simm>}]

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;
boolean zero_data = FALSE;

Assembler Symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

STG Page 517

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and
encoded in the "imm9" field.

Operation

bits(64) address;

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if zero_data then
if address != Align(address, TAG_GRANULE) then

AArch64.Abort(address, AlignmentFault(AccType_NORMAL, TRUE, FALSE));

Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);

bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);
AArch64.MemTag[address, AccType_NORMAL] = tag;

if writeback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STG Page 518

STGM

Store Tag Multiple writes a naturally aligned block of N Allocation Tags, where the size of N is identified in
GMID_EL1.BS, and the Allocation Tag written to address A is taken from the source register at
4*A<7:4>+3:4*A<7:4>.
This instruction is UNDEFINED at EL0.
This instruction generates an Unchecked access.
If ID_AA64PFR1_EL1.MTE != 0b0010, this instruction is UNDEFINED.

Integer
(FEAT_MTE2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

STGM <Xt>, [<Xn|SP>]

if !HaveMTE2Ext() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

if PSTATE.EL == EL0 then
UNDEFINED;

bits(64) data = X[t];
bits(64) address;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

integer size = 4*(2^(UInt(GMID_EL1.BS)));
address = Align(address,size);
integer count = size >> LOG2_TAG_GRANULE;
integer index = UInt(address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>);

for i = 0 to count-1
bits(4) tag = data<(index*4)+3:index*4>;
AArch64.MemTag[address, AccType_NORMAL] = tag;
address = address + TAG_GRANULE;
index = index + 1;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STGM Page 519

STGP

Store Allocation Tag and Pair of registers stores an Allocation Tag and two 64-bit doublewords to memory, from two
registers. The address used for the store is calculated from the base register and an immediate signed offset scaled by
the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the base register.
This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 0 1 0 simm7 Xt2 Xn Xt

STGP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
integer t2 = UInt(Xt2);
bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;

Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 1 1 0 simm7 Xt2 Xn Xt

STGP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
integer t2 = UInt(Xt2);
bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 0 0 1 0 0 simm7 Xt2 Xn Xt

STGP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
integer t2 = UInt(Xt2);
bits(64) offset = LSL(SignExtend(simm7, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;

Assembler Symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Xt" field.

STGP Page 520

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Xt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<imm> For the post-index and pre-index variant: is the signed immediate offset, a multiple of 16 in the range
-1024 to 1008, encoded in the "simm7" field.
For the signed offset variant: is the optional signed immediate offset, a multiple of 16 in the range -1024
to 1008, defaulting to 0 and encoded in the "simm7" field.

Operation

bits(64) address;
bits(64) data1;
bits(64) data2;

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data1 = X[t];
data2 = X[t2];

if !postindex then
address = address + offset;

if address != Align(address, TAG_GRANULE) then
iswrite = TRUE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(AccType_NORMAL, iswrite, secondstage));

Mem[address, 8, AccType_NORMAL] = data1;
Mem[address+8, 8, AccType_NORMAL] = data2;

AArch64.MemTag[address, AccType_NORMAL] = AArch64.AllocationTagFromAddress(address);

if writeback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STGP Page 521

STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information
about memory accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STLLR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STLLR Page 522

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLR Page 523

STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory
accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

STLLRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

STLLRB Page 524

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLRB Page 525

STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also
has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory
accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

STLLRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

STLLRH Page 526

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLRH Page 527

STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about
memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

STLR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STLR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STLR Page 528

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLR Page 529

STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has memory
ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

STLRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLRB Page 530

STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also
has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses,
see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

STLRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;
boolean tag_checked = n != 31;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

case memop of
when MemOp_STORE

data = X[t];
Mem[address, dbytes, acctype] = data;

when MemOp_LOAD
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLRH Page 531

STLUR

Store-Release Register (unscaled) calculates an address from a base register value and an immediate offset, and
stores a 32-bit word or a 64-bit doubleword to the calculated address, from a register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt
size opc

32-bit (size == 10)

STLUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

STLUR <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STLUR Page 532

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STLUR Page 533

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLUR Page 534

STLURB

Store-Release Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and
stores a byte to the calculated address, from a 32-bit register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt
size opc

STLURB <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STLURB Page 535

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STLURB Page 536

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLURB Page 537

STLURH

Store-Release Register Halfword (unscaled) calculates an address from a base register value and an immediate offset,
and stores a halfword to the calculated address, from a 32-bit register.
The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release
For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(FEAT_LRCPC2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 0 0 1 0 0 0 imm9 0 0 Rn Rt
size opc

STLURH <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STLURH Page 538

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_ORDERED;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STLURH Page 539

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLURH Page 540

STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location if the
PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores. For information on single-copy
atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. If
a 64-bit pair Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory location being
updated. The instruction also has memory ordering semantics, as described in Load-Acquire, Store-Release. For
information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 sz 0 0 1 0 0 0 0 0 1 Rs 1 Rt2 Rn Rt

L o0

32-bit (sz == 0)

STLXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

STLXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = TRUE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 32 << UInt(sz);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXP.

STLXP Page 541

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXP Page 542

Operation

STLXP Page 543

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STLXP Page 544

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXP Page 545

STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive access
to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1 if no
store was performed. See Synchronization and semaphores. The memory access is atomic. The instruction also has
memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

32-bit (size == 10)

STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXR.

STLXR Page 546

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXR Page 547

Operation

STLXR Page 548

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STLXR Page 549

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXR Page 550

STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release. For information about memory accesses see Load/Store addressing
modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXRB.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

STLXRB Page 551

1
If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Aborts
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXRB Page 552

Operation

STLXRB Page 553

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STLXRB Page 554

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXRB Page 555

STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has exclusive
access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed. See Synchronization and semaphores. The memory access is atomic. The instruction also has memory
ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STLXRH.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

STLXRH Page 556

1
If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXRH Page 557

Operation

STLXRH Page 558

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STLXRH Page 559

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXRH Page 560

STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For
information about memory accesses, see Load/Store addressing modes. For information about Non-temporal pair
instructions, see Load/Store Non-temporal pair.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 0 0 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

STNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to
252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to
504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_STREAM;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if opc<0> == '1' then UNDEFINED;
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STNP Page 561

Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown && t == n then
data1 = bits(datasize) UNKNOWN;

else
data1 = X[t];

if rt_unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;

else
data2 = X[t2];

Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
if HaveLSE2Ext() then

bits(2*datasize) full_data;
boolean ispair = TRUE;
full_data = Mem[address, 2 * dbytes, AccType_NORMAL, ispair];
if BigEndian(acctype) then

data2 = full_data<(datasize-1) : 0>;
data1 = full_data<(2*datasize-1) : datasize>;

else
data1 = full_data<(datasize-1) : 0>;
data2 = full_data<(2*datasize-1) : datasize>;

else
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];

if rt_unknown then
data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

X[t] = data1;
X[t2] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNP Page 562

STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two 32-bit
words or two 64-bit doublewords to the calculated address, from two registers. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 0 1 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 1 1 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x 0 1 0 1 0 0 1 0 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

STP Page 563

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of
4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of
8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.
For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_NORMAL;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if L:opc<0> == '01' || opc == '11' then UNDEFINED;
boolean signed = (opc<0> != '0');
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;
boolean wb_unknown = FALSE;

if memop == MemOp_LOAD && wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STP Page 564

Operation

STP Page 565

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown && t == n then
data1 = bits(datasize) UNKNOWN;

else
data1 = X[t];

if rt_unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;

else
data2 = X[t2];

if HaveLSE2Ext() then
bits(2*datasize) full_data;
if BigEndian(acctype) then

full_data = data1:data2;
else

full_data = data2:data1;
boolean ispair = TRUE;
Mem[address, 2 * dbytes, AccType_NORMAL, ispair] = full_data;

else
Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
if HaveLSE2Ext() && !signed then

bits(2*datasize) full_data;
boolean ispair = TRUE;
full_data = Mem[address, 2 * dbytes, AccType_NORMAL, ispair];
if BigEndian(acctype) then

data2 = full_data<(datasize-1) : 0>;
data1 = full_data<(2*datasize-1) : datasize>;

else
data1 = full_data<(datasize-1) : 0>;
data2 = full_data<(2*datasize-1) : datasize>;

else
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];

if rt_unknown then
data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

if signed then
X[t] = SignExtend(data1, 64);
X[t2] = SignExtend(data2, 64);

else
X[t] = data1;
X[t2] = data2;

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;

STP Page 566

else
X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STP Page 567

STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for the
store is calculated from a base register and an immediate offset. For information about memory accesses, see Load/
Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
size opc

32-bit (size == 10)

STR <Wt>, [<Xn|SP>], #<simm>

64-bit (size == 11)

STR <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
size opc

32-bit (size == 10)

STR <Wt>, [<Xn|SP>, #<simm>]!

64-bit (size == 11)

STR <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 1 0 0 imm12 Rn Rt
size opc

STR (immediate) Page 568

32-bit (size == 10)

STR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11)

STR <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to
16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.
For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to
32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

STR (immediate) Page 569

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STR (immediate) Page 570

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (immediate) Page 571

STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores a
32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory accesses,
see Load/Store addressing modes.
The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
size opc

32-bit (size == 10)

STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (size == 11)

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

STR (register) Page 572

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STR (register) Page 573

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (register) Page 574

STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is
used for the store is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
size opc

STRB <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
size opc

STRB <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 1 0 0 imm12 Rn Rt
size opc

STRB <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STRB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

STRB (immediate) Page 575

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STRB (immediate) Page 576

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (immediate) Page 577

STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a 32-bit register to the calculated address. For information about memory accesses, see Load/Store
addressing modes.
The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
size opc

Extended register (option != 011)

STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register (option == 011)

STRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

STRB (register) Page 578

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STRB (register) Page 579

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (register) Page 580

STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The address
that is used for the store is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
size opc

STRH <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
size opc

STRH <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 1 0 0 imm12 Rn Rt
size opc

STRH <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and
encoded in the "imm12" field as <pimm>/2.

STRH (immediate) Page 581

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STRH (immediate) Page 582

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (immediate) Page 583

STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a 32-bit register to the calculated address. For information about memory accesses, see Load/
Store addressing modes.
The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
size opc

STRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option
when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional,
it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

STRH (register) Page 584

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STRH (register) Page 585

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (register) Page 586

STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSET does not have release semantics.
• STSETL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSET, LDSETA, LDSETAL, LDSETL. This means:

• The encodings in this description are named to match the encodings of LDSET, LDSETA, LDSETAL, LDSETL.
• The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDSET alias (size == 10 && R == 0)

STSET <Ws>, [<Xn|SP>]

is equivalent to

LDSET <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSETL alias (size == 10 && R == 1)

STSETL <Ws>, [<Xn|SP>]

is equivalent to

LDSETL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSET alias (size == 11 && R == 0)

STSET <Xs>, [<Xn|SP>]

is equivalent to

LDSET <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSETL alias (size == 11 && R == 1)

STSETL <Xs>, [<Xn|SP>]

is equivalent to

LDSETL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STSET, STSETL Page 587

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSET, STSETL Page 588

STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise OR
with the value held in a register on it, and stores the result back to memory.

• STSETB does not have release semantics.
• STSETLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSETB, LDSETAB, LDSETALB, LDSETLB. This means:

• The encodings in this description are named to match the encodings of LDSETB, LDSETAB, LDSETALB,
LDSETLB.

• The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STSETB <Ws>, [<Xn|SP>]

is equivalent to

LDSETB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STSETLB <Ws>, [<Xn|SP>]

is equivalent to

LDSETLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSETB, STSETLB Page 589

STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a
bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSETH does not have release semantics.
• STSETLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSETH, LDSETAH, LDSETALH, LDSETLH. This means:

• The encodings in this description are named to match the encodings of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

• The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STSETH <Ws>, [<Xn|SP>]

is equivalent to

LDSETH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STSETLH <Ws>, [<Xn|SP>]

is equivalent to

LDSETLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSETH, STSETLH Page 590

STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory,
treating the values as signed numbers.

• STSMAX does not have release semantics.
• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL. This means:

• The encodings in this description are named to match the encodings of LDSMAX, LDSMAXA, LDSMAXAL,
LDSMAXL.

• The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDSMAX alias (size == 10 && R == 0)

STSMAX <Ws>, [<Xn|SP>]

is equivalent to

LDSMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMAXL alias (size == 10 && R == 1)

STSMAXL <Ws>, [<Xn|SP>]

is equivalent to

LDSMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMAX alias (size == 11 && R == 0)

STSMAX <Xs>, [<Xn|SP>]

is equivalent to

LDSMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMAXL alias (size == 11 && R == 1)

STSMAXL <Xs>, [<Xn|SP>]

is equivalent to

LDSMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STSMAX, STSMAXL Page 591

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAX, STSMAXL Page 592

STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers.

• STSMAXB does not have release semantics.
• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB. This means:

• The encodings in this description are named to match the encodings of LDSMAXB, LDSMAXAB, LDSMAXALB,
LDSMAXLB.

• The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STSMAXB <Ws>, [<Xn|SP>]

is equivalent to

LDSMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STSMAXLB <Ws>, [<Xn|SP>]

is equivalent to

LDSMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAXB, STSMAXLB Page 593

STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
signed numbers.

• STSMAXH does not have release semantics.
• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH. This means:

• The encodings in this description are named to match the encodings of LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH.

• The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STSMAXH <Ws>, [<Xn|SP>]

is equivalent to

LDSMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STSMAXLH <Ws>, [<Xn|SP>]

is equivalent to

LDSMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAXH, STSMAXLH Page 594

STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as signed numbers.

• STSMIN does not have release semantics.
• STSMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMIN, LDSMINA, LDSMINAL, LDSMINL. This means:

• The encodings in this description are named to match the encodings of LDSMIN, LDSMINA, LDSMINAL,
LDSMINL.

• The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDSMIN alias (size == 10 && R == 0)

STSMIN <Ws>, [<Xn|SP>]

is equivalent to

LDSMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDSMINL alias (size == 10 && R == 1)

STSMINL <Ws>, [<Xn|SP>]

is equivalent to

LDSMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMIN alias (size == 11 && R == 0)

STSMIN <Xs>, [<Xn|SP>]

is equivalent to

LDSMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDSMINL alias (size == 11 && R == 1)

STSMINL <Xs>, [<Xn|SP>]

is equivalent to

LDSMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STSMIN, STSMINL Page 595

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMIN, STSMINL Page 596

STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers.

• STSMINB does not have release semantics.
• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB. This means:

• The encodings in this description are named to match the encodings of LDSMINB, LDSMINAB, LDSMINALB,
LDSMINLB.

• The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STSMINB <Ws>, [<Xn|SP>]

is equivalent to

LDSMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STSMINLB <Ws>, [<Xn|SP>]

is equivalent to

LDSMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMINB, STSMINLB Page 597

STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
signed numbers.

• STSMINH does not have release semantics.
• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH. This means:

• The encodings in this description are named to match the encodings of LDSMINH, LDSMINAH, LDSMINALH,
LDSMINLH.

• The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STSMINH <Ws>, [<Xn|SP>]

is equivalent to

LDSMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STSMINLH <Ws>, [<Xn|SP>]

is equivalent to

LDSMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMINH, STSMINLH Page 598

STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
size opc

32-bit (size == 10)

STTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

STTR <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STTR Page 599

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STTR Page 600

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTR Page 601

STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
size opc

STTRB <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STTRB Page 602

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STTRB Page 603

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTRB Page 604

STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is used
for the store is calculated from a base register and an immediate offset.
Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.
• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
size opc

STTRH <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STTRH Page 605

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

unpriv_at_el1 = PSTATE.EL == EL1 && !(EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11');
unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';

user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

acctype = AccType_UNPRIV;
else

acctype = AccType_NORMAL;

MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

UNDEFINED;
else

// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STTRH Page 606

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTRH Page 607

STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the larger value back to memory,
treating the values as unsigned numbers.

• STUMAX does not have release semantics.
• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL. This means:

• The encodings in this description are named to match the encodings of LDUMAX, LDUMAXA, LDUMAXAL,
LDUMAXL.

• The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDUMAX alias (size == 10 && R == 0)

STUMAX <Ws>, [<Xn|SP>]

is equivalent to

LDUMAX <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMAXL alias (size == 10 && R == 1)

STUMAXL <Ws>, [<Xn|SP>]

is equivalent to

LDUMAXL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMAX alias (size == 11 && R == 0)

STUMAX <Xs>, [<Xn|SP>]

is equivalent to

LDUMAX <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMAXL alias (size == 11 && R == 1)

STUMAXL <Xs>, [<Xn|SP>]

is equivalent to

LDUMAXL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STUMAX, STUMAXL Page 608

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAX, STUMAXL Page 609

STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers.

• STUMAXB does not have release semantics.
• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB. This means:

• The encodings in this description are named to match the encodings of LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB.

• The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STUMAXB <Ws>, [<Xn|SP>]

is equivalent to

LDUMAXB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STUMAXLB <Ws>, [<Xn|SP>]

is equivalent to

LDUMAXLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAXB, STUMAXLB Page 610

STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers.

• STUMAXH does not have release semantics.
• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH. This means:

• The encodings in this description are named to match the encodings of LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH.

• The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STUMAXH <Ws>, [<Xn|SP>]

is equivalent to

LDUMAXH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STUMAXLH <Ws>, [<Xn|SP>]

is equivalent to

LDUMAXLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAXH, STUMAXLH Page 611

STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, compares it against the value held in a register, and stores the smaller value back to
memory, treating the values as unsigned numbers.

• STUMIN does not have release semantics.
• STUMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMIN, LDUMINA, LDUMINAL, LDUMINL. This means:

• The encodings in this description are named to match the encodings of LDUMIN, LDUMINA, LDUMINAL,
LDUMINL.

• The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
size A opc Rt

32-bit LDUMIN alias (size == 10 && R == 0)

STUMIN <Ws>, [<Xn|SP>]

is equivalent to

LDUMIN <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

32-bit LDUMINL alias (size == 10 && R == 1)

STUMINL <Ws>, [<Xn|SP>]

is equivalent to

LDUMINL <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMIN alias (size == 11 && R == 0)

STUMIN <Xs>, [<Xn|SP>]

is equivalent to

LDUMIN <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

64-bit LDUMINL alias (size == 11 && R == 1)

STUMINL <Xs>, [<Xn|SP>]

is equivalent to

LDUMINL <Xs>, XZR, [<Xn|SP>]

and is always the preferred disassembly.

STUMIN, STUMINL Page 612

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMIN, STUMINL Page 613

STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers.

• STUMINB does not have release semantics.
• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB. This means:

• The encodings in this description are named to match the encodings of LDUMINB, LDUMINAB, LDUMINALB,
LDUMINLB.

• The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STUMINB <Ws>, [<Xn|SP>]

is equivalent to

LDUMINB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STUMINLB <Ws>, [<Xn|SP>]

is equivalent to

LDUMINLB <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMINB, STUMINLB Page 614

STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers.

• STUMINH does not have release semantics.
• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH. This means:

• The encodings in this description are named to match the encodings of LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH.

• The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
size A opc Rt

No memory ordering (R == 0)

STUMINH <Ws>, [<Xn|SP>]

is equivalent to

LDUMINH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Release (R == 1)

STUMINLH <Ws>, [<Xn|SP>]

is equivalent to

LDUMINLH <Ws>, WZR, [<Xn|SP>]

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the
contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for this
instruction.

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMINH, STUMINLH Page 615

STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a 32-bit
word or a 64-bit doubleword to the calculated address, from a register. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
size opc

32-bit (size == 10)

STUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

STUR <Xt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STUR Page 616

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STUR Page 617

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUR Page 618

STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores a
byte to the calculated address, from a 32-bit register. For information about memory accesses, see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
size opc

STURB <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STURB Page 619

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STURB Page 620

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STURB Page 621

STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and
stores a halfword to the calculated address, from a 32-bit register. For information about memory accesses, see Load/
Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
size opc

STURH <Wt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

STURH Page 622

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = if size == '11' then 64 else 32;
signed = FALSE;

else
if size == '11' then

memop = MemOp_PREFETCH;
if opc<0> == '1' then UNDEFINED;

else
// sign-extending load
memop = MemOp_LOAD;
if size == '10' && opc<0> == '1' then UNDEFINED;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STURH Page 623

Operation

bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STURH Page 624

STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory
location if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores. For information on single-copy
atomicity and alignment requirements, see Requirements for single-copy atomicity and Alignment of data accesses. If
a 64-bit pair Store-Exclusive succeeds, it causes a single-copy atomic update of the 128-bit memory location being
updated. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 sz 0 0 1 0 0 0 0 0 1 Rs 0 Rt2 Rn Rt

L o0

32-bit (sz == 0)

STXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = TRUE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 32 << UInt(sz);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STXP.

STXP Page 625

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STXP Page 626

Operation

STXP Page 627

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STXP Page 628

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXP Page 629

STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has exclusive
access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed. See Synchronization and semaphores. For information about memory accesses see Load/Store addressing
modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

32-bit (size == 10)

STXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STXR.

STXR Page 630

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort
exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STXR Page 631

Operation

STXR Page 632

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STXR Page 633

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXR Page 634

STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the memory
address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic.
For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly STXRB.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

STXRB Page 635

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.
Aborts
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STXRB Page 636

Operation

STXRB Page 637

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STXRB Page 638

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXRB Page 639

STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to the
memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic.
For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

STXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
boolean pair = FALSE;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = if pair then elsize * 2 else elsize;
boolean tag_checked = n != 31;

boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;
if memop == MemOp_LOAD && pair && t == t2 then

Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE then
if s == t || (pair && s == t2) then

Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is
written, encoded in the "Rs" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STXRH Page 640

Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STXRH Page 641

Operation

STXRH Page 642

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(datasize) UNKNOWN;

elsif pair then
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian(acctype) then el1 : el2 else el2 : el1;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, acctype] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

when MemOp_LOAD
// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if pair then
if rt_unknown then

// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN; // In this case t = t2

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, acctype];
if BigEndian(acctype) then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

iswrite = FALSE;
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

X[t] = Mem[address + 0, 8, acctype];
X[t2] = Mem[address + 8, 8, acctype];

else
data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

STXRH Page 643

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXRH Page 644

STZ2G

Store Allocation Tags, Zeroing stores an Allocation Tag to two Tag granules of memory, zeroing the associated data
locations. The address used for the store is calculated from the base register and an immediate signed offset scaled by
the Tag granule. The Allocation Tag is calculated from the Logical Address Tag in the source register.
This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 1 1 imm9 0 1 Xn Xt

STZ2G <Xt|SP>, [<Xn|SP>], #<simm>

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;
boolean zero_data = TRUE;

Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 1 1 imm9 1 1 Xn Xt

STZ2G <Xt|SP>, [<Xn|SP>, #<simm>]!

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;
boolean zero_data = TRUE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 1 1 1 imm9 1 0 Xn Xt

STZ2G <Xt|SP>, [<Xn|SP>{, #<simm>}]

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;
boolean zero_data = TRUE;

Assembler Symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

STZ2G Page 645

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and
encoded in the "imm9" field.

Operation

bits(64) address;
bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if zero_data then
if address != Align(address, TAG_GRANULE) then

AArch64.Abort(address, AlignmentFault(AccType_NORMAL, TRUE, FALSE));

Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);
Mem[address+TAG_GRANULE, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);

AArch64.MemTag[address, AccType_NORMAL] = tag;
AArch64.MemTag[address+TAG_GRANULE, AccType_NORMAL] = tag;

if writeback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STZ2G Page 646

STZG

Store Allocation Tag, Zeroing stores an Allocation Tag to memory, zeroing the associated data location. The address
used for the store is calculated from the base register and an immediate signed offset scaled by the Tag granule. The
Allocation Tag is calculated from the Logical Address Tag in the source register.
This instruction generates an Unchecked access.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 1 1 imm9 0 1 Xn Xt

STZG <Xt|SP>, [<Xn|SP>], #<simm>

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = TRUE;
boolean zero_data = TRUE;

Pre-index
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 1 1 imm9 1 1 Xn Xt

STZG <Xt|SP>, [<Xn|SP>, #<simm>]!

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = TRUE;
boolean postindex = FALSE;
boolean zero_data = TRUE;

Signed offset
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 1 1 imm9 1 0 Xn Xt

STZG <Xt|SP>, [<Xn|SP>{, #<simm>}]

if !HaveMTEExt() then UNDEFINED;
integer n = UInt(Xn);
integer t = UInt(Xt);
bits(64) offset = LSL(SignExtend(imm9, 64), LOG2_TAG_GRANULE);
boolean writeback = FALSE;
boolean postindex = FALSE;
boolean zero_data = TRUE;

Assembler Symbols

<Xt|SP> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

STZG Page 647

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

<simm> Is the optional signed immediate offset, a multiple of 16 in the range -4096 to 4080, defaulting to 0 and
encoded in the "imm9" field.

Operation

bits(64) address;

SetTagCheckedInstruction(FALSE);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if zero_data then
if address != Align(address, TAG_GRANULE) then

AArch64.Abort(address, AlignmentFault(AccType_NORMAL, TRUE, FALSE));

Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(TAG_GRANULE * 8);

bits(64) data = if t == 31 then SP[] else X[t];
bits(4) tag = AArch64.AllocationTagFromAddress(data);
AArch64.MemTag[address, AccType_NORMAL] = tag;

if writeback then
if postindex then

address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STZG Page 648

STZGM

Store Tag and Zero Multiple writes a naturally aligned block of N Allocation Tags and stores zero to the associated
data locations, where the size of N is identified in DCZID_EL0.BS, and the Allocation Tag written to address A is taken
from the source register bits<3:0>.
This instruction is UNDEFINED at EL0.
This instruction generates an Unchecked access.
If ID_AA64PFR1_EL1.MTE != 0b0010, this instruction is UNDEFINED.

Integer
(FEAT_MTE2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Xn Xt

STZGM <Xt>, [<Xn|SP>]

if !HaveMTE2Ext() then UNDEFINED;
integer t = UInt(Xt);
integer n = UInt(Xn);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Xt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Xn" field.

Operation

if PSTATE.EL == EL0 then
UNDEFINED;

bits(64) data = X[t];
bits(4) tag = data<3:0>;
bits(64) address;
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

integer size = 4*(2^(UInt(DCZID_EL0.BS)));
address = Align(address,size);
integer count = size >> LOG2_TAG_GRANULE;

for i = 0 to count-1
AArch64.MemTag[address, AccType_NORMAL] = tag;
Mem[address, TAG_GRANULE, AccType_NORMAL] = Zeros(8*TAG_GRANULE);
address = address + TAG_GRANULE;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STZGM Page 649

SUB (extended register)

Subtract (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift
amount, from a register value, and writes the result to the destination register. The argument that is extended from
the <Rm> register can be a byte, halfword, word, or doubleword.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

op S

32-bit (sf == 0)

SUB <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

SUB <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then UNDEFINED;

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

SUB (extended register) Page 650

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when
"imm3" is '000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (extended register) Page 651

SUB (immediate)

Subtract (immediate) subtracts an optionally-shifted immediate value from a register value, and writes the result to
the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 0 1 0 sh imm12 Rn Rd

op S

32-bit (sf == 0)

SUB <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

SUB <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
bits(datasize) imm;

case sh of
when '0' imm = ZeroExtend(imm12, datasize);
when '1' imm = ZeroExtend(imm12 : Zeros(12), datasize);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #12

SUB (immediate) Page 652

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = imm;
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (immediate) Page 653

SUB (shifted register)

Subtract (shifted register) subtracts an optionally-shifted register value from a register value, and writes the result to
the destination register.

This instruction is used by the alias NEG (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

op S

32-bit (sf == 0)

SUB <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

SUB <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Alias Conditions

Alias Is preferred when
NEG (shifted register) Rn == '11111'

SUB (shifted register) Page 654

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (shifted register) Page 655

SUBG

Subtract with Tag subtracts an immediate value scaled by the Tag granule from the address in the source register,
modifies the Logical Address Tag of the address using an immediate value, and writes the result to the destination
register. Tags specified in GCR_EL1.Exclude are excluded from the possible outputs when modifying the Logical
Address Tag.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 0 0 1 1 0 uimm6 (0) (0) uimm4 Xn Xd

op3

SUBG <Xd|SP>, <Xn|SP>, #<uimm6>, #<uimm4>

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
bits(4) tag_offset = uimm4;
bits(64) offset = LSL(ZeroExtend(uimm6, 64), LOG2_TAG_GRANULE);
boolean ADD = FALSE;

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Xd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Xn" field.

<uimm6> Is an unsigned immediate, a multiple of 16 in the range 0 to 1008, encoded in the "uimm6" field.

<uimm4> Is an unsigned immediate, in the range 0 to 15, encoded in the "uimm4" field.

Operation

bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(4) start_tag = AArch64.AllocationTagFromAddress(operand1);
bits(16) exclude = GCR_EL1.Exclude;
bits(64) result;
bits(4) rtag;

if AArch64.AllocationTagAccessIsEnabled(AccType_NORMAL) then
rtag = AArch64.ChooseNonExcludedTag(start_tag, tag_offset, exclude);

else
rtag = '0000';

if ADD then
(result, -) = AddWithCarry(operand1, offset, '0');

else
(result, -) = AddWithCarry(operand1, NOT(offset), '1');

result = AArch64.AddressWithAllocationTag(result, AccType_NORMAL, rtag);

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBG Page 656

SUBP

Subtract Pointer subtracts the 56-bit address held in the second source register from the 56-bit address held in the
first source register, sign-extends the result to 64-bits, and writes the result to the destination register.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd

SUBP <Xd>, <Xn|SP>, <Xm|SP>

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);
boolean setflags = FALSE;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Xm"
field.

Operation

bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(64) operand2 = if m == 31 then SP[] else X[m];
operand1 = SignExtend(operand1<55:0>, 64);
operand2 = SignExtend(operand2<55:0>, 64);

bits(64) result;
bits(4) nzcv;

operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBP Page 657

SUBPS

Subtract Pointer, setting Flags subtracts the 56-bit address held in the second source register from the 56-bit address
held in the first source register, sign-extends the result to 64-bits, and writes the result to the destination register. It
updates the condition flags based on the result of the subtraction.

This instruction is used by the alias CMPP.

Integer
(FEAT_MTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 0 1 1 0 Xm 0 0 0 0 0 0 Xn Xd

SUBPS <Xd>, <Xn|SP>, <Xm|SP>

if !HaveMTEExt() then UNDEFINED;
integer d = UInt(Xd);
integer n = UInt(Xn);
integer m = UInt(Xm);
boolean setflags = TRUE;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Xd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Xn"
field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Xm"
field.

Alias Conditions

Alias Is preferred when
CMPP S == '1' && Xd == '11111'

Operation

bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(64) operand2 = if m == 31 then SP[] else X[m];
operand1 = SignExtend(operand1<55:0>, 64);
operand2 = SignExtend(operand2<55:0>, 64);

bits(64) result;
bits(4) nzcv;

operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBPS Page 658

SUBS (extended register)

Subtract (extended register), setting flags, subtracts a sign or zero-extended register value, followed by an optional
left shift amount, from a register value, and writes the result to the destination register. The argument that is
extended from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based
on the result.

This instruction is used by the alias CMP (extended register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd

op S

32-bit (sf == 0)

SUBS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

SUBS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn"
field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the
"Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

SUBS (extended register) Page 659

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is
'000'. In all other cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the
"imm3" field. It must be absent when <extend> is absent, is required when <extend> is LSL, and is
optional when <extend> is present but not LSL.

Alias Conditions

Alias Is preferred when
CMP (extended register) Rd == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

SUBS (extended register) Page 660

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBS (extended register) Page 661

SUBS (immediate)

Subtract (immediate), setting flags, subtracts an optionally-shifted immediate value from a register value, and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias CMP (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 0 0 0 1 0 sh imm12 Rn Rd

op S

32-bit (sf == 0)

SUBS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

SUBS <Xd>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');
bits(datasize) imm;

case sh of
when '0' imm = ZeroExtend(imm12, datasize);
when '1' imm = ZeroExtend(imm12 : Zeros(12), datasize);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #12

Alias Conditions

Alias Is preferred when
CMP (immediate) Rd == '11111'

SUBS (immediate) Page 662

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = imm;
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

if d == 31 && !setflags then
SP[] = result;

else
X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBS (immediate) Page 663

SUBS (shifted register)

Subtract (shifted register), setting flags, subtracts an optionally-shifted register value from a register value, and writes
the result to the destination register. It updates the condition flags based on the result.

This instruction is used by the aliases CMP (shifted register), and NEGS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

op S

32-bit (sf == 0)

SUBS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

SUBS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean sub_op = (op == '1');
boolean setflags = (S == '1');

if shift == '11' then UNDEFINED;
if sf == '0' && imm6<5> == '1' then UNDEFINED;

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in
“shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

Alias Conditions

Alias Is preferred when
CMP (shifted register) Rd == '11111'

SUBS (shifted register) Page 664

Alias Is preferred when
NEGS Rn == '11111' && Rd != '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;
bit carry_in;

if sub_op then
operand2 = NOT(operand2);
carry_in = '1';

else
carry_in = '0';

(result, nzcv) = AddWithCarry(operand1, operand2, carry_in);

if setflags then
PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBS (shifted register) Page 665

SVC

Supervisor Call causes an exception to be taken to EL1.
On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx, using the
EC value 0x15, and the value of the immediate argument.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 0 1

SVC #<imm>

bits(16) imm = imm16;

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.CheckForSVCTrap(imm);
AArch64.CallSupervisor(imm);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SVC Page 666

SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a memory location,
and stores the value held in a register back to the same memory location. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire
semantics.

• SWPL and SWPAL store to memory with release semantics.
• SWP has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 x 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
size

SWP, SWPA, SWPAL, SWPL Page 667

32-bit SWP (size == 10 && A == 0 && R == 0)

SWP <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPA (size == 10 && A == 1 && R == 0)

SWPA <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPAL (size == 10 && A == 1 && R == 1)

SWPAL <Ws>, <Wt>, [<Xn|SP>]

32-bit SWPL (size == 10 && A == 0 && R == 1)

SWPL <Ws>, <Wt>, [<Xn|SP>]

64-bit SWP (size == 11 && A == 0 && R == 0)

SWP <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPA (size == 11 && A == 1 && R == 0)

SWPA <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPAL (size == 11 && A == 1 && R == 1)

SWPAL <Xs>, <Xt>, [<Xn|SP>]

64-bit SWPL (size == 11 && A == 0 && R == 1)

SWPL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

SWP, SWPA, SWPAL, SWPL Page 668

Operation

bits(64) address;
bits(datasize) data;
bits(datasize) store_value;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

store_value = X[s];
data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SWP, SWPA, SWPAL, SWPL Page 669

SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held in a register
back to the same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.
• SWPLB and SWPALB store to memory with release semantics.
• SWPB has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
size

SWPAB (A == 1 && R == 0)

SWPAB <Ws>, <Wt>, [<Xn|SP>]

SWPALB (A == 1 && R == 1)

SWPALB <Ws>, <Wt>, [<Xn|SP>]

SWPB (A == 0 && R == 0)

SWPB <Ws>, <Wt>, [<Xn|SP>]

SWPLB (A == 0 && R == 1)

SWPLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

SWPB, SWPAB, SWPALB,
SWPLB Page 670

Operation

bits(64) address;
bits(datasize) data;
bits(datasize) store_value;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

store_value = X[s];
data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SWPB, SWPAB, SWPALB,
SWPLB Page 671

SWPH, SWPAH, SWPALH, SWPLH

Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the value held in a
register back to the same memory location. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.
• SWPLH and SWPALH store to memory with release semantics.
• SWPH has neither acquire nor release semantics.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

Integer
(FEAT_LSE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
size

SWPAH (A == 1 && R == 0)

SWPAH <Ws>, <Wt>, [<Xn|SP>]

SWPALH (A == 1 && R == 1)

SWPALH <Ws>, <Wt>, [<Xn|SP>]

SWPH (A == 0 && R == 0)

SWPH <Ws>, <Wt>, [<Xn|SP>]

SWPLH (A == 0 && R == 1)

SWPLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UNDEFINED;

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
boolean tag_checked = n != 31;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

SWPH, SWPAH, SWPALH,
SWPLH Page 672

Operation

bits(64) address;
bits(datasize) data;
bits(datasize) store_value;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

store_value = X[s];
data = MemAtomic(address, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SWPH, SWPAH, SWPALH,
SWPLH Page 673

SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to the size of the register, and writes the
result to the destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd

opc immr imms

32-bit (sf == 0 && N == 0)

SXTB <Wd>, <Wn>

is equivalent to

SBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1)

SXTB <Xd>, <Wn>

is equivalent to

SBFM <Xd>, <Xn>, #0, #7

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTB Page 674

SXTH

Sign Extend Halfword extracts a 16-bit value, sign-extends it to the size of the register, and writes the result to the
destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd

opc immr imms

32-bit (sf == 0 && N == 0)

SXTH <Wd>, <Wn>

is equivalent to

SBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1)

SXTH <Xd>, <Wn>

is equivalent to

SBFM <Xd>, <Xn>, #0, #15

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTH Page 675

SXTW

Sign Extend Word sign-extends a word to the size of the register, and writes the result to the destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 Rn Rd
sf opc N immr imms

64-bit

SXTW <Xd>, <Wn>

is equivalent to

SBFM <Xd>, <Xn>, #0, #31

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTW Page 676

SYS

System instruction. For more information, see Op0 equals 0b01, cache maintenance, TLB maintenance, and address
translation instructions for the encodings of System instructions.

This instruction is used by the aliases AT, CFP, CPP, DC, DVP, IC, and TLBI.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 op1 CRn CRm op2 Rt

L

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op0 = 1;
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);
boolean has_result = (L == '1');

Assembler Symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the
"Rt" field.

Alias Conditions

Alias Is preferred when
AT CRn == '0111' && CRm == '100x' && SysOp(op1,'0111',CRm,op2) == Sys_AT
CFP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '100'
CPP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '111'
DC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_DC
DVP op1 == '011' && CRn == '0111' && CRm == '0011' && op2 == '101'
IC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_IC
TLBI CRn == '1000' && SysOp(op1,'1000',CRm,op2) == Sys_TLBI

Operation

if has_result then
// No architecturally defined instructions here.
X[t] = AArch64.SysInstrWithResult(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2);

else
AArch64.SysInstr(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SYS Page 677

SYSL

System instruction with result. For more information, see Op0 equals 0b01, cache maintenance, TLB maintenance, and
address translation instructions for the encodings of System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 1 0 1 op1 CRn CRm op2 Rt

L

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op0 = 1;
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);
boolean has_result = (L == '1');

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

if has_result then
// No architecturally defined instructions here.
X[t] = AArch64.SysInstrWithResult(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2);

else
AArch64.SysInstr(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SYSL Page 678

TBNZ

Test bit and Branch if Nonzero compares the value of a bit in a general-purpose register with zero, and conditionally
branches to a label at a PC-relative offset if the comparison is not equal. It provides a hint that this is not a subroutine
call or return. This instruction does not affect condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
b5 0 1 1 0 1 1 1 b40 imm14 Rt

op

TBNZ <R><t>, #<imm>, <label>

integer t = UInt(Rt);

integer datasize = if b5 == '1' then 64 else 32;
integer bit_pos = UInt(b5:b40);
bit bit_val = op;
bits(64) offset = SignExtend(imm14:'00', 64);

Assembler Symbols

<R> Is a width specifier, encoded in “b5”:

b5 <R>
0 W
1 X

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted when
the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in the
"Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in
the range +/-32KB, is encoded as "imm14" times 4.

Operation

bits(datasize) operand = X[t];
boolean branch_conditional = TRUE;
if operand<bit_pos> == bit_val then

BranchTo(PC[] + offset, BranchType_DIR, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBNZ Page 679

TBZ

Test bit and Branch if Zero compares the value of a test bit with zero, and conditionally branches to a label at a PC-
relative offset if the comparison is equal. It provides a hint that this is not a subroutine call or return. This instruction
does not affect condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
b5 0 1 1 0 1 1 0 b40 imm14 Rt

op

TBZ <R><t>, #<imm>, <label>

integer t = UInt(Rt);

integer datasize = if b5 == '1' then 64 else 32;
integer bit_pos = UInt(b5:b40);
bit bit_val = op;
bits(64) offset = SignExtend(imm14:'00', 64);

Assembler Symbols

<R> Is a width specifier, encoded in “b5”:

b5 <R>
0 W
1 X

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted when
the bit number is less than 32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in the
"Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in
the range +/-32KB, is encoded as "imm14" times 4.

Operation

bits(datasize) operand = X[t];
boolean branch_conditional = TRUE;
if operand<bit_pos> == bit_val then

BranchTo(PC[] + offset, BranchType_DIR, branch_conditional);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBZ Page 680

TLBI

TLB Invalidate operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 1 op1 1 0 0 0 CRm op2 Rt

L CRn

TLBI <tlbi_op>{, <Xt>}

is equivalent to

SYS #<op1>, C8, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'1000',CRm,op2) == Sys_TLBI.

Assembler Symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<tlbi_op> Is a TLBI instruction name, as listed for the TLBI system instruction group, encoded in “op1:CRm:op2”:

TLBI Page 681

op1 CRm op2 <tlbi_op> Architectural Feature
000 0001 000 VMALLE1OS FEAT_TLBIOS
000 0001 001 VAE1OS FEAT_TLBIOS
000 0001 010 ASIDE1OS FEAT_TLBIOS
000 0001 011 VAAE1OS FEAT_TLBIOS
000 0001 101 VALE1OS FEAT_TLBIOS
000 0001 111 VAALE1OS FEAT_TLBIOS
000 0010 001 RVAE1IS FEAT_TLBIRANGE
000 0010 011 RVAAE1IS FEAT_TLBIRANGE
000 0010 101 RVALE1IS FEAT_TLBIRANGE
000 0010 111 RVAALE1IS FEAT_TLBIRANGE
000 0011 000 VMALLE1IS -
000 0011 001 VAE1IS -
000 0011 010 ASIDE1IS -
000 0011 011 VAAE1IS -
000 0011 101 VALE1IS -
000 0011 111 VAALE1IS -
000 0101 001 RVAE1OS FEAT_TLBIRANGE
000 0101 011 RVAAE1OS FEAT_TLBIRANGE
000 0101 101 RVALE1OS FEAT_TLBIRANGE
000 0101 111 RVAALE1OS FEAT_TLBIRANGE
000 0110 001 RVAE1 FEAT_TLBIRANGE
000 0110 011 RVAAE1 FEAT_TLBIRANGE
000 0110 101 RVALE1 FEAT_TLBIRANGE
000 0110 111 RVAALE1 FEAT_TLBIRANGE
000 0111 000 VMALLE1 -
000 0111 001 VAE1 -
000 0111 010 ASIDE1 -
000 0111 011 VAAE1 -
000 0111 101 VALE1 -
000 0111 111 VAALE1 -
100 0000 001 IPAS2E1IS -
100 0000 010 RIPAS2E1IS FEAT_TLBIRANGE
100 0000 101 IPAS2LE1IS -
100 0000 110 RIPAS2LE1IS FEAT_TLBIRANGE
100 0001 000 ALLE2OS FEAT_TLBIOS
100 0001 001 VAE2OS FEAT_TLBIOS
100 0001 100 ALLE1OS FEAT_TLBIOS
100 0001 101 VALE2OS FEAT_TLBIOS
100 0001 110 VMALLS12E1OS FEAT_TLBIOS
100 0010 001 RVAE2IS FEAT_TLBIRANGE
100 0010 101 RVALE2IS FEAT_TLBIRANGE
100 0011 000 ALLE2IS -
100 0011 001 VAE2IS -
100 0011 100 ALLE1IS -
100 0011 101 VALE2IS -
100 0011 110 VMALLS12E1IS -
100 0100 000 IPAS2E1OS FEAT_TLBIOS
100 0100 001 IPAS2E1 -
100 0100 010 RIPAS2E1 FEAT_TLBIRANGE
100 0100 011 RIPAS2E1OS FEAT_TLBIRANGE
100 0100 100 IPAS2LE1OS FEAT_TLBIOS
100 0100 101 IPAS2LE1 -
100 0100 110 RIPAS2LE1 FEAT_TLBIRANGE
100 0100 111 RIPAS2LE1OS FEAT_TLBIRANGE
100 0101 001 RVAE2OS FEAT_TLBIRANGE
100 0101 101 RVALE2OS FEAT_TLBIRANGE
100 0110 001 RVAE2 FEAT_TLBIRANGE
100 0110 101 RVALE2 FEAT_TLBIRANGE
100 0111 000 ALLE2 -
100 0111 001 VAE2 -
100 0111 100 ALLE1 -
100 0111 101 VALE2 -
100 0111 110 VMALLS12E1 -
110 0001 000 ALLE3OS FEAT_TLBIOS
110 0001 001 VAE3OS FEAT_TLBIOS
110 0001 101 VALE3OS FEAT_TLBIOS
110 0010 001 RVAE3IS FEAT_TLBIRANGE
110 0010 101 RVALE3IS FEAT_TLBIRANGE

TLBI Page 682

op1 CRm op2 <tlbi_op> Architectural Feature
110 0011 000 ALLE3IS -
110 0011 001 VAE3IS -
110 0011 101 VALE3IS -
110 0101 001 RVAE3OS FEAT_TLBIRANGE
110 0101 101 RVALE3OS FEAT_TLBIRANGE
110 0110 001 RVAE3 FEAT_TLBIRANGE
110 0110 101 RVALE3 FEAT_TLBIRANGE
110 0111 000 ALLE3 -
110 0111 001 VAE3 -
110 0111 101 VALE3 -

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the
"Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI Page 683

TSB CSYNC

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions.
If FEAT_TRF is not implemented, this instruction executes as a NOP.

System
(FEAT_TRF)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 1

CRm op2

TSB CSYNC

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

TSB CSYNC Page 684

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TSB CSYNC Page 685

TST (immediate)

Test bits (immediate), setting the condition flags and discarding the result

: Rn AND imm.

This is an alias of ANDS (immediate). This means:

• The encodings in this description are named to match the encodings of ANDS (immediate).
• The description of ANDS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 1 0 0 1 0 0 N immr imms Rn 1 1 1 1 1

opc Rd

32-bit (sf == 0 && N == 0)

TST <Wn>, #<imm>

is equivalent to

ANDS WZR, <Wn>, #<imm>

and is always the preferred disassembly.

64-bit (sf == 1)

TST <Xn>, #<imm>

is equivalent to

ANDS XZR, <Xn>, #<imm>

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

The description of ANDS (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TST (immediate) Page 686

TST (shifted register)

Test (shifted register) performs a bitwise AND operation on a register value and an optionally-shifted register value. It
updates the condition flags based on the result, and discards the result.

This is an alias of ANDS (shifted register). This means:

• The encodings in this description are named to match the encodings of ANDS (shifted register).
• The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn 1 1 1 1 1

opc N Rd

32-bit (sf == 0)

TST <Wn>, <Wm>{, <shift> #<amount>}

is equivalent to

ANDS WZR, <Wn>, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

TST <Xn>, <Xm>{, <shift> #<amount>}

is equivalent to

ANDS XZR, <Xn>, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field,

Operation

The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

TST (shifted register) Page 687

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TST (shifted register) Page 688

UBFIZ

Unsigned Bitfield Insert in Zeros copies a bitfield of <width> bits from the least significant bits of the source register
to bit position <lsb> of the destination register, setting the destination bits above and below the bitfield to zero.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

UBFIZ <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

UBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

UBFIZ <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

UBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.
For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

UBFIZ Page 689

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UBFIZ Page 690

UBFM

Unsigned Bitfield Move is usually accessed via one of its aliases, which are always preferred for disassembly.
If <imms> is greater than or equal to <immr>, this copies a bitfield of (<imms>-<immr>+1) bits starting from bit
position <immr> in the source register to the least significant bits of the destination register.
If <imms> is less than <immr>, this copies a bitfield of (<imms>+1) bits from the least significant bits of the source
register to bit position (regsize-<immr>) of the destination register, where regsize is the destination register size of 32
or 64 bits.
In both cases the destination bits below and above the bitfield are set to zero.

This instruction is used by the aliases LSL (immediate), LSR (immediate), UBFIZ, UBFX, UXTB, and UXTH.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

UBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit (sf == 1 && N == 1)

UBFM <Xd>, <Xn>, #<immr>, #<imms>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

boolean inzero;
boolean extend;
integer R;
integer S;
bits(datasize) wmask;
bits(datasize) tmask;

case opc of
when '00' inzero = TRUE; extend = TRUE; // SBFM
when '01' inzero = FALSE; extend = FALSE; // BFM
when '10' inzero = TRUE; extend = FALSE; // UBFM
when '11' UNDEFINED;

if sf == '1' && N != '1' then UNDEFINED;
if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then UNDEFINED;

R = UInt(immr);
S = UInt(imms);
(wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.
For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31,
encoded in the "imms" field.
For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63,
encoded in the "imms" field.

UBFM Page 691

Alias Conditions

Alias Of variant Is preferred when
LSL (immediate) 32-bit imms != '011111' && imms + 1 == immr
LSL (immediate) 64-bit imms != '111111' && imms + 1 == immr
LSR (immediate) 32-bit imms == '011111'
LSR (immediate) 64-bit imms == '111111'
UBFIZ UInt(imms) < UInt(immr)
UBFX BFXPreferred(sf, opc<1>, imms, immr)
UXTB immr == '000000' && imms == '000111'
UXTH immr == '000000' && imms == '001111'

Operation

bits(datasize) dst = if inzero then Zeros() else X[d];
bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, R) AND wmask);

// determine extension bits (sign, zero or dest register)
bits(datasize) top = if extend then Replicate(src<S>) else dst;

// combine extension bits and result bits
X[d] = (top AND NOT(tmask)) OR (bot AND tmask);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UBFM Page 692

UBFX

Unsigned Bitfield Extract copies a bitfield of <width> bits starting from bit position <lsb> in the source register to the
least significant bits of the destination register, and sets destination bits above the bitfield to zero.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd

opc

32-bit (sf == 0 && N == 0)

UBFX <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

UBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit (sf == 1 && N == 1)

UBFX <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

UBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.
For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

UBFX Page 693

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UBFX Page 694

UDF

Permanently Undefined generates an Undefined Instruction exception (ESR_ELx.EC = 0b000000). The encodings for
UDF used in this section are defined as permanently UNDEFINED in the Armv8-A architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 imm16

UDF #<imm>

// The imm16 field is ignored by hardware.
UNDEFINED;

Assembler Symbols

<imm> is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field. The PE ignores
the value of this constant.

Operation

// No operation.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDF Page 695

UDIV

Unsigned Divide divides an unsigned integer register value by another unsigned integer register value, and writes the
result to the destination register. The condition flags are not affected.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 0 Rn Rd

o1

32-bit (sf == 0)

UDIV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

UDIV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
boolean unsigned = (o1 == '0');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
integer result;

if IsZero(operand2) then
result = 0;

else
result = RoundTowardsZero(Real(Int(operand1, unsigned)) / Real(Int(operand2, unsigned)));

X[d] = result<datasize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDIV Page 696

UMADDL

Unsigned Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result to
the 64-bit destination register.

This instruction is used by the alias UMULL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 1 0 1 Rm 0 Ra Rn Rd

U o0

UMADDL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = 64;
integer datasize = 32;
boolean sub_op = (o0 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra"
field.

Alias Conditions

Alias Is preferred when
UMULL Ra == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

if sub_op then
result = Int(operand3, unsigned) - (Int(operand1, unsigned) * Int(operand2, unsigned));

else
result = Int(operand3, unsigned) + (Int(operand1, unsigned) * Int(operand2, unsigned));

X[d] = result<63:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

UMADDL Page 697

◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMADDL Page 698

UMNEGL

Unsigned Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the
64-bit destination register.

This is an alias of UMSUBL. This means:

• The encodings in this description are named to match the encodings of UMSUBL.
• The description of UMSUBL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 1 0 1 Rm 1 1 1 1 1 1 Rn Rd

U o0 Ra

UMNEGL <Xd>, <Wn>, <Wm>

is equivalent to

UMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of UMSUBL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMNEGL Page 699

UMSUBL

Unsigned Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register
value, and writes the result to the 64-bit destination register.

This instruction is used by the alias UMNEGL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 1 0 1 Rm 1 Ra Rn Rd

U o0

UMSUBL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = 64;
integer datasize = 32;
boolean sub_op = (o0 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the
"Ra" field.

Alias Conditions

Alias Is preferred when
UMNEGL Ra == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

if sub_op then
result = Int(operand3, unsigned) - (Int(operand1, unsigned) * Int(operand2, unsigned));

else
result = Int(operand3, unsigned) + (Int(operand1, unsigned) * Int(operand2, unsigned));

X[d] = result<63:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

UMSUBL Page 700

◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMSUBL Page 701

UMULH

Unsigned Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 1 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd

U Ra

UMULH <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra); // ignored by UMULH/SMULH
integer destsize = 64;
integer datasize = destsize;
boolean unsigned = (U == '1');

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

integer result;

result = Int(operand1, unsigned) * Int(operand2, unsigned);

X[d] = result<127:64>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULH Page 702

UMULL

Unsigned Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This is an alias of UMADDL. This means:

• The encodings in this description are named to match the encodings of UMADDL.
• The description of UMADDL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 0 1 1 1 0 1 Rm 0 1 1 1 1 1 Rn Rd

U o0 Ra

UMULL <Xd>, <Wn>, <Wm>

is equivalent to

UMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the
"Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the
"Rm" field.

Operation

The description of UMADDL gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULL Page 703

UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to the size of the register, and writes the
result to the destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd
sf opc N immr imms

32-bit

UXTB <Wd>, <Wn>

is equivalent to

UBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTB Page 704

UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to the size of the register, and writes
the result to the destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd
sf opc N immr imms

32-bit

UXTH <Wd>, <Wn>

is equivalent to

UBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTH Page 705

WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any PE
in the multiprocessor system. For more information, see Wait For Event mechanism and Send event.
As described in Wait For Event mechanism and Send event, the execution of a WFE instruction that would otherwise
cause entry to a low-power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1

CRm op2

WFE

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

WFE Page 706

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFE Page 707

WFET

Wait For Event with Timeout is a hint instruction that indicates that the PE can enter a low-power state and remain
there until either a local timeout event or a wakeup event occurs. Wakeup events include the event signaled as a result
of executing the SEV instruction on any PE in the multiprocessor system. For more information, see Wait For Event
mechanism and Send event.
As described in Wait For Event mechanism and Send event, the execution of a WFET instruction that would otherwise
cause entry to a low-power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

System
(FEAT_WFxT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 Rd

op2

WFET <Xt>

if !HaveFeatWFxT() then UNDEFINED;

integer d = UInt(Rd);
SystemHintOp op;

case op2 of
when '000' op = SystemHintOp_WFET;
when '001' op = SystemHintOp_WFIT;
otherwise // Do nothing

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

bits(64) operand = X[d];
integer localtimeout = UInt(operand);

if Halted() && ConstrainUnpredictableBool(Unpredictable_WFxTDEBUG) then
EndOfInstruction();

case op of
when SystemHintOp_WFET

Hint_WFE(localtimeout, WFxType_WFET);
when SystemHintOp_WFIT

Hint_WFI(localtimeout, WFxType_WFIT);
otherwise

// Instruction executes as NOP

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFET Page 708

WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. For more information, see Wait For Interrupt.
As described in Wait For Interrupt, the execution of a WFI instruction that would otherwise cause entry to a low-power
state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1

CRm op2

WFI

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

WFI Page 709

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFI Page 710

WFIT

Wait For Interrupt with Timeout is a hint instruction that indicates that the PE can enter a low-power state and remain
there until either a local timeout event or a wakeup event occurs. For more information, see Wait For Interrupt.
As described in Wait For Interrupt, the execution of a WFIT instruction that would otherwise cause entry to a low-
power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

System
(FEAT_WFxT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 Rd

op2

WFIT <Xt>

if !HaveFeatWFxT() then UNDEFINED;

integer d = UInt(Rd);
SystemHintOp op;

case op2 of
when '000' op = SystemHintOp_WFET;
when '001' op = SystemHintOp_WFIT;
otherwise // Do nothing

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rd" field.

Operation

bits(64) operand = X[d];
integer localtimeout = UInt(operand);

if Halted() && ConstrainUnpredictableBool(Unpredictable_WFxTDEBUG) then
EndOfInstruction();

case op of
when SystemHintOp_WFET

Hint_WFE(localtimeout, WFxType_WFET);
when SystemHintOp_WFIT

Hint_WFI(localtimeout, WFxType_WFIT);
otherwise

// Instruction executes as NOP

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFIT Page 711

XAFLAG

Convert floating-point condition flags from external format to Arm format. This instruction converts the state of the
PSTATE.{N,Z,C,V} flags from an alternative representation required by some software to a form representing the
result of an Arm floating-point scalar compare instruction.

System
(FEAT_FlagM2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 (0) (0) (0) (0) 0 0 1 1 1 1 1 1

CRm

XAFLAG

if !HaveFlagFormatExt() then UNDEFINED;

Operation

bit N = NOT(PSTATE.C) AND NOT(PSTATE.Z);
bit Z = PSTATE.Z AND PSTATE.C;
bit C = PSTATE.C OR PSTATE.Z;
bit V = NOT(PSTATE.C) AND PSTATE.Z;

PSTATE.N = N;
PSTATE.Z = Z;
PSTATE.C = C;
PSTATE.V = V;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

XAFLAG Page 712

XPACD, XPACI, XPACLRI

Strip Pointer Authentication Code. This instruction removes the pointer authentication code from an address. The
address is in the specified general-purpose register for XPACI and XPACD, and is in LR for XPACLRI.
The XPACD instruction is used for data addresses, and XPACI and XPACLRI are used for instruction addresses.

It has encodings from 2 classes: Integer and System

Integer
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 D 1 1 1 1 1 Rd

Rn

XPACD (D == 1)

XPACD <Xd>

XPACI (D == 0)

XPACI <Xd>

boolean data = (D == '1');
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UNDEFINED;

if n != 31 then UNDEFINED;

System
(FEAT_PAuth)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1

XPACLRI

integer d = 30;
boolean data = FALSE;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Operation

if HavePACExt() then
X[d] = Strip(X[d], data);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

XPACD, XPACI, XPACLRI Page 713

YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the PE
that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system performance.
The PE can use this hint to suspend and resume multiple software threads if it supports the capability.
For more information about the recommended use of this instruction, see The YIELD instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

CRm op2

YIELD

SystemHintOp op;

case CRm:op2 of
when '0000 000' op = SystemHintOp_NOP;
when '0000 001' op = SystemHintOp_YIELD;
when '0000 010' op = SystemHintOp_WFE;
when '0000 011' op = SystemHintOp_WFI;
when '0000 100' op = SystemHintOp_SEV;
when '0000 101' op = SystemHintOp_SEVL;
when '0000 110'

if !HaveDGHExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_DGH;

when '0000 111' SEE "XPACLRI";
when '0001 xxx'

case op2 of
when '000' SEE "PACIA1716";
when '010' SEE "PACIB1716";
when '100' SEE "AUTIA1716";
when '110' SEE "AUTIB1716";
otherwise EndOfInstruction(); // Instruction executes as NOP

when '0010 000'
if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_ESB;

when '0010 001'
if !HaveStatisticalProfiling() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_PSB;

when '0010 010'
if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
op = SystemHintOp_TSB;

when '0010 100'
op = SystemHintOp_CSDB;

when '0011 xxx'
case op2 of

when '000' SEE "PACIAZ";
when '001' SEE "PACIASP";
when '010' SEE "PACIBZ";
when '011' SEE "PACIBSP";
when '100' SEE "AUTIAZ";
when '101' SEE "AUTHASP";
when '110' SEE "AUTIBZ";
when '111' SEE "AUTIBSP";

when '0100 xx0'
op = SystemHintOp_BTI;
// Check branch target compatibility between BTI instruction and PSTATE.BTYPE
SetBTypeCompatible(BTypeCompatible_BTI(op2<2:1>));

otherwise EndOfInstruction(); // Instruction executes as NOP

YIELD Page 714

Operation

case op of
when SystemHintOp_YIELD

Hint_Yield();

when SystemHintOp_DGH
Hint_DGH();

when SystemHintOp_WFE
integer localtimeout = -1; // No local timeout event is generated
Hint_WFE(localtimeout, WFxType_WFE);

when SystemHintOp_WFI
integer localtimeout = -1; // No local timeout event is generated
Hint_WFI(localtimeout, WFxType_WFI);

when SystemHintOp_SEV
SendEvent();

when SystemHintOp_SEVL
SendEventLocal();

when SystemHintOp_ESB
SynchronizeErrors();
AArch64.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

when SystemHintOp_PSB
ProfilingSynchronizationBarrier();

when SystemHintOp_TSB
TraceSynchronizationBarrier();

when SystemHintOp_CSDB
ConsumptionOfSpeculativeDataBarrier();

when SystemHintOp_BTI
SetBTypeNext('00');

otherwise // do nothing

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

YIELD Page 715

A64 -- SIMD and Floating-point Instructions (alphabetic order)

ABS: Absolute value (vector).

ADD (vector): Add (vector).

ADDHN, ADDHN2: Add returning High Narrow.

ADDP (scalar): Add Pair of elements (scalar).

ADDP (vector): Add Pairwise (vector).

ADDV: Add across Vector.

AESD: AES single round decryption.

AESE: AES single round encryption.

AESIMC: AES inverse mix columns.

AESMC: AES mix columns.

AND (vector): Bitwise AND (vector).

BCAX: Bit Clear and XOR.

BFCVT: Floating-point convert from single-precision to BFloat16 format (scalar).

BFCVTN, BFCVTN2: Floating-point convert from single-precision to BFloat16 format (vector).

BFDOT (by element): BFloat16 floating-point dot product (vector, by element).

BFDOT (vector): BFloat16 floating-point dot product (vector).

BFMLALB, BFMLALT (by element): BFloat16 floating-point widening multiply-add long (by element).

BFMLALB, BFMLALT (vector): BFloat16 floating-point widening multiply-add long (vector).

BFMMLA: BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix.

BIC (vector, immediate): Bitwise bit Clear (vector, immediate).

BIC (vector, register): Bitwise bit Clear (vector, register).

BIF: Bitwise Insert if False.

BIT: Bitwise Insert if True.

BSL: Bitwise Select.

CLS (vector): Count Leading Sign bits (vector).

CLZ (vector): Count Leading Zero bits (vector).

CMEQ (register): Compare bitwise Equal (vector).

CMEQ (zero): Compare bitwise Equal to zero (vector).

CMGE (register): Compare signed Greater than or Equal (vector).

CMGE (zero): Compare signed Greater than or Equal to zero (vector).

CMGT (register): Compare signed Greater than (vector).

CMGT (zero): Compare signed Greater than zero (vector).

CMHI (register): Compare unsigned Higher (vector).

CMHS (register): Compare unsigned Higher or Same (vector).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 716

CMLE (zero): Compare signed Less than or Equal to zero (vector).

CMLT (zero): Compare signed Less than zero (vector).

CMTST: Compare bitwise Test bits nonzero (vector).

CNT: Population Count per byte.

DUP (element): Duplicate vector element to vector or scalar.

DUP (general): Duplicate general-purpose register to vector.

EOR (vector): Bitwise Exclusive OR (vector).

EOR3: Three-way Exclusive OR.

EXT: Extract vector from pair of vectors.

FABD: Floating-point Absolute Difference (vector).

FABS (scalar): Floating-point Absolute value (scalar).

FABS (vector): Floating-point Absolute value (vector).

FACGE: Floating-point Absolute Compare Greater than or Equal (vector).

FACGT: Floating-point Absolute Compare Greater than (vector).

FADD (scalar): Floating-point Add (scalar).

FADD (vector): Floating-point Add (vector).

FADDP (scalar): Floating-point Add Pair of elements (scalar).

FADDP (vector): Floating-point Add Pairwise (vector).

FCADD: Floating-point Complex Add.

FCCMP: Floating-point Conditional quiet Compare (scalar).

FCCMPE: Floating-point Conditional signaling Compare (scalar).

FCMEQ (register): Floating-point Compare Equal (vector).

FCMEQ (zero): Floating-point Compare Equal to zero (vector).

FCMGE (register): Floating-point Compare Greater than or Equal (vector).

FCMGE (zero): Floating-point Compare Greater than or Equal to zero (vector).

FCMGT (register): Floating-point Compare Greater than (vector).

FCMGT (zero): Floating-point Compare Greater than zero (vector).

FCMLA: Floating-point Complex Multiply Accumulate.

FCMLA (by element): Floating-point Complex Multiply Accumulate (by element).

FCMLE (zero): Floating-point Compare Less than or Equal to zero (vector).

FCMLT (zero): Floating-point Compare Less than zero (vector).

FCMP: Floating-point quiet Compare (scalar).

FCMPE: Floating-point signaling Compare (scalar).

FCSEL: Floating-point Conditional Select (scalar).

FCVT: Floating-point Convert precision (scalar).

FCVTAS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 717

FCVTAS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector).

FCVTAU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar).

FCVTAU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector).

FCVTL, FCVTL2: Floating-point Convert to higher precision Long (vector).

FCVTMS (scalar): Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar).

FCVTMS (vector): Floating-point Convert to Signed integer, rounding toward Minus infinity (vector).

FCVTMU (scalar): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar).

FCVTMU (vector): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector).

FCVTN, FCVTN2: Floating-point Convert to lower precision Narrow (vector).

FCVTNS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar).

FCVTNS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector).

FCVTNU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar).

FCVTNU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector).

FCVTPS (scalar): Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar).

FCVTPS (vector): Floating-point Convert to Signed integer, rounding toward Plus infinity (vector).

FCVTPU (scalar): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar).

FCVTPU (vector): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector).

FCVTXN, FCVTXN2: Floating-point Convert to lower precision Narrow, rounding to odd (vector).

FCVTZS (scalar, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar).

FCVTZS (scalar, integer): Floating-point Convert to Signed integer, rounding toward Zero (scalar).

FCVTZS (vector, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (vector).

FCVTZS (vector, integer): Floating-point Convert to Signed integer, rounding toward Zero (vector).

FCVTZU (scalar, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar).

FCVTZU (scalar, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (scalar).

FCVTZU (vector, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector).

FCVTZU (vector, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (vector).

FDIV (scalar): Floating-point Divide (scalar).

FDIV (vector): Floating-point Divide (vector).

FJCVTZS: Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero.

FMADD: Floating-point fused Multiply-Add (scalar).

FMAX (scalar): Floating-point Maximum (scalar).

FMAX (vector): Floating-point Maximum (vector).

FMAXNM (scalar): Floating-point Maximum Number (scalar).

FMAXNM (vector): Floating-point Maximum Number (vector).

FMAXNMP (scalar): Floating-point Maximum Number of Pair of elements (scalar).

FMAXNMP (vector): Floating-point Maximum Number Pairwise (vector).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 718

FMAXNMV: Floating-point Maximum Number across Vector.

FMAXP (scalar): Floating-point Maximum of Pair of elements (scalar).

FMAXP (vector): Floating-point Maximum Pairwise (vector).

FMAXV: Floating-point Maximum across Vector.

FMIN (scalar): Floating-point Minimum (scalar).

FMIN (vector): Floating-point minimum (vector).

FMINNM (scalar): Floating-point Minimum Number (scalar).

FMINNM (vector): Floating-point Minimum Number (vector).

FMINNMP (scalar): Floating-point Minimum Number of Pair of elements (scalar).

FMINNMP (vector): Floating-point Minimum Number Pairwise (vector).

FMINNMV: Floating-point Minimum Number across Vector.

FMINP (scalar): Floating-point Minimum of Pair of elements (scalar).

FMINP (vector): Floating-point Minimum Pairwise (vector).

FMINV: Floating-point Minimum across Vector.

FMLA (by element): Floating-point fused Multiply-Add to accumulator (by element).

FMLA (vector): Floating-point fused Multiply-Add to accumulator (vector).

FMLAL, FMLAL2 (by element): Floating-point fused Multiply-Add Long to accumulator (by element).

FMLAL, FMLAL2 (vector): Floating-point fused Multiply-Add Long to accumulator (vector).

FMLS (by element): Floating-point fused Multiply-Subtract from accumulator (by element).

FMLS (vector): Floating-point fused Multiply-Subtract from accumulator (vector).

FMLSL, FMLSL2 (by element): Floating-point fused Multiply-Subtract Long from accumulator (by element).

FMLSL, FMLSL2 (vector): Floating-point fused Multiply-Subtract Long from accumulator (vector).

FMOV (general): Floating-point Move to or from general-purpose register without conversion.

FMOV (register): Floating-point Move register without conversion.

FMOV (scalar, immediate): Floating-point move immediate (scalar).

FMOV (vector, immediate): Floating-point move immediate (vector).

FMSUB: Floating-point Fused Multiply-Subtract (scalar).

FMUL (by element): Floating-point Multiply (by element).

FMUL (scalar): Floating-point Multiply (scalar).

FMUL (vector): Floating-point Multiply (vector).

FMULX: Floating-point Multiply extended.

FMULX (by element): Floating-point Multiply extended (by element).

FNEG (scalar): Floating-point Negate (scalar).

FNEG (vector): Floating-point Negate (vector).

FNMADD: Floating-point Negated fused Multiply-Add (scalar).

FNMSUB: Floating-point Negated fused Multiply-Subtract (scalar).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 719

FNMUL (scalar): Floating-point Multiply-Negate (scalar).

FRECPE: Floating-point Reciprocal Estimate.

FRECPS: Floating-point Reciprocal Step.

FRECPX: Floating-point Reciprocal exponent (scalar).

FRINT32X (scalar): Floating-point Round to 32-bit Integer, using current rounding mode (scalar).

FRINT32X (vector): Floating-point Round to 32-bit Integer, using current rounding mode (vector).

FRINT32Z (scalar): Floating-point Round to 32-bit Integer toward Zero (scalar).

FRINT32Z (vector): Floating-point Round to 32-bit Integer toward Zero (vector).

FRINT64X (scalar): Floating-point Round to 64-bit Integer, using current rounding mode (scalar).

FRINT64X (vector): Floating-point Round to 64-bit Integer, using current rounding mode (vector).

FRINT64Z (scalar): Floating-point Round to 64-bit Integer toward Zero (scalar).

FRINT64Z (vector): Floating-point Round to 64-bit Integer toward Zero (vector).

FRINTA (scalar): Floating-point Round to Integral, to nearest with ties to Away (scalar).

FRINTA (vector): Floating-point Round to Integral, to nearest with ties to Away (vector).

FRINTI (scalar): Floating-point Round to Integral, using current rounding mode (scalar).

FRINTI (vector): Floating-point Round to Integral, using current rounding mode (vector).

FRINTM (scalar): Floating-point Round to Integral, toward Minus infinity (scalar).

FRINTM (vector): Floating-point Round to Integral, toward Minus infinity (vector).

FRINTN (scalar): Floating-point Round to Integral, to nearest with ties to even (scalar).

FRINTN (vector): Floating-point Round to Integral, to nearest with ties to even (vector).

FRINTP (scalar): Floating-point Round to Integral, toward Plus infinity (scalar).

FRINTP (vector): Floating-point Round to Integral, toward Plus infinity (vector).

FRINTX (scalar): Floating-point Round to Integral exact, using current rounding mode (scalar).

FRINTX (vector): Floating-point Round to Integral exact, using current rounding mode (vector).

FRINTZ (scalar): Floating-point Round to Integral, toward Zero (scalar).

FRINTZ (vector): Floating-point Round to Integral, toward Zero (vector).

FRSQRTE: Floating-point Reciprocal Square Root Estimate.

FRSQRTS: Floating-point Reciprocal Square Root Step.

FSQRT (scalar): Floating-point Square Root (scalar).

FSQRT (vector): Floating-point Square Root (vector).

FSUB (scalar): Floating-point Subtract (scalar).

FSUB (vector): Floating-point Subtract (vector).

INS (element): Insert vector element from another vector element.

INS (general): Insert vector element from general-purpose register.

LD1 (multiple structures): Load multiple single-element structures to one, two, three, or four registers.

LD1 (single structure): Load one single-element structure to one lane of one register.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 720

LD1R: Load one single-element structure and Replicate to all lanes (of one register).

LD2 (multiple structures): Load multiple 2-element structures to two registers.

LD2 (single structure): Load single 2-element structure to one lane of two registers.

LD2R: Load single 2-element structure and Replicate to all lanes of two registers.

LD3 (multiple structures): Load multiple 3-element structures to three registers.

LD3 (single structure): Load single 3-element structure to one lane of three registers.

LD3R: Load single 3-element structure and Replicate to all lanes of three registers.

LD4 (multiple structures): Load multiple 4-element structures to four registers.

LD4 (single structure): Load single 4-element structure to one lane of four registers.

LD4R: Load single 4-element structure and Replicate to all lanes of four registers.

LDNP (SIMD&FP): Load Pair of SIMD&FP registers, with Non-temporal hint.

LDP (SIMD&FP): Load Pair of SIMD&FP registers.

LDR (immediate, SIMD&FP): Load SIMD&FP Register (immediate offset).

LDR (literal, SIMD&FP): Load SIMD&FP Register (PC-relative literal).

LDR (register, SIMD&FP): Load SIMD&FP Register (register offset).

LDUR (SIMD&FP): Load SIMD&FP Register (unscaled offset).

MLA (by element): Multiply-Add to accumulator (vector, by element).

MLA (vector): Multiply-Add to accumulator (vector).

MLS (by element): Multiply-Subtract from accumulator (vector, by element).

MLS (vector): Multiply-Subtract from accumulator (vector).

MOV (element): Move vector element to another vector element: an alias of INS (element).

MOV (from general): Move general-purpose register to a vector element: an alias of INS (general).

MOV (scalar): Move vector element to scalar: an alias of DUP (element).

MOV (to general): Move vector element to general-purpose register: an alias of UMOV.

MOV (vector): Move vector: an alias of ORR (vector, register).

MOVI: Move Immediate (vector).

MUL (by element): Multiply (vector, by element).

MUL (vector): Multiply (vector).

MVN: Bitwise NOT (vector): an alias of NOT.

MVNI: Move inverted Immediate (vector).

NEG (vector): Negate (vector).

NOT: Bitwise NOT (vector).

ORN (vector): Bitwise inclusive OR NOT (vector).

ORR (vector, immediate): Bitwise inclusive OR (vector, immediate).

ORR (vector, register): Bitwise inclusive OR (vector, register).

PMUL: Polynomial Multiply.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 721

PMULL, PMULL2: Polynomial Multiply Long.

RADDHN, RADDHN2: Rounding Add returning High Narrow.

RAX1: Rotate and Exclusive OR.

RBIT (vector): Reverse Bit order (vector).

REV16 (vector): Reverse elements in 16-bit halfwords (vector).

REV32 (vector): Reverse elements in 32-bit words (vector).

REV64: Reverse elements in 64-bit doublewords (vector).

RSHRN, RSHRN2: Rounding Shift Right Narrow (immediate).

RSUBHN, RSUBHN2: Rounding Subtract returning High Narrow.

SABA: Signed Absolute difference and Accumulate.

SABAL, SABAL2: Signed Absolute difference and Accumulate Long.

SABD: Signed Absolute Difference.

SABDL, SABDL2: Signed Absolute Difference Long.

SADALP: Signed Add and Accumulate Long Pairwise.

SADDL, SADDL2: Signed Add Long (vector).

SADDLP: Signed Add Long Pairwise.

SADDLV: Signed Add Long across Vector.

SADDW, SADDW2: Signed Add Wide.

SCVTF (scalar, fixed-point): Signed fixed-point Convert to Floating-point (scalar).

SCVTF (scalar, integer): Signed integer Convert to Floating-point (scalar).

SCVTF (vector, fixed-point): Signed fixed-point Convert to Floating-point (vector).

SCVTF (vector, integer): Signed integer Convert to Floating-point (vector).

SDOT (by element): Dot Product signed arithmetic (vector, by element).

SDOT (vector): Dot Product signed arithmetic (vector).

SHA1C: SHA1 hash update (choose).

SHA1H: SHA1 fixed rotate.

SHA1M: SHA1 hash update (majority).

SHA1P: SHA1 hash update (parity).

SHA1SU0: SHA1 schedule update 0.

SHA1SU1: SHA1 schedule update 1.

SHA256H: SHA256 hash update (part 1).

SHA256H2: SHA256 hash update (part 2).

SHA256SU0: SHA256 schedule update 0.

SHA256SU1: SHA256 schedule update 1.

SHA512H: SHA512 Hash update part 1.

SHA512H2: SHA512 Hash update part 2.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 722

SHA512SU0: SHA512 Schedule Update 0.

SHA512SU1: SHA512 Schedule Update 1.

SHADD: Signed Halving Add.

SHL: Shift Left (immediate).

SHLL, SHLL2: Shift Left Long (by element size).

SHRN, SHRN2: Shift Right Narrow (immediate).

SHSUB: Signed Halving Subtract.

SLI: Shift Left and Insert (immediate).

SM3PARTW1: SM3PARTW1.

SM3PARTW2: SM3PARTW2.

SM3SS1: SM3SS1.

SM3TT1A: SM3TT1A.

SM3TT1B: SM3TT1B.

SM3TT2A: SM3TT2A.

SM3TT2B: SM3TT2B.

SM4E: SM4 Encode.

SM4EKEY: SM4 Key.

SMAX: Signed Maximum (vector).

SMAXP: Signed Maximum Pairwise.

SMAXV: Signed Maximum across Vector.

SMIN: Signed Minimum (vector).

SMINP: Signed Minimum Pairwise.

SMINV: Signed Minimum across Vector.

SMLAL, SMLAL2 (by element): Signed Multiply-Add Long (vector, by element).

SMLAL, SMLAL2 (vector): Signed Multiply-Add Long (vector).

SMLSL, SMLSL2 (by element): Signed Multiply-Subtract Long (vector, by element).

SMLSL, SMLSL2 (vector): Signed Multiply-Subtract Long (vector).

SMMLA (vector): Signed 8-bit integer matrix multiply-accumulate (vector).

SMOV: Signed Move vector element to general-purpose register.

SMULL, SMULL2 (by element): Signed Multiply Long (vector, by element).

SMULL, SMULL2 (vector): Signed Multiply Long (vector).

SQABS: Signed saturating Absolute value.

SQADD: Signed saturating Add.

SQDMLAL, SQDMLAL2 (by element): Signed saturating Doubling Multiply-Add Long (by element).

SQDMLAL, SQDMLAL2 (vector): Signed saturating Doubling Multiply-Add Long.

SQDMLSL, SQDMLSL2 (by element): Signed saturating Doubling Multiply-Subtract Long (by element).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 723

SQDMLSL, SQDMLSL2 (vector): Signed saturating Doubling Multiply-Subtract Long.

SQDMULH (by element): Signed saturating Doubling Multiply returning High half (by element).

SQDMULH (vector): Signed saturating Doubling Multiply returning High half.

SQDMULL, SQDMULL2 (by element): Signed saturating Doubling Multiply Long (by element).

SQDMULL, SQDMULL2 (vector): Signed saturating Doubling Multiply Long.

SQNEG: Signed saturating Negate.

SQRDMLAH (by element): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by
element).

SQRDMLAH (vector): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector).

SQRDMLSH (by element): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element).

SQRDMLSH (vector): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector).

SQRDMULH (by element): Signed saturating Rounding Doubling Multiply returning High half (by element).

SQRDMULH (vector): Signed saturating Rounding Doubling Multiply returning High half.

SQRSHL: Signed saturating Rounding Shift Left (register).

SQRSHRN, SQRSHRN2: Signed saturating Rounded Shift Right Narrow (immediate).

SQRSHRUN, SQRSHRUN2: Signed saturating Rounded Shift Right Unsigned Narrow (immediate).

SQSHL (immediate): Signed saturating Shift Left (immediate).

SQSHL (register): Signed saturating Shift Left (register).

SQSHLU: Signed saturating Shift Left Unsigned (immediate).

SQSHRN, SQSHRN2: Signed saturating Shift Right Narrow (immediate).

SQSHRUN, SQSHRUN2: Signed saturating Shift Right Unsigned Narrow (immediate).

SQSUB: Signed saturating Subtract.

SQXTN, SQXTN2: Signed saturating extract Narrow.

SQXTUN, SQXTUN2: Signed saturating extract Unsigned Narrow.

SRHADD: Signed Rounding Halving Add.

SRI: Shift Right and Insert (immediate).

SRSHL: Signed Rounding Shift Left (register).

SRSHR: Signed Rounding Shift Right (immediate).

SRSRA: Signed Rounding Shift Right and Accumulate (immediate).

SSHL: Signed Shift Left (register).

SSHLL, SSHLL2: Signed Shift Left Long (immediate).

SSHR: Signed Shift Right (immediate).

SSRA: Signed Shift Right and Accumulate (immediate).

SSUBL, SSUBL2: Signed Subtract Long.

SSUBW, SSUBW2: Signed Subtract Wide.

ST1 (multiple structures): Store multiple single-element structures from one, two, three, or four registers.

ST1 (single structure): Store a single-element structure from one lane of one register.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 724

ST2 (multiple structures): Store multiple 2-element structures from two registers.

ST2 (single structure): Store single 2-element structure from one lane of two registers.

ST3 (multiple structures): Store multiple 3-element structures from three registers.

ST3 (single structure): Store single 3-element structure from one lane of three registers.

ST4 (multiple structures): Store multiple 4-element structures from four registers.

ST4 (single structure): Store single 4-element structure from one lane of four registers.

STNP (SIMD&FP): Store Pair of SIMD&FP registers, with Non-temporal hint.

STP (SIMD&FP): Store Pair of SIMD&FP registers.

STR (immediate, SIMD&FP): Store SIMD&FP register (immediate offset).

STR (register, SIMD&FP): Store SIMD&FP register (register offset).

STUR (SIMD&FP): Store SIMD&FP register (unscaled offset).

SUB (vector): Subtract (vector).

SUBHN, SUBHN2: Subtract returning High Narrow.

SUDOT (by element): Dot product with signed and unsigned integers (vector, by element).

SUQADD: Signed saturating Accumulate of Unsigned value.

SXTL, SXTL2: Signed extend Long: an alias of SSHLL, SSHLL2.

TBL: Table vector Lookup.

TBX: Table vector lookup extension.

TRN1: Transpose vectors (primary).

TRN2: Transpose vectors (secondary).

UABA: Unsigned Absolute difference and Accumulate.

UABAL, UABAL2: Unsigned Absolute difference and Accumulate Long.

UABD: Unsigned Absolute Difference (vector).

UABDL, UABDL2: Unsigned Absolute Difference Long.

UADALP: Unsigned Add and Accumulate Long Pairwise.

UADDL, UADDL2: Unsigned Add Long (vector).

UADDLP: Unsigned Add Long Pairwise.

UADDLV: Unsigned sum Long across Vector.

UADDW, UADDW2: Unsigned Add Wide.

UCVTF (scalar, fixed-point): Unsigned fixed-point Convert to Floating-point (scalar).

UCVTF (scalar, integer): Unsigned integer Convert to Floating-point (scalar).

UCVTF (vector, fixed-point): Unsigned fixed-point Convert to Floating-point (vector).

UCVTF (vector, integer): Unsigned integer Convert to Floating-point (vector).

UDOT (by element): Dot Product unsigned arithmetic (vector, by element).

UDOT (vector): Dot Product unsigned arithmetic (vector).

UHADD: Unsigned Halving Add.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 725

UHSUB: Unsigned Halving Subtract.

UMAX: Unsigned Maximum (vector).

UMAXP: Unsigned Maximum Pairwise.

UMAXV: Unsigned Maximum across Vector.

UMIN: Unsigned Minimum (vector).

UMINP: Unsigned Minimum Pairwise.

UMINV: Unsigned Minimum across Vector.

UMLAL, UMLAL2 (by element): Unsigned Multiply-Add Long (vector, by element).

UMLAL, UMLAL2 (vector): Unsigned Multiply-Add Long (vector).

UMLSL, UMLSL2 (by element): Unsigned Multiply-Subtract Long (vector, by element).

UMLSL, UMLSL2 (vector): Unsigned Multiply-Subtract Long (vector).

UMMLA (vector): Unsigned 8-bit integer matrix multiply-accumulate (vector).

UMOV: Unsigned Move vector element to general-purpose register.

UMULL, UMULL2 (by element): Unsigned Multiply Long (vector, by element).

UMULL, UMULL2 (vector): Unsigned Multiply long (vector).

UQADD: Unsigned saturating Add.

UQRSHL: Unsigned saturating Rounding Shift Left (register).

UQRSHRN, UQRSHRN2: Unsigned saturating Rounded Shift Right Narrow (immediate).

UQSHL (immediate): Unsigned saturating Shift Left (immediate).

UQSHL (register): Unsigned saturating Shift Left (register).

UQSHRN, UQSHRN2: Unsigned saturating Shift Right Narrow (immediate).

UQSUB: Unsigned saturating Subtract.

UQXTN, UQXTN2: Unsigned saturating extract Narrow.

URECPE: Unsigned Reciprocal Estimate.

URHADD: Unsigned Rounding Halving Add.

URSHL: Unsigned Rounding Shift Left (register).

URSHR: Unsigned Rounding Shift Right (immediate).

URSQRTE: Unsigned Reciprocal Square Root Estimate.

URSRA: Unsigned Rounding Shift Right and Accumulate (immediate).

USDOT (by element): Dot Product with unsigned and signed integers (vector, by element).

USDOT (vector): Dot Product with unsigned and signed integers (vector).

USHL: Unsigned Shift Left (register).

USHLL, USHLL2: Unsigned Shift Left Long (immediate).

USHR: Unsigned Shift Right (immediate).

USMMLA (vector): Unsigned and signed 8-bit integer matrix multiply-accumulate (vector).

USQADD: Unsigned saturating Accumulate of Signed value.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 726

USRA: Unsigned Shift Right and Accumulate (immediate).

USUBL, USUBL2: Unsigned Subtract Long.

USUBW, USUBW2: Unsigned Subtract Wide.

UXTL, UXTL2: Unsigned extend Long: an alias of USHLL, USHLL2.

UZP1: Unzip vectors (primary).

UZP2: Unzip vectors (secondary).

XAR: Exclusive OR and Rotate.

XTN, XTN2: Extract Narrow.

ZIP1: Zip vectors (primary).

ZIP2: Zip vectors (secondary).

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 727

ABS

Absolute value (vector). This instruction calculates the absolute value of each vector element in the source SIMD&FP
register, puts the result into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

U

ABS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

U

ABS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

ABS Page 728

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ABS Page 729

ADD (vector)

Add (vector). This instruction adds corresponding elements in the two source SIMD&FP registers, places the results
into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

U

ADD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

U

ADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

ADD (vector) Page 730

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then

Elem[result, e, esize] = element1 - element2;
else

Elem[result, e, esize] = element1 + element2;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (vector) Page 731

ADDHN, ADDHN2

Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the
corresponding vector element in the second source SIMD&FP register, places the most significant half of the result
into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.
The results are truncated. For rounded results, see RADDHN.
The ADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
ADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd

U o1

ADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

ADDHN, ADDHN2 Page 732

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDHN, ADDHN2 Page 733

ADDP (scalar)

Add Pair of elements (scalar). This instruction adds two vector elements in the source SIMD&FP register and writes
the scalar result into the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd

ADDP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;

integer esize = 8 << UInt(size);
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = ReduceOp_ADD;

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the source arrangement specifier, encoded in “size”:

size <T>
0x RESERVED
10 RESERVED
11 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(op, operand, esize);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDP (scalar) Page 734

ADDP (vector)

Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements from the concatenated vector, adds each pair of values together, places the result into a vector, and
writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 1 1 Rn Rd

ADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];
Elem[result, e, esize] = element1 + element2;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

ADDP (vector) Page 735

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDP (vector) Page 736

ADDV

Add across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the
scalar result to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd

ADDV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = ReduceOp_ADD;

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(op, operand, esize);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

ADDV Page 737

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDV Page 738

AESD

AES single round decryption.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 Rn Rd

D

AESD <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;
boolean decrypt = (D == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
result = operand1 EOR operand2;
if decrypt then

result = AESInvSubBytes(AESInvShiftRows(result));
else

result = AESSubBytes(AESShiftRows(result));

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESD Page 739

AESE

AES single round encryption.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 Rn Rd

D

AESE <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;
boolean decrypt = (D == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
result = operand1 EOR operand2;
if decrypt then

result = AESInvSubBytes(AESInvShiftRows(result));
else

result = AESSubBytes(AESShiftRows(result));

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESE Page 740

AESIMC

AES inverse mix columns.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 Rn Rd

D

AESIMC <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;
boolean decrypt = (D == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand = V[n];
bits(128) result;
if decrypt then

result = AESInvMixColumns(operand);
else

result = AESMixColumns(operand);
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESIMC Page 741

AESMC

AES mix columns.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 Rn Rd

D

AESMC <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveAESExt() then UNDEFINED;
boolean decrypt = (D == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand = V[n];
bits(128) result;
if decrypt then

result = AESInvMixColumns(operand);
else

result = AESMixColumns(operand);
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESMC Page 742

AND (vector)

Bitwise AND (vector). This instruction performs a bitwise AND between the two source SIMD&FP registers, and
writes the result to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd

size

AND <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean invert = (size<0> == '1');
LogicalOp op = if size<1> == '1' then LogicalOp_ORR else LogicalOp_AND;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND

result = operand1 AND operand2;
when LogicalOp_ORR

result = operand1 OR operand2;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

AND (vector) Page 743

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (vector) Page 744

BCAX

Bit Clear and Exclusive OR performs a bitwise AND of the 128-bit vector in a source SIMD&FP register and the
complement of the vector in another source SIMD&FP register, then performs a bitwise exclusive OR of the resulting
vector and the vector in a third source SIMD&FP register, and writes the result to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD
(FEAT_SHA3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 0 1 Rm 0 Ra Rn Rd

BCAX <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Va = V[a];
V[d] = Vn EOR (Vm AND NOT(Va));

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BCAX Page 745

BFCVT

Floating-point convert from single-precision to BFloat16 format (scalar) converts the single-precision floating-point
value in the 32-bit SIMD&FP source register to BFloat16 format and writes the result in the 16-bit SIMD&FP
destination register.
Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPCR that apply to
single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception that
causes a cumulative exception bit in the FPSR to be set, or a synchronous exception to be taken, depending on the
enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Single-precision to BFloat16
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 0 Rn Rd

BFCVT <Hd>, <Sn>

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer d = UInt(Rd);

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(32) operand = V[n];
FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

Elem[result, 0, 16] = FPConvertBF(operand, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFCVT Page 746

BFCVTN, BFCVTN2

Floating-point convert from single-precision to BFloat16 format (vector) reads each single-precision element in the
SIMD&FP source vector, converts each value to BFloat16 format, and writes the results in the lower or upper half of
the SIMD&FP destination vector. The result elements are half the width of the source elements.
The BFCVTN instruction writes the half-width results to the lower half of the destination vector and clears the upper
half to zero, while the BFCVTN2 instruction writes the results to the upper half of the destination vector without
affecting the other bits in the register.
Unlike the BFloat16 multiplication instructions, this instruction honors all of the control bits in the FPCR that apply to
single-precision arithmetic, including the rounding mode. It can also generate a floating-point exception that causes
cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the enable bits
in the FPCR.

Vector single-precision to BFloat16
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

BFCVTN{2} <Vd>.<Ta>, <Vn>.4S

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer d = UInt(Rd);
integer part = UInt(Q);
integer elements = 64 DIV 16;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 4H
1 8H

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand = V[n];
bits(64) result;

for e = 0 to elements-1
Elem[result, e, 16] = FPConvertBF(Elem[operand, e, 32], FPCR[]);

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFCVTN, BFCVTN2 Page 747

BFDOT (by element)

BFloat16 floating-point dot product (vector, by element). This instruction delimits the source vectors into pairs of
16-bit BF16 elements. Each pair of elements in the first source vector is multiplied by the specified pair of elements in
the second source vector. The resulting single-precision products are then summed and added destructively to the
single-precision element of the destination vector that aligns with the pair of BF16 values in the first source vector.
The instruction ignores the FPCR and does not update the FPSR exception status.
The BF16 pair within the second source vector is specified using an immediate index. The index range is from 0 to 3
inclusive. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 1 L M Rm 1 1 1 1 H 0 Rn Rd

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.2H[<index>]

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer d = UInt(Rd);
integer i = UInt(H:L);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 4H
1 8H

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a pair of 16-bit elements in the range 0 to 3, encoded in the "H:L" fields.

BFDOT (by element) Page 748

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to elements-1
bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
bits(16) elt2_a = Elem[operand2, 2 * i + 0, 16];
bits(16) elt2_b = Elem[operand2, 2 * i + 1, 16];

bits(32) sum = Elem[operand3, e, 32];
sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
Elem[result, e, 32] = sum;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFDOT (by element) Page 749

BFDOT (vector)

BFloat16 floating-point dot product (vector). This instruction delimits the source vectors into pairs of 16-bit BF16
elements. Within each pair, the elements in the first source vector are multiplied by the corresponding elements in the
second source vector. The resulting single-precision products are then summed and added destructively to the single-
precision element of the destination vector that aligns with the pair of BF16 values in the first source vector. The
instruction ignores the FPCR and does not update the FPSR exception status.

Vector
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 1 1 1 1 1 1 Rn Rd

BFDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 4H
1 8H

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to elements-1
bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];

bits(32) sum = Elem[operand3, e, 32];
sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
Elem[result, e, 32] = sum;

V[d] = result;

BFDOT (vector) Page 750

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFDOT (vector) Page 751

BFMLALB, BFMLALT (by element)

BFloat16 floating-point widening multiply-add long (by element) widens the even-numbered (bottom) or odd-numbered
(top) 16-bit elements in the first source vector, and the indexed element in the second source vector from Bfloat16 to
single-precision format. The instruction then multiplies and adds these values to the overlapping single-precision
elements of the destination vector.
This performs a fused multiply-add without intermediate rounding that honors all of the control bits in the FPCR that
apply to single-precision arithmetic, including the rounding mode. It can also generate a floating-point exception that
causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the
enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether this instruction is supported.

Vector
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 1 1 L M Rm 1 1 1 1 H 0 Rn Rd

BFMLAL<bt> <Vd>.4S, <Vn>.8H, <Vm>.H[<index>]

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt('0':Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer elements = 128 DIV 32;
integer sel = UInt(Q);

Assembler Symbols

<bt> Is the bottom or top element specifier, encoded in “Q”:

Q <bt>
0 B
1 T

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) result;
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) operand3 = V[d];
bits(32) element2 = Elem[operand2, index, 16] : Zeros(16);

for e = 0 to elements-1
bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
bits(32) addend = Elem[operand3, e, 32];
Elem[result, e, 32] = BFMulAdd(addend, element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMLALB, BFMLALT (by
element) Page 752

BFMLALB, BFMLALT (vector)

BFloat16 floating-point widening multiply-add long (vector) widens the even-numbered (bottom) or odd-numbered
(top) 16-bit elements in the first and second source vectors from Bfloat16 to single-precision format. The instruction
then multiplies and adds these values to the overlapping single-precision elements of the destination vector.
This performs a fused multiply-add without intermediate rounding that honors all of the control bits in the FPCR that
apply to single-precision arithmetic, including the rounding mode. It can also generate a floating-point exception that
causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the
enable bits in the FPCR. ID_AA64ISAR1_EL1.BF16 indicates whether these instruction is supported.

Vector
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 0 Rm 1 1 1 1 1 1 Rn Rd

BFMLAL<bt> <Vd>.4S, <Vn>.8H, <Vm>.8H

if !HaveBF16Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer elements = 128 DIV 32;
integer sel = UInt(Q);

Assembler Symbols

<bt> Is the bottom or top element specifier, encoded in “Q”:

Q <bt>
0 B
1 T

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) operand3 = V[d];
bits(128) result;

for e = 0 to elements-1
bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
bits(32) element2 = Elem[operand2, 2 * e + sel, 16] : Zeros(16);
bits(32) addend = Elem[operand3, e, 32];
Elem[result, e, 32] = BFMulAdd(addend, element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMLALB, BFMLALT (vector) Page 753

BFMMLA

BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix. This instruction multiplies the 2x4 matrix of BF16
values held in the first 128-bit source vector by the 4x2 BF16 matrix in the second 128-bit source vector. The resulting
2x2 single-precision matrix product is then added destructively to the 2x2 single-precision matrix in the 128-bit
destination vector. This is equivalent to performing a 4-way dot product per destination element. The instruction
ignores the FPCR and does not update the FPSR exception status.
Arm expects that the BFMMLA instruction will deliver a peak BF16 multiply throughput that is at least as high as can
be achieved using two BFDOT instructions, with a goal that it should have significantly higher throughput.

Vector
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 1 1 0 0 1 0 Rm 1 1 1 0 1 1 Rn Rd

BFMMLA <Vd>.4S, <Vn>.8H, <Vm>.8H

if !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) op1 = V[n];
bits(128) op2 = V[m];
bits(128) acc = V[d];

V[d] = BFMatMulAdd(acc, op1, op2);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMMLA Page 754

BIC (vector, immediate)

Bitwise bit Clear (vector, immediate). This instruction reads each vector element from the destination SIMD&FP
register, performs a bitwise AND between each result and the complement of an immediate constant, places the result
into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd

op cmode

16-bit (cmode == 10x1)

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit (cmode == 0xx1)

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx00' operation = ImmediateOp_MOVI;
when '0xx01' operation = ImmediateOp_MVNI;
when '0xx10' operation = ImmediateOp_ORR;
when '0xx11' operation = ImmediateOp_BIC;
when '10x00' operation = ImmediateOp_MOVI;
when '10x01' operation = ImmediateOp_MVNI;
when '10x10' operation = ImmediateOp_ORR;
when '10x11' operation = ImmediateOp_BIC;
when '110x0' operation = ImmediateOp_MOVI;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UNDEFINED;
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

BIC (vector, immediate) Page 755

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in “cmode<1>”:

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.

For the 32-bit variant: is the shift amount encoded in “cmode<2:1>”:

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vector, immediate) Page 756

BIC (vector, register)

Bitwise bit Clear (vector, register). This instruction performs a bitwise AND between the first source SIMD&FP
register and the complement of the second source SIMD&FP register, and writes the result to the destination
SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd

size

BIC <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean invert = (size<0> == '1');
LogicalOp op = if size<1> == '1' then LogicalOp_ORR else LogicalOp_AND;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND

result = operand1 AND operand2;
when LogicalOp_ORR

result = operand1 OR operand2;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

BIC (vector, register) Page 757

◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vector, register) Page 758

BIF

Bitwise Insert if False. This instruction inserts each bit from the first source SIMD&FP register into the destination
SIMD&FP register if the corresponding bit of the second source SIMD&FP register is 0, otherwise leaves the bit in the
destination register unchanged.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd

opc2

BIF <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

VBitOp op;

case opc2 of
when '00' op = VBitOp_VEOR;
when '01' op = VBitOp_VBSL;
when '10' op = VBitOp_VBIT;
when '11' op = VBitOp_VBIF;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

BIF Page 759

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand2;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

case op of
when VBitOp_VEOR

operand1 = V[m];
operand2 = Zeros();
operand3 = Ones();

when VBitOp_VBSL
operand1 = V[m];
operand2 = operand1;
operand3 = V[d];

when VBitOp_VBIT
operand1 = V[d];
operand2 = operand1;
operand3 = V[m];

when VBitOp_VBIF
operand1 = V[d];
operand2 = operand1;
operand3 = NOT(V[m]);

V[d] = operand1 EOR ((operand2 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIF Page 760

BIT

Bitwise Insert if True. This instruction inserts each bit from the first source SIMD&FP register into the SIMD&FP
destination register if the corresponding bit of the second source SIMD&FP register is 1, otherwise leaves the bit in
the destination register unchanged.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd

opc2

BIT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

VBitOp op;

case opc2 of
when '00' op = VBitOp_VEOR;
when '01' op = VBitOp_VBSL;
when '10' op = VBitOp_VBIT;
when '11' op = VBitOp_VBIF;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

BIT Page 761

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand2;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

case op of
when VBitOp_VEOR

operand1 = V[m];
operand2 = Zeros();
operand3 = Ones();

when VBitOp_VBSL
operand1 = V[m];
operand2 = operand1;
operand3 = V[d];

when VBitOp_VBIT
operand1 = V[d];
operand2 = operand1;
operand3 = V[m];

when VBitOp_VBIF
operand1 = V[d];
operand2 = operand1;
operand3 = NOT(V[m]);

V[d] = operand1 EOR ((operand2 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIT Page 762

BSL

Bitwise Select. This instruction sets each bit in the destination SIMD&FP register to the corresponding bit from the
first source SIMD&FP register when the original destination bit was 1, otherwise from the second source SIMD&FP
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd

opc2

BSL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

VBitOp op;

case opc2 of
when '00' op = VBitOp_VEOR;
when '01' op = VBitOp_VBSL;
when '10' op = VBitOp_VBIT;
when '11' op = VBitOp_VBIF;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

BSL Page 763

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand2;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

case op of
when VBitOp_VEOR

operand1 = V[m];
operand2 = Zeros();
operand3 = Ones();

when VBitOp_VBSL
operand1 = V[m];
operand2 = operand1;
operand3 = V[d];

when VBitOp_VBIT
operand1 = V[d];
operand2 = operand1;
operand3 = V[m];

when VBitOp_VBIF
operand1 = V[d];
operand2 = operand1;
operand3 = NOT(V[m]);

V[d] = operand1 EOR ((operand2 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BSL Page 764

CLS (vector)

Count Leading Sign bits (vector). This instruction counts the number of consecutive bits following the most significant
bit that are the same as the most significant bit in each vector element in the source SIMD&FP register, places the
result into a vector, and writes the vector to the destination SIMD&FP register. The count does not include the most
significant bit itself.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd

U

CLS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1

if countop == CountOp_CLS then
count = CountLeadingSignBits(Elem[operand, e, esize]);

else
count = CountLeadingZeroBits(Elem[operand, e, esize]);

Elem[result, e, esize] = count<esize-1:0>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

CLS (vector) Page 765

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS (vector) Page 766

CLZ (vector)

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from the most
significant bit, in each vector element in the source SIMD&FP register, places the result into a vector, and writes the
vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd

U

CLZ <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1

if countop == CountOp_CLS then
count = CountLeadingSignBits(Elem[operand, e, esize]);

else
count = CountLeadingZeroBits(Elem[operand, e, esize]);

Elem[result, e, esize] = count<esize-1:0>;
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

CLZ (vector) Page 767

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ (vector) Page 768

CMEQ (register)

Compare bitwise Equal (vector). This instruction compares each vector element from the first source SIMD&FP
register with the corresponding vector element from the second source SIMD&FP register, and if the comparison is
equal sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets
every bit of the corresponding vector element in the destination SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

U

CMEQ <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean and_test = (U == '0');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

U

CMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean and_test = (U == '0');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

CMEQ (register) Page 769

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if and_test then

test_passed = !IsZero(element1 AND element2);
else

test_passed = (element1 == element2);
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMEQ (register) Page 770

CMEQ (zero)

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register
and if the value is equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to
zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

U op

CMEQ <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

U op

CMEQ <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMEQ (zero) Page 771

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMEQ (zero) Page 772

CMGE (register)

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the first source
SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first
signed integer value is greater than or equal to the second signed integer value sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

U eq

CMGE <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

U eq

CMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

CMGE (register) Page 773

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGE (register) Page 774

CMGE (zero)

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the source
SIMD&FP register and if the signed integer value is greater than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

U op

CMGE <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

U op

CMGE <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMGE (zero) Page 775

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGE (zero) Page 776

CMGT (register)

Compare signed Greater than (vector). This instruction compares each vector element in the first source SIMD&FP
register with the corresponding vector element in the second source SIMD&FP register and if the first signed integer
value is greater than the second signed integer value sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

U eq

CMGT <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

U eq

CMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

CMGT (register) Page 777

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGT (register) Page 778

CMGT (zero)

Compare signed Greater than zero (vector). This instruction reads each vector element in the source SIMD&FP
register and if the signed integer value is greater than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

U op

CMGT <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd

U op

CMGT <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMGT (zero) Page 779

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGT (zero) Page 780

CMHI (register)

Compare unsigned Higher (vector). This instruction compares each vector element in the first source SIMD&FP
register with the corresponding vector element in the second source SIMD&FP register and if the first unsigned
integer value is greater than the second unsigned integer value sets every bit of the corresponding vector element in
the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

U eq

CMHI <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd

U eq

CMHI <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

CMHI (register) Page 781

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMHI (register) Page 782

CMHS (register)

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first source
SIMD&FP register with the corresponding vector element in the second source SIMD&FP register and if the first
unsigned integer value is greater than or equal to the second unsigned integer value sets every bit of the
corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

U eq

CMHS <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd

U eq

CMHS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

CMHS (register) Page 783

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMHS (register) Page 784

CMLE (zero)

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the source
SIMD&FP register and if the signed integer value is less than or equal to zero sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector
element in the destination SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

U op

CMLE <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd

U op

CMLE <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMLE (zero) Page 785

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMLE (zero) Page 786

CMLT (zero)

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD&FP register
and if the signed integer value is less than zero sets every bit of the corresponding vector element in the destination
SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP
register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd

CMLT <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd

CMLT <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

CMLT (zero) Page 787

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMLT (zero) Page 788

CMTST

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source SIMD&FP
register, performs an AND with the corresponding vector element in the second source SIMD&FP register, and if the
result is not zero, sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

U

CMTST <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean and_test = (U == '0');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd

U

CMTST <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean and_test = (U == '0');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

CMTST Page 789

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if and_test then

test_passed = !IsZero(element1 AND element2);
else

test_passed = (element1 == element2);
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMTST Page 790

CNT

Population Count per byte. This instruction counts the number of bits that have a value of one in each vector element
in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

CNT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '00' then UNDEFINED;
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 x RESERVED
1x x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1

count = BitCount(Elem[operand, e, esize]);
Elem[result, e, esize] = count<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNT Page 791

DUP (element)

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the specified element
index in the source SIMD&FP register into a scalar or each element in a vector, and writes the result to the
destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (scalar).

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

DUP <V><d>, <Vn>.<T>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;

integer index = UInt(imm5<4:size+1>);
integer idxdsize = if imm5<4> == '1' then 128 else 64;

integer esize = 8 << size;
integer datasize = esize;
integer elements = 1;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

DUP <Vd>.<T>, <Vn>.<Ts>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;

integer index = UInt(imm5<4:size+1>);
integer idxdsize = if imm5<4> == '1' then 128 else 64;

if size == 3 && Q == '0' then UNDEFINED;
integer esize = 8 << size;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<T> For the scalar variant: is the element width specifier, encoded in “imm5”:

DUP (element) Page 792

imm5 <T>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

For the vector variant: is an arrangement specifier, encoded in “imm5:Q”:

imm5 Q <T>
x0000 x RESERVED
xxxx1 0 8B
xxxx1 1 16B
xxx10 0 4H
xxx10 1 8H
xx100 0 2S
xx100 1 4S
x1000 0 RESERVED
x1000 1 2D

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<V> Is the destination width specifier, encoded in “imm5”:

imm5 <V>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];
bits(datasize) result;
bits(esize) element;

element = Elem[operand, index, esize];
for e = 0 to elements-1

Elem[result, e, esize] = element;
V[d] = result;

DUP (element) Page 793

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (element) Page 794

DUP (general)

Duplicate general-purpose register to vector. This instruction duplicates the contents of the source general-purpose
register into a scalar or each element in a vector, and writes the result to the SIMD&FP destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 1 1 Rn Rd

DUP <Vd>.<T>, <R><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;

// imm5<4:size+1> is IGNORED

if size == 3 && Q == '0' then UNDEFINED;
integer esize = 8 << size;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “imm5:Q”:

imm5 Q <T>
x0000 x RESERVED
xxxx1 0 8B
xxxx1 1 16B
xxx10 0 4H
xxx10 1 8H
xx100 0 2S
xx100 1 4S
x1000 0 RESERVED
x1000 1 2D

<R> Is the width specifier for the general-purpose source register, encoded in “imm5”:

imm5 <R>
x0000 RESERVED
xxxx1 W
xxx10 W
xx100 W
x1000 X

Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.
<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(esize) element = X[n];
bits(datasize) result;

for e = 0 to elements-1
Elem[result, e, esize] = element;

V[d] = result;

DUP (general) Page 795

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (general) Page 796

EOR3

Three-way Exclusive OR performs a three-way exclusive OR of the values in the three source SIMD&FP registers, and
writes the result to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD
(FEAT_SHA3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 0 0 Rm 0 Ra Rn Rd

EOR3 <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Va = V[a];
V[d] = Vn EOR Vm EOR Va;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR3 Page 797

EOR (vector)

Bitwise Exclusive OR (vector). This instruction performs a bitwise Exclusive OR operation between the two source
SIMD&FP registers, and places the result in the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd

opc2

EOR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

VBitOp op;

case opc2 of
when '00' op = VBitOp_VEOR;
when '01' op = VBitOp_VBSL;
when '10' op = VBitOp_VBIT;
when '11' op = VBitOp_VBIF;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

EOR (vector) Page 798

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand2;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

case op of
when VBitOp_VEOR

operand1 = V[m];
operand2 = Zeros();
operand3 = Ones();

when VBitOp_VBSL
operand1 = V[m];
operand2 = operand1;
operand3 = V[d];

when VBitOp_VBIT
operand1 = V[d];
operand2 = operand1;
operand3 = V[m];

when VBitOp_VBIF
operand1 = V[d];
operand2 = operand1;
operand3 = NOT(V[m]);

V[d] = operand1 EOR ((operand2 EOR operand4) AND operand3);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (vector) Page 799

EXT

Extract vector from pair of vectors. This instruction extracts the lowest vector elements from the second source
SIMD&FP register and the highest vector elements from the first source SIMD&FP register, concatenates the results
into a vector, and writes the vector to the destination SIMD&FP register vector. The index value specifies the lowest
vector element to extract from the first source register, and consecutive elements are extracted from the first, then
second, source registers until the destination vector is filled.
The following figure shows an example of the operation of EXT doubleword operation for Q = 0 and imm4<2:0> = 3.

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0
Vm Vn

Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 0 0 Rm 0 imm4 0 Rn Rd

EXT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<index>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if Q == '0' && imm4<3> == '1' then UNDEFINED;

integer datasize = if Q == '1' then 128 else 64;
integer position = UInt(imm4) << 3;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the lowest numbered byte element to be extracted, encoded in “Q:imm4”:

Q imm4<3> <index>
0 0 imm4<2:0>
0 1 RESERVED
1 x imm4

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) hi = V[m];
bits(datasize) lo = V[n];
bits(datasize*2) concat = hi : lo;

V[d] = concat<position+datasize-1:position>;

EXT Page 800

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXT Page 801

FABD

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the elements of the
second source SIMD&FP register, from the corresponding floating-point values in the elements of the first source
SIMD&FP register, places the absolute value of each result in a vector, and writes the vector to the destination
SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd

FABD <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd

FABD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd

U

FABD Page 802

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd

U

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

FABD Page 803

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
bits(esize) diff;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
diff = FPSub(element1, element2, fpcr);
Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABD Page 804

FABS (vector)

Floating-point Absolute value (vector). This instruction calculates the absolute value of each vector element in the
source SIMD&FP register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd

U

FABS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd

U

FABS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FABS (vector) Page 805

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
if neg then

element = FPNeg(element);
else

element = FPAbs(element);
Elem[result, e, esize] = element;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABS (vector) Page 806

FABS (scalar)

Floating-point Absolute value (scalar). This instruction calculates the absolute value in the SIMD&FP source register
and writes the result to the SIMD&FP destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 1 1 0 0 0 0 Rn Rd

opc

Half-precision (ftype == 11)
(FEAT_FP16)

FABS <Hd>, <Hn>

Single-precision (ftype == 00)

FABS <Sd>, <Sn>

Double-precision (ftype == 01)

FABS <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPUnaryOp fpop;
case opc of

when '00' fpop = FPUnaryOp_MOV;
when '01' fpop = FPUnaryOp_ABS;
when '10' fpop = FPUnaryOp_NEG;
when '11' fpop = FPUnaryOp_SQRT;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FABS (scalar) Page 807

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = fpop != FPUnaryOp_MOV && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

bits(esize) operand = V[n];

case fpop of
when FPUnaryOp_MOV Elem[result, 0, esize] = operand;
when FPUnaryOp_ABS Elem[result, 0, esize] = FPAbs(operand);
when FPUnaryOp_NEG Elem[result, 0, esize] = FPNeg(operand);
when FPUnaryOp_SQRT Elem[result, 0, esize] = FPSqrt(operand, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABS (scalar) Page 808

FACGE

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute value of each
floating-point value in the first source SIMD&FP register with the absolute value of the corresponding floating-point
value in the second source SIMD&FP register and if the first value is greater than or equal to the second value sets
every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of
the corresponding vector element in the destination SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd

U E ac

FACGE <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd

U E ac

FACGE Page 809

FACGE <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd

U E ac

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd

U E ac

FACGE Page 810

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FACGE Page 811

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
boolean test_passed;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[m] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACGE Page 812

FACGT

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of each vector
element in the first source SIMD&FP register with the absolute value of the corresponding vector element in the
second source SIMD&FP register and if the first value is greater than the second value sets every bit of the
corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

U E ac

FACGT <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd

U E ac

FACGT Page 813

FACGT <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd

U E ac

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd

U E ac

FACGT Page 814

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FACGT Page 815

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
boolean test_passed;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[m] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACGT Page 816

FADD (vector)

Floating-point Add (vector). This instruction adds corresponding vector elements in the two source SIMD&FP
registers, writes the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in
this instruction are floating-point values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd

U

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd

U

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

FADD (vector) Page 817

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPAdd(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (vector) Page 818

FADD (scalar)

Floating-point Add (scalar). This instruction adds the floating-point values of the two source SIMD&FP registers, and
writes the result to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FADD <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FADD <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FADD <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean sub_op = (op == '1');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FADD (scalar) Page 819

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

if sub_op then
Elem[result, 0, esize] = FPSub(operand1, operand2, fpcr);

else
Elem[result, 0, esize] = FPAdd(operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (scalar) Page 820

FADDP (scalar)

Floating-point Add Pair of elements (scalar). This instruction adds two floating-point vector elements in the source
SIMD&FP register and writes the scalar result into the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd

FADDP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
if sz == '1' then UNDEFINED;
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = ReduceOp_FADD;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd

FADDP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = ReduceOp_FADD;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 D

FADDP (scalar) Page 821

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in
“sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(op, operand, esize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDP (scalar) Page 822

FADDP (vector)

Floating-point Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first
source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of
adjacent vector elements from the concatenated vector, adds each pair of values together, places the result into a
vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point
values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd

U

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd

U

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FADDP (vector) Page 823

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPAdd(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDP (vector) Page 824

FCADD

Floating-point Complex Add.
This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 90 or 270 degrees.

• The rotated complex number is added to the complex number from the first source register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Vector
(FEAT_FCMA)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 0 Rm 1 1 1 rot 0 1 Rn Rd

FCADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

if !HaveFCADDExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' then UNDEFINED;
if Q == '0' && size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in “rot”:

rot <rotate>
0 90
1 270

FCADD Page 825

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element3;

for e = 0 to (elements DIV 2) -1
case rot of

when '0'
element1 = FPNeg(Elem[operand2, e*2+1, esize]);
element3 = Elem[operand2, e*2, esize];

when '1'
element1 = Elem[operand2, e*2+1, esize];
element3 = FPNeg(Elem[operand2, e*2, esize]);

Elem[result, e*2, esize] = FPAdd(Elem[operand1, e*2, esize], element1, FPCR[]);
Elem[result, e*2+1, esize] = FPAdd(Elem[operand1, e*2+1, esize], element3, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCADD Page 826

FCCMP

Floating-point Conditional quiet Compare (scalar). This instruction compares the two SIMD&FP source register values
and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N, Z, C, V}
flags are set to the flag bit specifier.
This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm cond 0 1 Rn 0 nzcv

op

Half-precision (ftype == 11)
(FEAT_FP16)

FCCMP <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision (ftype == 00)

FCCMP <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision (ftype == 01)

FCCMP <Dn>, <Dm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UNDEFINED;

boolean signal_all_nans = (op == '1');
bits(4) condition = cond;
bits(4) flags = nzcv;

Assembler Symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

FCCMP Page 827

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

CheckFPEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = V[m];

if ConditionHolds(condition) then
flags = FPCompare(operand1, operand2, signal_all_nans, FPCR[]);

PSTATE.<N,Z,C,V> = flags;

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or
both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2)
and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to N=0, Z=0, C=1,
and V=1.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCCMP Page 828

FCCMPE

Floating-point Conditional signaling Compare (scalar). This instruction compares the two SIMD&FP source register
values and writes the result to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N, Z, C,
V} flags are set to the flag bit specifier.
This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm cond 0 1 Rn 1 nzcv

op

Half-precision (ftype == 11)
(FEAT_FP16)

FCCMPE <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision (ftype == 00)

FCCMPE <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision (ftype == 01)

FCCMPE <Dn>, <Dm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UNDEFINED;

boolean signal_all_nans = (op == '1');
bits(4) condition = cond;
bits(4) flags = nzcv;

Assembler Symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit
NZCV condition flags, encoded in the "nzcv" field.

FCCMPE Page 829

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

CheckFPEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = V[m];

if ConditionHolds(condition) then
flags = FPCompare(operand1, operand2, signal_all_nans, FPCR[]);

PSTATE.<N,Z,C,V> = flags;

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or
both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2)
and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to N=0, Z=0, C=1,
and V=1.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCCMPE Page 830

FCMEQ (register)

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the first source
SIMD&FP register, with the corresponding floating-point value from the second source SIMD&FP register, and if the
comparison is equal sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

U E ac

FCMEQ <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

U E ac

FCMEQ (register) Page 831

FCMEQ <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

U E ac

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

U E ac

FCMEQ (register) Page 832

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FCMEQ (register) Page 833

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
boolean test_passed;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[m] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMEQ (register) Page 834

FCMEQ (zero)

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP
register and if the value is equal to zero sets every bit of the corresponding vector element in the destination
SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP
register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMEQ <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMEQ <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMEQ (zero) Page 835

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FCMEQ (zero) Page 836

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMEQ (zero) Page 837

FCMGE (register)

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value in the first
source SIMD&FP register and if the value is greater than or equal to the corresponding floating-point value in the
second source SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP
register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to
zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

U E ac

FCMGE <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

U E ac

FCMGE (register) Page 838

FCMGE <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd

U E ac

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd

U E ac

FCMGE (register) Page 839

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FCMGE (register) Page 840

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
boolean test_passed;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[m] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGE (register) Page 841

FCMGE (zero)

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point value in the
source SIMD&FP register and if the value is greater than or equal to zero sets every bit of the corresponding vector
element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGE <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGE <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMGE (zero) Page 842

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FCMGE (zero) Page 843

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGE (zero) Page 844

FCMGT (register)

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first source
SIMD&FP register and if the value is greater than the corresponding floating-point value in the second source
SIMD&FP register sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

U E ac

FCMGT <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd

U E ac

FCMGT (register) Page 845

FCMGT <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd

U E ac

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd

U E ac

FCMGT (register) Page 846

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UNDEFINED;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FCMGT (register) Page 847

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
boolean test_passed;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[m] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, fpcr);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, fpcr);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, fpcr);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGT (register) Page 848

FCMGT (zero)

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is greater than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGT <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGT <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMGT (zero) Page 849

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd

U op

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FCMGT (zero) Page 850

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGT (zero) Page 851

FCMLA (by element)

Floating-point Complex Multiply Accumulate (by element).
This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on complex
numbers from the first source register and the destination register with the specified complex number from the
second source register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:
◦ The real element of the complex number from the first source register, if the transformation was a

rotation by 0 or 180 degrees.
◦ The imaginary element of the complex number from the first source register, if the transformation

was a rotation by 90 or 270 degrees.
• The complex number resulting from that multiplication is added to the complex number from the destination

register.
The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Vector
(FEAT_FCMA)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 0 rot 1 H 0 Rn Rd

(size == 01)

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

(size == 10)

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

if !HaveFCADDExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
if size == '00' || size == '11' then UNDEFINED;
if size == '01' then index = UInt(H:L);
if size == '10' then index = UInt(H);
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
if size == '10' && (L == '1' || Q == '0') then UNDEFINED;
if size == '01' && H == '1' && Q=='0' then UNDEFINED;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

FCMLA (by element) Page 852

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:H:L”:

size <index>
00 RESERVED
01 H:L
10 H
11 RESERVED

<rotate> Is the rotation, encoded in “rot”:

rot <rotate>
00 0
01 90
10 180
11 270

FCMLA (by element) Page 853

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
FPCRType fpcr = FPCR[];

for e = 0 to (elements DIV 2) -1
case rot of

when '00'
element1 = Elem[operand2, index*2, esize];
element2 = Elem[operand1, e*2, esize];
element3 = Elem[operand2, index*2+1, esize];
element4 = Elem[operand1, e*2, esize];

when '01'
element1 = FPNeg(Elem[operand2, index*2+1, esize]);
element2 = Elem[operand1, e*2+1, esize];
element3 = Elem[operand2, index*2, esize];
element4 = Elem[operand1, e*2+1, esize];

when '10'
element1 = FPNeg(Elem[operand2, index*2,esize]);
element2 = Elem[operand1, e*2, esize];
element3 = FPNeg(Elem[operand2, index*2+1, esize]);
element4 = Elem[operand1, e*2, esize];

when '11'
element1 = Elem[operand2, index*2+1, esize];
element2 = Elem[operand1, e*2+1, esize];
element3 = FPNeg(Elem[operand2, index*2, esize]);
element4 = Elem[operand1, e*2+1, esize];

Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, fpcr);
Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA (by element) Page 854

FCMLA

Floating-point Complex Multiply Accumulate.
This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers and the destination register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:
◦ The real element of the complex number from the first source register, if the transformation was a

rotation by 0 or 180 degrees.
◦ The imaginary element of the complex number from the first source register, if the transformation

was a rotation by 90 or 270 degrees.
• The complex number resulting from that multiplication is added to the complex number from the destination

register.
The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Vector
(FEAT_FCMA)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 0 Rm 1 1 0 rot 1 Rn Rd

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

if !HaveFCADDExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' then UNDEFINED;
if Q == '0' && size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in “rot”:

FCMLA Page 855

rot <rotate>
00 0
01 90
10 180
11 270

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) element3;
bits(esize) element4;
FPCRType fpcr = FPCR[];

for e = 0 to (elements DIV 2) -1
case rot of

when '00'
element1 = Elem[operand2, e*2, esize];
element2 = Elem[operand1, e*2, esize];
element3 = Elem[operand2, e*2+1, esize];
element4 = Elem[operand1, e*2, esize];

when '01'
element1 = FPNeg(Elem[operand2, e*2+1, esize]);
element2 = Elem[operand1, e*2+1, esize];
element3 = Elem[operand2, e*2, esize];
element4 = Elem[operand1, e*2+1, esize];

when '10'
element1 = FPNeg(Elem[operand2, e*2, esize]);
element2 = Elem[operand1, e*2, esize];
element3 = FPNeg(Elem[operand2, e*2+1, esize]);
element4 = Elem[operand1, e*2, esize];

when '11'
element1 = Elem[operand2, e*2+1, esize];
element2 = Elem[operand1, e*2+1, esize];
element3 = FPNeg(Elem[operand2, e*2, esize]);
element4 = Elem[operand1, e*2+1, esize];

Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, fpcr);
Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA Page 856

FCMLE (zero)

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point value in the
source SIMD&FP register and if the value is less than or equal to zero sets every bit of the corresponding vector
element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in
the destination SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMLE <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMLE <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMLE (zero) Page 857

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd

U op

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FCMLE (zero) Page 858

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLE (zero) Page 859

FCMLT (zero)

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the source
SIMD&FP register and if the value is less than zero sets every bit of the corresponding vector element in the
destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd

FCMLT <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd

FCMLT <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd

FCMLT (zero) Page 860

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCMLT (zero) Page 861

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR[]);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR[]);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR[]);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR[]);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR[]);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLT (zero) Page 862

FCMP

Floating-point quiet Compare (scalar). This instruction compares the two SIMD&FP source register values, or the first
SIMD&FP source register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.
This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 0 0 Rn 0 x 0 0 0

opc

Half-precision (ftype == 11 && opc == 00)
(FEAT_FP16)

FCMP <Hn>, <Hm>

Half-precision, zero (ftype == 11 && Rm == (00000) && opc == 01)
(FEAT_FP16)

FCMP <Hn>, #0.0

Single-precision (ftype == 00 && opc == 00)

FCMP <Sn>, <Sm>

Single-precision, zero (ftype == 00 && Rm == (00000) && opc == 01)

FCMP <Sn>, #0.0

Double-precision (ftype == 01 && opc == 00)

FCMP <Dn>, <Dm>

Double-precision, zero (ftype == 01 && Rm == (00000) && opc == 01)

FCMP <Dn>, #0.0

integer n = UInt(Rn);
integer m = UInt(Rm); // ignored when opc<0> == '1'

integer datasize;
case ftype of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UNDEFINED;

boolean signal_all_nans = (opc<1> == '1');
boolean cmp_with_zero = (opc<0> == '1');

FCMP Page 863

Assembler Symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in
the "Rn" field.
For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the
"Rn" field.
For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the
"Rn" field.
For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = if cmp_with_zero then FPZero('0') else V[m];

PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR[]);

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or
both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2)
and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to N=0, Z=0, C=1,
and V=1.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMP Page 864

FCMPE

Floating-point signaling Compare (scalar). This instruction compares the two SIMD&FP source register values, or the
first SIMD&FP source register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.
This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 0 0 0 Rn 1 x 0 0 0

opc

Half-precision (ftype == 11 && opc == 10)
(FEAT_FP16)

FCMPE <Hn>, <Hm>

Half-precision, zero (ftype == 11 && Rm == (00000) && opc == 11)
(FEAT_FP16)

FCMPE <Hn>, #0.0

Single-precision (ftype == 00 && opc == 10)

FCMPE <Sn>, <Sm>

Single-precision, zero (ftype == 00 && Rm == (00000) && opc == 11)

FCMPE <Sn>, #0.0

Double-precision (ftype == 01 && opc == 10)

FCMPE <Dn>, <Dm>

Double-precision, zero (ftype == 01 && Rm == (00000) && opc == 11)

FCMPE <Dn>, #0.0

integer n = UInt(Rn);
integer m = UInt(Rm); // ignored when opc<0> == '1'

integer datasize;
case ftype of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UNDEFINED;

boolean signal_all_nans = (opc<1> == '1');
boolean cmp_with_zero = (opc<0> == '1');

FCMPE Page 865

Assembler Symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in
the "Rn" field.
For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the
"Rn" field.
For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the
"Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the
"Rn" field.
For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in
the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = if cmp_with_zero then FPZero('0') else V[m];

PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR[]);

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or
both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2)
and (Operand1 > Operand2) are false. An unordered comparison sets the PSTATE condition flags to N=0, Z=0, C=1,
and V=1.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMPE Page 866

FCSEL

Floating-point Conditional Select (scalar). This instruction allows the SIMD&FP destination register to take the value
from either one or the other of two SIMD&FP source registers. If the condition passes, the first SIMD&FP source
register value is taken, otherwise the second SIMD&FP source register value is taken.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm cond 1 1 Rn Rd

Half-precision (ftype == 11)
(FEAT_FP16)

FCSEL <Hd>, <Hn>, <Hm>, <cond>

Single-precision (ftype == 00)

FCSEL <Sd>, <Sn>, <Sm>, <cond>

Double-precision (ftype == 01)

FCSEL <Dd>, <Dn>, <Dm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case ftype of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UNDEFINED;

bits(4) condition = cond;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

FCSEL Page 867

Operation

CheckFPEnabled64();
bits(datasize) result;

result = if ConditionHolds(condition) then V[n] else V[m];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCSEL Page 868

FCVT

Floating-point Convert precision (scalar). This instruction converts the floating-point value in the SIMD&FP source
register to the precision for the destination register data type using the rounding mode that is determined by the
FPCR and writes the result to the SIMD&FP destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 0 1 opc 1 0 0 0 0 Rn Rd

Half-precision to single-precision (ftype == 11 && opc == 00)

FCVT <Sd>, <Hn>

Half-precision to double-precision (ftype == 11 && opc == 01)

FCVT <Dd>, <Hn>

Single-precision to half-precision (ftype == 00 && opc == 11)

FCVT <Hd>, <Sn>

Single-precision to double-precision (ftype == 00 && opc == 01)

FCVT <Dd>, <Sn>

Double-precision to half-precision (ftype == 01 && opc == 11)

FCVT <Hd>, <Dn>

Double-precision to single-precision (ftype == 01 && opc == 00)

FCVT <Sd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer srcsize;
integer dstsize;

if ftype == opc then UNDEFINED;

case ftype of
when '00' srcsize = 32;
when '01' srcsize = 64;
when '10' UNDEFINED;
when '11' srcsize = 16;

case opc of
when '00' dstsize = 32;
when '01' dstsize = 64;
when '10' UNDEFINED;
when '11' dstsize = 16;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVT Page 869

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

bits(srcsize) operand = V[n];
FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

Elem[result, 0, dstsize] = FPConvert(operand, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVT Page 870

FCVTAS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction converts each
element in a vector from a floating-point value to a signed integer value using the Round to Nearest with Ties to Away
rounding mode and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAS <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAS (vector) Page 871

FCVTAS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAS (vector) Page 872

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAS (vector) Page 873

FCVTAS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest
with Ties to Away rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTAS (scalar) Page 874

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTAS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTAS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTAS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTAS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTAS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTAS <Xd>, <Dn>

FCVTAS (scalar) Page 875

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAS (scalar) Page 876

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAS (scalar) Page 877

FCVTAU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This instruction converts
each element in a vector from a floating-point value to an unsigned integer value using the Round to Nearest with Ties
to Away rounding mode and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAU <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAU (vector) Page 878

FCVTAU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

U

FCVTAU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAU (vector) Page 879

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAU (vector) Page 880

FCVTAU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to
Nearest with Ties to Away rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTAU (scalar) Page 881

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTAU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTAU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTAU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTAU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTAU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTAU <Xd>, <Dn>

FCVTAU (scalar) Page 882

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAU (scalar) Page 883

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAU (scalar) Page 884

FCVTL, FCVTL2

Floating-point Convert to higher precision Long (vector). This instruction reads each element in a vector in the
SIMD&FP source register, converts each value to double the precision of the source element using the rounding mode
that is determined by the FPCR, and writes each result to the equivalent element of the vector in the SIMD&FP
destination register.
Where the operation lengthens a 64-bit vector to a 128-bit vector, the FCVTL2 variant operates on the elements in the
top 64 bits of the source register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 1 1 0 Rn Rd

FCVTL{2} <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16 << UInt(sz);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “sz”:

sz <Ta>
0 4S
1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <Tb>
0 0 4H
0 1 8H
1 0 2S
1 1 4S

FCVTL, FCVTL2 Page 885

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(2*datasize) result;

for e = 0 to elements-1
Elem[result, e, 2*esize] = FPConvert(Elem[operand, e, esize], FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTL, FCVTL2 Page 886

FCVTMS (vector)

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction converts a scalar or
each element in a vector from a floating-point value to a signed integer value using the Round towards Minus Infinity
rounding mode, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMS <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMS (vector) Page 887

FCVTMS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMS (vector) Page 888

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMS (vector) Page 889

FCVTMS (scalar)

Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards
Minus Infinity rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 1 0 0 0 0 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTMS (scalar) Page 890

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTMS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTMS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTMS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTMS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTMS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTMS <Xd>, <Dn>

FCVTMS (scalar) Page 891

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMS (scalar) Page 892

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMS (scalar) Page 893

FCVTMU (vector)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction converts a scalar
or each element in a vector from a floating-point value to an unsigned integer value using the Round towards Minus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMU <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMU (vector) Page 894

FCVTMU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTMU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMU (vector) Page 895

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMU (vector) Page 896

FCVTMU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Minus Infinity rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 1 0 0 0 1 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTMU (scalar) Page 897

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTMU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTMU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTMU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTMU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTMU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTMU <Xd>, <Dn>

FCVTMU (scalar) Page 898

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMU (scalar) Page 899

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMU (scalar) Page 900

FCVTN, FCVTN2

Floating-point Convert to lower precision Narrow (vector). This instruction reads each vector element in the SIMD&FP
source register, converts each result to half the precision of the source element, writes the final result to a vector, and
writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are
half as long as the source vector elements. The rounding mode is determined by the FPCR.
The FCVTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
FCVTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

FCVTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16 << UInt(sz);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <Tb>
0 0 4H
0 1 8H
1 0 2S
1 1 4S

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “sz”:

sz <Ta>
0 4S
1 2D

FCVTN, FCVTN2 Page 901

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;

for e = 0 to elements-1
Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR[]);

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTN, FCVTN2 Page 902

FCVTNS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to a signed integer value using the Round to Nearest
rounding mode, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNS <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNS (vector) Page 903

FCVTNS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNS (vector) Page 904

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNS (vector) Page 905

FCVTNS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest
rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTNS (scalar) Page 906

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTNS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTNS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTNS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTNS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTNS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTNS <Xd>, <Dn>

FCVTNS (scalar) Page 907

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNS (scalar) Page 908

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNS (scalar) Page 909

FCVTNU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This instruction converts a
scalar or each element in a vector from a floating-point value to an unsigned integer value using the Round to Nearest
rounding mode, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNU <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNU (vector) Page 910

FCVTNU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTNU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNU (vector) Page 911

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNU (vector) Page 912

FCVTNU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar). This instruction converts
the floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to
Nearest rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTNU (scalar) Page 913

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTNU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTNU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTNU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTNU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTNU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTNU <Xd>, <Dn>

FCVTNU (scalar) Page 914

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNU (scalar) Page 915

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNU (scalar) Page 916

FCVTPS (vector)

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction converts a scalar or
each element in a vector from a floating-point value to a signed integer value using the Round towards Plus Infinity
rounding mode, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPS <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPS (vector) Page 917

FCVTPS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPS (vector) Page 918

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPS (vector) Page 919

FCVTPS (scalar)

Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar). This instruction converts the floating-
point value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Plus Infinity
rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 1 0 0 0 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTPS (scalar) Page 920

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTPS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTPS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTPS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTPS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTPS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTPS <Xd>, <Dn>

FCVTPS (scalar) Page 921

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPS (scalar) Page 922

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPS (scalar) Page 923

FCVTPU (vector)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction converts a scalar or
each element in a vector from a floating-point value to an unsigned integer value using the Round towards Plus Infinity
rounding mode, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPU <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPU (vector) Page 924

FCVTPU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd

U o2 o1

FCVTPU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPU (vector) Page 925

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPU (vector) Page 926

FCVTPU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar). This instruction converts the
floating-point value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards
Plus Infinity rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 1 0 0 1 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTPU (scalar) Page 927

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTPU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTPU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTPU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTPU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTPU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTPU <Xd>, <Dn>

FCVTPU (scalar) Page 928

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPU (scalar) Page 929

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPU (scalar) Page 930

FCVTXN, FCVTXN2

Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each vector element
in the source SIMD&FP register, narrows each value to half the precision of the source element using the Round to
Odd rounding mode, writes the result to a vector, and writes the vector to the destination SIMD&FP register.
This instruction uses the Round to Odd rounding mode which is not defined by the IEEE 754-2008 standard. This
rounding mode ensures that if the result of the conversion is inexact the least significant bit of the mantissa is forced
to 1. This rounding mode enables a floating-point value to be converted to a lower precision format via an intermediate
precision format while avoiding double rounding errors. For example, a 64-bit floating-point value can be converted to
a correctly rounded 16-bit floating-point value by first using this instruction to produce a 32-bit value and then using
another instruction with the wanted rounding mode to convert the 32-bit value to the final 16-bit floating-point value.
The FCVTXN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the FCVTXN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

FCVTXN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '0' then UNDEFINED;
integer esize = 32;
integer datasize = esize;
integer elements = 1;
integer part = 0;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

FCVTXN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '0' then UNDEFINED;
integer esize = 32;
integer datasize = 64;
integer elements = 2;
integer part = UInt(Q);

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

FCVTXN, FCVTXN2 Page 931

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <Tb>
0 x RESERVED
1 0 2S
1 1 4S

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “sz”:

sz <Ta>
0 RESERVED
1 2D

<Vb> Is the destination width specifier, encoded in “sz”:

sz <Vb>
0 RESERVED
1 S

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “sz”:

sz <Va>
0 RESERVED
1 D

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(2*datasize) operand = V[n];
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], fpcr, FPRounding_ODD);

if merge then
V[d] = result;

else
Vpart[d, part] = Elem[result, 0, datasize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTXN, FCVTXN2 Page 932

FCVTZS (vector, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a scalar or each
element in a vector from floating-point to fixed-point signed integer using the Round towards Zero rounding mode, and
writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd

U immh

FCVTZS <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd

U immh

FCVTZS <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

FCVTZS (vector, fixed-point) Page 933

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in
“immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in
“immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
for e = 0 to elements-1

element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (vector, fixed-point) Page 934

FCVTZS (vector, integer)

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a scalar or each
element in a vector from a floating-point value to a signed integer value using the Round towards Zero rounding mode,
and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZS <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZS (vector, integer) Page 935

FCVTZS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZS (vector, integer) Page 936

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (vector, integer) Page 937

FCVTZS (scalar, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar). This instruction converts the floating-
point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point signed integer using the Round towards
Zero rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 0 1 1 0 0 0 scale Rn Rd

rmode opcode

FCVTZS (scalar, fixed-point) Page 938

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTZS <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTZS <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTZS <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTZS <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTZS <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTZS <Xd>, <Dn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;

case ftype of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UNDEFINED;

if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);

case opcode<2:1>:rmode of
when '00 11' // FCVTZ

rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

FCVTZS (scalar, fixed-point) Page 939

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the
number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64
minus "scale".
For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the
number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64
minus "scale".

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, fracbits, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, fracbits, unsigned, fpcr, rounding);
V[d] = fltval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (scalar, fixed-point) Page 940

FCVTZS (scalar, integer)

Floating-point Convert to Signed integer, rounding toward Zero (scalar). This instruction converts the floating-point
value in the SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Zero rounding
mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 1 1 0 0 0 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTZS (scalar, integer) Page 941

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTZS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTZS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTZS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTZS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTZS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTZS <Xd>, <Dn>

FCVTZS (scalar, integer) Page 942

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZS (scalar, integer) Page 943

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (scalar, integer) Page 944

FCVTZU (vector, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts a scalar or
each element in a vector from floating-point to fixed-point unsigned integer using the Round towards Zero rounding
mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd

U immh

FCVTZU <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd

U immh

FCVTZU <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

FCVTZU (vector, fixed-point) Page 945

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in
“immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in
“immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
for e = 0 to elements-1

element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (vector, fixed-point) Page 946

FCVTZU (vector, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a scalar or each
element in a vector from a floating-point value to an unsigned integer value using the Round towards Zero rounding
mode, and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZU <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZU (vector, integer) Page 947

FCVTZU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd

U o2 o1

FCVTZU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZU (vector, integer) Page 948

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (vector, integer) Page 949

FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the floating-
point value in the SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the Round towards
Zero rounding mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 0 1 1 0 0 1 scale Rn Rd

rmode opcode

FCVTZU (scalar, fixed-point) Page 950

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTZU <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTZU <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTZU <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTZU <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTZU <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTZU <Xd>, <Dn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;

case ftype of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UNDEFINED;

if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);

case opcode<2:1>:rmode of
when '00 11' // FCVTZ

rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

FCVTZU (scalar, fixed-point) Page 951

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the
number of bits after the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64
minus "scale".
For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the
number of bits after the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64
minus "scale".

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, fracbits, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, fracbits, unsigned, fpcr, rounding);
V[d] = fltval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (scalar, fixed-point) Page 952

FCVTZU (scalar, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (scalar). This instruction converts the floating-point
value in the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Zero rounding
mode, and writes the result to the general-purpose destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 1 1 0 0 1 0 0 0 0 0 0 Rn Rd

rmode opcode

FCVTZU (scalar, integer) Page 953

Half-precision to 32-bit (sf == 0 && ftype == 11)
(FEAT_FP16)

FCVTZU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11)
(FEAT_FP16)

FCVTZU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && ftype == 00)

FCVTZU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && ftype == 00)

FCVTZU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && ftype == 01)

FCVTZU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && ftype == 01)

FCVTZU <Xd>, <Dn>

FCVTZU (scalar, integer) Page 954

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZU (scalar, integer) Page 955

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (scalar, integer) Page 956

FDIV (vector)

Floating-point Divide (vector). This instruction divides the floating-point values in the elements in the first source
SIMD&FP register, by the floating-point values in the corresponding elements in the second source SIMD&FP register,
places the results in a vector, and writes the vector to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FDIV (vector) Page 957

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPDiv(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIV (vector) Page 958

FDIV (scalar)

Floating-point Divide (scalar). This instruction divides the floating-point value of the first source SIMD&FP register by
the floating-point value of the second source SIMD&FP register, and writes the result to the destination SIMD&FP
register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 0 1 1 0 Rn Rd

Half-precision (ftype == 11)
(FEAT_FP16)

FDIV <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FDIV <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FDIV <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FDIV (scalar) Page 959

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

Elem[result, 0, esize] = FPDiv(operand1, operand2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIV (scalar) Page 960

FJCVTZS

Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero. This instruction converts the double-
precision floating-point value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero
rounding mode, and writes the result to the general-purpose destination register. If the result is too large to be
represented as a signed 32-bit integer, then the result is the integer modulo 232, as held in a 32-bit signed integer.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Double-precision to 32-bit
(FEAT_JSCVT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 Rn Rd
sf ftype rmode opcode

FJCVTZS Page 961

FJCVTZS <Wd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FJCVTZS Page 962

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FJCVTZS Page 963

FMADD

Floating-point fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source
registers, adds the product to the value of the third SIMD&FP source register, and writes the result to the SIMD&FP
destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 1 ftype 0 Rm 0 Ra Rn Rd

o1 o0

Half-precision (ftype == 11)
(FEAT_FP16)

FMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (ftype == 00)

FMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (ftype == 01)

FMADD <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean opa_neg = (o1 == '1');
boolean op1_neg = (o0 != o1);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

FMADD Page 964

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

Operation

CheckFPEnabled64();

bits(esize) operanda = V[a];
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[a] else Zeros();

if opa_neg then operanda = FPNeg(operanda);
if op1_neg then operand1 = FPNeg(operand1);
Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMADD Page 965

FMAX (vector)

Floating-point Maximum (vector). This instruction compares corresponding vector elements in the two source
SIMD&FP registers, places the larger of each of the two floating-point values into a vector, and writes the vector to
the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd

U o1

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd

U o1

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAX (vector) Page 966

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (vector) Page 967

FMAX (scalar)

Floating-point Maximum (scalar). This instruction compares the two source SIMD&FP registers, and writes the larger
of the two floating-point values to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 0 0 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FMAX <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FMAX <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FMAX <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPMaxMinOp operation;
case op of

when '00' operation = FPMaxMinOp_MAX;
when '01' operation = FPMaxMinOp_MIN;
when '10' operation = FPMaxMinOp_MAXNUM;
when '11' operation = FPMaxMinOp_MINNUM;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

FMAX (scalar) Page 968

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

case operation of
when FPMaxMinOp_MAX Elem[result, 0, esize] = FPMax(operand1, operand2, fpcr);
when FPMaxMinOp_MIN Elem[result, 0, esize] = FPMin(operand1, operand2, fpcr);
when FPMaxMinOp_MAXNUM Elem[result, 0, esize] = FPMaxNum(operand1, operand2, fpcr);
when FPMaxMinOp_MINNUM Elem[result, 0, esize] = FPMinNum(operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (scalar) Page 969

FMAXNM (vector)

Floating-point Maximum Number (vector). This instruction compares corresponding vector elements in the two source
SIMD&FP registers, writes the larger of the two floating-point values into a vector, and writes the vector to the
destination SIMD&FP register.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd

U a

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd

U o1

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAXNM (vector) Page 970

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (vector) Page 971

FMAXNM (scalar)

Floating-point Maximum Number (scalar). This instruction compares the first and second source SIMD&FP register
values, and writes the larger of the two floating-point values to the destination SIMD&FP register.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result that is placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 1 0 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FMAXNM <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FMAXNM <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FMAXNM <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPMaxMinOp operation;
case op of

when '00' operation = FPMaxMinOp_MAX;
when '01' operation = FPMaxMinOp_MIN;
when '10' operation = FPMaxMinOp_MAXNUM;
when '11' operation = FPMaxMinOp_MINNUM;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMAXNM (scalar) Page 972

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

case operation of
when FPMaxMinOp_MAX Elem[result, 0, esize] = FPMax(operand1, operand2, fpcr);
when FPMaxMinOp_MIN Elem[result, 0, esize] = FPMin(operand1, operand2, fpcr);
when FPMaxMinOp_MAXNUM Elem[result, 0, esize] = FPMaxNum(operand1, operand2, fpcr);
when FPMaxMinOp_MINNUM Elem[result, 0, esize] = FPMinNum(operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (scalar) Page 973

FMAXNMP (scalar)

Floating-point Maximum Number of Pair of elements (scalar). This instruction compares two vector elements in the
source SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP
register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMAXNMP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
if sz == '1' then UNDEFINED;
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMAXNMP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

FMAXNMP (scalar) Page 974

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in
“sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
boolean altfp = FALSE;
V[d] = Reduce(op, operand, esize, altfp);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMP (scalar) Page 975

FMAXNMP (vector)

Floating-point Maximum Number Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register,
reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the largest of each pair of
values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
floating-point values.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result is the numerical value, otherwise the result is identical to FMAX (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd

U a

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd

U o1

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMAXNMP (vector) Page 976

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMP (vector) Page 977

FMAXNMV

Floating-point Maximum Number across Vector. This instruction compares all the vector elements in the source
SIMD&FP register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values
in this instruction are floating-point values.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result of the comparison is the numerical value, otherwise the result is identical to FMAX (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMAXNMV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMAXNMV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED; // .4S only

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

FMAXNMV Page 978

sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
boolean altfp = FALSE;
V[d] = Reduce(op, operand, esize, altfp);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMV Page 979

FMAXP (scalar)

Floating-point Maximum of Pair of elements (scalar). This instruction compares two vector elements in the source
SIMD&FP register and writes the largest of the floating-point values as a scalar to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMAXP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
if sz == '1' then UNDEFINED;
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMAXP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

FMAXP (scalar) Page 980

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in
“sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

V[d] = Reduce(op, operand, esize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXP (scalar) Page 981

FMAXP (vector)

Floating-point Maximum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of
the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair
of adjacent vector elements from the concatenated vector, writes the larger of each pair of values into a vector, and
writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd

U o1

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd

U o1

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAXP (vector) Page 982

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXP (vector) Page 983

FMAXV

Floating-point Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are floating-point values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMAXV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMAXV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED;

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 RESERVED

FMAXV Page 984

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

V[d] = Reduce(op, operand, esize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXV Page 985

FMIN (vector)

Floating-point minimum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the smaller of each of the two floating-point values into a vector, and writes the vector to
the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd

U o1

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd

U o1

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMIN (vector) Page 986

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (vector) Page 987

FMIN (scalar)

Floating-point Minimum (scalar). This instruction compares the first and second source SIMD&FP register values, and
writes the smaller of the two floating-point values to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 0 1 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FMIN <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FMIN <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FMIN <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPMaxMinOp operation;
case op of

when '00' operation = FPMaxMinOp_MAX;
when '01' operation = FPMaxMinOp_MIN;
when '10' operation = FPMaxMinOp_MAXNUM;
when '11' operation = FPMaxMinOp_MINNUM;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

FMIN (scalar) Page 988

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

case operation of
when FPMaxMinOp_MAX Elem[result, 0, esize] = FPMax(operand1, operand2, fpcr);
when FPMaxMinOp_MIN Elem[result, 0, esize] = FPMin(operand1, operand2, fpcr);
when FPMaxMinOp_MAXNUM Elem[result, 0, esize] = FPMaxNum(operand1, operand2, fpcr);
when FPMaxMinOp_MINNUM Elem[result, 0, esize] = FPMinNum(operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (scalar) Page 989

FMINNM (vector)

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in the two source
SIMD&FP registers, writes the smaller of the two floating-point values into a vector, and writes the vector to the
destination SIMD&FP register.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd

U a

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd

U o1

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMINNM (vector) Page 990

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (vector) Page 991

FMINNM (scalar)

Floating-point Minimum Number (scalar). This instruction compares the first and second source SIMD&FP register
values, and writes the smaller of the two floating-point values to the destination SIMD&FP register.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result that is placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 1 1 1 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FMINNM <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FMINNM <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FMINNM <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPMaxMinOp operation;
case op of

when '00' operation = FPMaxMinOp_MAX;
when '01' operation = FPMaxMinOp_MIN;
when '10' operation = FPMaxMinOp_MAXNUM;
when '11' operation = FPMaxMinOp_MINNUM;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMINNM (scalar) Page 992

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

case operation of
when FPMaxMinOp_MAX Elem[result, 0, esize] = FPMax(operand1, operand2, fpcr);
when FPMaxMinOp_MIN Elem[result, 0, esize] = FPMin(operand1, operand2, fpcr);
when FPMaxMinOp_MAXNUM Elem[result, 0, esize] = FPMaxNum(operand1, operand2, fpcr);
when FPMaxMinOp_MINNUM Elem[result, 0, esize] = FPMinNum(operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (scalar) Page 993

FMINNMP (scalar)

Floating-point Minimum Number of Pair of elements (scalar). This instruction compares two vector elements in the
source SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP
register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMINNMP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
if sz == '1' then UNDEFINED;
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMINNMP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

FMINNMP (scalar) Page 994

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in
“sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
boolean altfp = FALSE;
V[d] = Reduce(op, operand, esize, altfp);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMP (scalar) Page 995

FMINNMP (vector)

Floating-point Minimum Number Pairwise (vector). This instruction creates a vector by concatenating the vector
elements of the first source SIMD&FP register after the vector elements of the second source SIMD&FP register,
reads each pair of adjacent vector elements in the two source SIMD&FP registers, writes the smallest of each pair of
floating-point values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this
instruction are floating-point values.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result is the numerical value, otherwise the result is identical to FMIN (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd

U a

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd

U o1

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMINNMP (vector) Page 996

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMP (vector) Page 997

FMINNMV

Floating-point Minimum Number across Vector. This instruction compares all the vector elements in the source
SIMD&FP register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the
values in this instruction are floating-point values.
NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet
NaN, the result of the comparison is the numerical value, otherwise the result is identical to FMIN (scalar).
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMINNMV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd

o1

FMINNMV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED; // .4S only

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMINNUM else ReduceOp_FMAXNUM;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

FMINNMV Page 998

sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
boolean altfp = FALSE;
V[d] = Reduce(op, operand, esize, altfp);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMV Page 999

FMINP (scalar)

Floating-point Minimum of Pair of elements (scalar). This instruction compares two vector elements in the source
SIMD&FP register and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMINP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
if sz == '1' then UNDEFINED;
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMINP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

FMINP (scalar) Page 1000

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in
“sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

V[d] = Reduce(op, operand, esize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINP (scalar) Page 1001

FMINP (vector)

Floating-point Minimum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of
the first source SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair
of adjacent vector elements from the concatenated vector, writes the smaller of each pair of values into a vector, and
writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd

U o1

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd

U o1

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMINP (vector) Page 1002

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINP (vector) Page 1003

FMINV

Floating-point Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP
register, and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this
instruction are floating-point values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMINV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd

o1

FMINV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then UNDEFINED;

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = if o1 == '1' then ReduceOp_FMIN else ReduceOp_FMAX;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 RESERVED

FMINV Page 1004

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

V[d] = Reduce(op, operand, esize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINV Page 1005

FMLA (by element)

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector elements in the
first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the
results in the vector elements of the destination SIMD&FP register. All the values in this instruction are floating-point
values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-
precision and Vector, single-precision and double-precision

Scalar, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd

o2

FMLA <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd

o2

FMLA <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

FMLA (by element) Page 1006

Vector, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd

o2

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd

o2

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMLA (by element) Page 1007

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to
V15, encoded in the "Rm" field.
For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (by element) Page 1008

FMLA (vector)

Floating-point fused Multiply-Add to accumulator (vector). This instruction multiplies corresponding floating-point
values in the vectors in the two source SIMD&FP registers, adds the product to the corresponding vector element of
the destination SIMD&FP register, and writes the result to the destination SIMD&FP register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 1 1 Rn Rd

a

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 1 1 Rn Rd

op

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (op == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

FMLA (vector) Page 1009

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (vector) Page 1010

FMLAL, FMLAL2 (by element)

Floating-point fused Multiply-Add Long to accumulator (by element). This instruction multiplies the vector elements in
the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the
product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the
result of the multiply before the accumulation.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

It has encodings from 2 classes: FMLAL and FMLAL2

FMLAL
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 1 0 L M Rm 0 0 0 0 H 0 Rn Rd

sz S

FMLAL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q=='1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 0;

FMLAL2
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 1 0 L M Rm 1 0 0 0 H 0 Rn Rd

sz S

FMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q=='1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 1;

FMLAL, FMLAL2 (by
element) Page 1011

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 2H
1 4H

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the element index, encoded in the "H:L:M" fields.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n,part];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

for e = 0 to elements-1
element1 = Elem[operand1, e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLAL, FMLAL2 (by
element) Page 1012

FMLAL, FMLAL2 (vector)

Floating-point fused Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding half-
precision floating-point values in the vectors in the two source SIMD&FP registers, and accumulates the product to
the corresponding vector element of the destination SIMD&FP register. The instruction does not round the result of
the multiply before the accumulation.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

It has encodings from 2 classes: FMLAL and FMLAL2

FMLAL
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 1 Rm 1 1 1 0 1 1 Rn Rd

S sz

FMLAL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 0;

FMLAL2
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 0 1 Rm 1 1 0 0 1 1 Rn Rd

S sz

FMLAL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 1;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMLAL, FMLAL2 (vector) Page 1013

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 2H
1 4H

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n,part];
bits(datasize DIV 2) operand2 = Vpart[m,part];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize DIV 2];
element2 = Elem[operand2, e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result,e,esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLAL, FMLAL2 (vector) Page 1014

FMLS (by element)

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the vector elements
in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the
results from the vector elements of the destination SIMD&FP register. All the values in this instruction are floating-
point values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-
precision and Vector, single-precision and double-precision

Scalar, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd

o2

FMLS <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd

o2

FMLS <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

FMLS (by element) Page 1015

Vector, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd

o2

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd

o2

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMLS (by element) Page 1016

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to
V15, encoded in the "Rm" field.
For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (by element) Page 1017

FMLS (vector)

Floating-point fused Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding floating-
point values in the vectors in the two source SIMD&FP registers, negates the product, adds the result to the
corresponding vector element of the destination SIMD&FP register, and writes the result to the destination SIMD&FP
register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd

a

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 1 1 Rn Rd

op

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (op == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

FMLS (vector) Page 1018

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (vector) Page 1019

FMLSL, FMLSL2 (by element)

Floating-point fused Multiply-Subtract Long from accumulator (by element). This instruction multiplies the negated
vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register,
and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The
instruction does not round the result of the multiply before the accumulation.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

It has encodings from 2 classes: FMLSL and FMLSL2

FMLSL
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 1 0 L M Rm 0 1 0 0 H 0 Rn Rd

sz S

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q=='1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 0;

FMLSL2
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 1 0 L M Rm 1 1 0 0 H 0 Rn Rd

sz S

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.H[<index>]

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt('0':Rm); // Vm can only be in bottom 16 registers.
if sz == '1' then UNDEFINED;
integer index = UInt(H:L:M);

integer esize = 32;
integer datasize = if Q=='1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (S == '1');
integer part = 1;

FMLSL, FMLSL2 (by
element) Page 1020

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 2H
1 4H

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the element index, encoded in the "H:L:M" fields.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n,part];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2 = Elem[operand2, index, esize DIV 2];

for e = 0 to elements-1
element1 = Elem[operand1, e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLSL, FMLSL2 (by
element) Page 1021

FMLSL, FMLSL2 (vector)

Floating-point fused Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the
vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates
the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round
the result of the multiply before the accumulation.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.FHM indicates whether this instruction is supported.

It has encodings from 2 classes: FMLSL and FMLSL2

FMLSL
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 0 1 Rm 1 1 1 0 1 1 Rn Rd

S sz

FMLSL <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 0;

FMLSL2
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 0 1 Rm 1 1 0 0 1 1 Rn Rd

S sz

FMLSL2 <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (S == '1');
integer part = 1;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMLSL, FMLSL2 (vector) Page 1022

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 2H
1 4H

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize DIV 2) operand1 = Vpart[n,part];
bits(datasize DIV 2) operand2 = Vpart[m,part];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize DIV 2];
element2 = Elem[operand2, e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result,e,esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLSL, FMLSL2 (vector) Page 1023

FMOV (vector, immediate)

Floating-point move immediate (vector). This instruction copies an immediate floating-point constant into every
element of the SIMD&FP destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 1 1 d e f g h Rd

FMOV <Vd>.<T>, #<imm>

if !HaveFP16Ext() then UNDEFINED;

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;

imm8 = a:b:c:d:e:f:g:h;
imm16 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,2):imm8<5:0>:Zeros(6);

imm = Replicate(imm16, datasize DIV 16);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q op 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 0 1 d e f g h Rd

cmode

FMOV (vector, immediate) Page 1024

Single-precision (op == 0)

FMOV <Vd>.<T>, #<imm>

Double-precision (Q == 1 && op == 1)

FMOV <Vd>.2D, #<imm>

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx00' operation = ImmediateOp_MOVI;
when '0xx01' operation = ImmediateOp_MVNI;
when '0xx10' operation = ImmediateOp_ORR;
when '0xx11' operation = ImmediateOp_BIC;
when '10x00' operation = ImmediateOp_MOVI;
when '10x01' operation = ImmediateOp_MVNI;
when '10x10' operation = ImmediateOp_ORR;
when '10x11' operation = ImmediateOp_BIC;
when '110x0' operation = ImmediateOp_MOVI;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UNDEFINED;
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in
"a:b:c:d:e:f:g:h". For details of the range of constants available and the encoding of <imm>, see
Modified immediate constants in A64 floating-point instructions.

Operation

CheckFPAdvSIMDEnabled64();

V[rd] = imm;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (vector, immediate) Page 1025

FMOV (register)

Floating-point Move register without conversion. This instruction copies the floating-point value in the SIMD&FP
source register to the SIMD&FP destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 0 0 1 0 0 0 0 Rn Rd

opc

Half-precision (ftype == 11)
(FEAT_FP16)

FMOV <Hd>, <Hn>

Single-precision (ftype == 00)

FMOV <Sd>, <Sn>

Double-precision (ftype == 01)

FMOV <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPUnaryOp fpop;
case opc of

when '00' fpop = FPUnaryOp_MOV;
when '01' fpop = FPUnaryOp_ABS;
when '10' fpop = FPUnaryOp_NEG;
when '11' fpop = FPUnaryOp_SQRT;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FMOV (register) Page 1026

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = fpop != FPUnaryOp_MOV && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

bits(esize) operand = V[n];

case fpop of
when FPUnaryOp_MOV Elem[result, 0, esize] = operand;
when FPUnaryOp_ABS Elem[result, 0, esize] = FPAbs(operand);
when FPUnaryOp_NEG Elem[result, 0, esize] = FPNeg(operand);
when FPUnaryOp_SQRT Elem[result, 0, esize] = FPSqrt(operand, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (register) Page 1027

FMOV (general)

Floating-point Move to or from general-purpose register without conversion. This instruction transfers the contents of
a SIMD&FP register to a general-purpose register, or the contents of a general-purpose register to a SIMD&FP
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 x 1 1 x 0 0 0 0 0 0 Rn Rd

rmode opcode

FMOV (general) Page 1028

Half-precision to 32-bit (sf == 0 && ftype == 11 && rmode == 00 && opcode == 110)
(FEAT_FP16)

FMOV <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && ftype == 11 && rmode == 00 && opcode == 110)
(FEAT_FP16)

FMOV <Xd>, <Hn>

32-bit to half-precision (sf == 0 && ftype == 11 && rmode == 00 && opcode == 111)
(FEAT_FP16)

FMOV <Hd>, <Wn>

32-bit to single-precision (sf == 0 && ftype == 00 && rmode == 00 && opcode == 111)

FMOV <Sd>, <Wn>

Single-precision to 32-bit (sf == 0 && ftype == 00 && rmode == 00 && opcode == 110)

FMOV <Wd>, <Sn>

64-bit to half-precision (sf == 1 && ftype == 11 && rmode == 00 && opcode == 111)
(FEAT_FP16)

FMOV <Hd>, <Xn>

64-bit to double-precision (sf == 1 && ftype == 01 && rmode == 00 && opcode == 111)

FMOV <Dd>, <Xn>

64-bit to top half of 128-bit (sf == 1 && ftype == 10 && rmode == 01 && opcode == 111)

FMOV <Vd>.D[1], <Xn>

Double-precision to 64-bit (sf == 1 && ftype == 01 && rmode == 00 && opcode == 110)

FMOV <Xd>, <Dn>

Top half of 128-bit to 64-bit (sf == 1 && ftype == 10 && rmode == 01 && opcode == 110)

FMOV <Xd>, <Vn>.D[1]

FMOV (general) Page 1029

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FMOV (general) Page 1030

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (general) Page 1031

FMOV (scalar, immediate)

Floating-point move immediate (scalar). This instruction copies a floating-point immediate constant into the SIMD&FP
destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 imm8 1 0 0 0 0 0 0 0 Rd

Half-precision (ftype == 11)
(FEAT_FP16)

FMOV <Hd>, #<imm>

Single-precision (ftype == 00)

FMOV <Sd>, #<imm>

Double-precision (ftype == 01)

FMOV <Dd>, #<imm>

integer d = UInt(Rd);

integer datasize;
case ftype of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UNDEFINED;

bits(datasize) imm = VFPExpandImm(imm8);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in
the "imm8" field. For details of the range of constants available and the encoding of <imm>, see
Modified immediate constants in A64 floating-point instructions.

Operation

CheckFPEnabled64();

V[d] = imm;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (scalar, immediate) Page 1032

FMSUB

Floating-point Fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP source
registers, negates the product, adds that to the value of the third SIMD&FP source register, and writes the result to
the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 1 ftype 0 Rm 1 Ra Rn Rd

o1 o0

Half-precision (ftype == 11)
(FEAT_FP16)

FMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (ftype == 00)

FMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (ftype == 01)

FMSUB <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean opa_neg = (o1 == '1');
boolean op1_neg = (o0 != o1);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

FMSUB Page 1033

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

Operation

CheckFPEnabled64();

bits(esize) operanda = V[a];
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[a] else Zeros();

if opa_neg then operanda = FPNeg(operanda);
if op1_neg then operand1 = FPNeg(operand1);
Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMSUB Page 1034

FMUL (by element)

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source SIMD&FP
register by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the
vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-
precision and Vector, single-precision and double-precision

Scalar, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

U

FMUL <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

U

FMUL <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

FMUL (by element) Page 1035

Vector, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

U

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

U

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMUL (by element) Page 1036

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to
V15, encoded in the "Rm" field.
For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if mulx_op then

Elem[result, e, esize] = FPMulX(element1, element2, fpcr);
else

Elem[result, e, esize] = FPMul(element1, element2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (by element) Page 1037

FMUL (vector)

Floating-point Multiply (vector). This instruction multiplies corresponding floating-point values in the vectors in the
two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination SIMD&FP
register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FMUL (vector) Page 1038

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMul(element1, element2, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (vector) Page 1039

FMUL (scalar)

Floating-point Multiply (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP
registers, and writes the result to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 0 0 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FMUL <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FMUL <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FMUL <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean negated = (op == '1');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMUL (scalar) Page 1040

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

bits(esize) product = FPMul(operand1, operand2, fpcr);
if negated then product = FPNeg(product);
Elem[result, 0, esize] = product;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (scalar) Page 1041

FMULX (by element)

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in the vector
elements in the first source SIMD&FP register by the specified floating-point value in the second source SIMD&FP
register, places the results in a vector, and writes the vector to the destination SIMD&FP register.
If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the
values is negative, otherwise the result is positive.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-
precision and Vector, single-precision and double-precision

Scalar, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

U

FMULX <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

U

FMULX <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

FMULX (by element) Page 1042

Vector, half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd

U

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer index = UInt(H:L:M);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd

U

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMULX (by element) Page 1043

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to
V15, encoded in the "Rm" field.
For the single-precision and double-precision variant: is the name of the second SIMD&FP source
register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if mulx_op then

Elem[result, e, esize] = FPMulX(element1, element2, fpcr);
else

Elem[result, e, esize] = FPMul(element1, element2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMULX (by element) Page 1044

FMULX

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the vectors of the
two source SIMD&FP registers, places the resulting floating-point values in a vector, and writes the vector to the
destination SIMD&FP register.
If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the
values is negative, otherwise the result is positive.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

FMULX <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

FMULX <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

FMULX Page 1045

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FMULX Page 1046

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMulX(element1, element2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMULX Page 1047

FNEG (vector)

Floating-point Negate (vector). This instruction negates the value of each vector element in the source SIMD&FP
register, writes the result to a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd

U

FNEG <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd

U

FNEG <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FNEG (vector) Page 1048

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
if neg then

element = FPNeg(element);
else

element = FPAbs(element);
Elem[result, e, esize] = element;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNEG (vector) Page 1049

FNEG (scalar)

Floating-point Negate (scalar). This instruction negates the value in the SIMD&FP source register and writes the
result to the SIMD&FP destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 0 1 0 0 0 0 Rn Rd

opc

Half-precision (ftype == 11)
(FEAT_FP16)

FNEG <Hd>, <Hn>

Single-precision (ftype == 00)

FNEG <Sd>, <Sn>

Double-precision (ftype == 01)

FNEG <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPUnaryOp fpop;
case opc of

when '00' fpop = FPUnaryOp_MOV;
when '01' fpop = FPUnaryOp_ABS;
when '10' fpop = FPUnaryOp_NEG;
when '11' fpop = FPUnaryOp_SQRT;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FNEG (scalar) Page 1050

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = fpop != FPUnaryOp_MOV && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

bits(esize) operand = V[n];

case fpop of
when FPUnaryOp_MOV Elem[result, 0, esize] = operand;
when FPUnaryOp_ABS Elem[result, 0, esize] = FPAbs(operand);
when FPUnaryOp_NEG Elem[result, 0, esize] = FPNeg(operand);
when FPUnaryOp_SQRT Elem[result, 0, esize] = FPSqrt(operand, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNEG (scalar) Page 1051

FNMADD

Floating-point Negated fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP
source registers, negates the product, subtracts the value of the third SIMD&FP source register, and writes the result
to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 1 ftype 1 Rm 0 Ra Rn Rd

o1 o0

Half-precision (ftype == 11)
(FEAT_FP16)

FNMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (ftype == 00)

FNMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (ftype == 01)

FNMADD <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean opa_neg = (o1 == '1');
boolean op1_neg = (o0 != o1);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

FNMADD Page 1052

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

Operation

CheckFPEnabled64();

bits(esize) operanda = V[a];
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[a] else Zeros();

if opa_neg then operanda = FPNeg(operanda);
if op1_neg then operand1 = FPNeg(operand1);
Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMADD Page 1053

FNMSUB

Floating-point Negated fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two
SIMD&FP source registers, subtracts the value of the third SIMD&FP source register, and writes the result to the
destination SIMD&FP register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 1 ftype 1 Rm 1 Ra Rn Rd

o1 o0

Half-precision (ftype == 11)
(FEAT_FP16)

FNMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (ftype == 00)

FNMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (ftype == 01)

FNMSUB <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean opa_neg = (o1 == '1');
boolean op1_neg = (o0 != o1);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

FNMSUB Page 1054

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn"
field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm"
field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra"
field.

Operation

CheckFPEnabled64();

bits(esize) operanda = V[a];
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[a] else Zeros();

if opa_neg then operanda = FPNeg(operanda);
if op1_neg then operand1 = FPNeg(operand1);
Elem[result, 0, esize] = FPMulAdd(operanda, operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMSUB Page 1055

FNMUL (scalar)

Floating-point Multiply-Negate (scalar). This instruction multiplies the floating-point values of the two source
SIMD&FP registers, and writes the negation of the result to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 1 0 0 0 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FNMUL <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FNMUL <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FNMUL <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean negated = (op == '1');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FNMUL (scalar) Page 1056

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

bits(esize) product = FPMul(operand1, operand2, fpcr);
if negated then product = FPNeg(product);
Elem[result, 0, esize] = product;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMUL (scalar) Page 1057

FRECPE

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each vector element
in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP
register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

FRECPE <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

FRECPE <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

FRECPE <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FRECPE Page 1058

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

FRECPE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRecipEstimate(element, FPCR[]);

V[d] = result;

FRECPE Page 1059

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPE Page 1060

FRECPS

Floating-point Reciprocal Step. This instruction multiplies the corresponding floating-point values in the vectors of the
two source SIMD&FP registers, subtracts each of the products from 2.0, places the resulting floating-point values in a
vector, and writes the vector to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

FRECPS <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

FRECPS <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FRECPS Page 1061

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FRECPS Page 1062

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPRecipStepFused(element1, element2);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPS Page 1063

FRECPX

Floating-point Reciprocal exponent (scalar). This instruction finds an approximate reciprocal exponent for each vector
element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd

FRECPX <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

FRECPX <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FRECPX Page 1064

Operation

CheckFPAdvSIMDEnabled64();
bits(esize) operand = V[n];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

Elem[result, 0, esize] = FPRecpX(operand, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPX Page 1065

FRINT32X (vector)

Floating-point Round to 32-bit Integer, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer size
using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 0 1 0 Rn Rd

U op

FRINT32X <Vd>.<T>, <Vn>.<T>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

V[d] = result;

FRINT32X (vector) Page 1066

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT32X (vector) Page 1067

FRINT32X (scalar)

Floating-point Round to 32-bit Integer, using current rounding mode (scalar). This instruction rounds a floating-point
value in the SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input
value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for the
corresponding result value} the most negative integer representable in the destination size, and an Invalid Operation
floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Floating-point
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 0 1 1 0 0 0 0 Rn Rd

ftype op

Single-precision (ftype == 00)

FRINT32X <Sd>, <Sn>

Double-precision (ftype == 01)

FRINT32X <Dd>, <Dn>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '1x' UNDEFINED;

integer intsize = if op<1> == '0' then 32 else 64;

FPRounding rounding = if op<0> == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINT32X (scalar) Page 1068

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, rounding, intsize);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT32X (scalar) Page 1069

FRINT32Z (vector)

Floating-point Round to 32-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point values in
the SIMD&FP source register to integral floating-point values that fit into a 32-bit integer size using the Round
towards Zero rounding mode, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 0 1 0 Rn Rd

U op

FRINT32Z <Vd>.<T>, <Vn>.<T>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

V[d] = result;

FRINT32Z (vector) Page 1070

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT32Z (vector) Page 1071

FRINT32Z (scalar)

Floating-point Round to 32-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value that fits into a 32-bit integer size using the Round towards
Zero rounding mode, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When the result value is not numerically equal to the
{corresponding} input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the
instruction returns {for the corresponding result value} the most negative integer representable in the destination
size, and an Invalid Operation floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Floating-point
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 0 0 1 0 0 0 0 Rn Rd

ftype op

Single-precision (ftype == 00)

FRINT32Z <Sd>, <Sn>

Double-precision (ftype == 01)

FRINT32Z <Dd>, <Dn>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '1x' UNDEFINED;

integer intsize = if op<1> == '0' then 32 else 64;

FPRounding rounding = if op<0> == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINT32Z (scalar) Page 1072

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, rounding, intsize);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT32Z (scalar) Page 1073

FRINT64X (vector)

Floating-point Round to 64-bit Integer, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer size
using the rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

U op

FRINT64X <Vd>.<T>, <Vn>.<T>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

V[d] = result;

FRINT64X (vector) Page 1074

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT64X (vector) Page 1075

FRINT64X (scalar)

Floating-point Round to 64-bit Integer, using current rounding mode (scalar). This instruction rounds a floating-point
value in the SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When the result value is not numerically equal to the input
value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the instruction returns {for the
corresponding result value} the most negative integer representable in the destination size, and an Invalid Operation
floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Floating-point
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 1 1 1 0 0 0 0 Rn Rd

ftype op

Single-precision (ftype == 00)

FRINT64X <Sd>, <Sn>

Double-precision (ftype == 01)

FRINT64X <Dd>, <Dn>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '1x' UNDEFINED;

integer intsize = if op<1> == '0' then 32 else 64;

FPRounding rounding = if op<0> == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINT64X (scalar) Page 1076

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, rounding, intsize);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT64X (scalar) Page 1077

FRINT64Z (vector)

Floating-point Round to 64-bit Integer toward Zero (vector). This instruction rounds a vector of floating-point values in
the SIMD&FP source register to integral floating-point values that fit into a 64-bit integer size using the Round
towards Zero rounding mode, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When one of the result values is not numerically equal to the
corresponding input value, an Inexact exception is raised. When an input is infinite, NaN or out-of-range, the
instruction returns for the corresponding result value the most negative integer representable in the destination size,
and an Invalid Operation floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Vector single-precision and double-precision
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

U op

FRINT64Z <Vd>.<T>, <Vn>.<T>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer intsize = if op == '0' then 32 else 64;
FPRounding rounding = if U == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundIntN(element, FPCR[], rounding, intsize);

V[d] = result;

FRINT64Z (vector) Page 1078

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT64Z (vector) Page 1079

FRINT64Z (scalar)

Floating-point Round to 64-bit Integer toward Zero (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value that fits into a 64-bit integer size using the Round towards
Zero rounding mode, and writes the result to the SIMD&FP destination register.
A zero input returns a zero result with the same sign. When the result value is not numerically equal to the
{corresponding} input value, an Inexact exception is raised. When the input is infinite, NaN or out-of-range, the
instruction returns {for the corresponding result value} the most negative integer representable in the destination
size, and an Invalid Operation floating-point exception is raised.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

Floating-point
(FEAT_FRINTTS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 x 1 0 1 0 0 1 0 1 0 0 0 0 Rn Rd

ftype op

Single-precision (ftype == 00)

FRINT64Z <Sd>, <Sn>

Double-precision (ftype == 01)

FRINT64Z <Dd>, <Dn>

if !HaveFrintExt() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '1x' UNDEFINED;

integer intsize = if op<1> == '0' then 32 else 64;

FPRounding rounding = if op<0> == '0' then FPRounding_ZERO else FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINT64Z (scalar) Page 1080

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundIntN(operand, fpcr, rounding, intsize);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT64Z (scalar) Page 1081

FRINTA (vector)

Floating-point Round to Integral, to nearest with ties to Away (vector). This instruction rounds a vector of floating-
point values in the SIMD&FP source register to integral floating-point values of the same size using the Round to
Nearest with Ties to Away rounding mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd

U o2 o1

FRINTA <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd

U o2 o1

FRINTA (vector) Page 1082

FRINTA <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTA (vector) Page 1083

FRINTA (scalar)

Floating-point Round to Integral, to nearest with ties to Away (scalar). This instruction rounds a floating-point value in
the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest with Ties
to Away rounding mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 0 0 1 0 0 0 0 Rn Rd

rmode

Half-precision (ftype == 11)
(FEAT_FP16)

FRINTA <Hd>, <Hn>

Single-precision (ftype == 00)

FRINTA <Sd>, <Sn>

Double-precision (ftype == 01)

FRINTA <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean exact = FALSE;
FPRounding rounding;
case rmode of

when '0xx' rounding = FPDecodeRounding(rmode<1:0>);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

FRINTA (scalar) Page 1084

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTA (scalar) Page 1085

FRINTI (vector)

Floating-point Round to Integral, using current rounding mode (vector). This instruction rounds a vector of floating-
point values in the SIMD&FP source register to integral floating-point values of the same size using the rounding
mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTI <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTI (vector) Page 1086

FRINTI <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTI (vector) Page 1087

FRINTI (scalar)

Floating-point Round to Integral, using current rounding mode (scalar). This instruction rounds a floating-point value
in the SIMD&FP source register to an integral floating-point value of the same size using the rounding mode that is
determined by the FPCR, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 1 1 1 0 0 0 0 Rn Rd

rmode

Half-precision (ftype == 11)
(FEAT_FP16)

FRINTI <Hd>, <Hn>

Single-precision (ftype == 00)

FRINTI <Sd>, <Sn>

Double-precision (ftype == 01)

FRINTI <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean exact = FALSE;
FPRounding rounding;
case rmode of

when '0xx' rounding = FPDecodeRounding(rmode<1:0>);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

FRINTI (scalar) Page 1088

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTI (scalar) Page 1089

FRINTM (vector)

Floating-point Round to Integral, toward Minus infinity (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values of the same size using the Round towards
Minus Infinity rounding mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTM <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTM (vector) Page 1090

FRINTM <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTM (vector) Page 1091

FRINTM (scalar)

Floating-point Round to Integral, toward Minus infinity (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value of the same size using the Round towards Minus Infinity
rounding mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 0 1 0 0 0 0 Rn Rd

rmode

Half-precision (ftype == 11)
(FEAT_FP16)

FRINTM <Hd>, <Hn>

Single-precision (ftype == 00)

FRINTM <Sd>, <Sn>

Double-precision (ftype == 01)

FRINTM <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean exact = FALSE;
FPRounding rounding;
case rmode of

when '0xx' rounding = FPDecodeRounding(rmode<1:0>);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

FRINTM (scalar) Page 1092

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTM (scalar) Page 1093

FRINTN (vector)

Floating-point Round to Integral, to nearest with ties to even (vector). This instruction rounds a vector of floating-point
values in the SIMD&FP source register to integral floating-point values of the same size using the Round to Nearest
rounding mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd

U o2 o1

FRINTN <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd

U o2 o1

FRINTN (vector) Page 1094

FRINTN <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTN (vector) Page 1095

FRINTN (scalar)

Floating-point Round to Integral, to nearest with ties to even (scalar). This instruction rounds a floating-point value in
the SIMD&FP source register to an integral floating-point value of the same size using the Round to Nearest rounding
mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 0 1 0 0 0 0 Rn Rd

rmode

Half-precision (ftype == 11)
(FEAT_FP16)

FRINTN <Hd>, <Hn>

Single-precision (ftype == 00)

FRINTN <Sd>, <Sn>

Double-precision (ftype == 01)

FRINTN <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean exact = FALSE;
FPRounding rounding;
case rmode of

when '0xx' rounding = FPDecodeRounding(rmode<1:0>);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

FRINTN (scalar) Page 1096

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTN (scalar) Page 1097

FRINTP (vector)

Floating-point Round to Integral, toward Plus infinity (vector). This instruction rounds a vector of floating-point values
in the SIMD&FP source register to integral floating-point values of the same size using the Round towards Plus
Infinity rounding mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd

U o2 o1

FRINTP <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd

U o2 o1

FRINTP (vector) Page 1098

FRINTP <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTP (vector) Page 1099

FRINTP (scalar)

Floating-point Round to Integral, toward Plus infinity (scalar). This instruction rounds a floating-point value in the
SIMD&FP source register to an integral floating-point value of the same size using the Round towards Plus Infinity
rounding mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 0 1 1 0 0 0 0 Rn Rd

rmode

Half-precision (ftype == 11)
(FEAT_FP16)

FRINTP <Hd>, <Hn>

Single-precision (ftype == 00)

FRINTP <Sd>, <Sn>

Double-precision (ftype == 01)

FRINTP <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean exact = FALSE;
FPRounding rounding;
case rmode of

when '0xx' rounding = FPDecodeRounding(rmode<1:0>);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

FRINTP (scalar) Page 1100

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTP (scalar) Page 1101

FRINTX (vector)

Floating-point Round to Integral exact, using current rounding mode (vector). This instruction rounds a vector of
floating-point values in the SIMD&FP source register to integral floating-point values of the same size using the
rounding mode that is determined by the FPCR, and writes the result to the SIMD&FP destination register.
When a result value is not numerically equal to the corresponding input value, an Inexact exception is raised. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is
propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTX <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTX (vector) Page 1102

FRINTX <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTX (vector) Page 1103

FRINTX (scalar)

Floating-point Round to Integral exact, using current rounding mode (scalar). This instruction rounds a floating-point
value in the SIMD&FP source register to an integral floating-point value of the same size using the rounding mode
that is determined by the FPCR, and writes the result to the SIMD&FP destination register.
When the result value is not numerically equal to the input value, an Inexact exception is raised. A zero input gives a
zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as
for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 1 1 1 0 1 0 0 0 0 Rn Rd

rmode

Half-precision (ftype == 11)
(FEAT_FP16)

FRINTX <Hd>, <Hn>

Single-precision (ftype == 00)

FRINTX <Sd>, <Sn>

Double-precision (ftype == 01)

FRINTX <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean exact = FALSE;
FPRounding rounding;
case rmode of

when '0xx' rounding = FPDecodeRounding(rmode<1:0>);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTX (scalar) Page 1104

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTX (scalar) Page 1105

FRINTZ (vector)

Floating-point Round to Integral, toward Zero (vector). This instruction rounds a vector of floating-point values in the
SIMD&FP source register to integral floating-point values of the same size using the Round towards Zero rounding
mode, and writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTZ <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd

U o2 o1

FRINTZ (vector) Page 1106

FRINTZ <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTZ (vector) Page 1107

FRINTZ (scalar)

Floating-point Round to Integral, toward Zero (scalar). This instruction rounds a floating-point value in the SIMD&FP
source register to an integral floating-point value of the same size using the Round towards Zero rounding mode, and
writes the result to the SIMD&FP destination register.
A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a
NaN is propagated as for normal arithmetic.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 1 0 1 1 1 0 0 0 0 Rn Rd

rmode

Half-precision (ftype == 11)
(FEAT_FP16)

FRINTZ <Hd>, <Hn>

Single-precision (ftype == 00)

FRINTZ <Sd>, <Sn>

Double-precision (ftype == 01)

FRINTZ <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean exact = FALSE;
FPRounding rounding;
case rmode of

when '0xx' rounding = FPDecodeRounding(rmode<1:0>);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UNDEFINED;
when '110' rounding = FPRoundingMode(FPCR[]); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

FRINTZ (scalar) Page 1108

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();
bits(esize) operand = V[n];

Elem[result, 0, esize] = FPRoundInt(operand, fpcr, rounding, exact);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTZ (scalar) Page 1109

FRSQRTE

Floating-point Reciprocal Square Root Estimate. This instruction calculates an approximate square root for each
vector element in the source SIMD&FP register, places the result in a vector, and writes the vector to the destination
SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

FRSQRTE <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

FRSQRTE <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

FRSQRTE <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FRSQRTE Page 1110

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

FRSQRTE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRSqrtEstimate(element, fpcr);

V[d] = result;

FRSQRTE Page 1111

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRSQRTE Page 1112

FRSQRTS

Floating-point Reciprocal Square Root Step. This instruction multiplies corresponding floating-point values in the
vectors of the two source SIMD&FP registers, subtracts each of the products from 3.0, divides these results by 2.0,
places the results into a vector, and writes the vector to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd

FRSQRTS <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd

FRSQRTS <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FRSQRTS Page 1113

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FRSQRTS Page 1114

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPRSqrtStepFused(element1, element2);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRSQRTS Page 1115

FSQRT (vector)

Floating-point Square Root (vector). This instruction calculates the square root for each vector element in the source
SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd

FSQRT <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

FSQRT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

FSQRT (vector) Page 1116

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPSqrt(element, FPCR[]);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSQRT (vector) Page 1117

FSQRT (scalar)

Floating-point Square Root (scalar). This instruction calculates the square root of the value in the SIMD&FP source
register and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 0 0 0 0 1 1 1 0 0 0 0 Rn Rd

opc

Half-precision (ftype == 11)
(FEAT_FP16)

FSQRT <Hd>, <Hn>

Single-precision (ftype == 00)

FSQRT <Sd>, <Sn>

Double-precision (ftype == 01)

FSQRT <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

FPUnaryOp fpop;
case opc of

when '00' fpop = FPUnaryOp_MOV;
when '01' fpop = FPUnaryOp_ABS;
when '10' fpop = FPUnaryOp_NEG;
when '11' fpop = FPUnaryOp_SQRT;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FSQRT (scalar) Page 1118

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = fpop != FPUnaryOp_MOV && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

bits(esize) operand = V[n];

case fpop of
when FPUnaryOp_MOV Elem[result, 0, esize] = operand;
when FPUnaryOp_ABS Elem[result, 0, esize] = FPAbs(operand);
when FPUnaryOp_NEG Elem[result, 0, esize] = FPNeg(operand);
when FPUnaryOp_SQRT Elem[result, 0, esize] = FPSqrt(operand, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSQRT (scalar) Page 1119

FSUB (vector)

Floating-point Subtract (vector). This instruction subtracts the elements in the vector in the second source SIMD&FP
register, from the corresponding elements in the vector in the first source SIMD&FP register, places each result into
elements of a vector, and writes the vector to the destination SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd

U

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd

U

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FSUB (vector) Page 1120

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

bits(esize) element1;
bits(esize) element2;
bits(esize) diff;
FPCRType fpcr = FPCR[];
bits(datasize) result;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
diff = FPSub(element1, element2, fpcr);
Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUB (vector) Page 1121

FSUB (scalar)

Floating-point Subtract (scalar). This instruction subtracts the floating-point value of the second source SIMD&FP
register from the floating-point value of the first source SIMD&FP register, and writes the result to the destination
SIMD&FP register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in
either a flag being set in FPSR, or a synchronous exception being generated. For more information, see Floating-point
exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 ftype 1 Rm 0 0 1 1 1 0 Rn Rd

op

Half-precision (ftype == 11)
(FEAT_FP16)

FSUB <Hd>, <Hn>, <Hm>

Single-precision (ftype == 00)

FSUB <Sd>, <Sn>, <Sm>

Double-precision (ftype == 01)

FSUB <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize;
case ftype of

when '00' esize = 32;
when '01' esize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
esize = 16;

else
UNDEFINED;

boolean sub_op = (op == '1');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FSUB (scalar) Page 1122

Operation

CheckFPEnabled64();
bits(esize) operand1 = V[n];
bits(esize) operand2 = V[m];

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
bits(128) result = if merge then V[n] else Zeros();

if sub_op then
Elem[result, 0, esize] = FPSub(operand1, operand2, fpcr);

else
Elem[result, 0, esize] = FPAdd(operand1, operand2, fpcr);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUB (scalar) Page 1123

INS (element)

Insert vector element from another vector element. This instruction copies the vector element of the source SIMD&FP
register to the specified vector element of the destination SIMD&FP register.
This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (element).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UNDEFINED;

integer dst_index = UInt(imm5<4:size+1>);
integer src_index = UInt(imm4<3:size>);
integer idxdsize = if imm4<3> == '1' then 128 else 64;
// imm4<size-1:0> is IGNORED

integer esize = 8 << size;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index1> Is the destination element index encoded in “imm5”:

imm5 <index1>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index2> Is the source element index encoded in “imm5:imm4”:

imm5 <index2>
x0000 RESERVED
xxxx1 imm4<3:0>
xxx10 imm4<3:1>
xx100 imm4<3:2>
x1000 imm4<3>

Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

INS (element) Page 1124

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];
bits(128) result;

result = V[d];
Elem[result, dst_index, esize] = Elem[operand, src_index, esize];
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INS (element) Page 1125

INS (general)

Insert vector element from general-purpose register. This instruction copies the contents of the source general-
purpose register to the specified vector element in the destination SIMD&FP register.
This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (from general).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd

INS <Vd>.<Ts>[<index>], <R><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);

if size > 3 then UNDEFINED;
integer index = UInt(imm5<4:size+1>);

integer esize = 8 << size;
integer datasize = 128;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<R> Is the width specifier for the general-purpose source register, encoded in “imm5”:

imm5 <R>
x0000 RESERVED
xxxx1 W
xxx10 W
xx100 W
x1000 X

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

INS (general) Page 1126

Operation

CheckFPAdvSIMDEnabled64();
bits(esize) element = X[n];
bits(datasize) result;

result = V[d];
Elem[result, index, esize] = element;
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INS (general) Page 1127

LD1 (multiple structures)

Load multiple single-element structures to one, two, three, or four registers. This instruction loads multiple single-
element structures from memory and writes the result to one, two, three, or four SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 x x 1 x size Rn Rt

L opcode

One register (opcode == 0111)

LD1 { <Vt>.<T> }, [<Xn|SP>]

Two registers (opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers (opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers (opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 1 0 Rm x x 1 x size Rn Rt

L opcode

LD1 (multiple structures) Page 1128

One register, immediate offset (Rm == 11111 && opcode == 0111)

LD1 { <Vt>.<T> }, [<Xn|SP>], <imm>

One register, register offset (Rm != 11111 && opcode == 0111)

LD1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset (Rm == 11111 && opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset (Rm != 11111 && opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset (Rm == 11111 && opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset (Rm != 11111 && opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset (Rm == 11111 && opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset (Rm != 11111 && opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LD1 (multiple structures) Page 1129

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #8
1 #16

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

LD1 (multiple structures) Page 1130

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1 (multiple structures) Page 1131

LD1 (single structure)

Load one single-element structure to one lane of one register. This instruction loads a single-element structure from
memory and writes the result to the specified lane of the SIMD&FP register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 0 S size Rn Rt

L R opcode

8-bit (opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 0 Rm x x 0 S size Rn Rt

L R opcode

LD1 (single structure) Page 1132

8-bit, immediate offset (Rm == 11111 && opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>], #1

8-bit, register offset (Rm != 11111 && opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD1 (single structure) Page 1133

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD1 (single structure) Page 1134

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1 (single structure) Page 1135

LD1R

Load one single-element structure and Replicate to all lanes (of one register). This instruction loads a single-element
structure from memory and replicates the structure to all the lanes of the SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 size Rn Rt

L R opcode S

LD1R { <Vt>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 0 0 size Rn Rt

L R opcode S

Immediate offset (Rm == 11111)

LD1R { <Vt>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD1R { <Vt>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LD1R Page 1136

<imm> Is the post-index immediate offset, encoded in “size”:

size <imm>
00 #1
01 #2
10 #4
11 #8

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD1R Page 1137

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1R Page 1138

LD2 (multiple structures)

Load multiple 2-element structures to two registers. This instruction loads multiple 2-element structures from memory
and writes the result to the two SIMD&FP registers, with de-interleaving.
For an example of de-interleaving, see LD3 (multiple structures).
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 size Rn Rt

L opcode

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 1 0 Rm 1 0 0 0 size Rn Rt

L opcode

Immediate offset (Rm == 11111)

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

LD2 (multiple structures) Page 1139

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

LD2 (multiple structures) Page 1140

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2 (multiple structures) Page 1141

LD2 (single structure)

Load single 2-element structure to one lane of two registers. This instruction loads a 2-element structure from memory
and writes the result to the corresponding elements of the two SIMD&FP registers without affecting the other bits of
the registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 0 S size Rn Rt

L R opcode

8-bit (opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 1 Rm x x 0 S size Rn Rt

L R opcode

LD2 (single structure) Page 1142

8-bit, immediate offset (Rm == 11111 && opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

8-bit, register offset (Rm != 11111 && opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD2 (single structure) Page 1143

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD2 (single structure) Page 1144

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2 (single structure) Page 1145

LD2R

Load single 2-element structure and Replicate to all lanes of two registers. This instruction loads a 2-element structure
from memory and replicates the structure to all the lanes of the two SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 size Rn Rt

L R opcode S

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 0 0 size Rn Rt

L R opcode S

Immediate offset (Rm == 11111)

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

LD2R Page 1146

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “size”:

size <imm>
00 #2
01 #4
10 #8
11 #16

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD2R Page 1147

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2R Page 1148

LD3 (multiple structures)

Load multiple 3-element structures to three registers. This instruction loads multiple 3-element structures from
memory and writes the result to the three SIMD&FP registers, with de-interleaving.
The following figure shows an example of the operation of de-interleaving of a LD3.16 (multiple 3-element structures)
instruction:.

A[0].x
A[0].y
A[0].z
A[1].x
A[1].y
A[1].z
A[2].x
A[2].y
A[2].z
A[3].x
A[3].y
A[3].z

Memory

Z3 Z2 Z1 Z0 D2
Y3 Y1 D1

X3 X2 X1 D0
Y2 Y0

X0

Registers

A is a packed array of
3-element structures.
Each element is a 16-bit
halfword.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 size Rn Rt

L opcode

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 1 0 Rm 0 1 0 0 size Rn Rt

L opcode

Immediate offset (Rm == 11111)

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

LD3 (multiple structures) Page 1149

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

LD3 (multiple structures) Page 1150

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3 (multiple structures) Page 1151

LD3 (single structure)

Load single 3-element structure to one lane of three registers. This instruction loads a 3-element structure from
memory and writes the result to the corresponding elements of the three SIMD&FP registers without affecting the
other bits of the registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 1 S size Rn Rt

L R opcode

8-bit (opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 0 Rm x x 1 S size Rn Rt

L R opcode

LD3 (single structure) Page 1152

8-bit, immediate offset (Rm == 11111 && opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

8-bit, register offset (Rm != 11111 && opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD3 (single structure) Page 1153

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD3 (single structure) Page 1154

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3 (single structure) Page 1155

LD3R

Load single 3-element structure and Replicate to all lanes of three registers. This instruction loads a 3-element
structure from memory and replicates the structure to all the lanes of the three SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 size Rn Rt

L R opcode S

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 1 0 size Rn Rt

L R opcode S

Immediate offset (Rm == 11111)

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

LD3R Page 1156

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “size”:

size <imm>
00 #3
01 #6
10 #12
11 #24

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD3R Page 1157

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3R Page 1158

LD4 (multiple structures)

Load multiple 4-element structures to four registers. This instruction loads multiple 4-element structures from
memory and writes the result to the four SIMD&FP registers, with de-interleaving.
For an example of de-interleaving, see LD3 (multiple structures).
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 size Rn Rt

L opcode

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 1 0 Rm 0 0 0 0 size Rn Rt

L opcode

Immediate offset (Rm == 11111)

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

LD4 (multiple structures) Page 1159

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

LD4 (multiple structures) Page 1160

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4 (multiple structures) Page 1161

LD4 (single structure)

Load single 4-element structure to one lane of four registers. This instruction loads a 4-element structure from
memory and writes the result to the corresponding elements of the four SIMD&FP registers without affecting the
other bits of the registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 1 S size Rn Rt

L R opcode

8-bit (opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 1 Rm x x 1 S size Rn Rt

L R opcode

LD4 (single structure) Page 1162

8-bit, immediate offset (Rm == 11111 && opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

8-bit, register offset (Rm != 11111 && opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD4 (single structure) Page 1163

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD4 (single structure) Page 1164

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4 (single structure) Page 1165

LD4R

Load single 4-element structure and Replicate to all lanes of four registers. This instruction loads a 4-element
structure from memory and replicates the structure to all the lanes of the four SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 size Rn Rt

L R opcode S

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 1 0 size Rn Rt

L R opcode S

Immediate offset (Rm == 11111)

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

LD4R Page 1166

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “size”:

size <imm>
00 #4
01 #8
10 #16
11 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD4R Page 1167

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4R Page 1168

LDNP (SIMD&FP)

Load Pair of SIMD&FP registers, with Non-temporal hint. This instruction loads a pair of SIMD&FP registers from
memory, issuing a hint to the memory system that the access is non-temporal. The address that is used for the load is
calculated from a base register value and an optional immediate offset.
For information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 0 0 1 imm7 Rt2 Rn Rt

L

32-bit (opc == 00)

LDNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

LDNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

LDNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDNP (SIMD&FP).

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to
252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to
504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.
For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024
to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

LDNP (SIMD&FP) Page 1169

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_VECSTREAM;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data1 = V[t];
data2 = V[t2];
Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

V[t] = data1;
V[t2] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

LDNP (SIMD&FP) Page 1170

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNP (SIMD&FP) Page 1171

LDP (SIMD&FP)

Load Pair of SIMD&FP registers. This instruction loads a pair of SIMD&FP registers from memory. The address that is
used for the load is calculated from a base register value and an optional immediate offset.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 0 1 1 imm7 Rt2 Rn Rt

L

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 1 1 1 imm7 Rt2 Rn Rt

L

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 1 0 1 imm7 Rt2 Rn Rt

L

LDP (SIMD&FP) Page 1172

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on
UNPREDICTABLE behaviors, and particularly LDP (SIMD&FP).

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of
4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of
8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.
For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.
For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a multiple
of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.
For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16 in the
range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

LDP (SIMD&FP) Page 1173

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_VEC;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data1 = V[t];
data2 = V[t2];
Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

V[t] = data1;
V[t2] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

LDP (SIMD&FP) Page 1174

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDP (SIMD&FP) Page 1175

LDR (immediate, SIMD&FP)

Load SIMD&FP Register (immediate offset). This instruction loads an element from memory, and writes the result as a
scalar to the SIMD&FP register. The address that is used for the load is calculated from a base register value, a signed
immediate offset, and an optional offset that is a multiple of the element size.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 1 0 imm9 0 1 Rn Rt

opc

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>], #<simm>

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>], #<simm>

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>], #<simm>

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>], #<simm>

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 1 0 imm9 1 1 Rn Rt

opc

LDR (immediate, SIMD&FP) Page 1176

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>, #<simm>]!

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>, #<simm>]!

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>, #<simm>]!

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>, #<simm>]!

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 1 x 1 imm12 Rn Rt

opc

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>{, #<pimm>}]

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

LDR (immediate, SIMD&FP) Page 1177

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to
0 and encoded in the "imm12" field.
For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0 to
8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.
For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to
16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.
For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to
32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.
For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range 0 to
65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

LDR (immediate, SIMD&FP) Page 1178

Operation

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate, SIMD&FP) Page 1179

LDR (literal, SIMD&FP)

Load SIMD&FP Register (PC-relative literal). This instruction loads a SIMD&FP register from memory. The address
that is used for the load is calculated from the PC value and an immediate offset.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 0 1 1 1 0 0 imm19 Rt

32-bit (opc == 00)

LDR <St>, <label>

64-bit (opc == 01)

LDR <Dt>, <label>

128-bit (opc == 10)

LDR <Qt>, <label>

integer t = UInt(Rt);
integer size;
bits(64) offset;

case opc of
when '00'

size = 4;
when '01'

size = 8;
when '10'

size = 16;
when '11'

UNDEFINED;

offset = SignExtend(imm19:'00', 64);
boolean tag_checked = FALSE;

Assembler Symbols

<Dt> Is the 64-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address = PC[] + offset;
bits(size*8) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

data = Mem[address, size, AccType_VEC];
V[t] = data;

LDR (literal, SIMD&FP) Page 1180

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal, SIMD&FP) Page 1181

LDR (register, SIMD&FP)

Load SIMD&FP Register (register offset). This instruction loads a SIMD&FP register from memory. The address that is
used for the load is calculated from a base register value and an offset register value. The offset can be optionally
shifted and extended.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 1 1 Rm option S 1 0 Rn Rt

opc

8-fsreg,LDR-8-fsreg (size == 00 && opc == 01 && option != 011)

LDR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-fsreg,LDR-8-fsreg (size == 00 && opc == 01 && option == 011)

LDR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-fsreg,LDR-16-fsreg (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-fsreg,LDR-32-fsreg (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-fsreg,LDR-64-fsreg (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-fsreg,LDR-128-fsreg (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

LDR (register, SIMD&FP) Page 1182

<extend> For the 8-bit variant: is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to LSL,
and which must be omitted for the LSL option when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if
present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #4

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

LDR (register, SIMD&FP) Page 1183

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register, SIMD&FP) Page 1184

LDUR (SIMD&FP)

Load SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from memory. The address that
is used for the load is calculated from a base register value and an optional immediate offset.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 1 0 imm9 0 0 Rn Rt

opc

8-bit (size == 00 && opc == 01)

LDUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit (size == 01 && opc == 01)

LDUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit (size == 10 && opc == 01)

LDUR <St>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11 && opc == 01)

LDUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit (size == 00 && opc == 11)

LDUR <Qt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

LDUR (SIMD&FP) Page 1185

Operation

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUR (SIMD&FP) Page 1186

MLA (by element)

Multiply-Add to accumulator (vector, by element). This instruction multiplies the vector elements in the first source
SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the results with
the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 0 0 0 0 H 0 Rn Rd

o2

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

MLA (by element) Page 1187

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = UInt(Elem[operand1, e, esize]);
product = (element1 * element2)<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLA (by element) Page 1188

MLA (vector)

Multiply-Add to accumulator (vector). This instruction multiplies corresponding elements in the vectors of the two
source SIMD&FP registers, and accumulates the results with the vector elements of the destination SIMD&FP
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd

U

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
product = (UInt(element1) * UInt(element2))<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;

V[d] = result;

MLA (vector) Page 1189

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLA (vector) Page 1190

MLS (by element)

Multiply-Subtract from accumulator (vector, by element). This instruction multiplies the vector elements in the first
source SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the results
from the vector elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer
values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 0 1 0 0 H 0 Rn Rd

o2

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

MLS (by element) Page 1191

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = UInt(Elem[operand1, e, esize]);
product = (element1 * element2)<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLS (by element) Page 1192

MLS (vector)

Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding elements in the vectors of the
two source SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd

U

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
product = (UInt(element1) * UInt(element2))<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;

V[d] = result;

MLS (vector) Page 1193

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLS (vector) Page 1194

MOV (scalar)

Move vector element to scalar. This instruction duplicates the specified vector element in the SIMD&FP source
register into a scalar, and writes the result to the SIMD&FP destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of DUP (element). This means:

• The encodings in this description are named to match the encodings of DUP (element).
• The description of DUP (element) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

MOV <V><d>, <Vn>.<T>[<index>]

is equivalent to

DUP <V><d>, <Vn>.<T>[<index>]

and is always the preferred disassembly.

Assembler Symbols

<V> Is the destination width specifier, encoded in “imm5”:

imm5 <V>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the element width specifier, encoded in “imm5”:

imm5 <T>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

Operation

The description of DUP (element) gives the operational pseudocode for this instruction.

MOV (scalar) Page 1195

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (scalar) Page 1196

MOV (element)

Move vector element to another vector element. This instruction copies the vector element of the source SIMD&FP
register to the specified vector element of the destination SIMD&FP register.
This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of INS (element). This means:

• The encodings in this description are named to match the encodings of INS (element).
• The description of INS (element) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

MOV <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

is equivalent to

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

and is always the preferred disassembly.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index1> Is the destination element index encoded in “imm5”:

imm5 <index1>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index2> Is the source element index encoded in “imm5:imm4”:

imm5 <index2>
x0000 RESERVED
xxxx1 imm4<3:0>
xxx10 imm4<3:1>
xx100 imm4<3:2>
x1000 imm4<3>

Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

Operation

The description of INS (element) gives the operational pseudocode for this instruction.

MOV (element) Page 1197

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (element) Page 1198

MOV (from general)

Move general-purpose register to a vector element. This instruction copies the contents of the source general-purpose
register to the specified vector element in the destination SIMD&FP register.
This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining
bits to zero.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of INS (general). This means:

• The encodings in this description are named to match the encodings of INS (general).
• The description of INS (general) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd

MOV <Vd>.<Ts>[<index>], <R><n>

is equivalent to

INS <Vd>.<Ts>[<index>], <R><n>

and is always the preferred disassembly.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<R> Is the width specifier for the general-purpose source register, encoded in “imm5”:

imm5 <R>
x0000 RESERVED
xxxx1 W
xxx10 W
xx100 W
x1000 X

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

The description of INS (general) gives the operational pseudocode for this instruction.

MOV (from general) Page 1199

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (from general) Page 1200

MOV (vector)

Move vector. This instruction copies the vector in the source SIMD&FP register into the destination SIMD&FP
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of ORR (vector, register). This means:

• The encodings in this description are named to match the encodings of ORR (vector, register).
• The description of ORR (vector, register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd

size

MOV <Vd>.<T>, <Vn>.<T>

is equivalent to

ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>

and is the preferred disassembly when Rm == Rn.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of ORR (vector, register) gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (vector) Page 1201

MOV (to general)

Move vector element to general-purpose register. This instruction reads the unsigned integer from the source
SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination general-
purpose register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of UMOV. This means:

• The encodings in this description are named to match the encodings of UMOV.
• The description of UMOV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 0 x x x 0 0 0 0 1 1 1 1 Rn Rd

imm5

32-bit (Q == 0 && imm5 == xx100)

MOV <Wd>, <Vn>.S[<index>]

is equivalent to

UMOV <Wd>, <Vn>.S[<index>]

and is always the preferred disassembly.

64-reg,UMOV-64-reg (Q == 1 && imm5 == x1000)

MOV <Xd>, <Vn>.D[<index>]

is equivalent to

UMOV <Xd>, <Vn>.D[<index>]

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> For the 32-bit variant: is the element index encoded in "imm5<4:3>".
For the 64-reg,UMOV-64-reg variant: is the element index encoded in "imm5<4>".

Operation

The description of UMOV gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

MOV (to general) Page 1202

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (to general) Page 1203

MOVI

Move Immediate (vector). This instruction places an immediate constant into every vector element of the destination
SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd

8-bit (op == 0 && cmode == 1110)

MOVI <Vd>.<T>, #<imm8>{, LSL #0}

16-bit shifted immediate (op == 0 && cmode == 10x0)

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate (op == 0 && cmode == 0xx0)

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones (op == 0 && cmode == 110x)

MOVI <Vd>.<T>, #<imm8>, MSL #<amount>

64-bit scalar (Q == 0 && op == 1 && cmode == 1110)

MOVI <Dd>, #<imm>

64-bit vector (Q == 1 && op == 1 && cmode == 1110)

MOVI <Vd>.2D, #<imm>

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx00' operation = ImmediateOp_MOVI;
when '0xx01' operation = ImmediateOp_MVNI;
when '0xx10' operation = ImmediateOp_ORR;
when '0xx11' operation = ImmediateOp_BIC;
when '10x00' operation = ImmediateOp_MOVI;
when '10x01' operation = ImmediateOp_MVNI;
when '10x10' operation = ImmediateOp_ORR;
when '10x11' operation = ImmediateOp_BIC;
when '110x0' operation = ImmediateOp_MOVI;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UNDEFINED;
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

MOVI Page 1204

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a 64-bit immediate 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
encoded in "a:b:c:d:e:f:g:h".

<T> For the 8-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in “cmode<1>”:

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in “cmode<2:1>”:

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in “cmode<0>”:

cmode<0> <amount>
0 8
1 16

MOVI Page 1205

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVI Page 1206

MUL (by element)

Multiply (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register by
the specified value in the second source SIMD&FP register, places the results in a vector, and writes the vector to the
destination SIMD&FP register. All the values in this instruction are unsigned integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 1 0 0 0 H 0 Rn Rd

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

MUL (by element) Page 1207

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = UInt(Elem[operand1, e, esize]);
product = (element1 * element2)<esize-1:0>;
Elem[result, e, esize] = product;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL (by element) Page 1208

MUL (vector)

Multiply (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP
registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd

U

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if U == '1' && size != '00' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean poly = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if poly then

product = PolynomialMult(element1, element2)<esize-1:0>;
else

product = (UInt(element1) * UInt(element2))<esize-1:0>;
Elem[result, e, esize] = product;

V[d] = result;

MUL (vector) Page 1209

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL (vector) Page 1210

MVN

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the
inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of NOT. This means:

• The encodings in this description are named to match the encodings of NOT.
• The description of NOT gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

MVN <Vd>.<T>, <Vn>.<T>

is equivalent to

NOT <Vd>.<T>, <Vn>.<T>

and is always the preferred disassembly.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of NOT gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN Page 1211

MVNI

Move inverted Immediate (vector). This instruction places the inverse of an immediate constant into every vector
element of the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd

op

16-bit shifted immediate (cmode == 10x0)

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate (cmode == 0xx0)

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones (cmode == 110x)

MVNI <Vd>.<T>, #<imm8>, MSL #<amount>

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx00' operation = ImmediateOp_MOVI;
when '0xx01' operation = ImmediateOp_MVNI;
when '0xx10' operation = ImmediateOp_ORR;
when '0xx11' operation = ImmediateOp_BIC;
when '10x00' operation = ImmediateOp_MOVI;
when '10x01' operation = ImmediateOp_MVNI;
when '10x10' operation = ImmediateOp_ORR;
when '10x11' operation = ImmediateOp_BIC;
when '110x0' operation = ImmediateOp_MOVI;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UNDEFINED;
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

MVNI Page 1212

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in “cmode<1>”:

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.

For the 32-bit shifted immediate variant: is the shift amount encoded in “cmode<2:1>”:

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.

For the 32-bit shifting ones variant: is the shift amount encoded in “cmode<0>”:

cmode<0> <amount>
0 8
1 16

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVNI Page 1213

NEG (vector)

Negate (vector). This instruction reads each vector element from the source SIMD&FP register, negates each value,
puts the result into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

U

NEG <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd

U

NEG <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

NEG (vector) Page 1214

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEG (vector) Page 1215

NOT

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the
inverse of each value into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MVN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

NOT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = NOT(element);

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOT Page 1216

ORN (vector)

Bitwise inclusive OR NOT (vector). This instruction performs a bitwise OR NOT between the two source SIMD&FP
registers, and writes the result to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd

size

ORN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean invert = (size<0> == '1');
LogicalOp op = if size<1> == '1' then LogicalOp_ORR else LogicalOp_AND;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND

result = operand1 AND operand2;
when LogicalOp_ORR

result = operand1 OR operand2;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

ORN (vector) Page 1217

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN (vector) Page 1218

ORR (vector, immediate)

Bitwise inclusive OR (vector, immediate). This instruction reads each vector element from the destination SIMD&FP
register, performs a bitwise OR between each result and an immediate constant, places the result into a vector, and
writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd

op cmode

16-bit (cmode == 10x1)

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit (cmode == 0xx1)

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx00' operation = ImmediateOp_MOVI;
when '0xx01' operation = ImmediateOp_MVNI;
when '0xx10' operation = ImmediateOp_ORR;
when '0xx11' operation = ImmediateOp_BIC;
when '10x00' operation = ImmediateOp_MOVI;
when '10x01' operation = ImmediateOp_MVNI;
when '10x10' operation = ImmediateOp_ORR;
when '10x11' operation = ImmediateOp_BIC;
when '110x0' operation = ImmediateOp_MOVI;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UNDEFINED;
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

ORR (vector, immediate) Page 1219

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in “cmode<1>”:

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.

For the 32-bit variant: is the shift amount encoded in “cmode<2:1>”:

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (vector, immediate) Page 1220

ORR (vector, register)

Bitwise inclusive OR (vector, register). This instruction performs a bitwise OR between the two source SIMD&FP
registers, and writes the result to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (vector).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd

size

ORR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean invert = (size<0> == '1');
LogicalOp op = if size<1> == '1' then LogicalOp_ORR else LogicalOp_AND;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when
MOV (vector) Rm == Rn

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

if invert then operand2 = NOT(operand2);

case op of
when LogicalOp_AND

result = operand1 AND operand2;
when LogicalOp_ORR

result = operand1 OR operand2;

V[d] = result;

ORR (vector, register) Page 1221

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (vector, register) Page 1222

PMUL

Polynomial Multiply. This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP
registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.
For information about multiplying polynomials see Polynomial arithmetic over {0, 1}.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd

U

PMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if U == '1' && size != '00' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean poly = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 x RESERVED
1x x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if poly then

product = PolynomialMult(element1, element2)<esize-1:0>;
else

product = (UInt(element1) * UInt(element2))<esize-1:0>;
Elem[result, e, esize] = product;

V[d] = result;

PMUL Page 1223

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMUL Page 1224

PMULL, PMULL2

Polynomial Multiply Long. This instruction multiplies corresponding elements in the lower or upper half of the vectors
of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP
register. The destination vector elements are twice as long as the elements that are multiplied.
For information about multiplying polynomials see Polynomial arithmetic over {0, 1}.
The PMULL instruction extracts each source vector from the lower half of each source register. The PMULL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 1 1 0 0 0 Rn Rd

PMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '01' || size == '10' then UNDEFINED;
if size == '11' && !HaveBit128PMULLExt() then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 RESERVED
10 RESERVED
11 1Q

The '1Q' arrangement is only allocated in an implementation that includes the Cryptographic Extension,
and is otherwise RESERVED.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 x RESERVED
10 x RESERVED
11 0 1D
11 1 2D

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

PMULL, PMULL2 Page 1225

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, 2*esize] = PolynomialMult(element1, element2);

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMULL, PMULL2 Page 1226

RADDHN, RADDHN2

Rounding Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register
to the corresponding vector element in the second source SIMD&FP register, places the most significant half of the
result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.
The results are rounded. For truncated results, see ADDHN.
The RADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd

U o1

RADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

RADDHN, RADDHN2 Page 1227

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RADDHN, RADDHN2 Page 1228

RAX1

Rotate and Exclusive OR rotates each 64-bit element of the 128-bit vector in a source SIMD&FP register left by 1,
performs a bitwise exclusive OR of the resulting 128-bit vector and the vector in another source SIMD&FP register,
and writes the result to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD
(FEAT_SHA3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 1 Rn Rd

RAX1 <Vd>.2D, <Vn>.2D, <Vm>.2D

if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
V[d] = Vn EOR (ROL(Vm<127:64>,1):ROL(Vm<63:0>, 1));

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RAX1 Page 1229

RBIT (vector)

Reverse Bit order (vector). This instruction reads each vector element from the source SIMD&FP register, reverses the
bits of the element, places the results into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

RBIT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
bits(esize) rev;

for e = 0 to elements-1
element = Elem[operand, e, esize];
for i = 0 to esize-1

rev<esize-1-i> = element<i>;
Elem[result, e, esize] = rev;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT (vector) Page 1230

REV16 (vector)

Reverse elements in 16-bit halfwords (vector). This instruction reverses the order of 8-bit elements in each halfword of
the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination
SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 1 1 0 Rn Rd

U o0

REV16 <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=esize: B(0), H(1), S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
// 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
// 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
// 16+B = 2, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X
// => 3-(op+size) (index bits in group)
// 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
// 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
// 16+B = 1, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X

// index bits within group: 1, 2, 3
if UInt(op)+UInt(size) >= 3 then UNDEFINED;

integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 x RESERVED
1x x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

REV16 (vector) Page 1231

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1

rev_element = element + elements_per_container - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[operand, element, esize];
element = element + 1;
rev_element = rev_element - 1;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV16 (vector) Page 1232

REV32 (vector)

Reverse elements in 32-bit words (vector). This instruction reverses the order of 8-bit or 16-bit elements in each word
of the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination
SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd

U o0

REV32 <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=esize: B(0), H(1), S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
// 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
// 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
// 16+B = 2, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X
// => 3-(op+size) (index bits in group)
// 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
// 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
// 16+B = 1, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X

// index bits within group: 1, 2, 3
if UInt(op)+UInt(size) >= 3 then UNDEFINED;

integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
1x x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

REV32 (vector) Page 1233

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1

rev_element = element + elements_per_container - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[operand, element, esize];
element = element + 1;
rev_element = rev_element - 1;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV32 (vector) Page 1234

REV64

Reverse elements in 64-bit doublewords (vector). This instruction reverses the order of 8-bit, 16-bit, or 32-bit elements
in each doubleword of the vector in the source SIMD&FP register, places the results into a vector, and writes the
vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd

U o0

REV64 <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=esize: B(0), H(1), S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
// 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
// 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
// 16+B = 2, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X
// => 3-(op+size) (index bits in group)
// 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
// 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
// 16+B = 1, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X

// index bits within group: 1, 2, 3
if UInt(op)+UInt(size) >= 3 then UNDEFINED;

integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

REV64 Page 1235

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1

rev_element = element + elements_per_container - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[operand, element, esize];
element = element + 1;
rev_element = rev_element - 1;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV64 Page 1236

RSHRN, RSHRN2

Rounding Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the vector in the
source SIMD&FP register, right shifts each result by an immediate value, writes the final result to a vector, and writes
the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are half as
long as the source vector elements. The results are rounded. For truncated results, see SHRN.
The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 0 1 1 Rn Rd

immh op

RSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

RSHRN, RSHRN2 Page 1237

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

for e = 0 to elements-1
element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
Elem[result, e, esize] = element<esize-1:0>;

Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSHRN, RSHRN2 Page 1238

RSUBHN, RSUBHN2

Rounding Subtract returning High Narrow. This instruction subtracts each vector element of the second source
SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the most
significant half of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP
register.
The results are rounded. For truncated results, see SUBHN.
The RSUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the RSUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd

U o1

RSUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

RSUBHN, RSUBHN2 Page 1239

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSUBHN, RSUBHN2 Page 1240

SABA

Signed Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second source
SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates the
absolute values of the results into the elements of the vector of the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd

U ac

SABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

SABA Page 1241

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABA Page 1242

SABAL, SABAL2

Signed Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or upper
half of the second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP
register, and accumulates the absolute values of the results into the vector elements of the destination SIMD&FP
register. The destination vector elements are twice as long as the source vector elements.
The SABAL instruction extracts each source vector from the lower half of each source register. The SABAL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd

U op

SABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SABAL, SABAL2 Page 1243

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABAL, SABAL2 Page 1244

SABD

Signed Absolute Difference. This instruction subtracts the elements of the vector of the second source SIMD&FP
register from the corresponding elements of the first source SIMD&FP register, places the the absolute values of the
results into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd

U ac

SABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

SABD Page 1245

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABD Page 1246

SABDL, SABDL2

Signed Absolute Difference Long. This instruction subtracts the vector elements of the second source SIMD&FP
register from the corresponding vector elements of the first source SIMD&FP register, places the absolute value of the
results into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements.
The SABDL instruction extracts each source vector from the lower half of each source register, while the SABDL2
instruction extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd

U op

SABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SABDL, SABDL2 Page 1247

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABDL, SABDL2 Page 1248

SADALP

Signed Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent signed integer values from the
vector in the source SIMD&FP register and accumulates the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd

U op

SADALP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2*esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SADALP Page 1249

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

if acc then result = V[d];
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1 + op2)<2*esize-1:0>;
if acc then

Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
else

Elem[result, e, 2*esize] = sum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADALP Page 1250

SADDL, SADDL2

Signed Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source
SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the results
into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as
long as the source vector elements. All the values in this instruction are signed integer values.
The SADDL instruction extracts each source vector from the lower half of each source register. The SADDL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd

U o1

SADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SADDL, SADDL2 Page 1251

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDL, SADDL2 Page 1252

SADDLP

Signed Add Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector in the source
SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd

U op

SADDLP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2*esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SADDLP Page 1253

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

if acc then result = V[d];
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1 + op2)<2*esize-1:0>;
if acc then

Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
else

Elem[result, e, 2*esize] = sum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDLP Page 1254

SADDLV

Signed Add Long across Vector. This instruction adds every vector element in the source SIMD&FP register together,
and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as the source
vector elements. All the values in this instruction are signed integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd

U

SADDLV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 H
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer sum;

sum = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

sum = sum + Int(Elem[operand, e, esize], unsigned);

V[d] = sum<2*esize-1:0>;

SADDLV Page 1255

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDLV Page 1256

SADDW, SADDW2

Signed Add Wide. This instruction adds vector elements of the first source SIMD&FP register to the corresponding
vector elements in the lower or upper half of the second source SIMD&FP register, places the results in a vector, and
writes the vector to the SIMD&FP destination register.
The SADDW instruction extracts the second source vector from the lower half of the second source register. The SADDW2
instruction extracts the second source vector from the upper half of the second source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd

U o1

SADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SADDW, SADDW2 Page 1257

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDW, SADDW2 Page 1258

SCVTF (vector, fixed-point)

Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from fixed-
point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP
destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd

U immh

SCVTF <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR[]);

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd

U immh

SCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

SCVTF (vector, fixed-point) Page 1259

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in
“immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in
“immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (vector, fixed-point) Page 1260

SCVTF (vector, integer)

Signed integer Convert to Floating-point (vector). This instruction converts each element in a vector from signed
integer to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP
destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

U

SCVTF <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

U

SCVTF <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

U

SCVTF (vector, integer) Page 1261

SCVTF <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

U

SCVTF <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

SCVTF (vector, integer) Page 1262

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

FPRounding rounding = FPRoundingMode(fpcr);
bits(esize) element;
for e = 0 to elements-1

element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (vector, integer) Page 1263

SCVTF (scalar, fixed-point)

Signed fixed-point Convert to Floating-point (scalar). This instruction converts the signed value in the 32-bit or 64-bit
general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 0 0 0 0 1 0 scale Rn Rd

rmode opcode

SCVTF (scalar, fixed-point) Page 1264

32-bit to half-precision (sf == 0 && ftype == 11)
(FEAT_FP16)

SCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision (sf == 0 && ftype == 00)

SCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision (sf == 0 && ftype == 01)

SCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision (sf == 1 && ftype == 11)
(FEAT_FP16)

SCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision (sf == 1 && ftype == 00)

SCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision (sf == 1 && ftype == 01)

SCVTF <Dd>, <Xn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;

case ftype of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UNDEFINED;

if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);

case opcode<2:1>:rmode of
when '00 11' // FCVTZ

rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

otherwise
UNDEFINED;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

SCVTF (scalar, fixed-point) Page 1265

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is the
number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as 64
minus "scale".
For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is the
number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as 64
minus "scale".

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, fracbits, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, fracbits, unsigned, fpcr, rounding);
V[d] = fltval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (scalar, fixed-point) Page 1266

SCVTF (scalar, integer)

Signed integer Convert to Floating-point (scalar). This instruction converts the signed integer value in the general-
purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and writes the
result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 0 0 1 0 0 0 0 0 0 0 Rn Rd

rmode opcode

SCVTF (scalar, integer) Page 1267

32-bit to half-precision (sf == 0 && ftype == 11)
(FEAT_FP16)

SCVTF <Hd>, <Wn>

32-bit to single-precision (sf == 0 && ftype == 00)

SCVTF <Sd>, <Wn>

32-bit to double-precision (sf == 0 && ftype == 01)

SCVTF <Dd>, <Wn>

64-bit to half-precision (sf == 1 && ftype == 11)
(FEAT_FP16)

SCVTF <Hd>, <Xn>

64-bit to single-precision (sf == 1 && ftype == 00)

SCVTF <Sd>, <Xn>

64-bit to double-precision (sf == 1 && ftype == 01)

SCVTF <Dd>, <Xn>

SCVTF (scalar, integer) Page 1268

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

SCVTF (scalar, integer) Page 1269

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (scalar, integer) Page 1270

SDOT (by element)

Dot Product signed arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in
the second source register, accumulating the result into the corresponding 32-bit element of the destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd

U

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then UNDEFINED;
boolean signed = (U=='0');

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer index = UInt(H:L);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the element index, encoded in the "H:L" fields.

SDOT (by element) Page 1271

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDOT (by element) Page 1272

SDOT (vector)

Dot Product signed arithmetic (vector). This instruction performs the dot product of the four signed 8-bit elements in
each 32-bit element of the first source register with the four signed 8-bit elements of the corresponding 32-bit element
in the second source register, accumulating the result into the corresponding 32-bit element of the destination
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd

U

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveDOTPExt() then UNDEFINED;
if size!= '10' then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SDOT (vector) Page 1273

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDOT (vector) Page 1274

SHA1C

SHA1 hash update (choose).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

SHA1C <Qd>, <Sn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA1Ext() then UNDEFINED;

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) X = V[d];
bits(32) Y = V[n]; // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;

for e = 0 to 3
t = SHAchoose(X<63:32>, X<95:64>, X<127:96>);
Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
X<63:32> = ROL(X<63:32>, 30);
<Y, X> = ROL(Y : X, 32);

V[d] = X;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1C Page 1275

SHA1H

SHA1 fixed rotate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 Rn Rd

SHA1H <Sd>, <Sn>

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveSHA1Ext() then UNDEFINED;

Assembler Symbols

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(32) operand = V[n]; // read element [0] only, [1-3] zeroed
V[d] = ROL(operand, 30);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1H Page 1276

SHA1M

SHA1 hash update (majority).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 0 0 0 Rn Rd

SHA1M <Qd>, <Sn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA1Ext() then UNDEFINED;

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) X = V[d];
bits(32) Y = V[n]; // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;

for e = 0 to 3
t = SHAmajority(X<63:32>, X<95:64>, X<127:96>);
Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
X<63:32> = ROL(X<63:32>, 30);
<Y, X> = ROL(Y : X, 32);

V[d] = X;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1M Page 1277

SHA1P

SHA1 hash update (parity).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 1 0 0 Rn Rd

SHA1P <Qd>, <Sn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA1Ext() then UNDEFINED;

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) X = V[d];
bits(32) Y = V[n]; // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;

for e = 0 to 3
t = SHAparity(X<63:32>, X<95:64>, X<127:96>);
Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
X<63:32> = ROL(X<63:32>, 30);
<Y, X> = ROL(Y : X, 32);

V[d] = X;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1P Page 1278

SHA1SU0

SHA1 schedule update 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 1 0 0 Rn Rd

SHA1SU0 <Vd>.4S, <Vn>.4S, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA1Ext() then UNDEFINED;

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) operand3 = V[m];
bits(128) result;

result = operand2<63:0> : operand1<127:64>;
result = result EOR operand1 EOR operand3;
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1SU0 Page 1279

SHA1SU1

SHA1 schedule update 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 Rn Rd

SHA1SU1 <Vd>.4S, <Vn>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveSHA1Ext() then UNDEFINED;

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
bits(128) T = operand1 EOR LSR(operand2, 32);
result<31:0> = ROL(T<31:0>, 1);
result<63:32> = ROL(T<63:32>, 1);
result<95:64> = ROL(T<95:64>, 1);
result<127:96> = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1SU1 Page 1280

SHA256H2

SHA256 hash update (part 2).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 1 0 0 Rn Rd

P

SHA256H2 <Qd>, <Qn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA256Ext() then UNDEFINED;
boolean part1 = (P == '0');

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) result;
if part1 then

result = SHA256hash(V[d], V[n], V[m], TRUE);
else

result = SHA256hash(V[n], V[d], V[m], FALSE);
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256H2 Page 1281

SHA256H

SHA256 hash update (part 1).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 0 0 0 Rn Rd

P

SHA256H <Qd>, <Qn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA256Ext() then UNDEFINED;
boolean part1 = (P == '0');

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) result;
if part1 then

result = SHA256hash(V[d], V[n], V[m], TRUE);
else

result = SHA256hash(V[n], V[d], V[m], FALSE);
V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256H Page 1282

SHA256SU0

SHA256 schedule update 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 Rn Rd

SHA256SU0 <Vd>.4S, <Vn>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveSHA256Ext() then UNDEFINED;

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
bits(128) T = operand2<31:0> : operand1<127:32>;
bits(32) elt;

for e = 0 to 3
elt = Elem[T, e, 32];
elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
Elem[result, e, 32] = elt + Elem[operand1, e, 32];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256SU0 Page 1283

SHA256SU1

SHA256 schedule update 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 1 0 0 0 Rn Rd

SHA256SU1 <Vd>.4S, <Vn>.4S, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveSHA256Ext() then UNDEFINED;

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) operand3 = V[m];
bits(128) result;
bits(128) T0 = operand3<31:0> : operand2<127:32>;
bits(64) T1;
bits(32) elt;

T1 = operand3<127:64>;
for e = 0 to 1

elt = Elem[T1, e, 32];
elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
Elem[result, e, 32] = elt;

T1 = result<63:0>;
for e = 2 to 3

elt = Elem[T1, e - 2, 32];
elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
Elem[result, e, 32] = elt;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256SU1 Page 1284

SHA512H2

SHA512 Hash update part 2 takes the values from the three 128-bit source SIMD&FP registers and produces a 128-bit
output value that combines the sigma0 and majority functions of two iterations of the SHA512 computation. It returns
this value to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD
(FEAT_SHA512)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 1 Rn Rd

SHA512H2 <Qd>, <Qn>, <Vm>.2D

if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vtmp;
bits(64) NSigma0;
bits(64) tmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];

NSigma0 = ROR(Y<63:0>, 28) EOR ROR(Y<63:0>,34) EOR ROR(Y<63:0>,39);
Vtmp<127:64> = (X<63:0> AND Y<127:64>) EOR (X<63:0> AND Y<63:0>) EOR (Y<127:64> AND Y<63:0>);
Vtmp<127:64> = (Vtmp<127:64> + NSigma0 + W<127:64>);
NSigma0 = ROR(Vtmp<127:64>, 28) EOR ROR(Vtmp<127:64>,34) EOR ROR(Vtmp<127:64>,39);
Vtmp<63:0> = (Vtmp<127:64> AND Y<63:0>) EOR (Vtmp<127:64> AND Y<127:64>) EOR (Y<127:64> AND Y<63:0>);
Vtmp<63:0> = (Vtmp<63:0> + NSigma0 + W<63:0>);

V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512H2 Page 1285

SHA512H

SHA512 Hash update part 1 takes the values from the three 128-bit source SIMD&FP registers and produces a 128-bit
output value that combines the sigma1 and chi functions of two iterations of the SHA512 computation. It returns this
value to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD
(FEAT_SHA512)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 0 Rn Rd

SHA512H <Qd>, <Qn>, <Vm>.2D

if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vtmp;
bits(64) MSigma1;
bits(64) tmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];

MSigma1 = ROR(Y<127:64>, 14) EOR ROR(Y<127:64>,18) EOR ROR(Y<127:64>,41);
Vtmp<127:64> = (Y<127:64> AND X<63:0>) EOR (NOT(Y<127:64>) AND X<127:64>);
Vtmp<127:64> = (Vtmp<127:64> + MSigma1 + W<127:64>);
tmp = Vtmp<127:64> + Y<63:0>;
MSigma1 = ROR(tmp, 14) EOR ROR(tmp,18) EOR ROR(tmp,41);
Vtmp<63:0> = (tmp AND Y<127:64>) EOR (NOT(tmp) AND X<63:0>);
Vtmp<63:0> = (Vtmp<63:0> + MSigma1 + W<63:0>);
V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512H Page 1286

SHA512SU0

SHA512 Schedule Update 0 takes the values from the two 128-bit source SIMD&FP registers and produces a 128-bit
output value that combines the gamma0 functions of two iterations of the SHA512 schedule update that are performed
after the first 16 iterations within a block. It returns this value to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD
(FEAT_SHA512)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 Rn Rd

SHA512SU0 <Vd>.2D, <Vn>.2D

if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(64) sig0;
bits(128) Vtmp;
bits(128) X = V[n];
bits(128) W = V[d];
sig0 = ROR(W<127:64>, 1) EOR ROR(W<127:64>, 8) EOR ('0000000':W<127:71>);
Vtmp<63:0> = W<63:0> + sig0;
sig0 = ROR(X<63:0>, 1) EOR ROR(X<63:0>, 8) EOR ('0000000':X<63:7>);
Vtmp<127:64> = W<127:64> + sig0;
V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512SU0 Page 1287

SHA512SU1

SHA512 Schedule Update 1 takes the values from the three source SIMD&FP registers and produces a 128-bit output
value that combines the gamma1 functions of two iterations of the SHA512 schedule update that are performed after
the first 16 iterations within a block. It returns this value to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA512 is implemented.

Advanced SIMD
(FEAT_SHA512)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 0 Rn Rd

SHA512SU1 <Vd>.2D, <Vn>.2D, <Vm>.2D

if !HaveSHA512Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(64) sig1;
bits(128) Vtmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];

sig1 = ROR(X<127:64>, 19) EOR ROR(X<127:64>,61) EOR ('000000':X<127:70>);
Vtmp<127:64> = W<127:64> + sig1 + Y<127:64>;
sig1 = ROR(X<63:0>, 19) EOR ROR(X<63:0>,61) EOR ('000000':X<63:6>);
Vtmp<63:0> = W<63:0> + sig1 + Y<63:0>;
V[d] = Vtmp;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512SU1 Page 1288

SHADD

Signed Halving Add. This instruction adds corresponding signed integer values from the two source SIMD&FP
registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination
SIMD&FP register.
The results are truncated. For rounded results, see SRHADD.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd

U

SHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
Elem[result, e, esize] = sum<esize:1>;

V[d] = result;

SHADD Page 1289

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHADD Page 1290

SHL

Shift Left (immediate). This instruction reads each value from a vector, left shifts each result by an immediate value,
writes the final result to a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd

immh

SHL <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd

immh

SHL <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

SHL Page 1291

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

for e = 0 to elements-1
Elem[result, e, esize] = LSL(Elem[operand, e, esize], shift);

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHL Page 1292

SHLL, SHLL2

Shift Left Long (by element size). This instruction reads each vector element in the lower or upper half of the source
SIMD&FP register, left shifts each result by the element size, writes the final result to a vector, and writes the vector
to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.
The SHLL instruction extracts vector elements from the lower half of the source register. The SHLL2 instruction
extracts vector elements from the upper half of the source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 1 1 0 Rn Rd

SHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = esize;
boolean unsigned = FALSE; // Or TRUE without change of functionality

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<shift> Is the left shift amount, which must be equal to the source element width in bits, encoded in “size”:

SHLL, SHLL2 Page 1293

size <shift>
00 8
01 16
10 32
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(2*datasize) result;
integer element;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], unsigned) << shift;
Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHLL, SHLL2 Page 1294

SHRN, SHRN2

Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the source SIMD&FP
register, right shifts each result by an immediate value, puts the final result into a vector, and writes the vector to the
lower or upper half of the destination SIMD&FP register. The destination vector elements are half as long as the
source vector elements. The results are truncated. For rounded results, see RSHRN.
The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 0 0 1 Rn Rd

immh op

SHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

SHRN, SHRN2 Page 1295

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

for e = 0 to elements-1
element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
Elem[result, e, esize] = element<esize-1:0>;

Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHRN, SHRN2 Page 1296

SHSUB

Signed Halving Subtract. This instruction subtracts the elements in the vector in the second source SIMD&FP register
from the corresponding elements in the vector in the first source SIMD&FP register, shifts each result right one bit,
places each result into elements of a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd

U

SHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
Elem[result, e, esize] = diff<esize:1>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

SHSUB Page 1297

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSUB Page 1298

SLI

Shift Left and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, left
shifts each vector element by an immediate value, and inserts the result into the corresponding vector element in the
destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their existing
value. Bits shifted out of the left of each vector element in the source register are lost.
The following figure shows an example of the operation of shift left by 3 for an 8-bit vector element.

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]
63 5655 0

63 5655 0

63 5655 0

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd

immh

SLI <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd

immh

SLI <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

SLI Page 1299

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2 = V[d];
bits(datasize) result;
bits(esize) mask = LSL(Ones(esize), shift);
bits(esize) shifted;

for e = 0 to elements-1
shifted = LSL(Elem[operand, e, esize], shift);
Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

SLI Page 1300

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SLI Page 1301

SM3PARTW1

SM3PARTW1 takes three 128-bit vectors from the three source SIMD&FP registers and returns a 128-bit result in the
destination SIMD&FP register. The result is obtained by a three-way exclusive OR of the elements within the input
vectors with some fixed rotations, see the Operation pseudocode for more information.
This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD
(FEAT_SM3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 0 Rn Rd

SM3PARTW1 <Vd>.4S, <Vn>.4S, <Vm>.4S

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) result;

result<95:0> = (Vd EOR Vn)<95:0> EOR (ROL(Vm<127:96>,15):ROL(Vm<95:64>,15):ROL(Vm<63:32>,15));

for i = 0 to 3
if i == 3 then

result<127:96> = (Vd EOR Vn)<127:96> EOR (ROL(result<31:0>,15));
result<(32*i)+31:(32*i)> = result<(32*i)+31:(32*i)> EOR ROL(result<(32*i)+31:(32*i)>,15) EOR ROL(result<(32*i)+31:(32*i)>,23);

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3PARTW1 Page 1302

SM3PARTW2

SM3PARTW2 takes three 128-bit vectors from three source SIMD&FP registers and returns a 128-bit result in the
destination SIMD&FP register. The result is obtained by a three-way exclusive OR of the elements within the input
vectors with some fixed rotations, see the Operation pseudocode for more information.
This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD
(FEAT_SM3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 1 Rn Rd

SM3PARTW2 <Vd>.4S, <Vn>.4S, <Vm>.4S

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) result;
bits(128) tmp;
bits(32) tmp2;
tmp<127:0> = Vn EOR (ROL(Vm<127:96>,7):ROL(Vm<95:64>,7):ROL(Vm<63:32>,7):ROL(Vm<31:0>,7));
result<127:0> = Vd<127:0> EOR tmp<127:0>;
tmp2 = ROL(tmp<31:0>,15);
tmp2 = tmp2 EOR ROL(tmp2,15) EOR ROL(tmp2,23);
result<127:96> = result<127:96> EOR tmp2;
V[d]= result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3PARTW2 Page 1303

SM3SS1

SM3SS1 rotates the top 32 bits of the 128-bit vector in the first source SIMD&FP register by 12, and adds that 32-bit
value to the two other 32-bit values held in the top 32 bits of each of the 128-bit vectors in the second and third source
SIMD&FP registers, rotating this result left by 7 and writing the final result into the top 32 bits of the vector in the
destination SIMD&FP register, with the bottom 96 bits of the vector being written to 0.
This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD
(FEAT_SM3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 0 Rm 0 Ra Rn Rd

SM3SS1 <Vd>.4S, <Vn>.4S, <Vm>.4S, <Va>.4S

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) Va = V[a];
Vd<127:96> = ROL((ROL(Vn<127:96>,12) + Vm<127:96> + Va<127:96>) , 7);
Vd<95:0> = Zeros();
V[d] = Vd;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3SS1 Page 1304

SM3TT1A

SM3TT1A takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive OR of the three 32-bit
fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the following
three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.
• The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left by

12 of the top 32-bit element of the first source vector.
• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from
elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.
This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD
(FEAT_SM3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 0 Rn Rd

SM3TT1A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) WjPrime;
bits(128) result;
bits(32) TT1;
bits(32) SS2;

WjPrime = Elem[Vm,i,32];
SS2 = Vn<127:96> EOR ROL(Vd<127:96>,12);
TT1 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
TT1 = (TT1 + Vd<31:0> + SS2 + WjPrime)<31:0>;
result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>,9);
result<95:64> = Vd<127:96>;
result<127:96> = TT1;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

SM3TT1A Page 1305

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT1A Page 1306

SM3TT1B

SM3TT1B takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the three
32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the
following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.
• The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left by

12 of the top 32-bit element of the first source vector.
• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from
elements of the first source vector, with the element returned in bits<63:32> being rotated left by 9.
This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD
(FEAT_SM3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 1 Rn Rd

SM3TT1B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) WjPrime;
bits(128) result;
bits(32) TT1;
bits(32) SS2;

WjPrime = Elem[Vm,i,32];
SS2 = Vn<127:96> EOR ROL(Vd<127:96>,12);
TT1 = (Vd<127:96> AND Vd<63:32>) OR (Vd<127:96> AND Vd<95:64>) OR (Vd<63:32> AND Vd<95:64>);
TT1 = (TT1 + Vd<31:0> + SS2 + WjPrime)<31:0>;
result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>,9);
result<95:64> = Vd<127:96>;
result<127:96> = TT1;
V[d] = result;

Operational information

If PSTATE.DIT is 1:

SM3TT1B Page 1307

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT1B Page 1308

SM3TT2A

SM3TT2A takes three 128-bit vectors from three source SIMD&FP register and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a three-way exclusive OR of the three 32-bit
fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the following
three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.
• The 32-bit element held in the top 32 bits of the second source vector, Vn.
• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and the
result of the addition rotated left by 17. The result of this exclusive OR is returned as the top element of the returned
result. The other elements of this result are taken from elements of the first source vector, with the element returned
in bits<63:32> being rotated left by 19.
This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD
(FEAT_SM3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 0 Rn Rd

SM3TT2A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) Wj;
bits(128) result;
bits(32) TT2;

Wj = Elem[Vm,i,32];
TT2 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
TT2 = (TT2 + Vd<31:0> + Vn<127:96> + Wj)<31:0>;

result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>,19);
result<95:64> = Vd<127:96>;
result<127:96> = TT2 EOR ROL(TT2,9) EOR ROL(TT2,17);
V[d] = result;

Operational information

If PSTATE.DIT is 1:

SM3TT2A Page 1309

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT2A Page 1310

SM3TT2B

SM3TT2B takes three 128-bit vectors from three source SIMD&FP registers, and a 2-bit immediate index value, and
returns a 128-bit result in the destination SIMD&FP register. It performs a 32-bit majority function between the three
32-bit fields held in the upper three elements of the first source vector, and adds the resulting 32-bit value and the
following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.
• The 32-bit element held in the top 32 bits of the second source vector, Vn.
• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and the
result of the addition rotated left by 17. The result of this exclusive OR is returned as the top element of the returned
result. The other elements of this result are taken from elements of the first source vector, with the element returned
in bits<63:32> being rotated left by 19.
This instruction is implemented only when FEAT_SM3 is implemented.

Advanced SIMD
(FEAT_SM3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 1 Rn Rd

SM3TT2B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

if !HaveSM3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) Wj;
bits(128) result;
bits(32) TT2;

Wj = Elem[Vm,i,32];
TT2 = (Vd<127:96> AND Vd<95:64>) OR (NOT(Vd<127:96>) AND Vd<63:32>);
TT2 = (TT2 + Vd<31:0> + Vn<127:96> + Wj)<31:0>;

result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>,19);
result<95:64> = Vd<127:96>;
result<127:96> = TT2 EOR ROL(TT2,9) EOR ROL(TT2,17);
V[d] = result;

Operational information

If PSTATE.DIT is 1:

SM3TT2B Page 1311

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT2B Page 1312

SM4E

SM4 Encode takes input data as a 128-bit vector from the first source SIMD&FP register, and four iterations of the
round key held as the elements of the 128-bit vector in the second source SIMD&FP register. It encrypts the data by
four rounds, in accordance with the SM4 standard, returning the 128-bit result to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SM4 is implemented.

Advanced SIMD
(FEAT_SM4)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Rn Rd

SM4E <Vd>.4S, <Vn>.4S

if !HaveSM4Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vn = V[n];
bits(32) intval;
bits(128) roundresult;
bits(32) roundkey;

roundresult = V[d];
for index = 0 to 3

roundkey = Elem[Vn,index,32];

intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR roundkey;

for i = 0 to 3
Elem[intval,i,8] = Sbox(Elem[intval,i,8]);

intval = intval EOR ROL(intval,2) EOR ROL(intval,10) EOR ROL(intval,18) EOR ROL(intval,24);
intval = intval EOR roundresult<31:0>;

roundresult<31:0> = roundresult<63:32>;
roundresult<63:32> = roundresult<95:64>;
roundresult<95:64> = roundresult<127:96>;
roundresult<127:96> = intval;

V[d] = roundresult;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SM4E Page 1313

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM4E Page 1314

SM4EKEY

SM4 Key takes an input as a 128-bit vector from the first source SIMD&FP register and a 128-bit constant from the
second SIMD&FP register. It derives four iterations of the output key, in accordance with the SM4 standard, returning
the 128-bit result to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SM4 is implemented.

Advanced SIMD
(FEAT_SM4)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 1 0 Rn Rd

SM4EKEY <Vd>.4S, <Vn>.4S, <Vm>.4S

if !HaveSM4Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(32) intval;
bits(128) result;
bits(32) const;
bits(128) roundresult;

roundresult = V[n];
for index = 0 to 3

const = Elem[Vm,index,32];

intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR const;

for i = 0 to 3
Elem[intval,i,8] = Sbox(Elem[intval,i,8]);

intval = intval EOR ROL(intval,13) EOR ROL(intval,23);
intval = intval EOR roundresult<31:0>;

roundresult<31:0> = roundresult<63:32>;
roundresult<63:32> = roundresult<95:64>;
roundresult<95:64> = roundresult<127:96>;
roundresult<127:96> = intval;

V[d] = roundresult;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SM4EKEY Page 1315

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM4EKEY Page 1316

SMAX

Signed Maximum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the larger of each pair of signed integer values into a vector, and writes the vector to the
destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd

U o1

SMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

SMAX Page 1317

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAX Page 1318

SMAXP

Signed Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the largest of each pair of signed integer values into a
vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd

U o1

SMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

SMAXP Page 1319

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAXP Page 1320

SMAXV

Signed Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction
are signed integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd

U op

SMAXV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

SMAXV Page 1321

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAXV Page 1322

SMIN

Signed Minimum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the smaller of each of the two signed integer values into a vector, and writes the vector to
the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd

U o1

SMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

SMIN Page 1323

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMIN Page 1324

SMINP

Signed Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the smallest of each pair of signed integer values into a
vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd

U o1

SMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

SMINP Page 1325

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMINP Page 1326

SMINV

Signed Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction
are signed integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd

U op

SMINV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

SMINV Page 1327

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMINV Page 1328

SMLAL, SMLAL2 (by element)

Signed Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or upper
half of the first source SIMD&FP register by the specified vector element in the second source SIMD&FP register, and
accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied. All the values in this instruction are signed integer
values.
The SMLAL instruction extracts vector elements from the lower half of the first source register. The SMLAL2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd

U o2

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

SMLAL, SMLAL2 (by
element) Page 1329

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SMLAL, SMLAL2 (by
element) Page 1330

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAL, SMLAL2 (by
element) Page 1331

SMLAL, SMLAL2 (vector)

Signed Multiply-Add Long (vector). This instruction multiplies corresponding signed integer values in the lower or
upper half of the vectors of the two source SIMD&FP registers, and accumulates the results with the vector elements
of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are
multiplied.
The SMLAL instruction extracts each source vector from the lower half of each source register. The SMLAL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd

U o1

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SMLAL, SMLAL2 (vector) Page 1332

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAL, SMLAL2 (vector) Page 1333

SMLSL, SMLSL2 (by element)

Signed Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.
The SMLSL instruction extracts vector elements from the lower half of the first source register. The SMLSL2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd

U o2

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

SMLSL, SMLSL2 (by
element) Page 1334

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SMLSL, SMLSL2 (by
element) Page 1335

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSL, SMLSL2 (by
element) Page 1336

SMLSL, SMLSL2 (vector)

Signed Multiply-Subtract Long (vector). This instruction multiplies corresponding signed integer values in the lower or
upper half of the vectors of the two source SIMD&FP registers, and subtracts the results from the vector elements of
the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are
multiplied.
The SMLSL instruction extracts each source vector from the lower half of each source register. The SMLSL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd

U o1

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SMLSL, SMLSL2 (vector) Page 1337

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSL, SMLSL2 (vector) Page 1338

SMMLA (vector)

Signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of signed 8-bit integer
values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The
resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator in the
destination vector. This is equivalent to performing an 8-way dot product per destination element.
From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 1 0 0 Rm 1 0 1 0 0 1 Rn Rd

U B

SMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

if !HaveInt8MatMulExt() then UNDEFINED;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) addend = V[d];

V[d] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMLA (vector) Page 1339

SMOV

Signed Move vector element to general-purpose register. This instruction reads the signed integer from the source
SIMD&FP register, sign-extends it to form a 32-bit or 64-bit value, and writes the result to destination general-purpose
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 0 1 1 Rn Rd

32-bit (Q == 0)

SMOV <Wd>, <Vn>.<Ts>[<index>]

64-reg,SMOV-64-reg (Q == 1)

SMOV <Xd>, <Vn>.<Ts>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size;
case Q:imm5 of

when 'xxxxx1' size = 0; // SMOV [WX]d, Vn.B
when 'xxxx10' size = 1; // SMOV [WX]d, Vn.H
when '1xx100' size = 2; // SMOV Xd, Vn.S
otherwise UNDEFINED;

integer idxdsize = if imm5<4> == '1' then 128 else 64;
integer index = UInt(imm5<4:size+1>);
integer esize = 8 << size;
integer datasize = if Q == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
xxx00 RESERVED
xxxx1 B
xxx10 H

For the 64-reg,SMOV-64-reg variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
xx000 RESERVED
xxxx1 B
xxx10 H
xx100 S

<index> For the 32-bit variant: is the element index encoded in “imm5”:

imm5 <index>
xxx00 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>

SMOV Page 1340

For the 64-reg,SMOV-64-reg variant: is the element index encoded in “imm5”:

imm5 <index>
xx000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];

X[d] = SignExtend(Elem[operand, index, esize], datasize);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMOV Page 1341

SMULL, SMULL2 (by element)

Signed Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of
the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, places the
result in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are
twice as long as the elements that are multiplied.
The SMULL instruction extracts vector elements from the lower half of the first source register. The SMULL2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd

U

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

SMULL, SMULL2 (by
element) Page 1342

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = product;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL, SMULL2 (by
element) Page 1343

SMULL, SMULL2 (vector)

Signed Multiply Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper
half of the vectors of the two source SIMD&FP registers, places the results in a vector, and writes the vector to the
destination SIMD&FP register.
The destination vector elements are twice as long as the elements that are multiplied.
The SMULL instruction extracts each source vector from the lower half of each source register. The SMULL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd

U

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SMULL, SMULL2 (vector) Page 1344

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, 2*esize] = (element1 * element2)<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL, SMULL2 (vector) Page 1345

SQABS

Signed saturating Absolute value. This instruction reads each vector element from the source SIMD&FP register, puts
the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are signed integer values.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

U

SQABS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

U

SQABS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SQABS Page 1346

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
(Elem[result, e, esize], sat) = SignedSatQ(element, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQABS Page 1347

SQADD

Signed saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP
registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

U

SQADD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

U

SQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SQADD Page 1348

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
(Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQADD Page 1349

SQDMLAL, SQDMLAL2 (by element)

Signed saturating Doubling Multiply-Add Long (by element). This instruction multiplies each vector element in the
lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, and accumulates the final results with the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
The SQDMLAL instruction extracts vector elements from the lower half of the first source register. The SQDMLAL2
instruction extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd

o2

SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o2 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd

o2

SQDMLAL, SQDMLAL2 (by
element) Page 1350

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

SQDMLAL, SQDMLAL2 (by
element) Page 1351

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2*esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2*esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLAL, SQDMLAL2 (by
element) Page 1352

SQDMLAL, SQDMLAL2 (vector)

Signed saturating Doubling Multiply-Add Long. This instruction multiplies corresponding signed integer values in the
lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and accumulates the final
results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as
long as the elements that are multiplied.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
The SQDMLAL instruction extracts each source vector from the lower half of each source register. The SQDMLAL2
instruction extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd

o1

SQDMLAL <Va><d>, <Vb><n>, <Vb><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o1 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd

o1

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

SQDMLAL, SQDMLAL2
(vector) Page 1353

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

SQDMLAL, SQDMLAL2
(vector) Page 1354

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2*esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2*esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLAL, SQDMLAL2
(vector) Page 1355

SQDMLSL, SQDMLSL2 (by element)

Signed saturating Doubling Multiply-Subtract Long (by element). This instruction multiplies each vector element in
the lower or upper half of the first source SIMD&FP register by the specified vector element of the second source
SIMD&FP register, doubles the results, and subtracts the final results from the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the
values in this instruction are signed integer values.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
The SQDMLSL instruction extracts vector elements from the lower half of the first source register. The SQDMLSL2
instruction extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd

o2

SQDMLSL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o2 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd

o2

SQDMLSL, SQDMLSL2 (by
element) Page 1356

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

SQDMLSL, SQDMLSL2 (by
element) Page 1357

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2*esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2*esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLSL, SQDMLSL2 (by
element) Page 1358

SQDMLSL, SQDMLSL2 (vector)

Signed saturating Doubling Multiply-Subtract Long. This instruction multiplies corresponding signed integer values in
the lower or upper half of the vectors of the two source SIMD&FP registers, doubles the results, and subtracts the
final results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice
as long as the elements that are multiplied.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
The SQDMLSL instruction extracts each source vector from the lower half of each source register. The SQDMLSL2
instruction extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd

o1

SQDMLSL <Va><d>, <Vb><n>, <Vb><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o1 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd

o1

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

SQDMLSL, SQDMLSL2
(vector) Page 1359

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

SQDMLSL, SQDMLSL2
(vector) Page 1360

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2*esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2*esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLSL, SQDMLSL2
(vector) Page 1361

SQDMULH (by element)

Signed saturating Doubling Multiply returning High half (by element). This instruction multiplies each vector element
in the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles
the results, places the most significant half of the final results into a vector, and writes the vector to the destination
SIMD&FP register.
The results are truncated. For rounded results, see SQRDMULH.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd

op

SQDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd

op

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean round = (op == '1');

SQDMULH (by element) Page 1362

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

SQDMULH (by element) Page 1363

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
product = (2 * element1 * element2) + round_const;
// The following only saturates if element1 and element2 equal -(2^(esize-1))
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULH (by element) Page 1364

SQDMULH (vector)

Signed saturating Doubling Multiply returning High half. This instruction multiplies the values of corresponding
elements of the two source SIMD&FP registers, doubles the results, places the most significant half of the final results
into a vector, and writes the vector to the destination SIMD&FP register.
The results are truncated. For rounded results, see SQRDMULH.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

U

SQDMULH <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

U

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

SQDMULH (vector) Page 1365

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
product = (2 * element1 * element2) + round_const;
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULH (vector) Page 1366

SQDMULL, SQDMULL2 (by element)

Signed saturating Doubling Multiply Long (by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register, doubles the results, places the final results in a vector, and writes the vector to the destination SIMD&FP
register. All the values in this instruction are signed integer values.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
The SQDMULL instruction extracts the first source vector from the lower half of the first source register. The SQDMULL2
instruction extracts the first source vector from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd

SQDMULL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

SQDMULL, SQDMULL2 (by
element) Page 1367

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

SQDMULL, SQDMULL2 (by
element) Page 1368

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
(product, sat) = SignedSatQ(2 * element1 * element2, 2*esize);
Elem[result, e, 2*esize] = product;
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULL, SQDMULL2 (by
element) Page 1369

SQDMULL, SQDMULL2 (vector)

Signed saturating Doubling Multiply Long. This instruction multiplies corresponding vector elements in the lower or
upper half of the two source SIMD&FP registers, doubles the results, places the final results in a vector, and writes
the vector to the destination SIMD&FP register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
The SQDMULL instruction extracts each source vector from the lower half of each source register. The SQDMULL2
instruction extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd

SQDMULL <Va><d>, <Vb><n>, <Vb><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

SQDMULL, SQDMULL2
(vector) Page 1370

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
(product, sat) = SignedSatQ(2 * element1 * element2, 2*esize);
Elem[result, e, 2*esize] = product;
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULL, SQDMULL2
(vector) Page 1371

SQNEG

Signed saturating Negate. This instruction reads each vector element from the source SIMD&FP register, negates
each value, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in
this instruction are signed integer values.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

U

SQNEG <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd

U

SQNEG <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SQNEG Page 1372

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
(Elem[result, e, esize], sat) = SignedSatQ(element, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQNEG Page 1373

SQRDMLAH (by element)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This instruction
multiplies the vector elements of the first source SIMD&FP register with the value of a vector element of the second
source SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the most
significant half of the final results with the vector elements of the destination SIMD&FP register. The results are
rounded.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

S

SQRDMLAH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

S

SQRDMLAH (by element) Page 1374

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

SQRDMLAH (by element) Page 1375

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLAH (by element) Page 1376

SQRDMLAH (vector)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This instruction multiplies
the vector elements of the first source SIMD&FP register with the corresponding vector elements of the second source
SIMD&FP register without saturating the multiply results, doubles the results, and accumulates the most significant
half of the final results with the vector elements of the destination SIMD&FP register. The results are rounded.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd

S

SQRDMLAH <V><d>, <V><n>, <V><m>

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd

S

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

SQRDMLAH (vector) Page 1377

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLAH (vector) Page 1378

SQRDMLSH (by element)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This instruction multiplies
the vector elements of the first source SIMD&FP register with the value of a vector element of the second source
SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most significant half
of the final results from the vector elements of the destination SIMD&FP register. The results are rounded.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd

S

SQRDMLSH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd

S

SQRDMLSH (by element) Page 1379

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UNDEFINED;

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

SQRDMLSH (by element) Page 1380

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLSH (by element) Page 1381

SQRDMLSH (vector)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction multiplies the
vector elements of the first source SIMD&FP register with the corresponding vector elements of the second source
SIMD&FP register without saturating the multiply results, doubles the results, and subtracts the most significant half
of the final results from the vector elements of the destination SIMD&FP register. The results are rounded.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd

S

SQRDMLSH <V><d>, <V><n>, <V><m>

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd

S

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveQRDMLAHExt() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

SQRDMLSH (vector) Page 1382

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLSH (vector) Page 1383

SQRDMULH (by element)

Signed saturating Rounding Doubling Multiply returning High half (by element). This instruction multiplies each
vector element in the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register, doubles the results, places the most significant half of the final results into a vector, and writes the vector to
the destination SIMD&FP register.
The results are rounded. For truncated results, see SQDMULH.
If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

op

SQRDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd

op

SQRDMULH (by element) Page 1384

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean round = (op == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

SQRDMULH (by element) Page 1385

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
product = (2 * element1 * element2) + round_const;
// The following only saturates if element1 and element2 equal -(2^(esize-1))
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMULH (by element) Page 1386

SQRDMULH (vector)

Signed saturating Rounding Doubling Multiply returning High half. This instruction multiplies the values of
corresponding elements of the two source SIMD&FP registers, doubles the results, places the most significant half of
the final results into a vector, and writes the vector to the destination SIMD&FP register.
The results are rounded. For truncated results, see SQDMULH.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

U

SQRDMULH <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd

U

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

SQRDMULH (vector) Page 1387

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
product = (2 * element1 * element2) + round_const;
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMULH (vector) Page 1388

SQRSHL

Signed saturating Rounding Shift Left (register). This instruction takes each vector element in the first source
SIMD&FP register, shifts it by a value from the least significant byte of the corresponding vector element of the
second source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP
register.
If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For
truncated results, see SQSHL.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

U R S

SQRSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

U R S

SQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

SQRSHL Page 1389

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRSHL Page 1390

SQRSHRN, SQRSHRN2

Signed saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that is half
the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register. All the values in this instruction are signed integer values. The destination vector elements are half
as long as the source vector elements. The results are rounded. For truncated results, see SQSHRN.
The SQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
If saturation occurs, the cumulative saturation bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd

U immh op

SQRSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd

U immh op

SQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

SQRSHRN, SQRSHRN2 Page 1391

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQRSHRN, SQRSHRN2 Page 1392

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRSHRN, SQRSHRN2 Page 1393

SQRSHRUN, SQRSHRUN2

Signed saturating Rounded Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value
in the vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the result to an
unsigned integer value that is half the original width, places the final result into a vector, and writes the vector to the
destination SIMD&FP register. The results are rounded. For truncated results, see SQSHRUN.
The SQRSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQRSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other
bits of the register.
If saturation occurs, the cumulative saturation bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 0 1 1 Rn Rd

immh op

SQRSHRUN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 0 1 1 Rn Rd

immh op

SQRSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

SQRSHRUN, SQRSHRUN2 Page 1394

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQRSHRUN, SQRSHRUN2 Page 1395

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
(Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRSHRUN, SQRSHRUN2 Page 1396

SQSHL (immediate)

Signed saturating Shift Left (immediate). This instruction reads each vector element in the source SIMD&FP register,
shifts each result by an immediate value, places the final result in a vector, and writes the vector to the destination
SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd

U immh op

SQSHL <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UNDEFINED;
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd

U immh op

SQSHL (immediate) Page 1397

SQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UNDEFINED;
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0000 RESERVED
0001 B
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in “immh:immb”:

SQSHL (immediate) Page 1398

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], src_unsigned) << shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHL (immediate) Page 1399

SQSHL (register)

Signed saturating Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP
register, shifts each element by a value from the least significant byte of the corresponding element of the second
source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.
If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For
rounded results, see SQRSHL.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

U R S

SQSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

U R S

SQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

SQSHL (register) Page 1400

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHL (register) Page 1401

SQSHLU

Signed saturating Shift Left Unsigned (immediate). This instruction reads each signed integer value in the vector of
the source SIMD&FP register, shifts each value by an immediate value, saturates the shifted result to an unsigned
integer value, places the result in a vector, and writes the vector to the destination SIMD&FP register. The results are
truncated. For rounded results, see UQRSHL.
If saturation occurs, the cumulative saturation bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 1 0 0 1 Rn Rd

U immh op

SQSHLU <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UNDEFINED;
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 1 0 0 1 Rn Rd

U immh op

SQSHLU Page 1402

SQSHLU <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UNDEFINED;
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0000 RESERVED
0001 B
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in “immh:immb”:

SQSHLU Page 1403

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], src_unsigned) << shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHLU Page 1404

SQSHRN, SQSHRN2

Signed saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts and truncates each result by an immediate value, saturates each shifted result to a value that is
half the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. All the values in this instruction are signed integer values. The destination vector
elements are half as long as the source vector elements. For rounded results, see SQRSHRN.
The SQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
If saturation occurs, the cumulative saturation bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd

U immh op

SQSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd

U immh op

SQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

SQSHRN, SQSHRN2 Page 1405

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQSHRN, SQSHRN2 Page 1406

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHRN, SQSHRN2 Page 1407

SQSHRUN, SQSHRUN2

Signed saturating Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value in the
vector of the source SIMD&FP register, right shifts each value by an immediate value, saturates the result to an
unsigned integer value that is half the original width, places the final result into a vector, and writes the vector to the
destination SIMD&FP register. The results are truncated. For rounded results, see SQRSHRUN.
The SQSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
If saturation occurs, the cumulative saturation bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 0 0 1 Rn Rd

immh op

SQSHRUN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 0 0 1 Rn Rd

immh op

SQSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

SQSHRUN, SQSHRUN2 Page 1408

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQSHRUN, SQSHRUN2 Page 1409

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
(Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHRUN, SQSHRUN2 Page 1410

SQSUB

Signed saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register
from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

U

SQSUB <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

U

SQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SQSUB Page 1411

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
(Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSUB Page 1412

SQXTN, SQXTN2

Signed saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register,
saturates the value to half the original width, places the result into a vector, and writes the vector to the lower or
upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector
elements. All the values in this instruction are signed integer values.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
The SQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
SQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

U

SQXTN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

U

SQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

SQXTN, SQXTN2 Page 1413

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vb> Is the destination width specifier, encoded in “size”:

size <Vb>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “size”:

size <Va>
00 H
01 S
10 D
11 RESERVED

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
(Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQXTN, SQXTN2 Page 1414

SQXTUN, SQXTUN2

Signed saturating extract Unsigned Narrow. This instruction reads each signed integer value in the vector of the
source SIMD&FP register, saturates the value to an unsigned integer value that is half the original width, places the
result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The
destination vector elements are half as long as the source vector elements.
If saturation occurs, the cumulative saturation bit FPSR.QC is set.
The SQXTUN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the SQXTUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

SQXTUN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

SQXTUN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

SQXTUN, SQXTUN2 Page 1415

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vb> Is the destination width specifier, encoded in “size”:

size <Vb>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “size”:

size <Va>
00 H
01 S
10 D
11 RESERVED

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
(Elem[result, e, esize], sat) = UnsignedSatQ(SInt(element), esize);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQXTUN, SQXTUN2 Page 1416

SRHADD

Signed Rounding Halving Add. This instruction adds corresponding signed integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.
The results are rounded. For truncated results, see SHADD.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd

U

SRHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, esize] = (element1 + element2 + 1)<esize:1>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRHADD Page 1417

SRI

Shift Right and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each vector element by an immediate value, and inserts the result into the corresponding vector element in the
destination SIMD&FP register such that the new zero bits created by the shift are not inserted but retain their existing
value. Bits shifted out of the right of each vector element of the source register are lost.
The following figure shows an example of the operation of shift right by 3 for an 8-bit vector element.

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]
63 5655 0

63 5655 0

63 5655 0

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 0 0 0 1 Rn Rd

immh

SRI <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 0 0 0 1 Rn Rd

immh

SRI <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);

SRI Page 1418

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2 = V[d];
bits(datasize) result;
bits(esize) mask = LSR(Ones(esize), shift);
bits(esize) shifted;

for e = 0 to elements-1
shifted = LSR(Elem[operand, e, esize], shift);
Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

SRI Page 1419

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRI Page 1420

SRSHL

Signed Rounding Shift Left (register). This instruction takes each signed integer value in the vector of the first source
SIMD&FP register, shifts it by a value from the least significant byte of the corresponding element of the second
source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.
If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For a
truncating shift, see SSHL.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

U R S

SRSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

U R S

SRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

SRSHL Page 1421

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRSHL Page 1422

SRSHR

Signed Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register,
right shifts each result by an immediate value, places the final result into a vector, and writes the vector to the
destination SIMD&FP register. All the values in this instruction are signed integer values. The results are rounded. For
truncated results, see SSHR.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd

U immh o1 o0

SRSHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd

U immh o1 o0

SRSHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

SRSHR Page 1423

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRSHR Page 1424

SRSRA

Signed Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are signed integer values. The results
are rounded. For truncated results, see SSRA.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd

U immh o1 o0

SRSRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd

U immh o1 o0

SRSRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

SRSRA Page 1425

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRSRA Page 1426

SSHL

Signed Shift Left (register). This instruction takes each signed integer value in the vector of the first source SIMD&FP
register, shifts each value by a value from the least significant byte of the corresponding element of the second source
SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.
If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For a
rounding shift, see SRSHL.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

U R S

SSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

U R S

SSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

SSHL Page 1427

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSHL Page 1428

SSHLL, SSHLL2

Signed Shift Left Long (immediate). This instruction reads each vector element from the source SIMD&FP register,
left shifts each vector element by the specified shift amount, places the result into a vector, and writes the vector to
the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.
All the values in this instruction are signed integer values.
The SSHLL instruction extracts vector elements from the lower half of the source register. The SSHLL2 instruction
extracts vector elements from the upper half of the source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias SXTL, SXTL2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 1 0 0 1 Rn Rd

U immh

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

SSHLL, SSHLL2 Page 1429

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx RESERVED

Alias Conditions

Alias Is preferred when
SXTL, SXTL2 immb == '000' && BitCount(immh) == 1

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(datasize*2) result;
integer element;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], unsigned) << shift;
Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSHLL, SSHLL2 Page 1430

SSHR

Signed Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, places the final result into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are signed integer values. The results are truncated. For rounded
results, see SRSHR.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd

U immh o1 o0

SSHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd

U immh o1 o0

SSHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

SSHR Page 1431

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSHR Page 1432

SSRA

Signed Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts each result by an immediate value, and accumulates the final results with the vector elements of
the destination SIMD&FP register. All the values in this instruction are signed integer values. The results are
truncated. For rounded results, see SRSRA.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd

U immh o1 o0

SSRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd

U immh o1 o0

SSRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

SSRA Page 1433

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSRA Page 1434

SSUBL, SSUBL2

Signed Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second source
SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the results into
a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed
integer values. The destination vector elements are twice as long as the source vector elements.
The SSUBL instruction extracts each source vector from the lower half of each source register. The SSUBL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd

U o1

SSUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SSUBL, SSUBL2 Page 1435

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSUBL, SSUBL2 Page 1436

SSUBW, SSUBW2

Signed Subtract Wide. This instruction subtracts each vector element in the lower or upper half of the second source
SIMD&FP register from the corresponding vector element in the first source SIMD&FP register, places the result in a
vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are signed integer
values.
The SSUBW instruction extracts the second source vector from the lower half of the second source register. The SSUBW2
instruction extracts the second source vector from the upper half of the second source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd

U o1

SSUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SSUBW, SSUBW2 Page 1437

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSUBW, SSUBW2 Page 1438

ST1 (multiple structures)

Store multiple single-element structures from one, two, three, or four registers. This instruction stores elements to
memory from one, two, three, or four SIMD&FP registers, without interleaving. Every element of each register is
stored.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 x x 1 x size Rn Rt

L opcode

One register (opcode == 0111)

ST1 { <Vt>.<T> }, [<Xn|SP>]

Two registers (opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers (opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers (opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 0 0 Rm x x 1 x size Rn Rt

L opcode

ST1 (multiple structures) Page 1439

One register, immediate offset (Rm == 11111 && opcode == 0111)

ST1 { <Vt>.<T> }, [<Xn|SP>], <imm>

One register, register offset (Rm != 11111 && opcode == 0111)

ST1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset (Rm == 11111 && opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset (Rm != 11111 && opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset (Rm == 11111 && opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset (Rm != 11111 && opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset (Rm == 11111 && opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset (Rm != 11111 && opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

ST1 (multiple structures) Page 1440

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #8
1 #16

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

ST1 (multiple structures) Page 1441

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1 (multiple structures) Page 1442

ST1 (single structure)

Store a single-element structure from one lane of one register. This instruction stores the specified element of a
SIMD&FP register to memory.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 0 S size Rn Rt

L R opcode

8-bit (opcode == 000)

ST1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

ST1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

ST1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

ST1 { <Vt>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 0 0 Rm x x 0 S size Rn Rt

L R opcode

ST1 (single structure) Page 1443

8-bit, immediate offset (Rm == 11111 && opcode == 000)

ST1 { <Vt>.B }[<index>], [<Xn|SP>], #1

8-bit, register offset (Rm != 11111 && opcode == 000)

ST1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

ST1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

ST1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

ST1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

ST1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

ST1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

ST1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST1 (single structure) Page 1444

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST1 (single structure) Page 1445

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1 (single structure) Page 1446

ST2 (multiple structures)

Store multiple 2-element structures from two registers. This instruction stores multiple 2-element structures from two
SIMD&FP registers to memory, with interleaving. Every element of each register is stored.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 size Rn Rt

L opcode

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 0 0 Rm 1 0 0 0 size Rn Rt

L opcode

Immediate offset (Rm == 11111)

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

ST2 (multiple structures) Page 1447

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

ST2 (multiple structures) Page 1448

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2 (multiple structures) Page 1449

ST2 (single structure)

Store single 2-element structure from one lane of two registers. This instruction stores a 2-element structure to
memory from corresponding elements of two SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 0 S size Rn Rt

L R opcode

8-bit (opcode == 000)

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 0 1 Rm x x 0 S size Rn Rt

L R opcode

ST2 (single structure) Page 1450

8-bit, immediate offset (Rm == 11111 && opcode == 000)

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

8-bit, register offset (Rm != 11111 && opcode == 000)

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST2 (single structure) Page 1451

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST2 (single structure) Page 1452

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2 (single structure) Page 1453

ST3 (multiple structures)

Store multiple 3-element structures from three registers. This instruction stores multiple 3-element structures to
memory from three SIMD&FP registers, with interleaving. Every element of each register is stored.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 size Rn Rt

L opcode

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 0 0 Rm 0 1 0 0 size Rn Rt

L opcode

Immediate offset (Rm == 11111)

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

ST3 (multiple structures) Page 1454

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

ST3 (multiple structures) Page 1455

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3 (multiple structures) Page 1456

ST3 (single structure)

Store single 3-element structure from one lane of three registers. This instruction stores a 3-element structure to
memory from corresponding elements of three SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 1 S size Rn Rt

L R opcode

8-bit (opcode == 001)

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 0 0 Rm x x 1 S size Rn Rt

L R opcode

ST3 (single structure) Page 1457

8-bit, immediate offset (Rm == 11111 && opcode == 001)

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

8-bit, register offset (Rm != 11111 && opcode == 001)

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST3 (single structure) Page 1458

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST3 (single structure) Page 1459

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3 (single structure) Page 1460

ST4 (multiple structures)

Store multiple 4-element structures from four registers. This instruction stores multiple 4-element structures to
memory from four SIMD&FP registers, with interleaving. Every element of each register is stored.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 size Rn Rt

L opcode

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 0 0 Rm 0 0 0 0 size Rn Rt

L opcode

Immediate offset (Rm == 11111)

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

ST4 (multiple structures) Page 1461

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UNDEFINED;

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then UNDEFINED;

ST4 (multiple structures) Page 1462

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer tt;
constant integer ebytes = esize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4 (multiple structures) Page 1463

ST4 (single structure)

Store single 4-element structure from one lane of four registers. This instruction stores a 4-element structure to
memory from corresponding elements of four SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 1 S size Rn Rt

L R opcode

8-bit (opcode == 001)

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;
boolean tag_checked = wback || n != 31;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 0 1 Rm x x 1 S size Rn Rt

L R opcode

ST4 (single structure) Page 1464

8-bit, immediate offset (Rm == 11111 && opcode == 001)

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

8-bit, register offset (Rm != 11111 && opcode == 001)

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;
boolean tag_checked = wback || n != 31;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".
For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".
For the 32-bit variant: is the element index, encoded in "Q:S".
For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST4 (single structure) Page 1465

Shared Decode

integer init_scale = UInt(opcode<2:1>);
integer scale = init_scale;
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UNDEFINED;
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UNDEFINED;
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UNDEFINED;
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UNDEFINED;
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST4 (single structure) Page 1466

Operation

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address + offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4 (single structure) Page 1467

STNP (SIMD&FP)

Store Pair of SIMD&FP registers, with Non-temporal hint. This instruction stores a pair of SIMD&FP registers to
memory, issuing a hint to the memory system that the access is non-temporal. The address used for the store is
calculated from an address from a base register value and an immediate offset. For information about non-temporal
pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 0 0 0 imm7 Rt2 Rn Rt

L

32-bit (opc == 00)

STNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

STNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

STNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to
252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to
504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.
For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024
to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

STNP (SIMD&FP) Page 1468

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_VECSTREAM;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data1 = V[t];
data2 = V[t2];
Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

V[t] = data1;
V[t2] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

STNP (SIMD&FP) Page 1469

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNP (SIMD&FP) Page 1470

STP (SIMD&FP)

Store Pair of SIMD&FP registers. This instruction stores a pair of SIMD&FP registers to memory. The address used for
the store is calculated from a base register value and an immediate offset.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 0 1 0 imm7 Rt2 Rn Rt

L

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 1 1 0 imm7 Rt2 Rn Rt

L

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 1 0 1 0 0 imm7 Rt2 Rn Rt

L

STP (SIMD&FP) Page 1471

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of
4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.
For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.
For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of
8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.
For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.
For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a multiple
of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.
For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16 in the
range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
AccType acctype = AccType_VEC;
MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
if opc == '11' then UNDEFINED;
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);
boolean tag_checked = wback || n != 31;

boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UNDEFINED;
when Constraint_NOP EndOfInstruction();

STP (SIMD&FP) Page 1472

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data1 = V[t];
data2 = V[t2];
Mem[address + 0 , dbytes, acctype] = data1;
Mem[address + dbytes, dbytes, acctype] = data2;

when MemOp_LOAD
data1 = Mem[address + 0 , dbytes, acctype];
data2 = Mem[address + dbytes, dbytes, acctype];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

V[t] = data1;
V[t2] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STP (SIMD&FP) Page 1473

STR (immediate, SIMD&FP)

Store SIMD&FP register (immediate offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an immediate offset.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 0 0 imm9 0 1 Rn Rt

opc

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>], #<simm>

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>], #<simm>

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>], #<simm>

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>], #<simm>

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 0 0 imm9 1 1 Rn Rt

opc

STR (immediate, SIMD&FP) Page 1474

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>, #<simm>]!

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>, #<simm>]!

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>, #<simm>]!

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>, #<simm>]!

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 1 x 0 imm12 Rn Rt

opc

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>{, #<pimm>}]

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

STR (immediate, SIMD&FP) Page 1475

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to
0 and encoded in the "imm12" field.
For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0 to
8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.
For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to
16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.
For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to
32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.
For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range 0 to
65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

STR (immediate, SIMD&FP) Page 1476

Operation

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (immediate, SIMD&FP) Page 1477

STR (register, SIMD&FP)

Store SIMD&FP register (register offset). This instruction stores a single SIMD&FP register to memory. The address
that is used for the store is calculated from a base register value and an offset register value. The offset can be
optionally shifted and extended.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 0 1 Rm option S 1 0 Rn Rt

opc

8-fsreg,STR-8-fsreg (size == 00 && opc == 00 && option != 011)

STR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-fsreg,STR-8-fsreg (size == 00 && opc == 00 && option == 011)

STR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-fsreg,STR-16-fsreg (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-fsreg,STR-32-fsreg (size == 10 && opc == 00)

STR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-fsreg,STR-64-fsreg (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-fsreg,STR-128-fsreg (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
if option<1> == '0' then UNDEFINED; // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the
"Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the
"Rm" field.

STR (register, SIMD&FP) Page 1478

<extend> For the 8-bit variant: is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to LSL,
and which must be omitted for the LSL option when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if
present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is
permitted to be optional, it defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #4

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH;

STR (register, SIMD&FP) Page 1479

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (register, SIMD&FP) Page 1480

STUR (SIMD&FP)

Store SIMD&FP register (unscaled offset). This instruction stores a single SIMD&FP register to memory. The address
that is used for the store is calculated from a base register value and an optional immediate offset.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 1 0 0 x 0 0 imm9 0 0 Rn Rt

opc

8-bit (size == 00 && opc == 00)

STUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit (size == 01 && opc == 00)

STUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit (size == 10 && opc == 00)

STUR <St>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11 && opc == 00)

STUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit (size == 00 && opc == 10)

STUR <Qt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UNDEFINED;
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in
the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;
boolean tag_checked = memop != MemOp_PREFETCH && (wback || n != 31);

STUR (SIMD&FP) Page 1481

Operation

CheckFPAdvSIMDEnabled64();
bits(64) address;
bits(datasize) data;

if HaveMTE2Ext() then
SetTagCheckedInstruction(tag_checked);

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if ! postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Operational information

If PSTATE.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUR (SIMD&FP) Page 1482

SUB (vector)

Subtract (vector). This instruction subtracts each vector element in the second source SIMD&FP register from the
corresponding vector element in the first source SIMD&FP register, places the result into a vector, and writes the
vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

U

SUB <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd

U

SUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SUB (vector) Page 1483

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then

Elem[result, e, esize] = element1 - element2;
else

Elem[result, e, esize] = element1 + element2;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (vector) Page 1484

SUBHN, SUBHN2

Subtract returning High Narrow. This instruction subtracts each vector element in the second source SIMD&FP
register from the corresponding vector element in the first source SIMD&FP register, places the most significant half
of the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the
values in this instruction are signed integer values.
The results are truncated. For rounded results, see RSUBHN.
The SUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
SUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd

U o1

SUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

SUBHN, SUBHN2 Page 1485

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBHN, SUBHN2 Page 1486

SUDOT (by element)

Dot product index form with signed and unsigned integers. This instruction performs the dot product of the four
signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination vector.
From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 0 L M Rm 1 1 1 1 H 0 Rn Rd

US

SUDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

if !HaveInt8MatMulExt() then UNDEFINED;
boolean op1_unsigned = (US == '1');
boolean op2_unsigned = (US == '0');
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer d = UInt(Rd);
integer i = UInt(H:L);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a quadtuplet of four 8-bit elements in the range 0 to 3, encoded in the "H:L"
fields.

SUDOT (by element) Page 1487

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to elements-1
bits(32) res = Elem[operand3, e, 32];
for b = 0 to 3

integer element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
integer element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
res = res + element1 * element2;

Elem[result, e, 32] = res;
V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUDOT (by element) Page 1488

SUQADD

Signed saturating Accumulate of Unsigned value. This instruction adds the unsigned integer values of the vector
elements in the source SIMD&FP register to corresponding signed integer values of the vector elements in the
destination SIMD&FP register, and writes the resulting signed integer values to the destination SIMD&FP register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

U

SUQADD <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

U

SUQADD <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SUQADD Page 1489

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(datasize) operand2 = V[d];
integer op1;
integer op2;
boolean sat;

for e = 0 to elements-1
op1 = Int(Elem[operand, e, esize], !unsigned);
op2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUQADD Page 1490

SXTL, SXTL2

Signed extend Long. This instruction duplicates each vector element in the lower or upper half of the source
SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the source vector elements. All the values in this instruction are signed integer values.
The SXTL instruction extracts the source vector from the lower half of the source register. The SXTL2 instruction
extracts the source vector from the upper half of the source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of SSHLL, SSHLL2. This means:

• The encodings in this description are named to match the encodings of SSHLL, SSHLL2.
• The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 0 != 0000 0 0 0 1 0 1 0 0 1 Rn Rd

U immh immb

SXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

is equivalent to

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

SXTL, SXTL2 Page 1491

Operation

The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTL, SXTL2 Page 1492

TBL

Table vector Lookup. This instruction reads each value from the vector elements in the index source SIMD&FP
register, uses each result as an index to perform a lookup in a table of bytes that is described by one to four source
table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination SIMD&FP
register. If an index is out of range for the table, the result for that lookup is 0. If more than one source register is
used to describe the table, the first source register describes the lowest bytes of the table.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 0 0 0 Rn Rd

op

Two register table (len == 01)

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table (len == 10)

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table (len == 11)

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table (len == 00)

TBL <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;
integer regs = UInt(len) + 1;
boolean is_tbl = (op == '0');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 8B
1 16B

<Vn> For the four register table, three register table and two register table variant: is the name of the first
SIMD&FP table register, encoded in the "Rn" field.
For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn"
field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

TBL Page 1493

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) indices = V[m];
bits(128*regs) table = Zeros();
bits(datasize) result;
integer index;

// Create table from registers
for i = 0 to regs - 1

table<128*i+127:128*i> = V[n];
n = (n + 1) MOD 32;

result = if is_tbl then Zeros() else V[d];
for i = 0 to elements - 1

index = UInt(Elem[indices, i, 8]);
if index < 16 * regs then

Elem[result, i, 8] = Elem[table, index, 8];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBL Page 1494

TBX

Table vector lookup extension. This instruction reads each value from the vector elements in the index source
SIMD&FP register, uses each result as an index to perform a lookup in a table of bytes that is described by one to four
source table SIMD&FP registers, places the lookup result in a vector, and writes the vector to the destination
SIMD&FP register. If an index is out of range for the table, the existing value in the vector element of the destination
register is left unchanged. If more than one source register is used to describe the table, the first source register
describes the lowest bytes of the table.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 1 0 0 Rn Rd

op

Two register table (len == 01)

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table (len == 10)

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table (len == 11)

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table (len == 00)

TBX <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;
integer regs = UInt(len) + 1;
boolean is_tbl = (op == '0');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 8B
1 16B

<Vn> For the four register table, three register table and two register table variant: is the name of the first
SIMD&FP table register, encoded in the "Rn" field.
For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn"
field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

TBX Page 1495

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) indices = V[m];
bits(128*regs) table = Zeros();
bits(datasize) result;
integer index;

// Create table from registers
for i = 0 to regs - 1

table<128*i+127:128*i> = V[n];
n = (n + 1) MOD 32;

result = if is_tbl then Zeros() else V[d];
for i = 0 to elements - 1

index = UInt(Elem[indices, i, 8]);
if index < 16 * regs then

Elem[result, i, 8] = Elem[table, index, 8];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBX Page 1496

TRN1

Transpose vectors (primary). This instruction reads corresponding even-numbered vector elements from the two
source SIMD&FP registers, starting at zero, places each result into consecutive elements of a vector, and writes the
vector to the destination SIMD&FP register. Vector elements from the first source register are placed into even-
numbered elements of the destination vector, starting at zero, while vector elements from the second source register
are placed into odd-numbered elements of the destination vector.
By using this instruction with TRN2, a 2 x 2 matrix can be transposed.
The following figure shows an example of the operation of TRN1 and TRN2 halfword operations where Q = 0.

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 0 1 0 Rn Rd

op

TRN1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

TRN1 Page 1497

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRN1 Page 1498

TRN2

Transpose vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two
source SIMD&FP registers, places each result into consecutive elements of a vector, and writes the vector to the
destination SIMD&FP register. Vector elements from the first source register are placed into even-numbered elements
of the destination vector, starting at zero, while vector elements from the second source register are placed into odd-
numbered elements of the destination vector.
By using this instruction with TRN1, a 2 x 2 matrix can be transposed.
The following figure shows an example of the operation of TRN1 and TRN2 halfword operations where Q = 0.

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 0 1 0 Rn Rd

op

TRN2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

TRN2 Page 1499

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRN2 Page 1500

UABA

Unsigned Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second
source SIMD&FP register from the corresponding elements of the first source SIMD&FP register, and accumulates the
absolute values of the results into the elements of the vector of the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd

U ac

UABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

UABA Page 1501

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABA Page 1502

UABAL, UABAL2

Unsigned Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or
upper half of the second source SIMD&FP register from the corresponding vector elements of the first source
SIMD&FP register, and accumulates the absolute values of the results into the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in
this instruction are unsigned integer values.
The UABAL instruction extracts each source vector from the lower half of each source register. The UABAL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd

U op

UABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

UABAL, UABAL2 Page 1503

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABAL, UABAL2 Page 1504

UABD

Unsigned Absolute Difference (vector). This instruction subtracts the elements of the vector of the second source
SIMD&FP register from the corresponding elements of the first source SIMD&FP register, places the the absolute
values of the results into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd

U ac

UABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

UABD Page 1505

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABD Page 1506

UABDL, UABDL2

Unsigned Absolute Difference Long. This instruction subtracts the vector elements in the lower or upper half of the
second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register,
places the absolute value of the result into a vector, and writes the vector to the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements. All the values in this instruction are
unsigned integer values.
The UABDL instruction extracts each source vector from the lower half of each source register. The UABDL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd

U op

UABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

UABDL, UABDL2 Page 1507

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1 - element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABDL, UABDL2 Page 1508

UADALP

Unsigned Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the
vector in the source SIMD&FP register and accumulates the results with the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd

U op

UADALP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2*esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

UADALP Page 1509

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

if acc then result = V[d];
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1 + op2)<2*esize-1:0>;
if acc then

Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
else

Elem[result, e, 2*esize] = sum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADALP Page 1510

UADDL, UADDL2

Unsigned Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source
SIMD&FP register to the corresponding vector element of the second source SIMD&FP register, places the result into
a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long
as the source vector elements. All the values in this instruction are unsigned integer values.
The UADDL instruction extracts each source vector from the lower half of each source register. The UADDL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd

U o1

UADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UADDL, UADDL2 Page 1511

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDL, UADDL2 Page 1512

UADDLP

Unsigned Add Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the vector in the
source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.
The destination vector elements are twice as long as the source vector elements.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd

U op

UADDLP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2*esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

UADDLP Page 1513

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

if acc then result = V[d];
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1 + op2)<2*esize-1:0>;
if acc then

Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;
else

Elem[result, e, 2*esize] = sum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDLP Page 1514

UADDLV

Unsigned sum Long across Vector. This instruction adds every vector element in the source SIMD&FP register
together, and writes the scalar result to the destination SIMD&FP register. The destination scalar is twice as long as
the source vector elements. All the values in this instruction are unsigned integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd

U

UADDLV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 H
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer sum;

sum = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

sum = sum + Int(Elem[operand, e, esize], unsigned);

V[d] = sum<2*esize-1:0>;

UADDLV Page 1515

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDLV Page 1516

UADDW, UADDW2

Unsigned Add Wide. This instruction adds the vector elements of the first source SIMD&FP register to the
corresponding vector elements in the lower or upper half of the second source SIMD&FP register, places the result in
a vector, and writes the vector to the SIMD&FP destination register. The vector elements of the destination register
and the first source register are twice as long as the vector elements of the second source register. All the values in
this instruction are unsigned integer values.
The UADDW instruction extracts vector elements from the lower half of the second source register. The UADDW2
instruction extracts vector elements from the upper half of the second source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd

U o1

UADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

UADDW, UADDW2 Page 1517

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDW, UADDW2 Page 1518

UCVTF (vector, fixed-point)

Unsigned fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from fixed-
point to floating-point using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP
destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd

U immh

UCVTF <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR[]);

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd

U immh

UCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then UNDEFINED;
if immh<3>:Q == '10' then UNDEFINED;
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

UCVTF (vector, fixed-point) Page 1519

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in
“immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in
“immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

bits(esize) element;
FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (vector, fixed-point) Page 1520

UCVTF (vector, integer)

Unsigned integer Convert to Floating-point (vector). This instruction converts each element in a vector from an
unsigned integer value to a floating-point value using the rounding mode that is specified by the FPCR, and writes the
result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half
precision and Vector single-precision and double-precision

Scalar half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

U

UCVTF <Hd>, <Hn>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

U

UCVTF <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector half precision
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

U

UCVTF (vector, integer) Page 1521

UCVTF <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

U

UCVTF <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then UNDEFINED;
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

UCVTF (vector, integer) Page 1522

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];

FPCRType fpcr = FPCR[];
boolean merge = elements == 1 && IsMerging(fpcr);
bits(128) result = if merge then V[d] else Zeros();

FPRounding rounding = FPRoundingMode(fpcr);
bits(esize) element;
for e = 0 to elements-1

element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, 0, unsigned, fpcr, rounding);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (vector, integer) Page 1523

UCVTF (scalar, fixed-point)

Unsigned fixed-point Convert to Floating-point (scalar). This instruction converts the unsigned value in the 32-bit or
64-bit general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR,
and writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and
Exception level in which the instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 0 0 0 0 1 1 scale Rn Rd

rmode opcode

UCVTF (scalar, fixed-point) Page 1524

32-bit to half-precision (sf == 0 && ftype == 11)
(FEAT_FP16)

UCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision (sf == 0 && ftype == 00)

UCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision (sf == 0 && ftype == 01)

UCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision (sf == 1 && ftype == 11)
(FEAT_FP16)

UCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision (sf == 1 && ftype == 00)

UCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision (sf == 1 && ftype == 01)

UCVTF <Dd>, <Xn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;

case ftype of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UNDEFINED;
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UNDEFINED;

if sf == '0' && scale<5> == '0' then UNDEFINED;
integer fracbits = 64 - UInt(scale);

case opcode<2:1>:rmode of
when '00 11' // FCVTZ

rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

otherwise
UNDEFINED;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

UCVTF (scalar, fixed-point) Page 1525

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is the
number of bits after the binary point in the fixed-point source, in the range 1 to 32, encoded as 64
minus "scale".
For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is the
number of bits after the binary point in the fixed-point source, in the range 1 to 64, encoded as 64
minus "scale".

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, fracbits, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, fracbits, unsigned, fpcr, rounding);
V[d] = fltval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (scalar, fixed-point) Page 1526

UCVTF (scalar, integer)

Unsigned integer Convert to Floating-point (scalar). This instruction converts the unsigned integer value in the
general-purpose source register to a floating-point value using the rounding mode that is specified by the FPCR, and
writes the result to the SIMD&FP destination register.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception
results in either a flag being set in FPSR, or a synchronous exception being generated. For more information, see
Floating-point exception traps.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 0 1 1 1 1 0 ftype 1 0 0 0 1 1 0 0 0 0 0 0 Rn Rd

rmode opcode

UCVTF (scalar, integer) Page 1527

32-bit to half-precision (sf == 0 && ftype == 11)
(FEAT_FP16)

UCVTF <Hd>, <Wn>

32-bit to single-precision (sf == 0 && ftype == 00)

UCVTF <Sd>, <Wn>

32-bit to double-precision (sf == 0 && ftype == 01)

UCVTF <Dd>, <Wn>

64-bit to half-precision (sf == 1 && ftype == 11)
(FEAT_FP16)

UCVTF <Hd>, <Xn>

64-bit to single-precision (sf == 1 && ftype == 00)

UCVTF <Sd>, <Xn>

64-bit to double-precision (sf == 1 && ftype == 01)

UCVTF <Dd>, <Xn>

UCVTF (scalar, integer) Page 1528

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case ftype of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UNDEFINED;
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UNDEFINED;

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR[]);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UNDEFINED;
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UNDEFINED;
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UNDEFINED;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

UCVTF (scalar, integer) Page 1529

Operation

CheckFPEnabled64();

FPCRType fpcr = FPCR[];
boolean merge = IsMerging(fpcr);
integer fsize = if op == FPConvOp_CVT_ItoF && merge then 128 else fltsize;
bits(fsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, fpcr, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = if merge then V[d] else Zeros();
Elem[fltval, 0, fltsize] = FixedToFP(intval, 0, unsigned, fpcr, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n,part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fsize-1:0>;
Vpart[d,part] = fltval;

when FPConvOp_CVT_FtoI_JS
bit Z;
fltval = V[n];
(intval, Z) = FPToFixedJS(fltval, fpcr, TRUE);
PSTATE.<N,Z,C,V> = '0':Z:'00';
X[d] = intval;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (scalar, integer) Page 1530

UDOT (by element)

Dot Product unsigned arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit
elements in each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in
the second source register, accumulating the result into the corresponding 32-bit element of the destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd

U

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then UNDEFINED;
boolean signed = (U=='0');

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer index = UInt(H:L);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the element index, encoded in the "H:L" fields.

UDOT (by element) Page 1531

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDOT (by element) Page 1532

UDOT (vector)

Dot Product unsigned arithmetic (vector). This instruction performs the dot product of the four unsigned 8-bit
elements in each 32-bit element of the first source register with the four unsigned 8-bit elements of the corresponding
32-bit element in the second source register, accumulating the result into the corresponding 32-bit element of the
destination register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.
ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd

U

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveDOTPExt() then UNDEFINED;
if size!= '10' then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UDOT (vector) Page 1533

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDOT (vector) Page 1534

UHADD

Unsigned Halving Add. This instruction adds corresponding unsigned integer values from the two source SIMD&FP
registers, shifts each result right one bit, places the results into a vector, and writes the vector to the destination
SIMD&FP register.
The results are truncated. For rounded results, see URHADD.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd

U

UHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
Elem[result, e, esize] = sum<esize:1>;

V[d] = result;

UHADD Page 1535

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHADD Page 1536

UHSUB

Unsigned Halving Subtract. This instruction subtracts the vector elements in the second source SIMD&FP register
from the corresponding vector elements in the first source SIMD&FP register, shifts each result right one bit, places
each result into a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd

U

UHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
Elem[result, e, esize] = diff<esize:1>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:

UHSUB Page 1537

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHSUB Page 1538

UMAX

Unsigned Maximum (vector). This instruction compares corresponding elements in the vectors in the two source
SIMD&FP registers, places the larger of each pair of unsigned integer values into a vector, and writes the vector to
the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd

U o1

UMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

UMAX Page 1539

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAX Page 1540

UMAXP

Unsigned Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the largest of each pair of unsigned integer values into a
vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd

U o1

UMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

UMAXP Page 1541

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAXP Page 1542

UMAXV

Unsigned Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction
are unsigned integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd

U op

UMAXV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

UMAXV Page 1543

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAXV Page 1544

UMIN

Unsigned Minimum (vector). This instruction compares corresponding vector elements in the two source SIMD&FP
registers, places the smaller of each of the two unsigned integer values into a vector, and writes the vector to the
destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd

U o1

UMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

UMIN Page 1545

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMIN Page 1546

UMINP

Unsigned Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent
vector elements in the two source SIMD&FP registers, writes the smallest of each pair of unsigned integer values into
a vector, and writes the vector to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd

U o1

UMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

UMINP Page 1547

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMINP Page 1548

UMINV

Unsigned Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register,
and writes the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction
are unsigned integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd

U op

UMINV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

UMINV Page 1549

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMINV Page 1550

UMLAL, UMLAL2 (by element)

Unsigned Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and accumulates the results with the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.
The UMLAL instruction extracts vector elements from the lower half of the first source register. The UMLAL2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd

U o2

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

UMLAL, UMLAL2 (by
element) Page 1551

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

UMLAL, UMLAL2 (by
element) Page 1552

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLAL, UMLAL2 (by
element) Page 1553

UMLAL, UMLAL2 (vector)

Unsigned Multiply-Add Long (vector). This instruction multiplies the vector elements in the lower or upper half of the
first source SIMD&FP register by the corresponding vector elements of the second source SIMD&FP register, and
accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector
elements are twice as long as the elements that are multiplied.
The UMLAL instruction extracts vector elements from the lower half of the first source register. The UMLAL2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd

U o1

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UMLAL, UMLAL2 (vector) Page 1554

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLAL, UMLAL2 (vector) Page 1555

UMLSL, UMLSL2 (by element)

Unsigned Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or
upper half of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP
register and subtracts the results from the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.
The UMLSL instruction extracts vector elements from the lower half of the first source register. The UMLSL2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd

U o2

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

UMLSL, UMLSL2 (by
element) Page 1556

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

UMLSL, UMLSL2 (by
element) Page 1557

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLSL, UMLSL2 (by
element) Page 1558

UMLSL, UMLSL2 (vector)

Unsigned Multiply-Subtract Long (vector). This instruction multiplies corresponding vector elements in the lower or
upper half of the two source SIMD&FP registers, and subtracts the results from the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the
values in this instruction are unsigned integer values.
The UMLSL instruction extracts each source vector from the lower half of each source register. The UMLSL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd

U o1

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UMLSL, UMLSL2 (vector) Page 1559

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLSL, UMLSL2 (vector) Page 1560

UMMLA (vector)

Unsigned 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of unsigned 8-bit integer
values in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source vector. The
resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator in the
destination vector. This is equivalent to performing an 8-way dot product per destination element.
From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 1 1 0 1 0 0 Rm 1 0 1 0 0 1 Rn Rd

U B

UMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

if !HaveInt8MatMulExt() then UNDEFINED;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) addend = V[d];

V[d] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMMLA (vector) Page 1561

UMOV

Unsigned Move vector element to general-purpose register. This instruction reads the unsigned integer from the
source SIMD&FP register, zero-extends it to form a 32-bit or 64-bit value, and writes the result to the destination
general-purpose register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (to general).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 1 1 1 Rn Rd

32-bit (Q == 0)

UMOV <Wd>, <Vn>.<Ts>[<index>]

64-reg,UMOV-64-reg (Q == 1 && imm5 == x1000)

UMOV <Xd>, <Vn>.<Ts>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size;
case Q:imm5 of

when '0xxxx1' size = 0; // UMOV Wd, Vn.B
when '0xxx10' size = 1; // UMOV Wd, Vn.H
when '0xx100' size = 2; // UMOV Wd, Vn.S
when '1x1000' size = 3; // UMOV Xd, Vn.D
otherwise UNDEFINED;

integer idxdsize = if imm5<4> == '1' then 128 else 64;
integer index = UInt(imm5<4:size+1>);
integer esize = 8 << size;
integer datasize = if Q == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
xx000 RESERVED
xxxx1 B
xxx10 H
xx100 S

For the 64-reg,UMOV-64-reg variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 RESERVED
xxx10 RESERVED
xx100 RESERVED
x1000 D

UMOV Page 1562

<index> For the 32-bit variant: is the element index encoded in “imm5”:

imm5 <index>
xx000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>

For the 64-reg,UMOV-64-reg variant: is the element index encoded in "imm5<4>".

Alias Conditions

Alias Is preferred when
MOV (to general) imm5 == 'x1000'
MOV (to general) imm5 == 'xx100'

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];

X[d] = ZeroExtend(Elem[operand, index, esize], datasize);

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMOV Page 1563

UMULL, UMULL2 (by element)

Unsigned Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper half
of the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, places
the results in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are
twice as long as the elements that are multiplied.
The UMULL instruction extracts vector elements from the lower half of the first source register. The UMULL2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd

U

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UNDEFINED;

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

UMULL, UMULL2 (by
element) Page 1564

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1 * element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = product;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULL, UMULL2 (by
element) Page 1565

UMULL, UMULL2 (vector)

Unsigned Multiply long (vector). This instruction multiplies corresponding vector elements in the lower or upper half
of the two source SIMD&FP registers, places the result in a vector, and writes the vector to the destination SIMD&FP
register. The destination vector elements are twice as long as the elements that are multiplied. All the values in this
instruction are unsigned integer values.
The UMULL instruction extracts each source vector from the lower half of each source register. The UMULL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd

U

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UMULL, UMULL2 (vector) Page 1566

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, 2*esize] = (element1 * element2)<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULL, UMULL2 (vector) Page 1567

UQADD

Unsigned saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP
registers, places the results into a vector, and writes the vector to the destination SIMD&FP register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

U

UQADD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd

U

UQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

UQADD Page 1568

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
(Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQADD Page 1569

UQRSHL

Unsigned saturating Rounding Shift Left (register). This instruction takes each vector element of the first source
SIMD&FP register, shifts the vector element by a value from the least significant byte of the corresponding vector
element of the second source SIMD&FP register, places the results into a vector, and writes the vector to the
destination SIMD&FP register.
If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For
truncated results, see UQSHL.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

U R S

UQRSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd

U R S

UQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

UQRSHL Page 1570

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQRSHL Page 1571

UQRSHRN, UQRSHRN2

Unsigned saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the
source SIMD&FP register, right shifts each result by an immediate value, puts the final result into a vector, and writes
the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are
unsigned integer values. The results are rounded. For truncated results, see UQSHRN.
The UQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd

U immh op

UQRSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd

U immh op

UQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

UQRSHRN, UQRSHRN2 Page 1572

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

UQRSHRN, UQRSHRN2 Page 1573

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQRSHRN, UQRSHRN2 Page 1574

UQSHL (immediate)

Unsigned saturating Shift Left (immediate). This instruction takes each vector element in the source SIMD&FP
register, shifts it by an immediate value, places the results in a vector, and writes the vector to the destination
SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd

U immh op

UQSHL <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UNDEFINED;
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd

U immh op

UQSHL (immediate) Page 1575

UQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UNDEFINED;
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0000 RESERVED
0001 B
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1,
encoded in “immh:immb”:

UQSHL (immediate) Page 1576

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], src_unsigned) << shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSHL (immediate) Page 1577

UQSHL (register)

Unsigned saturating Shift Left (register). This instruction takes each element in the vector of the first source
SIMD&FP register, shifts the element by a value from the least significant byte of the corresponding element of the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP
register.
If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For
rounded results, see UQRSHL.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

U R S

UQSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd

U R S

UQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

UQSHL (register) Page 1578

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSHL (register) Page 1579

UQSHRN, UQSHRN2

Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, saturates each shifted result to a value that is half
the original width, puts the final result into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For
rounded results, see UQRSHRN.
The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while
the UQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits
of the register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd

U immh op

UQSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then UNDEFINED;
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd

U immh op

UQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

UQSHRN, UQSHRN2 Page 1580

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits,
encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

UQSHRN, UQSHRN2 Page 1581

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits,
encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSHRN, UQSHRN2 Page 1582

UQSUB

Unsigned saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register
from the corresponding element values of the first source SIMD&FP register, places the results into a vector, and
writes the vector to the destination SIMD&FP register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

U

UQSUB <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd

U

UQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

UQSUB Page 1583

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
(Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSUB Page 1584

UQXTN, UQXTN2

Unsigned saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register,
saturates each value to half the original width, places the result into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are unsigned integer values.
If saturation occurs, the cumulative saturation bit FPSR.QC is set.
The UQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
UQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

U

UQXTN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd

U

UQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

UQXTN, UQXTN2 Page 1585

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vb> Is the destination width specifier, encoded in “size”:

size <Vb>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “size”:

size <Va>
00 H
01 S
10 D
11 RESERVED

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
(Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQXTN, UQXTN2 Page 1586

URECPE

Unsigned Reciprocal Estimate. This instruction reads each vector element from the source SIMD&FP register,
calculates an approximate inverse for the unsigned integer value, places the result into a vector, and writes the vector
to the destination SIMD&FP register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

URECPE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(32) element;

for e = 0 to elements-1
element = Elem[operand, e, 32];
Elem[result, e, 32] = UnsignedRecipEstimate(element);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URECPE Page 1587

URHADD

Unsigned Rounding Halving Add. This instruction adds corresponding unsigned integer values from the two source
SIMD&FP registers, shifts each result right one bit, places the results into a vector, and writes the vector to the
destination SIMD&FP register.
The results are rounded. For truncated results, see UHADD.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd

U

URHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, esize] = (element1 + element2 + 1)<esize:1>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URHADD Page 1588

URSHL

Unsigned Rounding Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP
register, shifts the vector element by a value from the least significant byte of the corresponding element of the second
source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.
If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

U R S

URSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd

U R S

URSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

URSHL Page 1589

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSHL Page 1590

URSHR

Unsigned Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the
destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are rounded.
For truncated results, see USHR.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd

U immh o1 o0

URSHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd

U immh o1 o0

URSHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

URSHR Page 1591

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSHR Page 1592

URSQRTE

Unsigned Reciprocal Square Root Estimate. This instruction reads each vector element from the source SIMD&FP
register, calculates an approximate inverse square root for each value, places the result into a vector, and writes the
vector to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

URSQRTE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '1' then UNDEFINED;
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(32) element;

for e = 0 to elements-1
element = Elem[operand, e, 32];
Elem[result, e, 32] = UnsignedRSqrtEstimate(element);

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSQRTE Page 1593

URSRA

Unsigned Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source
SIMD&FP register, right shifts each result by an immediate value, and accumulates the final results with the vector
elements of the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The
results are rounded. For truncated results, see USRA.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd

U immh o1 o0

URSRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd

U immh o1 o0

URSRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

URSRA Page 1594

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSRA Page 1595

USDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.
From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 1 1 0 L M Rm 1 1 1 1 H 0 Rn Rd

US

USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

if !HaveInt8MatMulExt() then UNDEFINED;
boolean op1_unsigned = (US == '1');
boolean op2_unsigned = (US == '0');
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer d = UInt(Rd);
integer i = UInt(H:L);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the immediate index of a quadtuplet of four 8-bit elements in the range 0 to 3, encoded in the "H:L"
fields.

USDOT (by element) Page 1596

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to elements-1
bits(32) res = Elem[operand3, e, 32];
for b = 0 to 3

integer element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
integer element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
res = res + element1 * element2;

Elem[result, e, 32] = res;
V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USDOT (by element) Page 1597

USDOT (vector)

Dot Product vector form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in the corresponding 32-bit element of the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.
From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 1 0 0 Rm 1 0 0 1 1 1 Rn Rd

USDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 32;

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to elements-1
bits(32) res = Elem[operand3, e, 32];
for b = 0 to 3

integer element1 = UInt(Elem[operand1, 4 * e + b, 8]);
integer element2 = SInt(Elem[operand2, 4 * e + b, 8]);
res = res + element1 * element2;

Elem[result, e, 32] = res;

V[d] = result;

USDOT (vector) Page 1598

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USDOT (vector) Page 1599

USHL

Unsigned Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register,
shifts each element by a value from the least significant byte of the corresponding element of the second source
SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register.
If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For a
rounding shift, see URSHL.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

U R S

USHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then UNDEFINED;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd

U R S

USHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

USHL Page 1600

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USHL Page 1601

USHLL, USHLL2

Unsigned Shift Left Long (immediate). This instruction reads each vector element in the lower or upper half of the
source SIMD&FP register, shifts the unsigned integer value left by the specified number of bits, places the result into
a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long
as the source vector elements.
The USHLL instruction extracts vector elements from the lower half of the source register. The USHLL2 instruction
extracts vector elements from the upper half of the source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This instruction is used by the alias UXTL, UXTL2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 1 0 0 1 Rn Rd

U immh

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

USHLL, USHLL2 Page 1602

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx RESERVED

Alias Conditions

Alias Is preferred when
UXTL, UXTL2 immb == '000' && BitCount(immh) == 1

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(datasize*2) result;
integer element;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], unsigned) << shift;
Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USHLL, USHLL2 Page 1603

USHR

Unsigned Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The results are truncated. For
rounded results, see URSHR.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd

U immh o1 o0

USHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd

U immh o1 o0

USHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

USHR Page 1604

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USHR Page 1605

USMMLA (vector)

Unsigned and signed 8-bit integer matrix multiply-accumulate. This instruction multiplies the 2x8 matrix of unsigned
8-bit integer values in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source
vector. The resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator
in the destination vector. This is equivalent to performing an 8-way dot product per destination element.
From Armv8.2 to Armv8.5, this is an OPTIONAL instruction. From Armv8.6 it is mandatory for implementations that
include Advanced SIMD to support it. ID_AA64ISAR1_EL1.I8MM indicates whether this instruction is supported.

Vector
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 1 0 0 Rm 1 0 1 0 1 1 Rn Rd

U B

USMMLA <Vd>.4S, <Vn>.16B, <Vm>.16B

if !HaveInt8MatMulExt() then UNDEFINED;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Rd);

Assembler Symbols

<Vd> Is the name of the SIMD&FP third source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(128) operand1 = V[n];
bits(128) operand2 = V[m];
bits(128) addend = V[d];

V[d] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USMMLA (vector) Page 1606

USQADD

Unsigned saturating Accumulate of Signed value. This instruction adds the signed integer values of the vector
elements in the source SIMD&FP register to corresponding unsigned integer values of the vector elements in the
destination SIMD&FP register, and accumulates the resulting unsigned integer values with the vector elements of the
destination SIMD&FP register.
If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation
bit FPSR.QC is set.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

U

USQADD <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd

U

USQADD <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

USQADD Page 1607

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(datasize) operand2 = V[d];
integer op1;
integer op2;
boolean sat;

for e = 0 to elements-1
op1 = Int(Elem[operand, e, esize], !unsigned);
op2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USQADD Page 1608

USRA

Unsigned Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP
register, right shifts each result by an immediate value, and accumulates the final results with the vector elements of
the destination SIMD&FP register. All the values in this instruction are unsigned integer values. The results are
truncated. For rounded results, see URSRA.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd

U immh o1 o0

USRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then UNDEFINED;
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd

U immh o1 o0

USRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then UNDEFINED;
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

USRA Page 1609

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in
“immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USRA Page 1610

USUBL, USUBL2

Unsigned Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second
source SIMD&FP register from the corresponding vector element of the first source SIMD&FP register, places the
result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
unsigned integer values. The destination vector elements are twice as long as the source vector elements.
The USUBL instruction extracts each source vector from the lower half of each source register. The USUBL2 instruction
extracts each source vector from the upper half of each source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd

U o1

USUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

USUBL, USUBL2 Page 1611

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USUBL, USUBL2 Page 1612

USUBW, USUBW2

Unsigned Subtract Wide. This instruction subtracts each vector element of the second source SIMD&FP register from
the corresponding vector element in the lower or upper half of the first source SIMD&FP register, places the result in
a vector, and writes the vector to the SIMD&FP destination register. All the values in this instruction are unsigned
integer values.
The vector elements of the destination register and the first source register are twice as long as the vector elements of
the second source register.
The USUBW instruction extracts vector elements from the lower half of the first source register. The USUBW2 instruction
extracts vector elements from the upper half of the first source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd

U o1

USUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

USUBW, USUBW2 Page 1613

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USUBW, USUBW2 Page 1614

UXTL, UXTL2

Unsigned extend Long. This instruction copies each vector element from the lower or upper half of the source
SIMD&FP register into a vector, and writes the vector to the destination SIMD&FP register. The destination vector
elements are twice as long as the source vector elements.
The UXTL instruction extracts vector elements from the lower half of the source register. The UXTL2 instruction
extracts vector elements from the upper half of the source register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

This is an alias of USHLL, USHLL2. This means:

• The encodings in this description are named to match the encodings of USHLL, USHLL2.
• The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 1 0 != 0000 0 0 0 1 0 1 0 0 1 Rn Rd

U immh immb

UXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

is equivalent to

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

UXTL, UXTL2 Page 1615

Operation

The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTL, UXTL2 Page 1616

UZP1

Unzip vectors (primary). This instruction reads corresponding even-numbered vector elements from the two source
SIMD&FP registers, starting at zero, places the result from the first source register into consecutive elements in the
lower half of a vector, and the result from the second source register into consecutive elements in the upper half of a
vector, and writes the vector to the destination SIMD&FP register.
This instruction can be used with UZP2 to de-interleave two vectors.
The following figure shows an example of the operation of UZP1 and UZP2 with the arrangement specifier 8B.

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn
Vm

Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 0 0 0 1 1 0 Rn Rd

op

UZP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UZP1 Page 1617

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operandl = V[n];
bits(datasize) operandh = V[m];
bits(datasize) result;

bits(datasize*2) zipped = operandh:operandl;
for e = 0 to elements-1

Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UZP1 Page 1618

UZP2

Unzip vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two source
SIMD&FP registers, places the result from the first source register into consecutive elements in the lower half of a
vector, and the result from the second source register into consecutive elements in the upper half of a vector, and
writes the vector to the destination SIMD&FP register.
This instruction can be used with UZP1 to de-interleave two vectors.
The following figure shows an example of the operation of UZP1 and UZP2 with the arrangement specifier 8B.

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn
Vm

Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 0 1 0 1 1 0 Rn Rd

op

UZP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UZP2 Page 1619

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operandl = V[n];
bits(datasize) operandh = V[m];
bits(datasize) result;

bits(datasize*2) zipped = operandh:operandl;
for e = 0 to elements-1

Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UZP2 Page 1620

XAR

Exclusive OR and Rotate performs a bitwise exclusive OR of the 128-bit vectors in the two source SIMD&FP registers,
rotates each 64-bit element of the resulting 128-bit vector right by the value specified by a 6-bit immediate value, and
writes the result to the destination SIMD&FP register.
This instruction is implemented only when FEAT_SHA3 is implemented.

Advanced SIMD
(FEAT_SHA3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 1 0 0 Rm imm6 Rn Rd

XAR <Vd>.2D, <Vn>.2D, <Vm>.2D, #<imm6>

if !HaveSHA3Ext() then UNDEFINED;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<imm6> Is a rotation right, encoded in "imm6".

Operation

AArch64.CheckFPAdvSIMDEnabled();

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) tmp;
tmp = Vn EOR Vm;
V[d] = ROR(tmp<127:64>, UInt(imm6)):ROR(tmp<63:0>, UInt(imm6));

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

XAR Page 1621

XTN, XTN2

Extract Narrow. This instruction reads each vector element from the source SIMD&FP register, narrows each value to
half the original width, places the result into a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. The destination vector elements are half as long as the source vector elements.
The XTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
XTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

XTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper
64 bits of the registers holding the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

XTN, XTN2 Page 1622

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
Elem[result, e, esize] = element<esize-1:0>;

Vpart[d, part] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

XTN, XTN2 Page 1623

ZIP1

Zip vectors (primary). This instruction reads adjacent vector elements from the lower half of two source SIMD&FP
registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the destination
SIMD&FP register. The first pair from the first source register is placed into the two lowest vector elements, with
subsequent pairs taken alternately from each source register.
This instruction can be used with ZIP2 to interleave two vectors.
The following figure shows an example of the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6

Vn
Vm

Vd Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 1 1 0 Rn Rd

op

ZIP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

ZIP1 Page 1624

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer base = part * pairs;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZIP1 Page 1625

ZIP2

Zip vectors (secondary). This instruction reads adjacent vector elements from the upper half of two source SIMD&FP
registers as pairs, interleaves the pairs and places them into a vector, and writes the vector to the destination
SIMD&FP register. The first pair from the first source register is placed into the two lowest vector elements, with
subsequent pairs taken alternately from each source register.
This instruction can be used with ZIP1 to interleave two vectors.
The following figure shows an example of the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.

A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6

Vn
Vm

Vd Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and
Exception level, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 1 1 0 Rn Rd

op

ZIP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then UNDEFINED;
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

ZIP2 Page 1626

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer base = part * pairs;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

V[d] = result;

Operational information

If PSTATE.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZIP2 Page 1627

A64 -- SVE Instructions (alphabetic order)

ABS: Absolute value (predicated).

ADD (immediate): Add immediate (unpredicated).

ADD (vectors, predicated): Add vectors (predicated).

ADD (vectors, unpredicated): Add vectors (unpredicated).

ADDPL: Add multiple of predicate register size to scalar register.

ADDVL: Add multiple of vector register size to scalar register.

ADR: Compute vector address.

AND (immediate): Bitwise AND with immediate (unpredicated).

AND (predicates): Bitwise AND predicates.

AND (vectors, predicated): Bitwise AND vectors (predicated).

AND (vectors, unpredicated): Bitwise AND vectors (unpredicated).

ANDS: Bitwise AND predicates, setting the condition flags.

ANDV: Bitwise AND reduction to scalar.

ASR (immediate, predicated): Arithmetic shift right by immediate (predicated).

ASR (immediate, unpredicated): Arithmetic shift right by immediate (unpredicated).

ASR (vectors): Arithmetic shift right by vector (predicated).

ASR (wide elements, predicated): Arithmetic shift right by 64-bit wide elements (predicated).

ASR (wide elements, unpredicated): Arithmetic shift right by 64-bit wide elements (unpredicated).

ASRD: Arithmetic shift right for divide by immediate (predicated).

ASRR: Reversed arithmetic shift right by vector (predicated).

BFCVT: Floating-point down convert to BFloat16 format (predicated).

BFCVTNT: Floating-point down convert and narrow to BFloat16 (top, predicated).

BFDOT (indexed): BFloat16 floating-point indexed dot product.

BFDOT (vectors): BFloat16 floating-point dot product.

BFMLALB (indexed): BFloat16 floating-point multiply-add long to single-precision (bottom, indexed).

BFMLALB (vectors): BFloat16 floating-point multiply-add long to single-precision (bottom).

BFMLALT (indexed): BFloat16 floating-point multiply-add long to single-precision (top, indexed).

BFMLALT (vectors): BFloat16 floating-point multiply-add long to single-precision (top).

BFMMLA: BFloat16 floating-point matrix multiply-accumulate.

BIC (immediate): Bitwise clear bits using immediate (unpredicated): an alias of AND (immediate).

BIC (predicates): Bitwise clear predicates.

BIC (vectors, predicated): Bitwise clear vectors (predicated).

BIC (vectors, unpredicated): Bitwise clear vectors (unpredicated).

BICS: Bitwise clear predicates, setting the condition flags.

A64 -- SVE Instructions (alphabetic order)

Page 1628

BRKA: Break after first true condition.

BRKAS: Break after first true condition, setting the condition flags.

BRKB: Break before first true condition.

BRKBS: Break before first true condition, setting the condition flags.

BRKN: Propagate break to next partition.

BRKNS: Propagate break to next partition, setting the condition flags.

BRKPA: Break after first true condition, propagating from previous partition.

BRKPAS: Break after first true condition, propagating from previous partition and setting the condition flags.

BRKPB: Break before first true condition, propagating from previous partition.

BRKPBS: Break before first true condition, propagating from previous partition and setting the condition flags.

CLASTA (scalar): Conditionally extract element after last to general-purpose register.

CLASTA (SIMD&FP scalar): Conditionally extract element after last to SIMD&FP scalar register.

CLASTA (vectors): Conditionally extract element after last to vector register.

CLASTB (scalar): Conditionally extract last element to general-purpose register.

CLASTB (SIMD&FP scalar): Conditionally extract last element to SIMD&FP scalar register.

CLASTB (vectors): Conditionally extract last element to vector register.

CLS: Count leading sign bits (predicated).

CLZ: Count leading zero bits (predicated).

CMP<cc> (immediate): Compare vector to immediate.

CMP<cc> (vectors): Compare vectors.

CMP<cc> (wide elements): Compare vector to 64-bit wide elements.

CMPLE (vectors): Compare signed less than or equal to vector, setting the condition flags: an alias of CMP<cc>
(vectors).

CMPLO (vectors): Compare unsigned lower than vector, setting the condition flags: an alias of CMP<cc> (vectors).

CMPLS (vectors): Compare unsigned lower or same as vector, setting the condition flags: an alias of CMP<cc>
(vectors).

CMPLT (vectors): Compare signed less than vector, setting the condition flags: an alias of CMP<cc> (vectors).

CNOT: Logically invert boolean condition in vector (predicated).

CNT: Count non-zero bits (predicated).

CNTB, CNTD, CNTH, CNTW: Set scalar to multiple of predicate constraint element count.

CNTP: Set scalar to count of true predicate elements.

COMPACT: Shuffle active elements of vector to the right and fill with zero.

CPY (immediate, merging): Copy signed integer immediate to vector elements (merging).

CPY (immediate, zeroing): Copy signed integer immediate to vector elements (zeroing).

CPY (scalar): Copy general-purpose register to vector elements (predicated).

CPY (SIMD&FP scalar): Copy SIMD&FP scalar register to vector elements (predicated).

CTERMEQ, CTERMNE: Compare and terminate loop.

A64 -- SVE Instructions (alphabetic order)

Page 1629

DECB, DECD, DECH, DECW (scalar): Decrement scalar by multiple of predicate constraint element count.

DECD, DECH, DECW (vector): Decrement vector by multiple of predicate constraint element count.

DECP (scalar): Decrement scalar by count of true predicate elements.

DECP (vector): Decrement vector by count of true predicate elements.

DUP (immediate): Broadcast signed immediate to vector elements (unpredicated).

DUP (indexed): Broadcast indexed element to vector (unpredicated).

DUP (scalar): Broadcast general-purpose register to vector elements (unpredicated).

DUPM: Broadcast logical bitmask immediate to vector (unpredicated).

EON: Bitwise exclusive OR with inverted immediate (unpredicated): an alias of EOR (immediate).

EOR (immediate): Bitwise exclusive OR with immediate (unpredicated).

EOR (predicates): Bitwise exclusive OR predicates.

EOR (vectors, predicated): Bitwise exclusive OR vectors (predicated).

EOR (vectors, unpredicated): Bitwise exclusive OR vectors (unpredicated).

EORS: Bitwise exclusive OR predicates, setting the condition flags.

EORV: Bitwise exclusive OR reduction to scalar.

EXT: Extract vector from pair of vectors.

FABD: Floating-point absolute difference (predicated).

FABS: Floating-point absolute value (predicated).

FAC<cc>: Floating-point absolute compare vectors.

FACLE: Floating-point absolute compare less than or equal: an alias of FAC<cc>.

FACLT: Floating-point absolute compare less than: an alias of FAC<cc>.

FADD (immediate): Floating-point add immediate (predicated).

FADD (vectors, predicated): Floating-point add vector (predicated).

FADD (vectors, unpredicated): Floating-point add vector (unpredicated).

FADDA: Floating-point add strictly-ordered reduction, accumulating in scalar.

FADDV: Floating-point add recursive reduction to scalar.

FCADD: Floating-point complex add with rotate (predicated).

FCM<cc> (vectors): Floating-point compare vectors.

FCM<cc> (zero): Floating-point compare vector with zero.

FCMLA (indexed): Floating-point complex multiply-add by indexed values with rotate.

FCMLA (vectors): Floating-point complex multiply-add with rotate (predicated).

FCMLE (vectors): Floating-point compare less than or equal to vector: an alias of FCM<cc> (vectors).

FCMLT (vectors): Floating-point compare less than vector: an alias of FCM<cc> (vectors).

FCPY: Copy 8-bit floating-point immediate to vector elements (predicated).

FCVT: Floating-point convert precision (predicated).

FCVTZS: Floating-point convert to signed integer, rounding toward zero (predicated).

A64 -- SVE Instructions (alphabetic order)

Page 1630

FCVTZU: Floating-point convert to unsigned integer, rounding toward zero (predicated).

FDIV: Floating-point divide by vector (predicated).

FDIVR: Floating-point reversed divide by vector (predicated).

FDUP: Broadcast 8-bit floating-point immediate to vector elements (unpredicated).

FEXPA: Floating-point exponential accelerator.

FMAD: Floating-point fused multiply-add vectors (predicated), writing multiplicand [Zdn = Za + Zdn * Zm].

FMAX (immediate): Floating-point maximum with immediate (predicated).

FMAX (vectors): Floating-point maximum (predicated).

FMAXNM (immediate): Floating-point maximum number with immediate (predicated).

FMAXNM (vectors): Floating-point maximum number (predicated).

FMAXNMV: Floating-point maximum number recursive reduction to scalar.

FMAXV: Floating-point maximum recursive reduction to scalar.

FMIN (immediate): Floating-point minimum with immediate (predicated).

FMIN (vectors): Floating-point minimum (predicated).

FMINNM (immediate): Floating-point minimum number with immediate (predicated).

FMINNM (vectors): Floating-point minimum number (predicated).

FMINNMV: Floating-point minimum number recursive reduction to scalar.

FMINV: Floating-point minimum recursive reduction to scalar.

FMLA (indexed): Floating-point fused multiply-add by indexed elements (Zda = Zda + Zn * Zm[indexed]).

FMLA (vectors): Floating-point fused multiply-add vectors (predicated), writing addend [Zda = Zda + Zn * Zm].

FMLS (indexed): Floating-point fused multiply-subtract by indexed elements (Zda = Zda + -Zn * Zm[indexed]).

FMLS (vectors): Floating-point fused multiply-subtract vectors (predicated), writing addend [Zda = Zda + -Zn * Zm].

FMMLA: Floating-point matrix multiply-accumulate.

FMOV (immediate, predicated): Move 8-bit floating-point immediate to vector elements (predicated): an alias of FCPY.

FMOV (immediate, unpredicated): Move 8-bit floating-point immediate to vector elements (unpredicated): an alias of
FDUP.

FMOV (zero, predicated): Move floating-point +0.0 to vector elements (predicated): an alias of CPY (immediate,
merging).

FMOV (zero, unpredicated): Move floating-point +0.0 to vector elements (unpredicated): an alias of DUP (immediate).

FMSB: Floating-point fused multiply-subtract vectors (predicated), writing multiplicand [Zdn = Za + -Zdn * Zm].

FMUL (immediate): Floating-point multiply by immediate (predicated).

FMUL (indexed): Floating-point multiply by indexed elements.

FMUL (vectors, predicated): Floating-point multiply vectors (predicated).

FMUL (vectors, unpredicated): Floating-point multiply vectors (unpredicated).

FMULX: Floating-point multiply-extended vectors (predicated).

FNEG: Floating-point negate (predicated).

FNMAD: Floating-point negated fused multiply-add vectors (predicated), writing multiplicand [Zdn = -Za + -Zdn *
Zm].

A64 -- SVE Instructions (alphabetic order)

Page 1631

FNMLA: Floating-point negated fused multiply-add vectors (predicated), writing addend [Zda = -Zda + -Zn * Zm].

FNMLS: Floating-point negated fused multiply-subtract vectors (predicated), writing addend [Zda = -Zda + Zn * Zm].

FNMSB: Floating-point negated fused multiply-subtract vectors (predicated), writing multiplicand [Zdn = -Za + Zdn *
Zm].

FRECPE: Floating-point reciprocal estimate (unpredicated).

FRECPS: Floating-point reciprocal step (unpredicated).

FRECPX: Floating-point reciprocal exponent (predicated).

FRINT<r>: Floating-point round to integral value (predicated).

FRSQRTE: Floating-point reciprocal square root estimate (unpredicated).

FRSQRTS: Floating-point reciprocal square root step (unpredicated).

FSCALE: Floating-point adjust exponent by vector (predicated).

FSQRT: Floating-point square root (predicated).

FSUB (immediate): Floating-point subtract immediate (predicated).

FSUB (vectors, predicated): Floating-point subtract vectors (predicated).

FSUB (vectors, unpredicated): Floating-point subtract vectors (unpredicated).

FSUBR (immediate): Floating-point reversed subtract from immediate (predicated).

FSUBR (vectors): Floating-point reversed subtract vectors (predicated).

FTMAD: Floating-point trigonometric multiply-add coefficient.

FTSMUL: Floating-point trigonometric starting value.

FTSSEL: Floating-point trigonometric select coefficient.

INCB, INCD, INCH, INCW (scalar): Increment scalar by multiple of predicate constraint element count.

INCD, INCH, INCW (vector): Increment vector by multiple of predicate constraint element count.

INCP (scalar): Increment scalar by count of true predicate elements.

INCP (vector): Increment vector by count of true predicate elements.

INDEX (immediate, scalar): Create index starting from immediate and incremented by general-purpose register.

INDEX (immediates): Create index starting from and incremented by immediate.

INDEX (scalar, immediate): Create index starting from general-purpose register and incremented by immediate.

INDEX (scalars): Create index starting from and incremented by general-purpose register.

INSR (scalar): Insert general-purpose register in shifted vector.

INSR (SIMD&FP scalar): Insert SIMD&FP scalar register in shifted vector.

LASTA (scalar): Extract element after last to general-purpose register.

LASTA (SIMD&FP scalar): Extract element after last to SIMD&FP scalar register.

LASTB (scalar): Extract last element to general-purpose register.

LASTB (SIMD&FP scalar): Extract last element to SIMD&FP scalar register.

LD1B (scalar plus immediate): Contiguous load unsigned bytes to vector (immediate index).

LD1B (scalar plus scalar): Contiguous load unsigned bytes to vector (scalar index).

LD1B (scalar plus vector): Gather load unsigned bytes to vector (vector index).

A64 -- SVE Instructions (alphabetic order)

Page 1632

LD1B (vector plus immediate): Gather load unsigned bytes to vector (immediate index).

LD1D (scalar plus immediate): Contiguous load doublewords to vector (immediate index).

LD1D (scalar plus scalar): Contiguous load doublewords to vector (scalar index).

LD1D (scalar plus vector): Gather load doublewords to vector (vector index).

LD1D (vector plus immediate): Gather load doublewords to vector (immediate index).

LD1H (scalar plus immediate): Contiguous load unsigned halfwords to vector (immediate index).

LD1H (scalar plus scalar): Contiguous load unsigned halfwords to vector (scalar index).

LD1H (scalar plus vector): Gather load unsigned halfwords to vector (vector index).

LD1H (vector plus immediate): Gather load unsigned halfwords to vector (immediate index).

LD1RB: Load and broadcast unsigned byte to vector.

LD1RD: Load and broadcast doubleword to vector.

LD1RH: Load and broadcast unsigned halfword to vector.

LD1ROB (scalar plus immediate): Contiguous load and replicate thirty-two bytes (immediate index).

LD1ROB (scalar plus scalar): Contiguous load and replicate thirty-two bytes (scalar index).

LD1ROD (scalar plus immediate): Contiguous load and replicate four doublewords (immediate index).

LD1ROD (scalar plus scalar): Contiguous load and replicate four doublewords (scalar index).

LD1ROH (scalar plus immediate): Contiguous load and replicate sixteen halfwords (immediate index).

LD1ROH (scalar plus scalar): Contiguous load and replicate sixteen halfwords (scalar index).

LD1ROW (scalar plus immediate): Contiguous load and replicate eight words (immediate index).

LD1ROW (scalar plus scalar): Contiguous load and replicate eight words (scalar index).

LD1RQB (scalar plus immediate): Contiguous load and replicate sixteen bytes (immediate index).

LD1RQB (scalar plus scalar): Contiguous load and replicate sixteen bytes (scalar index).

LD1RQD (scalar plus immediate): Contiguous load and replicate two doublewords (immediate index).

LD1RQD (scalar plus scalar): Contiguous load and replicate two doublewords (scalar index).

LD1RQH (scalar plus immediate): Contiguous load and replicate eight halfwords (immediate index).

LD1RQH (scalar plus scalar): Contiguous load and replicate eight halfwords (scalar index).

LD1RQW (scalar plus immediate): Contiguous load and replicate four words (immediate index).

LD1RQW (scalar plus scalar): Contiguous load and replicate four words (scalar index).

LD1RSB: Load and broadcast signed byte to vector.

LD1RSH: Load and broadcast signed halfword to vector.

LD1RSW: Load and broadcast signed word to vector.

LD1RW: Load and broadcast unsigned word to vector.

LD1SB (scalar plus immediate): Contiguous load signed bytes to vector (immediate index).

LD1SB (scalar plus scalar): Contiguous load signed bytes to vector (scalar index).

LD1SB (scalar plus vector): Gather load signed bytes to vector (vector index).

LD1SB (vector plus immediate): Gather load signed bytes to vector (immediate index).

A64 -- SVE Instructions (alphabetic order)

Page 1633

LD1SH (scalar plus immediate): Contiguous load signed halfwords to vector (immediate index).

LD1SH (scalar plus scalar): Contiguous load signed halfwords to vector (scalar index).

LD1SH (scalar plus vector): Gather load signed halfwords to vector (vector index).

LD1SH (vector plus immediate): Gather load signed halfwords to vector (immediate index).

LD1SW (scalar plus immediate): Contiguous load signed words to vector (immediate index).

LD1SW (scalar plus scalar): Contiguous load signed words to vector (scalar index).

LD1SW (scalar plus vector): Gather load signed words to vector (vector index).

LD1SW (vector plus immediate): Gather load signed words to vector (immediate index).

LD1W (scalar plus immediate): Contiguous load unsigned words to vector (immediate index).

LD1W (scalar plus scalar): Contiguous load unsigned words to vector (scalar index).

LD1W (scalar plus vector): Gather load unsigned words to vector (vector index).

LD1W (vector plus immediate): Gather load unsigned words to vector (immediate index).

LD2B (scalar plus immediate): Contiguous load two-byte structures to two vectors (immediate index).

LD2B (scalar plus scalar): Contiguous load two-byte structures to two vectors (scalar index).

LD2D (scalar plus immediate): Contiguous load two-doubleword structures to two vectors (immediate index).

LD2D (scalar plus scalar): Contiguous load two-doubleword structures to two vectors (scalar index).

LD2H (scalar plus immediate): Contiguous load two-halfword structures to two vectors (immediate index).

LD2H (scalar plus scalar): Contiguous load two-halfword structures to two vectors (scalar index).

LD2W (scalar plus immediate): Contiguous load two-word structures to two vectors (immediate index).

LD2W (scalar plus scalar): Contiguous load two-word structures to two vectors (scalar index).

LD3B (scalar plus immediate): Contiguous load three-byte structures to three vectors (immediate index).

LD3B (scalar plus scalar): Contiguous load three-byte structures to three vectors (scalar index).

LD3D (scalar plus immediate): Contiguous load three-doubleword structures to three vectors (immediate index).

LD3D (scalar plus scalar): Contiguous load three-doubleword structures to three vectors (scalar index).

LD3H (scalar plus immediate): Contiguous load three-halfword structures to three vectors (immediate index).

LD3H (scalar plus scalar): Contiguous load three-halfword structures to three vectors (scalar index).

LD3W (scalar plus immediate): Contiguous load three-word structures to three vectors (immediate index).

LD3W (scalar plus scalar): Contiguous load three-word structures to three vectors (scalar index).

LD4B (scalar plus immediate): Contiguous load four-byte structures to four vectors (immediate index).

LD4B (scalar plus scalar): Contiguous load four-byte structures to four vectors (scalar index).

LD4D (scalar plus immediate): Contiguous load four-doubleword structures to four vectors (immediate index).

LD4D (scalar plus scalar): Contiguous load four-doubleword structures to four vectors (scalar index).

LD4H (scalar plus immediate): Contiguous load four-halfword structures to four vectors (immediate index).

LD4H (scalar plus scalar): Contiguous load four-halfword structures to four vectors (scalar index).

LD4W (scalar plus immediate): Contiguous load four-word structures to four vectors (immediate index).

LD4W (scalar plus scalar): Contiguous load four-word structures to four vectors (scalar index).

A64 -- SVE Instructions (alphabetic order)

Page 1634

LDFF1B (scalar plus scalar): Contiguous load first-fault unsigned bytes to vector (scalar index).

LDFF1B (scalar plus vector): Gather load first-fault unsigned bytes to vector (vector index).

LDFF1B (vector plus immediate): Gather load first-fault unsigned bytes to vector (immediate index).

LDFF1D (scalar plus scalar): Contiguous load first-fault doublewords to vector (scalar index).

LDFF1D (scalar plus vector): Gather load first-fault doublewords to vector (vector index).

LDFF1D (vector plus immediate): Gather load first-fault doublewords to vector (immediate index).

LDFF1H (scalar plus scalar): Contiguous load first-fault unsigned halfwords to vector (scalar index).

LDFF1H (scalar plus vector): Gather load first-fault unsigned halfwords to vector (vector index).

LDFF1H (vector plus immediate): Gather load first-fault unsigned halfwords to vector (immediate index).

LDFF1SB (scalar plus scalar): Contiguous load first-fault signed bytes to vector (scalar index).

LDFF1SB (scalar plus vector): Gather load first-fault signed bytes to vector (vector index).

LDFF1SB (vector plus immediate): Gather load first-fault signed bytes to vector (immediate index).

LDFF1SH (scalar plus scalar): Contiguous load first-fault signed halfwords to vector (scalar index).

LDFF1SH (scalar plus vector): Gather load first-fault signed halfwords to vector (vector index).

LDFF1SH (vector plus immediate): Gather load first-fault signed halfwords to vector (immediate index).

LDFF1SW (scalar plus scalar): Contiguous load first-fault signed words to vector (scalar index).

LDFF1SW (scalar plus vector): Gather load first-fault signed words to vector (vector index).

LDFF1SW (vector plus immediate): Gather load first-fault signed words to vector (immediate index).

LDFF1W (scalar plus scalar): Contiguous load first-fault unsigned words to vector (scalar index).

LDFF1W (scalar plus vector): Gather load first-fault unsigned words to vector (vector index).

LDFF1W (vector plus immediate): Gather load first-fault unsigned words to vector (immediate index).

LDNF1B: Contiguous load non-fault unsigned bytes to vector (immediate index).

LDNF1D: Contiguous load non-fault doublewords to vector (immediate index).

LDNF1H: Contiguous load non-fault unsigned halfwords to vector (immediate index).

LDNF1SB: Contiguous load non-fault signed bytes to vector (immediate index).

LDNF1SH: Contiguous load non-fault signed halfwords to vector (immediate index).

LDNF1SW: Contiguous load non-fault signed words to vector (immediate index).

LDNF1W: Contiguous load non-fault unsigned words to vector (immediate index).

LDNT1B (scalar plus immediate): Contiguous load non-temporal bytes to vector (immediate index).

LDNT1B (scalar plus scalar): Contiguous load non-temporal bytes to vector (scalar index).

LDNT1D (scalar plus immediate): Contiguous load non-temporal doublewords to vector (immediate index).

LDNT1D (scalar plus scalar): Contiguous load non-temporal doublewords to vector (scalar index).

LDNT1H (scalar plus immediate): Contiguous load non-temporal halfwords to vector (immediate index).

LDNT1H (scalar plus scalar): Contiguous load non-temporal halfwords to vector (scalar index).

LDNT1W (scalar plus immediate): Contiguous load non-temporal words to vector (immediate index).

LDNT1W (scalar plus scalar): Contiguous load non-temporal words to vector (scalar index).

A64 -- SVE Instructions (alphabetic order)

Page 1635

LDR (predicate): Load predicate register.

LDR (vector): Load vector register.

LSL (immediate, predicated): Logical shift left by immediate (predicated).

LSL (immediate, unpredicated): Logical shift left by immediate (unpredicated).

LSL (vectors): Logical shift left by vector (predicated).

LSL (wide elements, predicated): Logical shift left by 64-bit wide elements (predicated).

LSL (wide elements, unpredicated): Logical shift left by 64-bit wide elements (unpredicated).

LSLR: Reversed logical shift left by vector (predicated).

LSR (immediate, predicated): Logical shift right by immediate (predicated).

LSR (immediate, unpredicated): Logical shift right by immediate (unpredicated).

LSR (vectors): Logical shift right by vector (predicated).

LSR (wide elements, predicated): Logical shift right by 64-bit wide elements (predicated).

LSR (wide elements, unpredicated): Logical shift right by 64-bit wide elements (unpredicated).

LSRR: Reversed logical shift right by vector (predicated).

MAD: Multiply-add vectors (predicated), writing multiplicand [Zdn = Za + Zdn * Zm].

MLA: Multiply-add vectors (predicated), writing addend [Zda = Zda + Zn * Zm].

MLS: Multiply-subtract vectors (predicated), writing addend [Zda = Zda - Zn * Zm].

MOV (bitmask immediate): Move logical bitmask immediate to vector (unpredicated): an alias of DUPM.

MOV (immediate, predicated, merging): Move signed integer immediate to vector elements (merging): an alias of CPY
(immediate, merging).

MOV (immediate, predicated, zeroing): Move signed integer immediate to vector elements (zeroing): an alias of CPY
(immediate, zeroing).

MOV (immediate, unpredicated): Move signed immediate to vector elements (unpredicated): an alias of DUP
(immediate).

MOV (predicate, predicated, merging): Move predicates (merging): an alias of SEL (predicates).

MOV (predicate, predicated, zeroing): Move predicates (zeroing): an alias of AND (predicates).

MOV (predicate, unpredicated): Move predicate (unpredicated): an alias of ORR (predicates).

MOV (scalar, predicated): Move general-purpose register to vector elements (predicated): an alias of CPY (scalar).

MOV (scalar, unpredicated): Move general-purpose register to vector elements (unpredicated): an alias of DUP
(scalar).

MOV (SIMD&FP scalar, predicated): Move SIMD&FP scalar register to vector elements (predicated): an alias of CPY
(SIMD&FP scalar).

MOV (SIMD&FP scalar, unpredicated): Move indexed element or SIMD&FP scalar to vector (unpredicated): an alias of
DUP (indexed).

MOV (vector, predicated): Move vector elements (predicated): an alias of SEL (vectors).

MOV (vector, unpredicated): Move vector register (unpredicated): an alias of ORR (vectors, unpredicated).

MOVPRFX (predicated): Move prefix (predicated).

MOVPRFX (unpredicated): Move prefix (unpredicated).

MOVS (predicated): Move predicates (zeroing), setting the condition flags: an alias of ANDS.

A64 -- SVE Instructions (alphabetic order)

Page 1636

MOVS (unpredicated): Move predicate (unpredicated), setting the condition flags: an alias of ORRS.

MSB: Multiply-subtract vectors (predicated), writing multiplicand [Zdn = Za - Zdn * Zm].

MUL (immediate): Multiply by immediate (unpredicated).

MUL (vectors): Multiply vectors (predicated).

NAND: Bitwise NAND predicates.

NANDS: Bitwise NAND predicates, setting the condition flags.

NEG: Negate (predicated).

NOR: Bitwise NOR predicates.

NORS: Bitwise NOR predicates, setting the condition flags.

NOT (predicate): Bitwise invert predicate: an alias of EOR (predicates).

NOT (vector): Bitwise invert vector (predicated).

NOTS: Bitwise invert predicate, setting the condition flags: an alias of EORS.

ORN (immediate): Bitwise inclusive OR with inverted immediate (unpredicated): an alias of ORR (immediate).

ORN (predicates): Bitwise inclusive OR inverted predicate.

ORNS: Bitwise inclusive OR inverted predicate, setting the condition flags.

ORR (immediate): Bitwise inclusive OR with immediate (unpredicated).

ORR (predicates): Bitwise inclusive OR predicates.

ORR (vectors, predicated): Bitwise inclusive OR vectors (predicated).

ORR (vectors, unpredicated): Bitwise inclusive OR vectors (unpredicated).

ORRS: Bitwise inclusive OR predicates, setting the condition flags.

ORV: Bitwise inclusive OR reduction to scalar.

PFALSE: Set all predicate elements to false.

PFIRST: Set the first active predicate element to true.

PNEXT: Find next active predicate.

PRFB (scalar plus immediate): Contiguous prefetch bytes (immediate index).

PRFB (scalar plus scalar): Contiguous prefetch bytes (scalar index).

PRFB (scalar plus vector): Gather prefetch bytes (scalar plus vector).

PRFB (vector plus immediate): Gather prefetch bytes (vector plus immediate).

PRFD (scalar plus immediate): Contiguous prefetch doublewords (immediate index).

PRFD (scalar plus scalar): Contiguous prefetch doublewords (scalar index).

PRFD (scalar plus vector): Gather prefetch doublewords (scalar plus vector).

PRFD (vector plus immediate): Gather prefetch doublewords (vector plus immediate).

PRFH (scalar plus immediate): Contiguous prefetch halfwords (immediate index).

PRFH (scalar plus scalar): Contiguous prefetch halfwords (scalar index).

PRFH (scalar plus vector): Gather prefetch halfwords (scalar plus vector).

PRFH (vector plus immediate): Gather prefetch halfwords (vector plus immediate).

A64 -- SVE Instructions (alphabetic order)

Page 1637

PRFW (scalar plus immediate): Contiguous prefetch words (immediate index).

PRFW (scalar plus scalar): Contiguous prefetch words (scalar index).

PRFW (scalar plus vector): Gather prefetch words (scalar plus vector).

PRFW (vector plus immediate): Gather prefetch words (vector plus immediate).

PTEST: Set condition flags for predicate.

PTRUE: Initialise predicate from named constraint.

PTRUES: Initialise predicate from named constraint and set the condition flags.

PUNPKHI, PUNPKLO: Unpack and widen half of predicate.

RBIT: Reverse bits (predicated).

RDFFR (predicated): Return predicate of succesfully loaded elements.

RDFFR (unpredicated): Read the first-fault register.

RDFFRS: Return predicate of succesfully loaded elements, setting the condition flags.

RDVL: Read multiple of vector register size to scalar register.

REV (predicate): Reverse all elements in a predicate.

REV (vector): Reverse all elements in a vector (unpredicated).

REVB, REVH, REVW: Reverse bytes / halfwords / words within elements (predicated).

SABD: Signed absolute difference (predicated).

SADDV: Signed add reduction to scalar.

SCVTF: Signed integer convert to floating-point (predicated).

SDIV: Signed divide (predicated).

SDIVR: Signed reversed divide (predicated).

SDOT (indexed): Signed integer indexed dot product.

SDOT (vectors): Signed integer dot product.

SEL (predicates): Conditionally select elements from two predicates.

SEL (vectors): Conditionally select elements from two vectors.

SETFFR: Initialise the first-fault register to all true.

SMAX (immediate): Signed maximum with immediate (unpredicated).

SMAX (vectors): Signed maximum vectors (predicated).

SMAXV: Signed maximum reduction to scalar.

SMIN (immediate): Signed minimum with immediate (unpredicated).

SMIN (vectors): Signed minimum vectors (predicated).

SMINV: Signed minimum reduction to scalar.

SMMLA: Signed integer matrix multiply-accumulate.

SMULH: Signed multiply returning high half (predicated).

SPLICE: Splice two vectors under predicate control.

SQADD (immediate): Signed saturating add immediate (unpredicated).

A64 -- SVE Instructions (alphabetic order)

Page 1638

SQADD (vectors): Signed saturating add vectors (unpredicated).

SQDECB: Signed saturating decrement scalar by multiple of 8-bit predicate constraint element count.

SQDECD (scalar): Signed saturating decrement scalar by multiple of 64-bit predicate constraint element count.

SQDECD (vector): Signed saturating decrement vector by multiple of 64-bit predicate constraint element count.

SQDECH (scalar): Signed saturating decrement scalar by multiple of 16-bit predicate constraint element count.

SQDECH (vector): Signed saturating decrement vector by multiple of 16-bit predicate constraint element count.

SQDECP (scalar): Signed saturating decrement scalar by count of true predicate elements.

SQDECP (vector): Signed saturating decrement vector by count of true predicate elements.

SQDECW (scalar): Signed saturating decrement scalar by multiple of 32-bit predicate constraint element count.

SQDECW (vector): Signed saturating decrement vector by multiple of 32-bit predicate constraint element count.

SQINCB: Signed saturating increment scalar by multiple of 8-bit predicate constraint element count.

SQINCD (scalar): Signed saturating increment scalar by multiple of 64-bit predicate constraint element count.

SQINCD (vector): Signed saturating increment vector by multiple of 64-bit predicate constraint element count.

SQINCH (scalar): Signed saturating increment scalar by multiple of 16-bit predicate constraint element count.

SQINCH (vector): Signed saturating increment vector by multiple of 16-bit predicate constraint element count.

SQINCP (scalar): Signed saturating increment scalar by count of true predicate elements.

SQINCP (vector): Signed saturating increment vector by count of true predicate elements.

SQINCW (scalar): Signed saturating increment scalar by multiple of 32-bit predicate constraint element count.

SQINCW (vector): Signed saturating increment vector by multiple of 32-bit predicate constraint element count.

SQSUB (immediate): Signed saturating subtract immediate (unpredicated).

SQSUB (vectors): Signed saturating subtract vectors (unpredicated).

ST1B (scalar plus immediate): Contiguous store bytes from vector (immediate index).

ST1B (scalar plus scalar): Contiguous store bytes from vector (scalar index).

ST1B (scalar plus vector): Scatter store bytes from a vector (vector index).

ST1B (vector plus immediate): Scatter store bytes from a vector (immediate index).

ST1D (scalar plus immediate): Contiguous store doublewords from vector (immediate index).

ST1D (scalar plus scalar): Contiguous store doublewords from vector (scalar index).

ST1D (scalar plus vector): Scatter store doublewords from a vector (vector index).

ST1D (vector plus immediate): Scatter store doublewords from a vector (immediate index).

ST1H (scalar plus immediate): Contiguous store halfwords from vector (immediate index).

ST1H (scalar plus scalar): Contiguous store halfwords from vector (scalar index).

ST1H (scalar plus vector): Scatter store halfwords from a vector (vector index).

ST1H (vector plus immediate): Scatter store halfwords from a vector (immediate index).

ST1W (scalar plus immediate): Contiguous store words from vector (immediate index).

ST1W (scalar plus scalar): Contiguous store words from vector (scalar index).

ST1W (scalar plus vector): Scatter store words from a vector (vector index).

A64 -- SVE Instructions (alphabetic order)

Page 1639

ST1W (vector plus immediate): Scatter store words from a vector (immediate index).

ST2B (scalar plus immediate): Contiguous store two-byte structures from two vectors (immediate index).

ST2B (scalar plus scalar): Contiguous store two-byte structures from two vectors (scalar index).

ST2D (scalar plus immediate): Contiguous store two-doubleword structures from two vectors (immediate index).

ST2D (scalar plus scalar): Contiguous store two-doubleword structures from two vectors (scalar index).

ST2H (scalar plus immediate): Contiguous store two-halfword structures from two vectors (immediate index).

ST2H (scalar plus scalar): Contiguous store two-halfword structures from two vectors (scalar index).

ST2W (scalar plus immediate): Contiguous store two-word structures from two vectors (immediate index).

ST2W (scalar plus scalar): Contiguous store two-word structures from two vectors (scalar index).

ST3B (scalar plus immediate): Contiguous store three-byte structures from three vectors (immediate index).

ST3B (scalar plus scalar): Contiguous store three-byte structures from three vectors (scalar index).

ST3D (scalar plus immediate): Contiguous store three-doubleword structures from three vectors (immediate index).

ST3D (scalar plus scalar): Contiguous store three-doubleword structures from three vectors (scalar index).

ST3H (scalar plus immediate): Contiguous store three-halfword structures from three vectors (immediate index).

ST3H (scalar plus scalar): Contiguous store three-halfword structures from three vectors (scalar index).

ST3W (scalar plus immediate): Contiguous store three-word structures from three vectors (immediate index).

ST3W (scalar plus scalar): Contiguous store three-word structures from three vectors (scalar index).

ST4B (scalar plus immediate): Contiguous store four-byte structures from four vectors (immediate index).

ST4B (scalar plus scalar): Contiguous store four-byte structures from four vectors (scalar index).

ST4D (scalar plus immediate): Contiguous store four-doubleword structures from four vectors (immediate index).

ST4D (scalar plus scalar): Contiguous store four-doubleword structures from four vectors (scalar index).

ST4H (scalar plus immediate): Contiguous store four-halfword structures from four vectors (immediate index).

ST4H (scalar plus scalar): Contiguous store four-halfword structures from four vectors (scalar index).

ST4W (scalar plus immediate): Contiguous store four-word structures from four vectors (immediate index).

ST4W (scalar plus scalar): Contiguous store four-word structures from four vectors (scalar index).

STNT1B (scalar plus immediate): Contiguous store non-temporal bytes from vector (immediate index).

STNT1B (scalar plus scalar): Contiguous store non-temporal bytes from vector (scalar index).

STNT1D (scalar plus immediate): Contiguous store non-temporal doublewords from vector (immediate index).

STNT1D (scalar plus scalar): Contiguous store non-temporal doublewords from vector (scalar index).

STNT1H (scalar plus immediate): Contiguous store non-temporal halfwords from vector (immediate index).

STNT1H (scalar plus scalar): Contiguous store non-temporal halfwords from vector (scalar index).

STNT1W (scalar plus immediate): Contiguous store non-temporal words from vector (immediate index).

STNT1W (scalar plus scalar): Contiguous store non-temporal words from vector (scalar index).

STR (predicate): Store predicate register.

STR (vector): Store vector register.

SUB (immediate): Subtract immediate (unpredicated).

A64 -- SVE Instructions (alphabetic order)

Page 1640

SUB (vectors, predicated): Subtract vectors (predicated).

SUB (vectors, unpredicated): Subtract vectors (unpredicated).

SUBR (immediate): Reversed subtract from immediate (unpredicated).

SUBR (vectors): Reversed subtract vectors (predicated).

SUDOT: Signed by unsigned integer indexed dot product.

SUNPKHI, SUNPKLO: Signed unpack and extend half of vector.

SXTB, SXTH, SXTW: Signed byte / halfword / word extend (predicated).

TBL: Programmable table lookup in single vector table.

TRN1, TRN2 (predicates): Interleave even or odd elements from two predicates.

TRN1, TRN2 (vectors): Interleave even or odd elements from two vectors.

UABD: Unsigned absolute difference (predicated).

UADDV: Unsigned add reduction to scalar.

UCVTF: Unsigned integer convert to floating-point (predicated).

UDIV: Unsigned divide (predicated).

UDIVR: Unsigned reversed divide (predicated).

UDOT (indexed): Unsigned integer indexed dot product.

UDOT (vectors): Unsigned integer dot product.

UMAX (immediate): Unsigned maximum with immediate (unpredicated).

UMAX (vectors): Unsigned maximum vectors (predicated).

UMAXV: Unsigned maximum reduction to scalar.

UMIN (immediate): Unsigned minimum with immediate (unpredicated).

UMIN (vectors): Unsigned minimum vectors (predicated).

UMINV: Unsigned minimum reduction to scalar.

UMMLA: Unsigned integer matrix multiply-accumulate.

UMULH: Unsigned multiply returning high half (predicated).

UQADD (immediate): Unsigned saturating add immediate (unpredicated).

UQADD (vectors): Unsigned saturating add vectors (unpredicated).

UQDECB: Unsigned saturating decrement scalar by multiple of 8-bit predicate constraint element count.

UQDECD (scalar): Unsigned saturating decrement scalar by multiple of 64-bit predicate constraint element count.

UQDECD (vector): Unsigned saturating decrement vector by multiple of 64-bit predicate constraint element count.

UQDECH (scalar): Unsigned saturating decrement scalar by multiple of 16-bit predicate constraint element count.

UQDECH (vector): Unsigned saturating decrement vector by multiple of 16-bit predicate constraint element count.

UQDECP (scalar): Unsigned saturating decrement scalar by count of true predicate elements.

UQDECP (vector): Unsigned saturating decrement vector by count of true predicate elements.

UQDECW (scalar): Unsigned saturating decrement scalar by multiple of 32-bit predicate constraint element count.

UQDECW (vector): Unsigned saturating decrement vector by multiple of 32-bit predicate constraint element count.

A64 -- SVE Instructions (alphabetic order)

Page 1641

UQINCB: Unsigned saturating increment scalar by multiple of 8-bit predicate constraint element count.

UQINCD (scalar): Unsigned saturating increment scalar by multiple of 64-bit predicate constraint element count.

UQINCD (vector): Unsigned saturating increment vector by multiple of 64-bit predicate constraint element count.

UQINCH (scalar): Unsigned saturating increment scalar by multiple of 16-bit predicate constraint element count.

UQINCH (vector): Unsigned saturating increment vector by multiple of 16-bit predicate constraint element count.

UQINCP (scalar): Unsigned saturating increment scalar by count of true predicate elements.

UQINCP (vector): Unsigned saturating increment vector by count of true predicate elements.

UQINCW (scalar): Unsigned saturating increment scalar by multiple of 32-bit predicate constraint element count.

UQINCW (vector): Unsigned saturating increment vector by multiple of 32-bit predicate constraint element count.

UQSUB (immediate): Unsigned saturating subtract immediate (unpredicated).

UQSUB (vectors): Unsigned saturating subtract vectors (unpredicated).

USDOT (indexed): Unsigned by signed integer indexed dot product.

USDOT (vectors): Unsigned by signed integer dot product.

USMMLA: Unsigned by signed integer matrix multiply-accumulate.

UUNPKHI, UUNPKLO: Unsigned unpack and extend half of vector.

UXTB, UXTH, UXTW: Unsigned byte / halfword / word extend (predicated).

UZP1, UZP2 (predicates): Concatenate even or odd elements from two predicates.

UZP1, UZP2 (vectors): Concatenate even or odd elements from two vectors.

WHILELE: While incrementing signed scalar less than or equal to scalar.

WHILELO: While incrementing unsigned scalar lower than scalar.

WHILELS: While incrementing unsigned scalar lower or same as scalar.

WHILELT: While incrementing signed scalar less than scalar.

WRFFR: Write the first-fault register.

ZIP1, ZIP2 (predicates): Interleave elements from two half predicates.

ZIP1, ZIP2 (vectors): Interleave elements from two half vectors.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

A64 -- SVE Instructions (alphabetic order)

Page 1642

ABS

Absolute value (predicated)

Compute the absolute value of the signed integer in each active element of the source vector, and place the results in
the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 1 0 1 0 1 Pg Zn Zd

ABS <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = SInt(Elem[operand, e, esize]);
element = Abs(element);
Elem[result, e, esize] = element<esize-1:0>;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

ABS Page 1643

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ABS Page 1644

ADD (vectors, predicated)

Add vectors (predicated)

Add active elements of the second source vector to corresponding elements of the first source vector and destructively
place the results in the corresponding elements of the first source vector. Inactive elements in the destination vector
register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 0 0 0 0 0 0 0 Pg Zm Zdn

ADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = element1 + element2;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

ADD (vectors, predicated) Page 1645

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (vectors, predicated) Page 1646

ADD (immediate)

Add immediate (unpredicated)

Add an unsigned immediate to each element of the source vector, and destructively place the results in the
corresponding elements of the source vector. This instruction is unpredicated.
The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also be a
positive multiple of 256 in the range 256 to 65280.
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 1 1 sh imm8 Zdn

ADD <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = UInt(imm8);
if sh == '1' then imm = imm << 8;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
Elem[result, e, esize] = element1 + imm;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

ADD (immediate) Page 1647

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate) Page 1648

ADD (vectors, unpredicated)

Add vectors (unpredicated)

Add all elements of the second source vector to corresponding elements of the first source vector and place the results
in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 0 0 0 Zn Zd

ADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = element1 + element2;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (vectors, unpredicated) Page 1649

ADDPL

Add multiple of predicate register size to scalar register

Add the current predicate register size in bytes multiplied by an immediate in the range -32 to 31 to the 64-bit source
general-purpose register or current stack pointer and place the result in the 64-bit destination general-purpose
register or current stack pointer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 Rn 0 1 0 1 0 imm6 Rd

ADDPL <Xd|SP>, <Xn|SP>, #<imm>

if !HaveSVE() then UNDEFINED;
integer n = UInt(Rn);
integer d = UInt(Rd);
integer imm = SInt(imm6);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

CheckSVEEnabled();
bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(64) result = operand1 + (imm * (PL DIV 8));

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDPL Page 1650

ADDVL

Add multiple of vector register size to scalar register

Add the current vector register size in bytes multiplied by an immediate in the range -32 to 31 to the 64-bit source
general-purpose register or current stack pointer, and place the result in the 64-bit destination general-purpose
register or current stack pointer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 Rn 0 1 0 1 0 imm6 Rd

ADDVL <Xd|SP>, <Xn|SP>, #<imm>

if !HaveSVE() then UNDEFINED;
integer n = UInt(Rn);
integer d = UInt(Rd);
integer imm = SInt(imm6);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd"
field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

CheckSVEEnabled();
bits(64) operand1 = if n == 31 then SP[] else X[n];
bits(64) result = operand1 + (imm * (VL DIV 8));

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDVL Page 1651

ADR

Compute vector address

Optionally sign or zero-extend the least significant 32-bits of each element from a vector of offsets or indices in the
second source vector, scale each index by 2, 4 or 8, add to a vector of base addresses from the first source vector, and
place the resulting addresses in the destination vector. This instruction is unpredicated.

It has encodings from 3 classes: Packed offsets , Unpacked 32-bit signed offsets and Unpacked 32-bit unsigned offsets

Packed offsets

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 sz 1 Zm 1 0 1 0 msz Zn Zd

ADR <Zd>.<T>, [<Zn>.<T>, <Zm>.<T>{, <mod> <amount>}]

if !HaveSVE() then UNDEFINED;
integer esize = 32 << UInt(sz);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer osize = esize;
boolean unsigned = TRUE;
integer mbytes = 1 << UInt(msz);

Unpacked 32-bit signed offsets

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 Zm 1 0 1 0 msz Zn Zd

ADR <Zd>.D, [<Zn>.D, <Zm>.D, SXTW{ <amount>}]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer osize = 32;
boolean unsigned = FALSE;
integer mbytes = 1 << UInt(msz);

Unpacked 32-bit unsigned offsets

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 Zm 1 0 1 0 msz Zn Zd

ADR <Zd>.D, [<Zn>.D, <Zm>.D, UXTW{ <amount>}]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer osize = 32;
boolean unsigned = TRUE;
integer mbytes = 1 << UInt(msz);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

ADR Page 1652

<T> Is the size specifier, encoded in “sz”:

sz <T>
0 S
1 D

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “msz”:

msz <mod>
00 [absent]
x1 LSL
10 LSL

<amount> Is the index shift amount, encoded in “msz”:

msz <amount>
00 [absent]
01 #1
10 #2
11 #3

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) base = Z[n];
bits(VL) offs = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) addr = Elem[base, e, esize];
integer offset = Int(Elem[offs, e, esize]<osize-1:0>, unsigned);
Elem[result, e, esize] = addr + (offset * mbytes);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 1653

AND (predicates)

Bitwise AND predicates

Bitwise AND active elements of the second source predicate with corresponding elements of the first source predicate
and place the results in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Does not set the condition flags.

This instruction is used by the alias MOV (predicate, predicated, zeroing).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

AND <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Alias Conditions

Alias Is preferred when
MOV (predicate, predicated, zeroing) S == '0' && Pn == Pm

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 AND element2;
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (predicates) Page 1654

AND (vectors, predicated)

Bitwise AND vectors (predicated)

Bitwise AND active elements of the second source vector with corresponding elements of the first source vector and
destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 1 0 0 0 0 Pg Zm Zdn

AND <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = element1 AND element2;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

AND (vectors, predicated) Page 1655

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (vectors, predicated) Page 1656

AND (immediate)

Bitwise AND with immediate (unpredicated)

Bitwise AND an immediate with each 64-bit element of the source vector, and destructively place the results in the
corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of ones or
zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is used by the pseudo-instruction BIC (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 imm13 Zdn

AND <Zdn>.<T>, <Zdn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
integer dn = UInt(Zdn);
bits(64) imm;
(imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 64;
bits(VL) operand = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(64) element1 = Elem[operand, e, 64];
Elem[result, e, 64] = element1 AND imm;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

AND (immediate) Page 1657

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (immediate) Page 1658

AND (vectors, unpredicated)

Bitwise AND vectors (unpredicated)

Bitwise AND all elements of the second source vector with corresponding elements of the first source vector and place
the results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 Zm 0 0 1 1 0 0 Zn Zd

AND <Zd>.D, <Zn>.D, <Zm>.D

if !HaveSVE() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];

Z[d] = operand1 AND operand2;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (vectors, unpredicated) Page 1659

ANDS

Bitwise AND predicates, setting the condition flags

Bitwise AND active elements of the second source predicate with corresponding elements of the first source predicate
and place the results in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result,
and the V flag to zero.

This instruction is used by the alias MOVS (predicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

ANDS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Alias Conditions

Alias Is preferred when
MOVS (predicated) S == '1' && Pn == Pm

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 AND element2;
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS Page 1660

ANDV

Bitwise AND reduction to scalar

Bitwise AND horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination register.
Inactive elements in the source vector are treated as all ones.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 1 0 0 0 1 Pg Zn Vd

ANDV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) result = Ones(esize);

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

result = result AND Elem[operand, e, esize];

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDV Page 1661

ASR (immediate, predicated)

Arithmetic shift right by immediate (predicated)

Shift right by immediate, preserving the sign bit, each active element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate shift amount is an unsigned value in the
range 1 to number of bits per element. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 0 0 0 0 0 0 1 0 0 Pg tszl imm3 Zdn

L U

ASR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
bits(4) tsize = tszh:tszl;
case tsize of

when '0000' UNDEFINED;
when '0001' esize = 8;
when '001x' esize = 16;
when '01xx' esize = 32;
when '1xxx' esize = 64;

integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “tszh:tszl”:

tszh tszl <T>
00 00 RESERVED
00 01 B
00 1x H
01 xx S
1x xx D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in "tsz:imm3".

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) mask = P[g];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = ASR(element1, shift);
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

ASR (immediate, predicated) Page 1662

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate, predicated) Page 1663

ASR (wide elements, predicated)

Arithmetic shift right by 64-bit wide elements (predicated)

Shift right, preserving the sign bit, active elements of the first source vector by corresponding overlapping 64-bit
elements of the second source vector and destructively place the results in the corresponding elements of the first
source vector. The shift amount is a vector of unsigned 64-bit doubleword elements in which all bits are significant,
and not used modulo the destination element size. Inactive elements in the destination vector register remain
unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 1 0 0 Pg Zm Zdn

R L U

ASR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = ASR(element1, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

ASR (wide elements,
predicated) Page 1664

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and destination element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (wide elements,
predicated) Page 1665

ASR (vectors)

Arithmetic shift right by vector (predicated)

Shift right, preserving the sign bit, active elements of the first source vector by corresponding elements of the second
source vector and destructively place the results in the corresponding elements of the first source vector. The shift
amount operand is a vector of unsigned elements in which all bits are significant, and not used modulo the element
size. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 0 0 1 0 0 Pg Zm Zdn

R L U

ASR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = ASR(element1, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

ASR (vectors) Page 1666

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (vectors) Page 1667

ASR (immediate, unpredicated)

Arithmetic shift right by immediate (unpredicated)

Shift right by immediate, preserving the sign bit, each element of the source vector, and place the results in the
corresponding elements of the destination vector. The immediate shift amount is an unsigned value in the range 1 to
number of bits per element. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 0 0 Zn Zd

U

ASR <Zd>.<T>, <Zn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
bits(4) tsize = tszh:tszl;
case tsize of

when '0000' UNDEFINED;
when '0001' esize = 8;
when '001x' esize = 16;
when '01xx' esize = 32;
when '1xxx' esize = 64;

integer n = UInt(Zn);
integer d = UInt(Zd);
integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “tszh:tszl”:

tszh tszl <T>
00 00 RESERVED
00 01 B
00 1x H
01 xx S
1x xx D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in "tsz:imm3".

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
Elem[result, e, esize] = ASR(element1, shift);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate,
unpredicated) Page 1668

ASR (wide elements, unpredicated)

Arithmetic shift right by 64-bit wide elements (unpredicated)

Shift right, preserving the sign bit, all elements of the first source vector by corresponding overlapping 64-bit
elements of the second source vector and place the first in the corresponding elements of the destination vector. The
shift amount is a vector of unsigned 64-bit doubleword elements in which all bits are significant, and not used modulo
the destination element size. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 0 0 Zn Zd

U

ASR <Zd>.<T>, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = ASR(element1, shift);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (wide elements,
unpredicated) Page 1669

ASRD

Arithmetic shift right for divide by immediate (predicated)

Shift right by immediate, preserving the sign bit, each active element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The result rounds toward zero as in a signed division. The
immediate shift amount is an unsigned value in the range 1 to number of bits per element. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 0 0 0 1 0 0 1 0 0 Pg tszl imm3 Zdn

L U

ASRD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
bits(4) tsize = tszh:tszl;
case tsize of

when '0000' UNDEFINED;
when '0001' esize = 8;
when '001x' esize = 16;
when '01xx' esize = 32;
when '1xxx' esize = 64;

integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “tszh:tszl”:

tszh tszl <T>
00 00 RESERVED
00 01 B
00 1x H
01 xx S
1x xx D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in "tsz:imm3".

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element1 = SInt(Elem[operand1, e, esize]);
if element1 < 0 then

element1 = element1 + ((1 << shift) - 1);
Elem[result, e, esize] = (element1 >> shift)<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

ASRD Page 1670

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRD Page 1671

ASRR

Reversed arithmetic shift right by vector (predicated)

Reversed shift right, preserving the sign bit, active elements of the second source vector by corresponding elements of
the first source vector and destructively place the results in the corresponding elements of the first source vector. The
shift amount operand is a vector of unsigned elements in which all bits are significant, and not used modulo the
element size. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 0 0 1 0 0 Pg Zm Zdn

R L U

ASRR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
integer shift = Min(UInt(element1), esize);
Elem[result, e, esize] = ASR(element2, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

ASRR Page 1672

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRR Page 1673

BFCVT

Floating-point down convert to BFloat16 format (predicated)

Convert to BFloat16 from single-precision in each active floating-point element of the source vector, and place the
results in the corresponding elements of the destination vector. Inactive elements in the destination vector register
remain unmodified.
Since the result type is smaller than the input type, the results are zero-extended to fill each destination element.
Unlike the BFloat16 matrix multiplication and dot product instructions, this instruction honors all of the FPCR bits
that apply to single-precision arithmetic. It can also generate a floating-point exception that causes cumulative
exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the enable bits in the
FPCR.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 Pg Zn Zd

BFCVT <Zd>.H, <Pg>/M, <Zn>.S

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, 32) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, 32] == '1' then

bits(32) element = Elem[operand, e, 32];
Elem[result, 2*e, 16] = FPConvertBF(element, FPCR[]);
Elem[result, 2*e+1, 16] = Zeros();

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

BFCVT Page 1674

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFCVT Page 1675

BFCVTNT

Floating-point down convert and narrow to BFloat16 (top, predicated)

Convert active 32-bit single-precision elements from the source vector to BFloat16 format, and place the results in the
odd-numbered 16-bit elements of the destination vector, leaving the even-numbered elements unchanged. Inactive
elements in the destination vector register remain unmodified.
Unlike the BFloat16 matrix multiplication and dot product instructions, this instruction honors all of the FPCR bits
that apply to single-precision arithmetic. It can also generate a floating-point exception that causes cumulative
exception bits in the FPSR to be set, or a synchronous exception to be taken, depending on the enable bits in the
FPCR.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 Pg Zn Zd

BFCVTNT <Zd>.H, <Pg>/M, <Zn>.S

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, 32) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, 32] == '1' then

bits(32) element = Elem[operand, e, 32];
Elem[result, 2*e+1, 16] = FPConvertBF(element, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFCVTNT Page 1676

BFDOT (vectors)

BFloat16 floating-point dot product

The BFloat16 floating-point (BF16) dot product instruction computes the dot product of a pair of BF16 values held in
each 32-bit element of the first source vector multiplied by a pair of BF16 values in the corresponding 32-bit element
of the second source vector, and then destructively adds the single-precision dot product to the corresponding single-
precision element of the destination vector.
This instruction is unpredicated.
All floating-point calculations performed by this instruction are performed with the following behaviors, irrespective of
the value in FPCR:
* Uses the non-IEEE 754 Round-to-Odd mode, which forces bit 0 of an inexact result to 1, and rounds an overflow to an
appropriately signed Infinity.
* The cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC and IOC) are not modified.
* Trapped floating-point exceptions are disabled, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE and IOE)
are all zero.
* Denormalized inputs and results are flushed to zero, as if FPCR.FZ == 1.
* Only the Default NaN is generated, as if FPCR.DN == 1.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 1 1 Zm 1 0 0 0 0 0 Zn Zda

BFDOT <Zda>.S, <Zn>.H, <Zm>.H

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
bits(32) sum = Elem[operand3, e, 32];

sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
Elem[result, e, 32] = sum;

Z[da] = result;

BFDOT (vectors) Page 1677

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFDOT (vectors) Page 1678

BFDOT (indexed)

BFloat16 floating-point indexed dot product

The BFloat16 floating-point (BF16) indexed dot product instruction computes the dot product of a pair of BF16 values
held in each 32-bit element of the first source vector multiplied by a pair of BF16 values in an indexed 32-bit element
of the second source vector, and then destructively adds the single-precision dot product to the corresponding single-
precision element of the destination vector.
The BF16 pairs within the second source vector are specified using an immediate index which selects the same BF16
pair position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.
All floating-point calculations performed by this instruction are performed with the following behaviors, irrespective of
the value in FPCR:
* Uses the non-IEEE 754 Round-to-Odd mode, which forces bit 0 of an inexact result to 1, and rounds an overflow to an
appropriately signed Infinity.
* The cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC and IOC) are not modified.
* Trapped floating-point exceptions are disabled, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE and IOE)
are all zero.
* Denormalized inputs and results are flushed to zero, as if FPCR.FZ == 1.
* Only the Default NaN is generated, as if FPCR.DN == 1.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 1 1 i2 Zm 0 1 0 0 0 0 Zn Zda

BFDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
integer index = UInt(i2);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 3, encoded in the "i2" field.

BFDOT (indexed) Page 1679

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
integer eltspersegment = 128 DIV 32;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
bits(32) sum = Elem[operand3, e, 32];

sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
Elem[result, e, 32] = sum;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFDOT (indexed) Page 1680

BFMLALB (vectors)

BFloat16 floating-point multiply-add long to single-precision (bottom)

This BFloat16 floating-point multiply-add long instruction widens the even-numbered 16-bit BFloat16 elements in the
first source vector and the corresponding elements in the second source vector to single-precision format and then
destructively multiplies and adds these values without intermediate rounding to the overlapping 32-bit single-precision
elements of the addend and destination vector. This instruction is unpredicated.
Unlike the BFloat16 matrix multiplication and dot product instructions, this instruction performs a fused multiply-add
that honors all of the FPCR bits that apply to single-precision arithmetic. It can also generate a floating-point
exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken,
depending on the enable bits in the FPCR.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 Zm 1 0 0 0 0 0 Zn Zda

o2 op T

BFMLALB <Zda>.S, <Zn>.H, <Zm>.H

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
bits(32) element1 = Elem[operand1, 2 * e + 0, 16] : Zeros(16);
bits(32) element2 = Elem[operand2, 2 * e + 0, 16] : Zeros(16);
bits(32) element3 = Elem[operand3, e, 32];
Elem[result, e, 32] = BFMulAdd(element3, element1, element2, FPCR[]);

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

BFMLALB (vectors) Page 1681

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMLALB (vectors) Page 1682

BFMLALB (indexed)

BFloat16 floating-point multiply-add long to single-precision (bottom, indexed)

This BFloat16 floating-point multiply-add long instruction widens the even-numbered 16-bit BFloat16 elements in the
first source vector and the indexed element from the corresponding 128-bit segment in the second source vector to
single-precision format and then destructively multiplies and adds these values without intermediate rounding to the
overlapping 32-bit single-precision elements of the addend and destination vector. This instruction is unpredicated.
Unlike the BFloat16 matrix multiplication and dot product instructions, this instruction performs a fused multiply-add
that honors all of the FPCR bits that apply to single-precision arithmetic. It can also generate a floating-point
exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken,
depending on the enable bits in the FPCR.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 i3h Zm 0 1 0 0 i3l 0 Zn Zda

o2 op T

BFMLALB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
integer index = UInt(i3h:i3l);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
integer eltspersegment = 128 DIV 32;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = 2 * segmentbase + index;
bits(32) element1 = Elem[operand1, 2 * e + 0, 16] : Zeros(16);
bits(32) element2 = Elem[operand2, s, 16] : Zeros(16);
bits(32) element3 = Elem[operand3, e, 32];
Elem[result, e, 32] = BFMulAdd(element3, element1, element2, FPCR[]);

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

BFMLALB (indexed) Page 1683

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMLALB (indexed) Page 1684

BFMLALT (vectors)

BFloat16 floating-point multiply-add long to single-precision (top)

This BFloat16 floating-point multiply-add long instruction widens the odd-numbered 16-bit BFloat16 elements in the
first source vector and the corresponding elements in the second source vector to single-precision format and then
destructively multiplies and adds these values without intermediate rounding to the overlapping 32-bit single-precision
elements of the addend and destination vector. This instruction is unpredicated.
Unlike the BFloat16 matrix multiplication and dot product instructions, this instruction performs a fused multiply-add
that honors all of the FPCR bits that apply to single-precision arithmetic. It can also generate a floating-point
exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken,
depending on the enable bits in the FPCR.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 Zm 1 0 0 0 0 1 Zn Zda

o2 op T

BFMLALT <Zda>.S, <Zn>.H, <Zm>.H

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
bits(32) element1 = Elem[operand1, 2 * e + 1, 16] : Zeros(16);
bits(32) element2 = Elem[operand2, 2 * e + 1, 16] : Zeros(16);
bits(32) element3 = Elem[operand3, e, 32];
Elem[result, e, 32] = BFMulAdd(element3, element1, element2, FPCR[]);

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

BFMLALT (vectors) Page 1685

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMLALT (vectors) Page 1686

BFMLALT (indexed)

BFloat16 floating-point multiply-add long to single-precision (top, indexed)

This BFloat16 floating-point multiply-add long instruction widens the odd-numbered 16-bit BFloat16 elements in the
first source vector and the indexed element from the corresponding 128-bit segment in the second source vector to
single-precision format and then destructively multiplies and adds these values without intermediate rounding to the
overlapping 32-bit single-precision elements of the addend and destination vector. This instruction is unpredicated.
Unlike the BFloat16 matrix multiplication and dot product instructions, this instruction performs a fused multiply-add
that honors all of the FPCR bits that apply to single-precision arithmetic. It can also generate a floating-point
exception that causes cumulative exception bits in the FPSR to be set, or a synchronous exception to be taken,
depending on the enable bits in the FPCR.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 i3h Zm 0 1 0 0 i3l 1 Zn Zda

o2 op T

BFMLALT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
integer index = UInt(i3h:i3l);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation

CheckSVEEnabled();
integer elements = VL DIV 32;
integer eltspersegment = 128 DIV 32;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = 2 * segmentbase + index;
bits(32) element1 = Elem[operand1, 2 * e + 1, 16] : Zeros(16);
bits(32) element2 = Elem[operand2, s, 16] : Zeros(16);
bits(32) element3 = Elem[operand3, e, 32];
Elem[result, e, 32] = BFMulAdd(element3, element1, element2, FPCR[]);

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

BFMLALT (indexed) Page 1687

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMLALT (indexed) Page 1688

BFMMLA

BFloat16 floating-point matrix multiply-accumulate

This BFloat16 floating-point (BF16) matrix multiply-accumulate instruction multiplies the 2×4 matrix of BF16 values
held in each 128-bit segment of the first source vector by the 4×2 BF16 matrix in the corresponding segment of the
second source vector. The resulting 2×2 single-precision (FP32) matrix product is then destructively added to the
FP32 matrix accumulator held in the corresponding segment of the addend and destination vector. This is equivalent
to performing a 4-way dot product per destination element.
This instruction is unpredicated and vector length agnostic.
All floating-point calculations performed by this instruction are performed with the following behaviors, irrespective of
the value in FPCR:
* Uses the non-IEEE 754 Round-to-Odd mode, which forces bit 0 of an inexact result to 1, and rounds an overflow to an
appropriately signed Infinity.
* The cumulative FPSR exception bits (IDC, IXC, UFC, OFC, DZC and IOC) are not modified.
* Trapped floating-point exceptions are disabled, as if the FPCR trap enable bits (IDE, IXE, UFE, OFE, DZE and IOE)
are all zero.
* Denormalized inputs and results are flushed to zero, as if FPCR.FZ == 1.
* Only the Default NaN is generated, as if FPCR.DN == 1.
ID_AA64ZFR0_EL1.BF16 indicates whether this instruction is implemented.

SVE
(FEAT_BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 1 1 Zm 1 1 1 0 0 1 Zn Zda

BFMMLA <Zda>.S, <Zn>.H, <Zm>.H

if !HaveSVE() || !HaveBF16Ext() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer segments = VL DIV 128;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;
bits(128) op1, op2;
bits(128) res, addend;

for s = 0 to segments-1
op1 = Elem[operand1, s, 128];
op2 = Elem[operand2, s, 128];
addend = Elem[operand3, s, 128];
res = BFMatMulAdd(addend, op1, op2);
Elem[result, s, 128] = res;

Z[da] = result;

BFMMLA Page 1689

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFMMLA Page 1690

BIC (immediate)

Bitwise clear bits using immediate (unpredicated)

Bitwise clear bits using immediate with each 64-bit element of the source vector, and destructively place the results in
the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of ones or
zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This is a pseudo-instruction of AND (immediate). This means:

• The encodings in this description are named to match the encodings of AND (immediate).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of AND (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 imm13 Zdn

BIC <Zdn>.<T>, <Zdn>.<T>, #<const>

is equivalent to

AND <Zdn>.<T>, <Zdn>.<T>, #(-<const> - 1)

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of AND (immediate) gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (immediate) Page 1691

BIC (predicates)

Bitwise clear predicates

Bitwise AND inverted active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 0 Pn 1 Pd

S

BIC <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 AND (NOT element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (predicates) Page 1692

BIC (vectors, predicated)

Bitwise clear vectors (predicated)

Bitwise AND inverted active elements of the second source vector with corresponding elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector. Inactive elements in
the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 1 1 0 0 0 Pg Zm Zdn

BIC <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = element1 AND (NOT element2);
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

BIC (vectors, predicated) Page 1693

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vectors, predicated) Page 1694

BIC (vectors, unpredicated)

Bitwise clear vectors (unpredicated)

Bitwise AND inverted all elements of the second source vector with corresponding elements of the first source vector
and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 Zm 0 0 1 1 0 0 Zn Zd

BIC <Zd>.D, <Zn>.D, <Zm>.D

if !HaveSVE() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];

Z[d] = operand1 AND (NOT operand2);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vectors, unpredicated) Page 1695

BICS

Bitwise clear predicates, setting the condition flags

Bitwise AND inverted active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 0 Pn 1 Pd

S

BICS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 AND (NOT element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BICS Page 1696

BRKA

Break after first true condition

Sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register remain unmodified or are set to
zero, depending on whether merging or zeroing predication is selected. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 Pg 0 Pn M Pd

B S

BRKA <Pd>.B, <Pg>/<ZM>, <Pn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer d = UInt(Pd);
boolean merging = (M == '1');
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<ZM> Is the predication qualifier, encoded in “M”:

M <ZM>
0 Z
1 M

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand = P[n];
bits(PL) operand2 = P[d];
boolean break = FALSE;
bits(PL) result;

for e = 0 to elements-1
boolean element = ElemP[operand, e, esize] == '1';
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = if !break then '1' else '0';
break = break || element;

elsif merging then
ElemP[result, e, esize] = ElemP[operand2, e, esize];

else
ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKA Page 1697

BRKAS

Break after first true condition, setting the condition flags

Sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 Pg 0 Pn 0 Pd

B S M

BRKAS <Pd>.B, <Pg>/Z, <Pn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer d = UInt(Pd);
boolean merging = FALSE;
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand = P[n];
bits(PL) operand2 = P[d];
boolean break = FALSE;
bits(PL) result;

for e = 0 to elements-1
boolean element = ElemP[operand, e, esize] == '1';
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = if !break then '1' else '0';
break = break || element;

elsif merging then
ElemP[result, e, esize] = ElemP[operand2, e, esize];

else
ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKAS Page 1698

BRKB

Break before first true condition

Sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register remain unmodified or are set to
zero, depending on whether merging or zeroing predication is selected. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 Pg 0 Pn M Pd

B S

BRKB <Pd>.B, <Pg>/<ZM>, <Pn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer d = UInt(Pd);
boolean merging = (M == '1');
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<ZM> Is the predication qualifier, encoded in “M”:

M <ZM>
0 Z
1 M

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand = P[n];
bits(PL) operand2 = P[d];
boolean break = FALSE;
bits(PL) result;

for e = 0 to elements-1
boolean element = ElemP[operand, e, esize] == '1';
if ElemP[mask, e, esize] == '1' then

break = break || element;
ElemP[result, e, esize] = if !break then '1' else '0';

elsif merging then
ElemP[result, e, esize] = ElemP[operand2, e, esize];

else
ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKB Page 1699

BRKBS

Break before first true condition, setting the condition flags

Sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 1 Pg 0 Pn 0 Pd

B S M

BRKBS <Pd>.B, <Pg>/Z, <Pn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer d = UInt(Pd);
boolean merging = FALSE;
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand = P[n];
bits(PL) operand2 = P[d];
boolean break = FALSE;
bits(PL) result;

for e = 0 to elements-1
boolean element = ElemP[operand, e, esize] == '1';
if ElemP[mask, e, esize] == '1' then

break = break || element;
ElemP[result, e, esize] = if !break then '1' else '0';

elsif merging then
ElemP[result, e, esize] = ElemP[operand2, e, esize];

else
ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKBS Page 1700

BRKN

Propagate break to next partition

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
leaves the destination and second source predicate unchanged. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 Pg 0 Pn 0 Pdm

S

BRKN <Pdm>.B, <Pg>/Z, <Pn>.B, <Pdm>.B

if !HaveSVE() then UNDEFINED;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer dm = UInt(Pdm);
boolean setflags = FALSE;

Assembler Symbols

<Pdm> Is the name of the second source and destination scalable predicate register, encoded in the "Pdm"
field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[dm];
bits(PL) result;

if LastActive(mask, operand1, 8) == '1' then
result = operand2;

else
result = Zeros();

if setflags then
PSTATE.<N,Z,C,V> = PredTest(Ones(PL), result, 8);

P[dm] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKN Page 1701

BRKNS

Propagate break to next partition, setting the condition flags

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
leaves the destination and second source predicate unchanged. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 Pg 0 Pn 0 Pdm

S

BRKNS <Pdm>.B, <Pg>/Z, <Pn>.B, <Pdm>.B

if !HaveSVE() then UNDEFINED;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer dm = UInt(Pdm);
boolean setflags = TRUE;

Assembler Symbols

<Pdm> Is the name of the second source and destination scalable predicate register, encoded in the "Pdm"
field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[dm];
bits(PL) result;

if LastActive(mask, operand1, 8) == '1' then
result = operand2;

else
result = Zeros();

if setflags then
PSTATE.<N,Z,C,V> = PredTest(Ones(PL), result, 8);

P[dm] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKNS Page 1702

BRKPA

Break after first true condition, propagating from previous partition

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 1 1 Pg 0 Pn 0 Pd

S B

BRKPA <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;
boolean last = (LastActive(mask, operand1, 8) == '1');

for e = 0 to elements-1
if ElemP[mask, e, 8] == '1' then

ElemP[result, e, 8] = if last then '1' else '0';
last = last && (ElemP[operand2, e, 8] == '0');

else
ElemP[result, e, 8] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKPA Page 1703

BRKPAS

Break after first true condition, propagating from previous partition and setting the condition flags

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to and including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 0 Pm 1 1 Pg 0 Pn 0 Pd

S B

BRKPAS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;
boolean last = (LastActive(mask, operand1, 8) == '1');

for e = 0 to elements-1
if ElemP[mask, e, 8] == '1' then

ElemP[result, e, 8] = if last then '1' else '0';
last = last && (ElemP[operand2, e, 8] == '0');

else
ElemP[result, e, 8] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKPAS Page 1704

BRKPB

Break before first true condition, propagating from previous partition

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 1 1 Pg 0 Pn 1 Pd

S B

BRKPB <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;
boolean last = (LastActive(mask, operand1, 8) == '1');

for e = 0 to elements-1
if ElemP[mask, e, 8] == '1' then

last = last && (ElemP[operand2, e, 8] == '0');
ElemP[result, e, 8] = if last then '1' else '0';

else
ElemP[result, e, 8] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKPB Page 1705

BRKPBS

Break before first true condition, propagating from previous partition and setting the condition flags

If the last active element of the first source predicate is false then set the destination predicate to all-false. Otherwise
sets destination predicate elements up to but not including the first active and true source element to true, then sets
subsequent elements to false. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 0 Pm 1 1 Pg 0 Pn 1 Pd

S B

BRKPBS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;
boolean last = (LastActive(mask, operand1, 8) == '1');

for e = 0 to elements-1
if ElemP[mask, e, 8] == '1' then

last = last && (ElemP[operand2, e, 8] == '0');
ElemP[result, e, 8] = if last then '1' else '0';

else
ElemP[result, e, 8] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRKPBS Page 1706

CLASTA (scalar)

Conditionally extract element after last to general-purpose register

From the source vector register extract the element after the last active element, or if the last active element is the
final element extract element zero, and then zero-extend that element to destructively place in the destination and
first source general-purpose register. If there are no active elements then destructively zero-extend the least
significant element-size bits of the destination and first source general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 0 0 1 0 1 Pg Zm Rdn

B

CLASTA <R><dn>, <Pg>, <R><dn>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Rdn);
integer m = UInt(Zm);
integer csize = if esize < 64 then 32 else 64;
boolean isBefore = FALSE;

Assembler Symbols

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<dn> Is the number [0-30] of the source and destination general-purpose register or the name ZR (31),
encoded in the "Rdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

CLASTA (scalar) Page 1707

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(esize) operand1 = X[dn];
bits(VL) operand2 = Z[m];
bits(csize) result;
integer last = LastActiveElement(mask, esize);

if last < 0 then
result = ZeroExtend(operand1);

else
if !isBefore then

last = last + 1;
if last >= elements then last = 0;

result = ZeroExtend(Elem[operand2, last, esize]);

X[dn] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLASTA (scalar) Page 1708

CLASTA (SIMD&FP scalar)

Conditionally extract element after last to SIMD&FP scalar register

From the source vector register extract the element after the last active element, or if the last active element is the
final element extract element zero, and then zero-extend that element to destructively place in the destination and
first source SIMD & floating-point scalar register. If there are no active elements then destructively zero-extend the
least significant element-size bits of the destination and first source SIMD & floating-point scalar register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 Pg Zm Vdn

B

CLASTA <V><dn>, <Pg>, <V><dn>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Vdn);
integer m = UInt(Zm);
boolean isBefore = FALSE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<dn> Is the number [0-31] of the source and destination SIMD&FP register, encoded in the "Vdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

CLASTA (SIMD&FP scalar) Page 1709

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(esize) operand1 = V[dn];
bits(VL) operand2 = Z[m];
bits(esize) result;
integer last = LastActiveElement(mask, esize);

if last < 0 then
result = ZeroExtend(operand1);

else
if !isBefore then

last = last + 1;
if last >= elements then last = 0;

result = Elem[operand2, last, esize];

V[dn] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLASTA (SIMD&FP scalar) Page 1710

CLASTA (vectors)

Conditionally extract element after last to vector register

From the second source vector register extract the element after the last active element, or if the last active element
is the final element extract element zero, and then replicate that element to destructively fill the destination and first
source vector.
If there are no active elements then leave the destination and source vector unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 Pg Zm Zdn

B

CLASTA <Zdn>.<T>, <Pg>, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean isBefore = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = Z[m];
bits(VL) result;
integer last = LastActiveElement(mask, esize);

if last < 0 then
result = operand1;

else
if !isBefore then

last = last + 1;
if last >= elements then last = 0;

for e = 0 to elements-1
Elem[result, e, esize] = Elem[operand2, last, esize];

Z[dn] = result;

CLASTA (vectors) Page 1711

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLASTA (vectors) Page 1712

CLASTB (scalar)

Conditionally extract last element to general-purpose register

From the source vector register extract the last active element, and then zero-extend that element to destructively
place in the destination and first source general-purpose register. If there are no active elements then destructively
zero-extend the least significant element-size bits of the destination and first source general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 0 1 1 0 1 Pg Zm Rdn

B

CLASTB <R><dn>, <Pg>, <R><dn>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Rdn);
integer m = UInt(Zm);
integer csize = if esize < 64 then 32 else 64;
boolean isBefore = TRUE;

Assembler Symbols

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<dn> Is the number [0-30] of the source and destination general-purpose register or the name ZR (31),
encoded in the "Rdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

CLASTB (scalar) Page 1713

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(esize) operand1 = X[dn];
bits(VL) operand2 = Z[m];
bits(csize) result;
integer last = LastActiveElement(mask, esize);

if last < 0 then
result = ZeroExtend(operand1);

else
if !isBefore then

last = last + 1;
if last >= elements then last = 0;

result = ZeroExtend(Elem[operand2, last, esize]);

X[dn] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLASTB (scalar) Page 1714

CLASTB (SIMD&FP scalar)

Conditionally extract last element to SIMD&FP scalar register

From the source vector register extract the last active element, and then zero-extend that element to destructively
place in the destination and first source SIMD & floating-point scalar register. If there are no active elements then
destructively zero-extend the least significant element-size bits of the destination and first source SIMD & floating-
point scalar register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 Pg Zm Vdn

B

CLASTB <V><dn>, <Pg>, <V><dn>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Vdn);
integer m = UInt(Zm);
boolean isBefore = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<dn> Is the number [0-31] of the source and destination SIMD&FP register, encoded in the "Vdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

CLASTB (SIMD&FP scalar) Page 1715

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(esize) operand1 = V[dn];
bits(VL) operand2 = Z[m];
bits(esize) result;
integer last = LastActiveElement(mask, esize);

if last < 0 then
result = ZeroExtend(operand1);

else
if !isBefore then

last = last + 1;
if last >= elements then last = 0;

result = Elem[operand2, last, esize];

V[dn] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLASTB (SIMD&FP scalar) Page 1716

CLASTB (vectors)

Conditionally extract last element to vector register

From the second source vector register extract the last active element, and then replicate that element to
destructively fill the destination and first source vector.
If there are no active elements then leave the destination and source vector unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 Pg Zm Zdn

B

CLASTB <Zdn>.<T>, <Pg>, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean isBefore = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = Z[m];
bits(VL) result;
integer last = LastActiveElement(mask, esize);

if last < 0 then
result = operand1;

else
if !isBefore then

last = last + 1;
if last >= elements then last = 0;

for e = 0 to elements-1
Elem[result, e, esize] = Elem[operand2, last, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

CLASTB (vectors) Page 1717

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLASTB (vectors) Page 1718

CLS

Count leading sign bits (predicated)

Count leading sign bits in each active element of the source vector, and place the results in the corresponding
elements of the destination vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 1 0 1 Pg Zn Zd

CLS <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = CountLeadingSignBits(element)<esize-1:0>;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS Page 1719

CLZ

Count leading zero bits (predicated)

Count leading zero bits in each active element of the source vector, and place the results in the corresponding
elements of the destination vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 1 0 1 Pg Zn Zd

CLZ <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = CountLeadingZeroBits(element)<esize-1:0>;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ Page 1720

CMP<cc> (immediate)

Compare vector to immediate

Compare active integer elements in the source vector with an immediate, and place the boolean results of the
specified comparison in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result,
and the V flag to zero.
The <cc> symbol specifies one of the standard ARM condition codes: EQ, GE, GT, HI, HS, LE, LO, LS, LT or NE.

It has encodings from 10 classes: Equal , Greater than , Greater than or equal , Higher , Higher or same , Less than ,
Less than or equal , Lower , Lower or same and Not equal

Equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 imm5 1 0 0 Pg Zn 0 Pd

ne

CMPEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_EQ;
integer imm = SInt(imm5);
boolean unsigned = FALSE;

Greater than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 imm5 0 0 0 Pg Zn 1 Pd

lt ne

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;
integer imm = SInt(imm5);
boolean unsigned = FALSE;

Greater than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 imm5 0 0 0 Pg Zn 0 Pd

lt ne

CMP<cc> (immediate) Page 1721

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;
integer imm = SInt(imm5);
boolean unsigned = FALSE;

Higher

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 1 imm7 0 Pg Zn 1 Pd

lt ne

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;
integer imm = UInt(imm7);
boolean unsigned = TRUE;

Higher or same

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 1 imm7 0 Pg Zn 0 Pd

lt ne

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;
integer imm = UInt(imm7);
boolean unsigned = TRUE;

Less than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 imm5 0 0 1 Pg Zn 0 Pd

lt ne

CMPLT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_LT;
integer imm = SInt(imm5);
boolean unsigned = FALSE;

CMP<cc> (immediate) Page 1722

Less than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 imm5 0 0 1 Pg Zn 1 Pd

lt ne

CMPLE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_LE;
integer imm = SInt(imm5);
boolean unsigned = FALSE;

Lower

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 1 imm7 1 Pg Zn 0 Pd

lt ne

CMPLO <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_LT;
integer imm = UInt(imm7);
boolean unsigned = TRUE;

Lower or same

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 1 imm7 1 Pg Zn 1 Pd

lt ne

CMPLS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_LE;
integer imm = UInt(imm7);
boolean unsigned = TRUE;

Not equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 imm5 1 0 0 Pg Zn 1 Pd

ne

CMP<cc> (immediate) Page 1723

CMPNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_NE;
integer imm = SInt(imm5);
boolean unsigned = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> For the equal, greater than, greater than or equal, less than, less than or equal and not equal variant: is
the signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.
For the higher, higher or same, lower and lower or same variant: is the unsigned immediate operand, in
the range 0 to 127, encoded in the "imm7" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(PL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

boolean cond;
case op of

when Cmp_EQ cond = element1 == imm;
when Cmp_NE cond = element1 != imm;
when Cmp_GE cond = element1 >= imm;
when Cmp_LT cond = element1 < imm;
when Cmp_GT cond = element1 > imm;
when Cmp_LE cond = element1 <= imm;

ElemP[result, e, esize] = if cond then '1' else '0';
else

ElemP[result, e, esize] = '0';

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP<cc> (immediate) Page 1724

CMP<cc> (wide elements)

Compare vector to 64-bit wide elements

Compare active integer elements in the first source vector with overlapping 64-bit doubleword elements in the second
source vector, and place the boolean results of the specified comparison in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE
(Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.
The <cc> symbol specifies one of the standard ARM condition codes: EQ, GE, GT, HI, HS, LE, LO, LS, LT or NE.

It has encodings from 10 classes: Equal , Greater than , Greater than or equal , Higher , Higher or same , Less than ,
Less than or equal , Lower , Lower or same and Not equal

Equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 0 1 Pg Zn 0 Pd

ne

CMPEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_EQ;
boolean unsigned = FALSE;

Greater than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 1 0 Pg Zn 1 Pd

U lt ne

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;
boolean unsigned = FALSE;

Greater than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 1 0 Pg Zn 0 Pd

U lt ne

CMP<cc> (wide elements) Page 1725

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;
boolean unsigned = FALSE;

Higher

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 1 0 Pg Zn 1 Pd

U lt ne

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;
boolean unsigned = TRUE;

Higher or same

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 1 0 Pg Zn 0 Pd

U lt ne

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;
boolean unsigned = TRUE;

Less than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 1 1 Pg Zn 0 Pd

U lt ne

CMP<cc> (wide elements) Page 1726

CMPLT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_LT;
boolean unsigned = FALSE;

Less than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 1 1 Pg Zn 1 Pd

U lt ne

CMPLE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_LE;
boolean unsigned = FALSE;

Lower

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 1 1 Pg Zn 0 Pd

U lt ne

CMPLO <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_LT;
boolean unsigned = TRUE;

Lower or same

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 1 1 Pg Zn 1 Pd

U lt ne

CMP<cc> (wide elements) Page 1727

CMPLS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_LE;
boolean unsigned = TRUE;

Not equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 0 1 Pg Zn 1 Pd

ne

CMPNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_NE;
boolean unsigned = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

CMP<cc> (wide elements) Page 1728

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(PL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

boolean cond;
integer element2 = Int(Elem[operand2, (e * esize) DIV 64, 64], unsigned);
case op of

when Cmp_EQ cond = element1 == element2;
when Cmp_NE cond = element1 != element2;
when Cmp_GE cond = element1 >= element2;
when Cmp_LT cond = element1 < element2;
when Cmp_GT cond = element1 > element2;
when Cmp_LE cond = element1 <= element2;

ElemP[result, e, esize] = if cond then '1' else '0';
else

ElemP[result, e, esize] = '0';

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP<cc> (wide elements) Page 1729

CMP<cc> (vectors)

Compare vectors

Compare active integer elements in the first source vector with corresponding elements in the second source vector,
and place the boolean results of the specified comparison in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.
The <cc> symbol specifies one of the standard ARM condition codes: EQ, GE, GT, HI, HS or NE.

This instruction is used by the pseudo-instructions CMPLE (vectors), CMPLO (vectors), CMPLS (vectors), and CMPLT
(vectors).

It has encodings from 6 classes: Equal , Greater than , Greater than or equal , Higher , Higher or same and Not equal

Equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 0 1 Pg Zn 0 Pd

ne

CMPEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_EQ;
boolean unsigned = FALSE;

Greater than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 1 Pd

ne

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;
boolean unsigned = FALSE;

Greater than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 0 Pd

ne

CMP<cc> (vectors) Page 1730

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;
boolean unsigned = FALSE;

Higher

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 1 Pd

ne

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;
boolean unsigned = TRUE;

Higher or same

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 0 Pd

ne

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;
boolean unsigned = TRUE;

Not equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 0 1 Pg Zn 1 Pd

ne

CMPNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_NE;
boolean unsigned = FALSE;

CMP<cc> (vectors) Page 1731

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(PL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

boolean cond;
integer element2 = Int(Elem[operand2, e, esize], unsigned);
case op of

when Cmp_EQ cond = element1 == element2;
when Cmp_NE cond = element1 != element2;
when Cmp_GE cond = element1 >= element2;
when Cmp_LT cond = element1 < element2;
when Cmp_GT cond = element1 > element2;
when Cmp_LE cond = element1 <= element2;

ElemP[result, e, esize] = if cond then '1' else '0';
else

ElemP[result, e, esize] = '0';

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP<cc> (vectors) Page 1732

CMPLE (vectors)

Compare signed less than or equal to vector, setting the condition flags

Compare active signed integer elements in the first source vector being less than or equal to corresponding signed
elements in the second source vector, and place the boolean results of the comparison in the corresponding elements
of the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This is a pseudo-instruction of CMP<cc> (vectors). This means:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 0 Pd

ne

CMPLE <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

CMPGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMPLE (vectors) Page 1733

CMPLO (vectors)

Compare unsigned lower than vector, setting the condition flags

Compare active unsigned integer elements in the first source vector being lower than corresponding unsigned
elements in the second source vector, and place the boolean results of the comparison in the corresponding elements
of the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N),
NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This is a pseudo-instruction of CMP<cc> (vectors). This means:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 1 Pd

ne

CMPLO <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

CMPHI <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMPLO (vectors) Page 1734

CMPLS (vectors)

Compare unsigned lower or same as vector, setting the condition flags

Compare active unsigned integer elements in the first source vector being lower than or same as corresponding
unsigned elements in the second source vector, and place the boolean results of the comparison in the corresponding
elements of the destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This is a pseudo-instruction of CMP<cc> (vectors). This means:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 0 0 0 Pg Zn 0 Pd

ne

CMPLS <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

CMPHS <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMPLS (vectors) Page 1735

CMPLT (vectors)

Compare signed less than vector, setting the condition flags

Compare active signed integer elements in the first source vector being less than corresponding signed elements in
the second source vector, and place the boolean results of the comparison in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE
(Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This is a pseudo-instruction of CMP<cc> (vectors). This means:

• The encodings in this description are named to match the encodings of CMP<cc> (vectors).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm 1 0 0 Pg Zn 1 Pd

ne

CMPLT <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

CMPGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of CMP<cc> (vectors) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMPLT (vectors) Page 1736

CNOT

Logically invert boolean condition in vector (predicated)

Logically invert the boolean value in each active element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.
Boolean TRUE is any non-zero value in a source, and one in a result element. Boolean FALSE is always zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 1 1 1 0 1 Pg Zn Zd

CNOT <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = ZeroExtend(IsZeroBit(element), esize);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

CNOT Page 1737

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNOT Page 1738

CNT

Count non-zero bits (predicated)

Count non-zero bits in each active element of the source vector, and place the results in the corresponding elements of
the destination vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 1 0 1 0 1 Pg Zn Zd

CNT <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = BitCount(element)<esize-1:0>;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNT Page 1739

CNTB, CNTD, CNTH, CNTW

Set scalar to multiple of predicate constraint element count

Determines the number of active elements implied by the named predicate constraint, multiplies that by an immediate
in the range 1 to 16 inclusive, and then places the result in the scalar destination.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 4 classes: Byte , Doubleword , Halfword and Word

Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 0 0 0 pattern Rd

size<1>size<0>

CNTB <Xd>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer d = UInt(Rd);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Doubleword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 0 0 0 pattern Rd

size<1>size<0>

CNTD <Xd>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer d = UInt(Rd);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 0 0 0 pattern Rd

size<1>size<0>

CNTH <Xd>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer d = UInt(Rd);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

CNTB, CNTD, CNTH, CNTW Page 1740

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 0 0 0 pattern Rd

size<1>size<0>

CNTW <Xd>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer d = UInt(Rd);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);

X[d] = (count * imm)<63:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTB, CNTD, CNTH, CNTW Page 1741

CNTP

Set scalar to count of true predicate elements

Counts the number of active and true elements in the source predicate and places the scalar result in the destination
general-purpose register. Inactive predicate elements are not counted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 0 0 0 1 0 Pg 0 Pn Rd

CNTP <Xd>, <Pg>, <Pn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Pn);
integer d = UInt(Rd);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand = P[n];
bits(64) sum = Zeros();

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' && ElemP[operand, e, esize] == '1' then

sum = sum + 1;
X[d] = sum;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNTP Page 1742

COMPACT

Shuffle active elements of vector to the right and fill with zero

Read the active elements from the source vector and pack them into the lowest-numbered elements of the destination
vector. Then set any remaining elements of the destination vector to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 1 1 0 0 Pg Zn Zd

COMPACT <Zd>.<T>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '0x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Zeros();
integer x = 0;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand1, e, esize];
Elem[result, x, esize] = element;
x = x + 1;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

COMPACT Page 1743

CPY (immediate, zeroing)

Copy signed integer immediate to vector elements (zeroing)

Copy a signed integer immediate to each active element in the destination vector. Inactive elements in the destination
vector register are set to zero.
The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is used by the alias MOV (immediate, predicated, zeroing).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 0 0 sh imm8 Zd

M

CPY <Zd>.<T>, <Pg>/Z, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer d = UInt(Zd);
boolean merging = FALSE;
integer imm = SInt(imm8);
if sh == '1' then imm = imm << 8;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

CPY (immediate, zeroing) Page 1744

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) dest = Z[d];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = imm<esize-1:0>;
elsif merging then

Elem[result, e, esize] = Elem[dest, e, esize];
else

Elem[result, e, esize] = Zeros();

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPY (immediate, zeroing) Page 1745

CPY (immediate, merging)

Copy signed integer immediate to vector elements (merging)

Copy a signed integer immediate to each active element in the destination vector. Inactive elements in the destination
vector register remain unmodified.
The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is used by the aliases FMOV (zero, predicated), and MOV (immediate, predicated, merging).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 0 1 sh imm8 Zd

M

CPY <Zd>.<T>, <Pg>/M, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer d = UInt(Zd);
boolean merging = TRUE;
integer imm = SInt(imm8);
if sh == '1' then imm = imm << 8;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

CPY (immediate, merging) Page 1746

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) dest = Z[d];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = imm<esize-1:0>;
elsif merging then

Elem[result, e, esize] = Elem[dest, e, esize];
else

Elem[result, e, esize] = Zeros();

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPY (immediate, merging) Page 1747

CPY (scalar)

Copy general-purpose register to vector elements (predicated)

Copy the general-purpose scalar source register to each active element in the destination vector. Inactive elements in
the destination vector register remain unmodified.

This instruction is used by the alias MOV (scalar, predicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 0 0 1 0 1 Pg Rn Zd

CPY <Zd>.<T>, <Pg>/M, <R><n|SP>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Rn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) result = Z[d];
if AnyActiveElement(mask, esize) then

bits(64) operand1;
if n == 31 then

operand1 = SP[];
else

operand1 = X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = operand1<esize-1:0>;

Z[d] = result;

CPY (scalar) Page 1748

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPY (scalar) Page 1749

CPY (SIMD&FP scalar)

Copy SIMD&FP scalar register to vector elements (predicated)

Copy the SIMD & floating-point scalar source register to each active element in the destination vector. Inactive
elements in the destination vector register remain unmodified.

This instruction is used by the alias MOV (SIMD&FP scalar, predicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 1 0 0 Pg Vn Zd

CPY <Zd>.<T>, <Pg>/M, <V><n>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Vn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<n> Is the number [0-31] of the source SIMD&FP register, encoded in the "Vn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(esize) operand1 = if AnyActiveElement(mask, esize) then V[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = operand1;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

CPY (SIMD&FP scalar) Page 1750

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPY (SIMD&FP scalar) Page 1751

CTERMEQ, CTERMNE

Compare and terminate loop

Detect termination conditions in serialized vector loops. Tests whether the comparison between the scalar source
operands holds true and if not tests the state of the !LAST condition flag (C) which indicates whether the previous flag-
setting predicate instruction selected the last element of the vector partition.
The Z and C condition flags are preserved by this instruction. The N and V condition flags are set as a pair to generate
one of the following conditions for a subsequent conditional instruction:
* GE (N=0 & V=0): continue loop (compare failed and last element not selected);
* LT (N=0 & V=1): terminate loop (last element selected);
* LT (N=1 & V=0): terminate loop (compare succeeded);
The scalar source operands are 32-bit or 64-bit general-purpose registers of the same size.

It has encodings from 2 classes: Equal and Not equal

Equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 sz 1 Rm 0 0 1 0 0 0 Rn 0 0 0 0 0

ne

CTERMEQ <R><n>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 32 << UInt(sz);
integer n = UInt(Rn);
integer m = UInt(Rm);
SVECmp op = Cmp_EQ;

Not equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 sz 1 Rm 0 0 1 0 0 0 Rn 1 0 0 0 0

ne

CTERMNE <R><n>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 32 << UInt(sz);
integer n = UInt(Rn);
integer m = UInt(Rm);
SVECmp op = Cmp_NE;

Assembler Symbols

<R> Is a width specifier, encoded in “sz”:

sz <R>
0 W
1 X

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rn"
field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

CTERMEQ, CTERMNE Page 1752

Operation

CheckSVEEnabled();
bits(esize) operand1 = X[n];
bits(esize) operand2 = X[m];
integer element1 = UInt(operand1);
integer element2 = UInt(operand2);
boolean term;

case op of
when Cmp_EQ term = element1 == element2;
when Cmp_NE term = element1 != element2;

if term then
PSTATE.N = '1';
PSTATE.V = '0';

else
PSTATE.N = '0';
PSTATE.V = (NOT PSTATE.C);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CTERMEQ, CTERMNE Page 1753

DECB, DECD, DECH, DECW (scalar)

Decrement scalar by multiple of predicate constraint element count

Determines the number of active elements implied by the named predicate constraint, multiplies that by an immediate
in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 4 classes: Byte , Doubleword , Halfword and Word

Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 0 0 1 pattern Rdn

size<1>size<0> D

DECB <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Doubleword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 0 0 1 pattern Rdn

size<1>size<0> D

DECD <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 0 0 1 pattern Rdn

size<1>size<0> D

DECH <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

DECB, DECD, DECH, DECW
(scalar) Page 1754

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 0 0 1 pattern Rdn

size<1>size<0> D

DECW <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(64) operand1 = X[dn];

X[dn] = operand1 - (count * imm);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DECB, DECD, DECH, DECW
(scalar) Page 1755

DECD, DECH, DECW (vector)

Decrement vector by multiple of predicate constraint element count

Determines the number of active elements implied by the named predicate constraint, multiplies that by an immediate
in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 3 classes: Doubleword , Halfword and Word

Doubleword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 0 0 0 1 pattern Zdn

size<1>size<0> D

DECD <Zdn>.D{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 0 0 0 1 pattern Zdn

size<1>size<0> D

DECH <Zdn>.H{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 0 0 0 1 pattern Zdn

size<1>size<0> D

DECW <Zdn>.S{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

DECD, DECH, DECW (vector) Page 1756

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
Elem[result, e, esize] = Elem[operand1, e, esize] - (count * imm);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DECD, DECH, DECW (vector) Page 1757

DECP (scalar)

Decrement scalar by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to decrement the scalar
destination.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 1 0 1 1 0 0 0 1 0 0 Pm Rdn

D

DECP <Xdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) operand1 = X[dn];
bits(PL) operand2 = P[m];
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

X[dn] = operand1 - count;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DECP (scalar) Page 1758

DECP (vector)

Decrement vector by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to decrement all destination
vector elements.
The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited in
a future release of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 1 0 1 1 0 0 0 0 0 0 Pm Zdn

D

DECP <Zdn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Zdn);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) operand2 = P[m];
bits(VL) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

for e = 0 to elements-1
Elem[result, e, esize] = Elem[operand1, e, esize] - count;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

DECP (vector) Page 1759

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DECP (vector) Page 1760

DUP (immediate)

Broadcast signed immediate to vector elements (unpredicated)

Unconditionally broadcast the signed integer immediate into each element of the destination vector. This instruction is
unpredicated.
The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This instruction is used by the aliases FMOV (zero, unpredicated), and MOV (immediate, unpredicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 1 0 0 0 1 1 sh imm8 Zd

DUP <Zd>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer d = UInt(Zd);
integer imm = SInt(imm8);
if sh == '1' then imm = imm << 8;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
bits(VL) result = Replicate(imm<esize-1:0>);
Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (immediate) Page 1761

DUP (scalar)

Broadcast general-purpose register to vector elements (unpredicated)

Unconditionally broadcast the general-purpose scalar source register into each element of the destination vector. This
instruction is unpredicated.

This instruction is used by the alias MOV (scalar, unpredicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Zd

DUP <Zd>.<T>, <R><n|SP>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Rn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) operand;
if n == 31 then

operand = SP[];
else

operand = X[n];
bits(VL) result;

for e = 0 to elements-1
Elem[result, e, esize] = operand<esize-1:0>;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (scalar) Page 1762

DUP (indexed)

Broadcast indexed element to vector (unpredicated)

Unconditionally broadcast the indexed source vector element into each element of the destination vector. This
instruction is unpredicated.
The immediate element index is in the range of 0 to 63 (bytes), 31 (halfwords), 15 (words), 7 (doublewords) or 3
(quadwords). Selecting an element beyond the accessible vector length causes the destination vector to be set to zero.

This instruction is used by the alias MOV (SIMD&FP scalar, unpredicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 imm2 1 tsz 0 0 1 0 0 0 Zn Zd

DUP <Zd>.<T>, <Zn>.<T>[<imm>]

if !HaveSVE() then UNDEFINED;
bits(7) imm = imm2:tsz;
case tsz of

when '00000' UNDEFINED;
when '10000' esize = 128; index = UInt(imm<6:5>);
when 'x1000' esize = 64; index = UInt(imm<6:4>);
when 'xx100' esize = 32; index = UInt(imm<6:3>);
when 'xxx10' esize = 16; index = UInt(imm<6:2>);
when 'xxxx1' esize = 8; index = UInt(imm<6:1>);

integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “tsz”:

tsz <T>
00000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D
10000 Q

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> Is the immediate index, in the range 0 to one less than the number of elements in 512 bits, encoded in
"imm2:tsz".

Alias Conditions

Alias Is preferred when
MOV (SIMD&FP scalar, unpredicated) BitCount(imm2:tsz) == 1
MOV (SIMD&FP scalar, unpredicated) BitCount(imm2:tsz) > 1

DUP (indexed) Page 1763

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) result;
bits(esize) element;

if index >= elements then
element = Zeros();

else
element = Elem[operand1, index, esize];

result = Replicate(element);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (indexed) Page 1764

DUPM

Broadcast logical bitmask immediate to vector (unpredicated)

Unconditionally broadcast the logical bitmask immediate into each element of the destination vector. This instruction
is unpredicated. The immediate is a 64-bit value consisting of a single run of ones or zeros repeating every 2, 4, 8, 16,
32 or 64 bits.

This instruction is used by the alias MOV (bitmask immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 1 0 0 0 0 imm13 Zd

DUPM <Zd>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer d = UInt(Zd);
bits(esize) imm;
(imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Alias Conditions

Alias Is preferred when
MOV (bitmask immediate) SVEMoveMaskPreferred(imm13)

Operation

CheckSVEEnabled();
bits(VL) result = Replicate(imm);
Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUPM Page 1765

EON

Bitwise exclusive OR with inverted immediate (unpredicated)

Bitwise exclusive OR an inverted immediate with each 64-bit element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of
ones or zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This is a pseudo-instruction of EOR (immediate). This means:

• The encodings in this description are named to match the encodings of EOR (immediate).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of EOR (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 imm13 Zdn

EON <Zdn>.<T>, <Zdn>.<T>, #<const>

is equivalent to

EOR <Zdn>.<T>, <Zdn>.<T>, #(-<const> - 1)

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of EOR (immediate) gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EON Page 1766

EOR (predicates)

Bitwise exclusive OR predicates

Bitwise exclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

This instruction is used by the alias NOT (predicate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 0 Pd

S

EOR <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Alias Conditions

Alias Is preferred when
NOT (predicate) Pm == Pg

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 EOR element2;
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (predicates) Page 1767

EOR (vectors, predicated)

Bitwise exclusive OR vectors (predicated)

Bitwise exclusive OR active elements of the second source vector with corresponding elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector. Inactive elements in
the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 0 0 0 Pg Zm Zdn

EOR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = element1 EOR element2;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

EOR (vectors, predicated) Page 1768

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (vectors, predicated) Page 1769

EOR (immediate)

Bitwise exclusive OR with immediate (unpredicated)

Bitwise exclusive OR an immediate with each 64-bit element of the source vector, and destructively place the results in
the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of ones or
zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is used by the pseudo-instruction EON.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 1 0 0 0 0 imm13 Zdn

EOR <Zdn>.<T>, <Zdn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
integer dn = UInt(Zdn);
bits(64) imm;
(imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 64;
bits(VL) operand = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(64) element1 = Elem[operand, e, 64];
Elem[result, e, 64] = element1 EOR imm;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

EOR (immediate) Page 1770

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (immediate) Page 1771

EOR (vectors, unpredicated)

Bitwise exclusive OR vectors (unpredicated)

Bitwise exclusive OR all elements of the second source vector with corresponding elements of the first source vector
and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 Zm 0 0 1 1 0 0 Zn Zd

EOR <Zd>.D, <Zn>.D, <Zm>.D

if !HaveSVE() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];

Z[d] = operand1 EOR operand2;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (vectors, unpredicated) Page 1772

EORS

Bitwise exclusive OR predicates, setting the condition flags

Bitwise exclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

This instruction is used by the alias NOTS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 1 Pn 0 Pd

S

EORS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Alias Conditions

Alias Is preferred when
NOTS Pm == Pg

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 EOR element2;
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EORS Page 1773

EORV

Bitwise exclusive OR reduction to scalar

Bitwise exclusive OR horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 0 0 1 Pg Zn Vd

EORV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) result = Zeros(esize);

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

result = result EOR Elem[operand, e, esize];

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EORV Page 1774

EXT

Extract vector from pair of vectors

Copy the indexed byte up to the last byte of the first source vector to the bottom of the result vector, then fill the
remainder of the result starting from the first byte of the second source vector. The result is placed destructively in the
first source vector. This instruction is unpredicated.
An index that is greater than or equal to the vector length in bytes is treated as zero, leaving the destination and first
source vector unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 1 imm8h 0 0 0 imm8l Zm Zdn

EXT <Zdn>.B, <Zdn>.B, <Zm>.B, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer position = UInt(imm8h:imm8l);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8h:imm8l" fields.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = Z[m];
bits(VL) result;

if position >= elements then
position = 0;

position = position << 3;
bits(VL*2) concat = operand2 : operand1;
result = concat<position+VL-1:position>;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXT Page 1775

FABD

Floating-point absolute difference (predicated)

Compute the absolute difference of active floating-point elements of the second source vector and corresponding
floating-point elements of the first source vector and destructively place the result in the corresponding elements of
the first source vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 0 0 0 1 0 0 Pg Zm Zdn

FABD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPAbs(FPSub(element1, element2, FPCR[]));

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FABD Page 1776

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABD Page 1777

FABS

Floating-point absolute value (predicated)

Take the absolute value of each active floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. This clears the sign bit and cannot signal a floating-point exception.
Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 1 0 0 1 0 1 Pg Zn Zd

FABS <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPAbs(element);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

FABS Page 1778

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABS Page 1779

FAC<cc>

Floating-point absolute compare vectors

Compare active absolute values of floating-point elements in the first source vector with corresponding absolute
values of elements in the second source vector, and place the boolean results of the specified comparison in the
corresponding elements of the destination predicate. Inactive elements in the destination predicate register are set to
zero. Does not set the condition flags.
The <cc> symbol specifies one of the standard ARM condition codes: GE, GT, LE, or LT.

This instruction is used by the pseudo-instructions FACLE, and FACLT.

It has encodings from 2 classes: Greater than and Greater than or equal

Greater than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 1 1 1 Pg Zn 1 Pd

FACGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;

Greater than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 1 1 0 Pg Zn 1 Pd

FACGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

FAC<cc> Page 1780

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(PL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
case op of

when Cmp_GE res = FPCompareGE(FPAbs(element1), FPAbs(element2), FPCR[]);
when Cmp_GT res = FPCompareGT(FPAbs(element1), FPAbs(element2), FPCR[]);

ElemP[result, e, esize] = if res then '1' else '0';
else

ElemP[result, e, esize] = '0';

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAC<cc> Page 1781

FACLE

Floating-point absolute compare less than or equal

Compare active absolute values of floating-point elements in the first source vector being less than or equal to
corresponding absolute values of elements in the second source vector, and place the boolean results of the
comparison in the corresponding elements of the destination predicate. Inactive elements in the destination predicate
register are set to zero. Does not set the condition flags.

This is a pseudo-instruction of FAC<cc>. This means:

• The encodings in this description are named to match the encodings of FAC<cc>.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of FAC<cc> gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 1 1 0 Pg Zn 1 Pd

FACLE <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

FACGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FAC<cc> gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACLE Page 1782

FACLT

Floating-point absolute compare less than

Compare active absolute values of floating-point elements in the first source vector being less than corresponding
absolute values of elements in the second source vector, and place the boolean results of the comparison in the
corresponding elements of the destination predicate. Inactive elements in the destination predicate register are set to
zero. Does not set the condition flags.

This is a pseudo-instruction of FAC<cc>. This means:

• The encodings in this description are named to match the encodings of FAC<cc>.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of FAC<cc> gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 1 1 1 Pg Zn 1 Pd

FACLT <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

FACGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FAC<cc> gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACLT Page 1783

FADD (immediate)

Floating-point add immediate (predicated)

Add an immediate to each active floating-point element of the source vector, and destructively place the results in the
corresponding elements of the source vector. The immediate may take the value +0.5 or +1.0 only. Inactive elements
in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 0 0 0 1 0 0 Pg 0 0 0 0 i1 Zdn

FADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then FPPointFive('0') else FPOne('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.5
1 #1.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPAdd(element1, imm, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FADD (immediate) Page 1784

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (immediate) Page 1785

FADD (vectors, predicated)

Floating-point add vector (predicated)

Add active floating-point elements of the second source vector to corresponding floating-point elements of the first
source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 0 0 1 0 0 Pg Zm Zdn

FADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPAdd(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FADD (vectors, predicated) Page 1786

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (vectors, predicated) Page 1787

FADD (vectors, unpredicated)

Floating-point add vector (unpredicated)

Add all floating-point elements of the second source vector to corresponding elements of the first source vector and
place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 0 0 0 Zn Zd

FADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPAdd(element1, element2, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (vectors, unpredicated) Page 1788

FADDA

Floating-point add strictly-ordered reduction, accumulating in scalar

Floating-point add a SIMD&FP scalar source and all active lanes of the vector source and place the result
destructively in the SIMD&FP scalar source register. Vector elements are processed strictly in order from low to high,
with the scalar source providing the initial value. Inactive elements in the source vector are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 0 0 0 0 0 1 Pg Zm Vdn

FADDA <V><dn>, <Pg>, <V><dn>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Vdn);
integer m = UInt(Zm);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 D

<dn> Is the number [0-31] of the source and destination SIMD&FP register, encoded in the "Vdn" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the source scalable vector register, encoded in the "Zm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(esize) operand1 = V[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(esize) result = operand1;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand2, e, esize];
result = FPAdd(result, element, FPCR[]);

V[dn] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDA Page 1789

FADDV

Floating-point add recursive reduction to scalar

Floating-point add horizontally over all lanes of a vector using a recursive pairwise reduction, and place the result in
the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as +0.0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 0 0 0 0 1 Pg Zn Vd

FADDV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) identity = FPZero('0');

V[d] = ReducePredicated(ReduceOp_FADD, operand, mask, identity);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDV Page 1790

FCADD

Floating-point complex add with rotate (predicated)

Add the real and imaginary components of the active floating-point complex numbers from the first source vector to
the complex numbers from the second source vector which have first been rotated by 90 or 270 degrees in the
direction from the positive real axis towards the positive imaginary axis, when considered in polar representation,
equivalent to multiplying the complex numbers in the second source vector by ±J beforehand. Destructively place the
results in the corresponding elements of the first source vector. Inactive elements in the destination vector register
remain unmodified.
Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 size 0 0 0 0 0 rot 1 0 0 Pg Zm Zdn

FCADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean sub_i = (rot == '0');
boolean sub_r = (rot == '1');

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in “rot”:

rot <const>
0 #90
1 #270

FCADD Page 1791

Operation

CheckSVEEnabled();
integer pairs = VL DIV (2 * esize);
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for p = 0 to pairs-1
acc_r = Elem[operand1, 2 * p + 0, esize];
acc_i = Elem[operand1, 2 * p + 1, esize];
if ElemP[mask, 2 * p + 0, esize] == '1' then

elt2_i = Elem[operand2, 2 * p + 1, esize];
if sub_i then elt2_i = FPNeg(elt2_i);
acc_r = FPAdd(acc_r, elt2_i, FPCR[]);

if ElemP[mask, 2 * p + 1, esize] == '1' then
elt2_r = Elem[operand2, 2 * p + 0, esize];
if sub_r then elt2_r = FPNeg(elt2_r);
acc_i = FPAdd(acc_i, elt2_r, FPCR[]);

Elem[result, 2 * p + 0, esize] = acc_r;
Elem[result, 2 * p + 1, esize] = acc_i;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCADD Page 1792

FCM<cc> (zero)

Floating-point compare vector with zero

Compare active floating-point elements in the source vector with zero, and place the boolean results of the specified
comparison in the corresponding elements of the destination predicate. Inactive elements in the destination predicate
register are set to zero. Does not set the condition flags.
The <cc> symbol specifies one of the standard ARM condition codes: EQ, GE, GT, LE, LT, or NE.

It has encodings from 6 classes: Equal , Greater than , Greater than or equal , Less than , Less than or equal and Not
equal

Equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 0 1 0 0 0 1 Pg Zn 0 Pd

eq lt ne

FCMEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_EQ;

Greater than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 0 0 0 0 0 1 Pg Zn 1 Pd

eq lt ne

FCMGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;

Greater than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 0 0 0 0 0 1 Pg Zn 0 Pd

eq lt ne

FCMGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;

FCM<cc> (zero) Page 1793

Less than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 0 0 1 0 0 1 Pg Zn 0 Pd

eq lt ne

FCMLT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_LT;

Less than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 0 0 1 0 0 1 Pg Zn 1 Pd

eq lt ne

FCMLE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_LE;

Not equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 0 1 1 0 0 1 Pg Zn 0 Pd

eq lt ne

FCMNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, #0.0

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Pd);
SVECmp op = Cmp_NE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

FCM<cc> (zero) Page 1794

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(PL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
case op of

when Cmp_EQ res = FPCompareEQ(element, 0<esize-1:0>, FPCR[]);
when Cmp_GE res = FPCompareGE(element, 0<esize-1:0>, FPCR[]);
when Cmp_GT res = FPCompareGT(element, 0<esize-1:0>, FPCR[]);
when Cmp_NE res = FPCompareNE(element, 0<esize-1:0>, FPCR[]);
when Cmp_LT res = FPCompareGT(0<esize-1:0>, element, FPCR[]);
when Cmp_LE res = FPCompareGE(0<esize-1:0>, element, FPCR[]);

ElemP[result, e, esize] = if res then '1' else '0';
else

ElemP[result, e, esize] = '0';

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCM<cc> (zero) Page 1795

FCM<cc> (vectors)

Floating-point compare vectors

Compare active floating-point elements in the first source vector with corresponding elements in the second source
vector, and place the boolean results of the specified comparison in the corresponding elements of the destination
predicate. Inactive elements in the destination predicate register are set to zero. Does not set the condition flags.
The <cc> symbol specifies one of the standard ARM condition codes: EQ, GE, GT, or NE, with the addition of UO for
an unordered comparison.

This instruction is used by the pseudo-instructions FCMLE (vectors), and FCMLT (vectors).

It has encodings from 5 classes: Equal , Greater than , Greater than or equal , Not equal and Unordered

Equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 1 1 Pg Zn 0 Pd

cmph cmpl

FCMEQ <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_EQ;

Greater than

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 1 Pd

cmph cmpl

FCMGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GT;

Greater than or equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 0 Pd

cmph cmpl

FCM<cc> (vectors) Page 1796

FCMGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_GE;

Not equal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 1 1 Pg Zn 1 Pd

cmph cmpl

FCMNE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_NE;

Unordered

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 1 1 0 Pg Zn 0 Pd

FCMUO <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Pd);
SVECmp op = Cmp_UN;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

FCM<cc> (vectors) Page 1797

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(PL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
case op of

when Cmp_EQ res = FPCompareEQ(element1, element2, FPCR[]);
when Cmp_GE res = FPCompareGE(element1, element2, FPCR[]);
when Cmp_GT res = FPCompareGT(element1, element2, FPCR[]);
when Cmp_UN res = FPCompareUN(element1, element2, FPCR[]);
when Cmp_NE res = FPCompareNE(element1, element2, FPCR[]);
when Cmp_LT res = FPCompareGT(element2, element1, FPCR[]);
when Cmp_LE res = FPCompareGE(element2, element1, FPCR[]);

ElemP[result, e, esize] = if res then '1' else '0';
else

ElemP[result, e, esize] = '0';

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCM<cc> (vectors) Page 1798

FCMLA (vectors)

Floating-point complex multiply-add with rotate (predicated)

Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270, of
the floating-point complex numbers in the first source vector by the corresponding complex number in the second
source vector rotated by 0, 90, 180 or 270 degrees in the direction from the positive real axis towards the positive
imaginary axis, when considered in polar representation.
Then destructively add the products to the corresponding components of the complex numbers in the addend and
destination vector, without intermediate rounding.
These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.
Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element. Inactive elements in the destination
vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 size 0 Zm 0 rot Pg Zn Zda

FCMLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
integer sel_a = UInt(rot<0>);
integer sel_b = UInt(NOT(rot<0>));
boolean neg_i = (rot<1> == '1');
boolean neg_r = (rot<0> != rot<1>);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<const> Is the const specifier, encoded in “rot”:

rot <const>
00 #0
01 #90
10 #180
11 #270

FCMLA (vectors) Page 1799

Operation

CheckSVEEnabled();
integer pairs = VL DIV (2 * esize);
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = Z[da];
bits(VL) result;

for p = 0 to pairs-1
addend_r = Elem[operand3, 2 * p + 0, esize];
addend_i = Elem[operand3, 2 * p + 1, esize];
if ElemP[mask, 2 * p + 0, esize] == '1' then

elt1_a = Elem[operand1, 2 * p + sel_a, esize];
elt2_a = Elem[operand2, 2 * p + sel_a, esize];
if neg_r then elt2_a = FPNeg(elt2_a);
addend_r = FPMulAdd(addend_r, elt1_a, elt2_a, FPCR[]);

if ElemP[mask, 2 * p + 1, esize] == '1' then
elt1_a = Elem[operand1, 2 * p + sel_a, esize];
elt2_b = Elem[operand2, 2 * p + sel_b, esize];
if neg_i then elt2_b = FPNeg(elt2_b);
addend_i = FPMulAdd(addend_i, elt1_a, elt2_b, FPCR[]);

Elem[result, 2 * p + 0, esize] = addend_r;
Elem[result, 2 * p + 1, esize] = addend_i;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA (vectors) Page 1800

FCMLA (indexed)

Floating-point complex multiply-add by indexed values with rotate

Multiply the duplicated real components for rotations 0 and 180, or imaginary components for rotations 90 and 270, of
the floating-point complex numbers in each 128-bit segment of the first source vector by the specified complex number
in the corresponding the second source vector segment rotated by 0, 90, 180 or 270 degrees in the direction from the
positive real axis towards the positive imaginary axis, when considered in polar representation.
Then destructively add the products to the corresponding components of the complex numbers in the addend and
destination vector, without intermediate rounding.
These transformations permit the creation of a variety of multiply-add and multiply-subtract operations on complex
numbers by combining two of these instructions with the same vector operands but with rotations that are 90 degrees
apart.
Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the
even-numbered element and the imaginary part in the odd-numbered element.
The complex numbers within the second source vector are specified using an immediate index which selects the same
complex number position within each 128-bit vector segment. The index range is from 0 to one less than the number
of complex numbers per 128-bit segment, encoded in 1 to 2 bits depending on the size of the complex number. This
instruction is unpredicated.

It has encodings from 2 classes: Half-precision and Single-precision

Half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 rot Zn Zda

size<1>size<0>

FCMLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>], <const>

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
integer sel_a = UInt(rot<0>);
integer sel_b = UInt(NOT(rot<0>));
boolean neg_i = (rot<1> == '1');
boolean neg_r = (rot<0> != rot<1>);

Single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 1 rot Zn Zda

size<1>size<0>

FCMLA <Zda>.S, <Zn>.S, <Zm>.S[<imm>], <const>

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer index = UInt(i1);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
integer sel_a = UInt(rot<0>);
integer sel_b = UInt(NOT(rot<0>));
boolean neg_i = (rot<1> == '1');
boolean neg_r = (rot<0> != rot<1>);

FCMLA (indexed) Page 1801

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision variant: is the name of the second source scalable vector register Z0-Z7, encoded
in the "Zm" field.
For the single-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the index of a Real and Imaginary pair, in the range 0 to 3, encoded in
the "i2" field.
For the single-precision variant: is the index of a Real and Imaginary pair, in the range 0 to 1, encoded
in the "i1" field.

<const> Is the const specifier, encoded in “rot”:

rot <const>
00 #0
01 #90
10 #180
11 #270

Operation

CheckSVEEnabled();
integer pairs = VL DIV (2 * esize);
integer pairspersegment = 128 DIV (2 * esize);
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for p = 0 to pairs-1
segmentbase = p - (p MOD pairspersegment);
s = segmentbase + index;
addend_r = Elem[operand3, 2 * p + 0, esize];
addend_i = Elem[operand3, 2 * p + 1, esize];
elt1_a = Elem[operand1, 2 * p + sel_a, esize];
elt2_a = Elem[operand2, 2 * s + sel_a, esize];
elt2_b = Elem[operand2, 2 * s + sel_b, esize];
if neg_r then elt2_a = FPNeg(elt2_a);
if neg_i then elt2_b = FPNeg(elt2_b);
addend_r = FPMulAdd(addend_r, elt1_a, elt2_a, FPCR[]);
addend_i = FPMulAdd(addend_i, elt1_a, elt2_b, FPCR[]);
Elem[result, 2 * p + 0, esize] = addend_r;
Elem[result, 2 * p + 1, esize] = addend_i;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA (indexed) Page 1802

FCMLE (vectors)

Floating-point compare less than or equal to vector

Compare active floating-point elements in the first source vector being less than or equal to corresponding elements in
the second source vector, and place the boolean results of the comparison in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

This is a pseudo-instruction of FCM<cc> (vectors). This means:

• The encodings in this description are named to match the encodings of FCM<cc> (vectors).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of FCM<cc> (vectors) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 0 Pd

cmph cmpl

FCMLE <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

FCMGE <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FCM<cc> (vectors) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLE (vectors) Page 1803

FCMLT (vectors)

Floating-point compare less than vector

Compare active floating-point elements in the first source vector being less than corresponding elements in the second
source vector, and place the boolean results of the comparison in the corresponding elements of the destination
predicate. Inactive elements in the destination predicate register are set to zero. Does not set the condition flags.

This is a pseudo-instruction of FCM<cc> (vectors). This means:

• The encodings in this description are named to match the encodings of FCM<cc> (vectors).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of FCM<cc> (vectors) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 1 0 Pg Zn 1 Pd

cmph cmpl

FCMLT <Pd>.<T>, <Pg>/Z, <Zm>.<T>, <Zn>.<T>

is equivalent to

FCMGT <Pd>.<T>, <Pg>/Z, <Zn>.<T>, <Zm>.<T>

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

Operation

The description of FCM<cc> (vectors) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLT (vectors) Page 1804

FCPY

Copy 8-bit floating-point immediate to vector elements (predicated)

Copy a floating-point immediate into each active element in the destination vector. Inactive elements in the destination
vector register remain unmodified.

This instruction is used by the alias FMOV (immediate, predicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 1 1 0 imm8 Zd

FCPY <Zd>.<T>, <Pg>/M, #<const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer d = UInt(Zd);
bits(esize) imm = VFPExpandImm(imm8);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<const> Is a floating-point immediate value expressable as ±n÷16×2^r, where n and r are integers such that 16
≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit exponent,
and 4-bit fractional part, encoded in the "imm8" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = imm;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

FCPY Page 1805

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCPY Page 1806

FCVT

Floating-point convert precision (predicated)

Convert the size and precision of each active floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.
Since the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

It has encodings from 6 classes: Half-precision to single-precision , Half-precision to double-precision , Single-
precision to half-precision , Single-precision to double-precision , Double-precision to half-precision and Double-
precision to single-precision

Half-precision to single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 Pg Zn Zd

FCVT <Zd>.S, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 32;

Half-precision to double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 Pg Zn Zd

FCVT <Zd>.D, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 64;

Single-precision to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 Pg Zn Zd

FCVT <Zd>.H, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 16;

FCVT Page 1807

Single-precision to double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 Pg Zn Zd

FCVT <Zd>.D, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 64;

Double-precision to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 Pg Zn Zd

FCVT <Zd>.H, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 16;

Double-precision to single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 Pg Zn Zd

FCVT <Zd>.S, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 32;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

FCVT Page 1808

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
bits(d_esize) res = FPConvertSVE(element<s_esize-1:0>, FPCR[]);
Elem[result, e, esize] = ZeroExtend(res);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVT Page 1809

FCVTZS

Floating-point convert to signed integer, rounding toward zero (predicated)

Convert to the signed integer nearer to zero from each active floating-point element of the source vector, and place the
results in the corresponding elements of the destination vector. Inactive elements in the destination vector register
remain unmodified.
If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are sign-extended to fill each destination element.

It has encodings from 7 classes: Half-precision to 16-bit , Half-precision to 32-bit , Half-precision to 64-bit , Single-
precision to 32-bit , Single-precision to 64-bit , Double-precision to 32-bit and Double-precision to 64-bit

Half-precision to 16-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 Pg Zn Zd

int_U

FCVTZS <Zd>.H, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 16;
boolean unsigned = FALSE;
FPRounding rounding = FPRounding_ZERO;

Half-precision to 32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 Pg Zn Zd

int_U

FCVTZS <Zd>.S, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 32;
boolean unsigned = FALSE;
FPRounding rounding = FPRounding_ZERO;

Half-precision to 64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 Pg Zn Zd

int_U

FCVTZS Page 1810

FCVTZS <Zd>.D, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 64;
boolean unsigned = FALSE;
FPRounding rounding = FPRounding_ZERO;

Single-precision to 32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 Pg Zn Zd

int_U

FCVTZS <Zd>.S, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 32;
boolean unsigned = FALSE;
FPRounding rounding = FPRounding_ZERO;

Single-precision to 64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 Pg Zn Zd

int_U

FCVTZS <Zd>.D, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 64;
boolean unsigned = FALSE;
FPRounding rounding = FPRounding_ZERO;

Double-precision to 32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 Pg Zn Zd

int_U

FCVTZS Page 1811

FCVTZS <Zd>.S, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 32;
boolean unsigned = FALSE;
FPRounding rounding = FPRounding_ZERO;

Double-precision to 64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 Pg Zn Zd

int_U

FCVTZS <Zd>.D, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 64;
boolean unsigned = FALSE;
FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
bits(d_esize) res = FPToFixed(element<s_esize-1:0>, 0, unsigned, FPCR[], rounding);
Elem[result, e, esize] = Extend(res, unsigned);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

FCVTZS Page 1812

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS Page 1813

FCVTZU

Floating-point convert to unsigned integer, rounding toward zero (predicated)

Convert to the unsigned integer nearer to zero from each active floating-point element of the source vector, and place
the results in the corresponding elements of the destination vector. Inactive elements in the destination vector register
remain unmodified.
If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

It has encodings from 7 classes: Half-precision to 16-bit , Half-precision to 32-bit , Half-precision to 64-bit , Single-
precision to 32-bit , Single-precision to 64-bit , Double-precision to 32-bit and Double-precision to 64-bit

Half-precision to 16-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 Pg Zn Zd

int_U

FCVTZU <Zd>.H, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 16;
boolean unsigned = TRUE;
FPRounding rounding = FPRounding_ZERO;

Half-precision to 32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 Pg Zn Zd

int_U

FCVTZU <Zd>.S, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 32;
boolean unsigned = TRUE;
FPRounding rounding = FPRounding_ZERO;

Half-precision to 64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 Pg Zn Zd

int_U

FCVTZU Page 1814

FCVTZU <Zd>.D, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 64;
boolean unsigned = TRUE;
FPRounding rounding = FPRounding_ZERO;

Single-precision to 32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 Pg Zn Zd

int_U

FCVTZU <Zd>.S, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 32;
boolean unsigned = TRUE;
FPRounding rounding = FPRounding_ZERO;

Single-precision to 64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 Pg Zn Zd

int_U

FCVTZU <Zd>.D, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 64;
boolean unsigned = TRUE;
FPRounding rounding = FPRounding_ZERO;

Double-precision to 32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 Pg Zn Zd

int_U

FCVTZU Page 1815

FCVTZU <Zd>.S, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 32;
boolean unsigned = TRUE;
FPRounding rounding = FPRounding_ZERO;

Double-precision to 64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 Pg Zn Zd

int_U

FCVTZU <Zd>.D, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 64;
boolean unsigned = TRUE;
FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
bits(d_esize) res = FPToFixed(element<s_esize-1:0>, 0, unsigned, FPCR[], rounding);
Elem[result, e, esize] = Extend(res, unsigned);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

FCVTZU Page 1816

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU Page 1817

FDIV

Floating-point divide by vector (predicated)

Divide active floating-point elements of the first source vector by corresponding floating-point elements of the second
source vector and destructively place the quotient in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 1 0 1 1 0 0 Pg Zm Zdn

FDIV <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPDiv(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FDIV Page 1818

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIV Page 1819

FDIVR

Floating-point reversed divide by vector (predicated)

Reversed divide active floating-point elements of the second source vector by corresponding floating-point elements of
the first source vector and destructively place the quotient in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 1 0 0 1 0 0 Pg Zm Zdn

FDIVR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPDiv(element2, element1, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FDIVR Page 1820

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIVR Page 1821

FDUP

Broadcast 8-bit floating-point immediate to vector elements (unpredicated)

Unconditionally broadcast the floating-point immediate into each element of the destination vector. This instruction is
unpredicated.

This instruction is used by the alias FMOV (immediate, unpredicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 1 0 0 1 1 1 0 imm8 Zd

FDUP <Zd>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer d = UInt(Zd);
bits(esize) imm = VFPExpandImm(imm8);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<const> Is a floating-point immediate value expressable as ±n÷16×2^r, where n and r are integers such that 16
≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit exponent,
and 4-bit fractional part, encoded in the "imm8" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) result;

for e = 0 to elements-1
Elem[result, e, esize] = imm;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDUP Page 1822

FEXPA

Floating-point exponential accelerator

The FEXPA instruction accelerates the polynomial series calculation of the EXP(X) function.
The double-precision variant copies the low 52 bits of an entry from a hard-wired table of 64-bit coefficients, indexed
by the low 6 bits of each element of the source vector, and prepends to that the next 11 bits of the source element
(src<16:6>), setting the sign bit to zero.
The single-precision variant copies the low 23 bits of an entry from hard-wired table of 32-bit coefficients, indexed by
the low 6 bits of each element of the source vector, and prepends to that the next 8 bits of the source element
(src<13:6>), setting the sign bit to zero.
The half-precision variant copies the low 10 bits of an entry from hard-wired table of 16-bit coefficients, indexed by the
low 5 bits of each element of the source vector, and prepends to that the next 5 bits of the source element (src<9:5>),
setting the sign bit to zero.
A coefficient table entry with index M holds the floating-point value 2(m/64), or for the half-precision variant 2(m/32).
This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Zn Zd

FEXPA <Zd>.<T>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPExpA(element);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FEXPA Page 1823

FMAD

Floating-point fused multiply-add vectors (predicated), writing multiplicand [Zdn = Za + Zdn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements of
the third (addend) vector without intermediate rounding. Destructively place the results in the destination and first
source (multiplicand) vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Za 1 0 0 Pg Zm Zdn

N op

FMAD <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer a = UInt(Za);
boolean op1_neg = FALSE;
boolean op3_neg = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

FMAD Page 1824

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAD Page 1825

FMAX (immediate)

Floating-point maximum with immediate (predicated)

Determine the maximum of an immediate and each active floating-point element of the source vector, and
destructively place the results in the corresponding elements of the source vector. The immediate may take the value
+0.0 or +1.0 only. If the element value is NaN then the result is NaN. Inactive elements in the destination vector
register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 1 1 0 1 0 0 Pg 0 0 0 0 i1 Zdn

FMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then Zeros() else FPOne('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.0
1 #1.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPMax(element1, imm, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FMAX (immediate) Page 1826

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (immediate) Page 1827

FMAX (vectors)

Floating-point maximum (predicated)

Determine the maximum of active floating-point elements of the second source vector and corresponding floating-point
elements of the first source vector and destructively place the results in the corresponding elements of the first source
vector. If one element value is numeric and the other is a quiet NaN, then the result is the numeric value. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 1 0 1 0 0 Pg Zm Zdn

FMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMax(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FMAX (vectors) Page 1828

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (vectors) Page 1829

FMAXNM (immediate)

Floating-point maximum number with immediate (predicated)

Determine the maximum number value of an immediate and each active floating-point element of the source vector,
and destructively place the results in the corresponding elements of the source vector. The immediate may take the
value +0.0 or +1.0 only. If the element value is a quiet NaN, then the result is the immediate. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 1 0 0 1 0 0 Pg 0 0 0 0 i1 Zdn

FMAXNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then Zeros() else FPOne('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.0
1 #1.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPMaxNum(element1, imm, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FMAXNM (immediate) Page 1830

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (immediate) Page 1831

FMAXNM (vectors)

Floating-point maximum number (predicated)

Determine the maximum number value of active floating-point elements of the second source vector and
corresponding floating-point elements of the first source vector and destructively place the results in the
corresponding elements of the first source vector. If one element value is NaN then the result is the numeric value.
Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 0 0 1 0 0 Pg Zm Zdn

FMAXNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FMAXNM (vectors) Page 1832

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (vectors) Page 1833

FMAXNMV

Floating-point maximum number recursive reduction to scalar

Floating-point maximum number horizontally over all lanes of a vector using a recursive pairwise reduction, and place
the result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as the default
NaN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 0 0 0 0 1 Pg Zn Vd

FMAXNMV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) identity = FPDefaultNaN();

V[d] = ReducePredicated(ReduceOp_FMAXNUM, operand, mask, identity);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMV Page 1834

FMAXV

Floating-point maximum recursive reduction to scalar

Floating-point maximum horizontally over all lanes of a vector using a recursive pairwise reduction, and place the
result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as -Infinity.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 1 0 0 0 1 Pg Zn Vd

FMAXV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) identity = FPInfinity('1');

V[d] = ReducePredicated(ReduceOp_FMAX, operand, mask, identity);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXV Page 1835

FMIN (immediate)

Floating-point minimum with immediate (predicated)

Determine the minimum of an immediate and each active floating-point element of the source vector, and destructively
place the results in the corresponding elements of the source vector. The immediate may take the value +0.0 or +1.0
only. If the element value is NaN then the result is NaN. Inactive elements in the destination vector register remain
unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 1 1 1 1 0 0 Pg 0 0 0 0 i1 Zdn

FMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then Zeros() else FPOne('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.0
1 #1.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPMin(element1, imm, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FMIN (immediate) Page 1836

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (immediate) Page 1837

FMIN (vectors)

Floating-point minimum (predicated)

Determine the minimum of active floating-point elements of the second source vector and corresponding floating-point
elements of the first source vector and destructively place the results in the corresponding elements of the first source
vector. If the element value is a quiet NaN, then the result is the immediate. Inactive elements in the destination
vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 1 1 1 0 0 Pg Zm Zdn

FMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMin(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FMIN (vectors) Page 1838

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (vectors) Page 1839

FMINNM (immediate)

Floating-point minimum number with immediate (predicated)

Determine the minimum number value of an immediate and each active floating-point element of the source vector,
and destructively place the results in the corresponding elements of the source vector. The immediate may take the
value +0.0 or +1.0 only. If one element value is numeric and the other is a quiet NaN, then the result is the numeric
value. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 1 0 1 1 0 0 Pg 0 0 0 0 i1 Zdn

FMINNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then Zeros() else FPOne('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.0
1 #1.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPMinNum(element1, imm, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FMINNM (immediate) Page 1840

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (immediate) Page 1841

FMINNM (vectors)

Floating-point minimum number (predicated)

Determine the minimum number value of active floating-point elements of the second source vector and corresponding
floating-point elements of the first source vector and destructively place the results in the corresponding elements of
the first source vector. If one element value is numeric and the other is a quiet NaN, then the result is the numeric
value. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 0 1 1 0 0 Pg Zm Zdn

FMINNM <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FMINNM (vectors) Page 1842

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (vectors) Page 1843

FMINNMV

Floating-point minimum number recursive reduction to scalar

Floating-point minimum number horizontally over all lanes of a vector using a recursive pairwise reduction, and place
the result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as the default
NaN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 0 1 0 0 1 Pg Zn Vd

FMINNMV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) identity = FPDefaultNaN();

V[d] = ReducePredicated(ReduceOp_FMINNUM, operand, mask, identity);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMV Page 1844

FMINV

Floating-point minimum recursive reduction to scalar

Floating-point minimum horizontally over all lanes of a vector using a recursive pairwise reduction, and place the
result in the SIMD&FP scalar destination register. Inactive elements in the source vector are treated as +Infinity.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 1 1 0 0 1 Pg Zn Vd

FMINV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) identity = FPInfinity('0');

V[d] = ReducePredicated(ReduceOp_FMIN, operand, mask, identity);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINV Page 1845

FMLA (vectors)

Floating-point fused multiply-add vectors (predicated), writing addend [Zda = Zda + Zn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements of
the third source (addend) vector without intermediate rounding. Destructively place the results in the destination and
third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Zm 0 0 0 Pg Zn Zda

N op

FMLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = FALSE;
boolean op3_neg = FALSE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand3, e, esize];

Z[da] = result;

FMLA (vectors) Page 1846

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (vectors) Page 1847

FMLA (indexed)

Floating-point fused multiply-add by indexed elements (Zda = Zda + Zn * Zm[indexed])

Multiply all floating-point elements within each 128-bit segment of the first source vector by the specified element in
the corresponding second source vector segment. The products are then destructively added without intermediate
rounding to the corresponding elements of the addend and destination vector.
The elements within the second source vector are specified using an immediate index which selects the same element
position within each 128-bit vector segment. The index range is from 0 to one less than the number of elements per
128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is unpredicated.

It has encodings from 3 classes: Half-precision , Single-precision and Double-precision

Half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 i3h 1 i3l Zm 0 0 0 0 0 0 Zn Zda

op

FMLA <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer index = UInt(i3h:i3l);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = FALSE;
boolean op3_neg = FALSE;

Single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 0 Zn Zda

size<1>size<0> op

FMLA <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = FALSE;
boolean op3_neg = FALSE;

Double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 0 Zn Zda

size<1>size<0> op

FMLA (indexed) Page 1848

FMLA <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer index = UInt(i1);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = FALSE;
boolean op3_neg = FALSE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision and single-precision variant: is the name of the second source scalable vector
register Z0-Z7, encoded in the "Zm" field.
For the double-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.
For the single-precision variant: is the immediate index, in the range 0 to 3, encoded in the "i2" field.
For the double-precision variant: is the immediate index, in the range 0 to 1, encoded in the "i1" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer eltspersegment = 128 DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result = Z[da];

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, s, esize];
bits(esize) element3 = Elem[result, e, esize];
if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (indexed) Page 1849

FMLS (vectors)

Floating-point fused multiply-subtract vectors (predicated), writing addend [Zda = Zda + -Zn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third source (addend) vector without intermediate rounding. Destructively place the results in the
destination and third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Zm 0 0 1 Pg Zn Zda

N op

FMLS <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = TRUE;
boolean op3_neg = FALSE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand3, e, esize];

Z[da] = result;

FMLS (vectors) Page 1850

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (vectors) Page 1851

FMLS (indexed)

Floating-point fused multiply-subtract by indexed elements (Zda = Zda + -Zn * Zm[indexed])

Multiply all floating-point elements within each 128-bit segment of the first source vector by the specified element in
the corresponding second source vector segment. The products are then destructively subtracted without intermediate
rounding from the corresponding elements of the addend and destination vector.
The elements within the second source vector are specified using an immediate index which selects the same element
position within each 128-bit vector segment. The index range is from 0 to one less than the number of elements per
128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is unpredicated.

It has encodings from 3 classes: Half-precision , Single-precision and Double-precision

Half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 i3h 1 i3l Zm 0 0 0 0 0 1 Zn Zda

op

FMLS <Zda>.H, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer index = UInt(i3h:i3l);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = TRUE;
boolean op3_neg = FALSE;

Single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 1 Zn Zda

size<1>size<0> op

FMLS <Zda>.S, <Zn>.S, <Zm>.S[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = TRUE;
boolean op3_neg = FALSE;

Double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 1 Zn Zda

size<1>size<0> op

FMLS (indexed) Page 1852

FMLS <Zda>.D, <Zn>.D, <Zm>.D[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer index = UInt(i1);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = TRUE;
boolean op3_neg = FALSE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision and single-precision variant: is the name of the second source scalable vector
register Z0-Z7, encoded in the "Zm" field.
For the double-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.
For the single-precision variant: is the immediate index, in the range 0 to 3, encoded in the "i2" field.
For the double-precision variant: is the immediate index, in the range 0 to 1, encoded in the "i1" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer eltspersegment = 128 DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result = Z[da];

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, s, esize];
bits(esize) element3 = Elem[result, e, esize];
if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (indexed) Page 1853

FMMLA

Floating-point matrix multiply-accumulate

The floating-point matrix multiply-accumulate instruction supports single-precision and double-precision data types in
a 2×2 matrix contained in segments of 128 or 256 bits, respectively. It multiplies the 2×2 matrix in each segment of
the first source vector by the 2×2 matrix in the corresponding segment of the second source vector. The resulting 2×2
matrix product is then destructively added to the matrix accumulator held in the corresponding segment of the addend
and destination vector. This is equivalent to performing a 2-way dot product per destination element. This instruction
is unpredicated. The single-precision variant is vector length agnostic. The double-precision variant requires that the
current vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the
trailing bits are set to zero.
ID_AA64ZFR0_EL1.F32MM indicates whether the single-precision variant is implemented.
ID_AA64ZFR0_EL1.F64MM indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element
(FEAT_F32MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 0 1 Zm 1 1 1 0 0 1 Zn Zda

FMMLA <Zda>.S, <Zn>.S, <Zm>.S

if !HaveSVEFP32MatMulExt() then UNDEFINED;
integer esize = 32;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

64-bit element
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 Zm 1 1 1 0 0 1 Zn Zda

FMMLA <Zda>.D, <Zn>.D, <Zm>.D

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer esize = 64;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

FMMLA Page 1854

Operation

CheckSVEEnabled();
if VL < esize * 4 then UNDEFINED;
integer segments = VL DIV (4 * esize);
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result = Zeros();
bits(4*esize) op1, op2;
bits(4*esize) res, addend;

for s = 0 to segments-1
op1 = Elem[operand1, s, 4*esize];
op2 = Elem[operand2, s, 4*esize];
addend = Elem[operand3, s, 4*esize];
res = FPMatMulAdd(addend, op1, op2, esize, FPCR[]);
Elem[result, s, 4*esize] = res;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMMLA Page 1855

FMOV (zero, predicated)

Move floating-point +0.0 to vector elements (predicated)

Move floating-point constant +0.0 to to each active element in the destination vector. Inactive elements in the
destination vector register remain unmodified.

This is a pseudo-instruction of CPY (immediate, merging). This means:

• The encodings in this description are named to match the encodings of CPY (immediate, merging).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of CPY (immediate, merging) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 0 1 0 0 0 0 0 0 0 0 0 Zd

M sh imm8

FMOV <Zd>.<T>, <Pg>/M, #0.0

is equivalent to

CPY <Zd>.<T>, <Pg>/M, #0

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

The description of CPY (immediate, merging) gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (zero, predicated) Page 1856

FMOV (zero, unpredicated)

Move floating-point +0.0 to vector elements (unpredicated)

Unconditionally broadcast the floating-point constant +0.0 into each element of the destination vector. This instruction
is unpredicated.

This is a pseudo-instruction of DUP (immediate). This means:

• The encodings in this description are named to match the encodings of DUP (immediate).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of DUP (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 Zd

sh imm8

FMOV <Zd>.<T>, #0.0

is equivalent to

DUP <Zd>.<T>, #0

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

Operation

The description of DUP (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (zero, unpredicated) Page 1857

FMOV (immediate, predicated)

Move 8-bit floating-point immediate to vector elements (predicated)

Move a floating-point immediate into each active element in the destination vector. Inactive elements in the
destination vector register remain unmodified.

This is an alias of FCPY. This means:

• The encodings in this description are named to match the encodings of FCPY.
• The description of FCPY gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 1 1 0 imm8 Zd

FMOV <Zd>.<T>, <Pg>/M, #<const>

is equivalent to

FCPY <Zd>.<T>, <Pg>/M, #<const>

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<const> Is a floating-point immediate value expressable as ±n÷16×2^r, where n and r are integers such that 16
≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit exponent,
and 4-bit fractional part, encoded in the "imm8" field.

Operation

The description of FCPY gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (immediate,
predicated) Page 1858

FMOV (immediate, unpredicated)

Move 8-bit floating-point immediate to vector elements (unpredicated)

Unconditionally broadcast the floating-point immediate into each element of the destination vector. This instruction is
unpredicated.

This is an alias of FDUP. This means:

• The encodings in this description are named to match the encodings of FDUP.
• The description of FDUP gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 1 0 0 1 1 1 0 imm8 Zd

FMOV <Zd>.<T>, #<const>

is equivalent to

FDUP <Zd>.<T>, #<const>

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<const> Is a floating-point immediate value expressable as ±n÷16×2^r, where n and r are integers such that 16
≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating-point encoding with 1 sign bit, 3-bit exponent,
and 4-bit fractional part, encoded in the "imm8" field.

Operation

The description of FDUP gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (immediate,
unpredicated) Page 1859

FMSB

Floating-point fused multiply-subtract vectors (predicated), writing multiplicand [Zdn = Za + -Zdn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third (addend) vector without intermediate rounding. Destructively place the results in the destination
and first source (multiplicand) vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Za 1 0 1 Pg Zm Zdn

N op

FMSB <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer a = UInt(Za);
boolean op1_neg = TRUE;
boolean op3_neg = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

FMSB Page 1860

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMSB Page 1861

FMUL (immediate)

Floating-point multiply by immediate (predicated)

Multiply by an immediate each active floating-point element of the source vector, and destructively place the results in
the corresponding elements of the source vector. The immediate may take the value +0.5 or +2.0 only. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 0 1 0 1 0 0 Pg 0 0 0 0 i1 Zdn

FMUL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then FPPointFive('0') else FPTwo('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.5
1 #2.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPMul(element1, imm, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FMUL (immediate) Page 1862

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (immediate) Page 1863

FMUL (vectors, predicated)

Floating-point multiply vectors (predicated)

Multiply active floating-point elements of the first source vector by corresponding floating-point elements of the
second source vector and destructively place the results in the corresponding elements of the first source vector.
Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 1 0 1 0 0 Pg Zm Zdn

FMUL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMul(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FMUL (vectors, predicated) Page 1864

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (vectors, predicated) Page 1865

FMUL (vectors, unpredicated)

Floating-point multiply vectors (unpredicated)

Multiply all elements of the first source vector by corresponding floating-point elements of the second source vector
and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 0 1 0 Zn Zd

FMUL <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMul(element1, element2, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (vectors, unpredicated) Page 1866

FMUL (indexed)

Floating-point multiply by indexed elements

Multiply all floating-point elements within each 128-bit segment of the first source vector by the specified element in
the corresponding second source vector segment. The results are placed in the corresponding elements of the
destination vector.
The elements within the second source vector are specified using an immediate index which selects the same element
position within each 128-bit vector segment. The index range is from 0 to one less than the number of elements per
128-bit segment, encoded in 1 to 3 bits depending on the size of the element. This instruction is unpredicated.

It has encodings from 3 classes: Half-precision , Single-precision and Double-precision

Half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 i3h 1 i3l Zm 0 0 1 0 0 0 Zn Zd

FMUL <Zd>.H, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer index = UInt(i3h:i3l);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 0 1 i2 Zm 0 0 1 0 0 0 Zn Zd

size<1>size<0>

FMUL <Zd>.S, <Zn>.S, <Zm>.S[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 1 1 i1 Zm 0 0 1 0 0 0 Zn Zd

size<1>size<0>

FMUL <Zd>.D, <Zn>.D, <Zm>.D[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer index = UInt(i1);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

FMUL (indexed) Page 1867

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the half-precision and single-precision variant: is the name of the second source scalable vector
register Z0-Z7, encoded in the "Zm" field.
For the double-precision variant: is the name of the second source scalable vector register Z0-Z15,
encoded in the "Zm" field.

<imm> For the half-precision variant: is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.
For the single-precision variant: is the immediate index, in the range 0 to 3, encoded in the "i2" field.
For the double-precision variant: is the immediate index, in the range 0 to 1, encoded in the "i1" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer eltspersegment = 128 DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, s, esize];
Elem[result, e, esize] = FPMul(element1, element2, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (indexed) Page 1868

FMULX

Floating-point multiply-extended vectors (predicated)

Multiply active floating-point elements of the first source vector by corresponding floating-point elements of the
second source vector except that ∞×0.0 gives 2.0 instead of NaN, and destructively place the results in the
corresponding elements of the first source vector. Inactive elements in the destination vector register remain
unmodified.
The instruction can be used with FRECPX to safely convert arbitrary elements in mathematical vector space to UNIT
VECTORS or DIRECTION VECTORS with length 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 0 1 0 1 0 0 Pg Zm Zdn

FMULX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMulX(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FMULX Page 1869

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMULX Page 1870

FNEG

Floating-point negate (predicated)

Negate each active floating-point element of the source vector, and place the results in the corresponding elements of
the destination vector. This inverts the sign bit and cannot signal a floating-point exception. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 1 0 1 1 0 1 Pg Zn Zd

FNEG <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPNeg(element);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

FNEG Page 1871

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNEG Page 1872

FNMAD

Floating-point negated fused multiply-add vectors (predicated), writing multiplicand [Zdn = -Za + -Zdn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements of
the third (addend) vector without intermediate rounding. Destructively place the negated results in the destination
and first source (multiplicand) vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Za 1 1 0 Pg Zm Zdn

N op

FNMAD <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer a = UInt(Za);
boolean op1_neg = TRUE;
boolean op3_neg = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

FNMAD Page 1873

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMAD Page 1874

FNMLA

Floating-point negated fused multiply-add vectors (predicated), writing addend [Zda = -Zda + -Zn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and add to elements of
the third source (addend) vector without intermediate rounding. Destructively place the negated results in the
destination and third source (addend) vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Zm 0 1 0 Pg Zn Zda

N op

FNMLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = TRUE;
boolean op3_neg = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand3, e, esize];

Z[da] = result;

FNMLA Page 1875

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMLA Page 1876

FNMLS

Floating-point negated fused multiply-subtract vectors (predicated), writing addend [Zda = -Zda + Zn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third source (addend) vector without intermediate rounding. Destructively place the negated results in
the destination and third source (addend) vector. Inactive elements in the destination vector register remain
unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Zm 0 1 1 Pg Zn Zda

N op

FNMLS <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_neg = FALSE;
boolean op3_neg = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

FNMLS Page 1877

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand3, e, esize];

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMLS Page 1878

FNMSB

Floating-point negated fused multiply-subtract vectors (predicated), writing multiplicand [Zdn = -Za + Zdn * Zm]

Multiply the corresponding active floating-point elements of the first and second source vectors and subtract from
elements of the third (addend) vector without intermediate rounding. Destructively place the negated results in the
destination and first source (multiplicand) vector. Inactive elements in the destination vector register remain
unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Za 1 1 1 Pg Zm Zdn

N op

FNMSB <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer a = UInt(Za);
boolean op1_neg = FALSE;
boolean op3_neg = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

FNMSB Page 1879

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
bits(esize) element3 = Elem[operand3, e, esize];

if op1_neg then element1 = FPNeg(element1);
if op3_neg then element3 = FPNeg(element3);
Elem[result, e, esize] = FPMulAdd(element3, element1, element2, FPCR[]);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMSB Page 1880

FRECPE

Floating-point reciprocal estimate (unpredicated)

Find the approximate reciprocal of each floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 1 1 0 0 0 1 1 0 0 Zn Zd

FRECPE <Zd>.<T>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRecipEstimate(element, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPE Page 1881

FRECPS

Floating-point reciprocal step (unpredicated)

Multiply corresponding floating-point elements of the first and second source vectors, subtract the products from 2.0
without intermediate rounding and place the results in the corresponding elements of the destination vector. This
instruction is unpredicated.
This instruction can be used to perform a single Newton-Raphson iteration for calculating the reciprocal of a vector of
floating-point values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 1 1 0 Zn Zd

FRECPS <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPRecipStepFused(element1, element2);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPS Page 1882

FRECPX

Floating-point reciprocal exponent (predicated)

Invert the exponent and zero the fractional part of each active floating-point element of the source vector, and place
the results in the corresponding elements of the destination vector. Inactive elements in the destination vector register
remain unmodified.
The result of this instruction can be used with FMULX to convert arbitrary elements in mathematical vector space to
"unit vectors" or "direction vectors" of length 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 1 0 0 1 0 1 Pg Zn Zd

FRECPX <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRecpX(element, FPCR[]);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

FRECPX Page 1883

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPX Page 1884

FRINT<r>

Floating-point round to integral value (predicated)

Round to an integral floating-point value with the specified rounding option from each active floating-point element of
the source vector, and place the results in the corresponding elements of the destination vector. Inactive elements in
the destination vector register remain unmodified.
The <r> symbol specifies one of the following rounding options: N (to nearest, with ties to even), A (to nearest, with
ties away from zero), M (toward minus Infinity), P (toward plus Infinity), Z (toward zero), I (current FPCR rounding
mode), or X (current FPCR rounding mode, signalling inexact).

It has encodings from 7 classes: Current mode , Current mode signalling inexact , Nearest with ties to away , Nearest
with ties to even , Toward zero , Toward minus infinity and Toward plus infinity

Current mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 1 1 1 0 1 Pg Zn Zd

FRINTI <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

Current mode signalling inexact

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 1 0 1 0 1 Pg Zn Zd

FRINTX <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

Nearest with ties to away

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 1 0 0 1 0 1 Pg Zn Zd

FRINTA <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_TIEAWAY;

FRINT<r> Page 1885

Nearest with ties to even

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 0 0 1 0 1 Pg Zn Zd

FRINTN <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_TIEEVEN;

Toward zero

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 1 1 1 0 1 Pg Zn Zd

FRINTZ <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_ZERO;

Toward minus infinity

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 1 0 1 0 1 Pg Zn Zd

FRINTM <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_NEGINF;

Toward plus infinity

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 0 1 1 0 1 Pg Zn Zd

FRINTP <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean exact = FALSE;
FPRounding rounding = FPRounding_POSINF;

FRINT<r> Page 1886

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR[], rounding, exact);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINT<r> Page 1887

FRSQRTE

Floating-point reciprocal square root estimate (unpredicated)

Find the approximate reciprocal square root of each active floating-point element of the source vector, and place the
results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 1 1 1 0 0 1 1 0 0 Zn Zd

FRSQRTE <Zd>.<T>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRSqrtEstimate(element, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRSQRTE Page 1888

FRSQRTS

Floating-point reciprocal square root step (unpredicated)

Multiply corresponding floating-point elements of the first and second source vectors, subtract the products from 3.0
and divide the results by 2.0 without any intermediate rounding and place the results in the corresponding elements of
the destination vector. This instruction is unpredicated.
This instruction can be used to perform a single Newton-Raphson iteration for calculating the reciprocal square root of
a vector of floating-point values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 1 1 1 Zn Zd

FRSQRTS <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPRSqrtStepFused(element1, element2);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRSQRTS Page 1889

FSCALE

Floating-point adjust exponent by vector (predicated)

Multiply the active floating-point elements of the first source vector by 2.0 to the power of the signed integer values in
the corresponding elements of the second source vector and destructively place the results in the corresponding
elements of the first source vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 0 0 1 1 0 0 Pg Zm Zdn

FSCALE <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

integer element2 = SInt(Elem[operand2, e, esize]);
Elem[result, e, esize] = FPScale(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FSCALE Page 1890

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSCALE Page 1891

FSQRT

Floating-point square root (predicated)

Calculate the square root of each active floating-point element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 1 0 1 1 0 1 Pg Zn Zd

FSQRT <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = FPSqrt(element, FPCR[]);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

FSQRT Page 1892

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSQRT Page 1893

FSUB (immediate)

Floating-point subtract immediate (predicated)

Subtract an immediate from each active floating-point element of the source vector, and destructively place the results
in the corresponding elements of the source vector. The immediate may take the value +0.5 or +1.0 only. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 0 0 1 1 0 0 Pg 0 0 0 0 i1 Zdn

FSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then FPPointFive('0') else FPOne('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.5
1 #1.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPSub(element1, imm, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FSUB (immediate) Page 1894

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUB (immediate) Page 1895

FSUB (vectors, predicated)

Floating-point subtract vectors (predicated)

Subtract active floating-point elements of the second source vector from corresponding floating-point elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 0 1 1 0 0 Pg Zm Zdn

FSUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPSub(element1, element2, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FSUB (vectors, predicated) Page 1896

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUB (vectors, predicated) Page 1897

FSUB (vectors, unpredicated)

Floating-point subtract vectors (unpredicated)

Subtract all floating-point elements of the second source vector from corresponding elements of the first source vector
and place the results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 0 0 1 Zn Zd

FSUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPSub(element1, element2, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUB (vectors, unpredicated) Page 1898

FSUBR (immediate)

Floating-point reversed subtract from immediate (predicated)

Reversed subtract from an immediate each active floating-point element of the source vector, and destructively place
the results in the corresponding elements of the source vector. The immediate may take the value +0.5 or +1.0 only.
Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 0 1 1 1 0 0 Pg 0 0 0 0 i1 Zdn

FSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <const>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
bits(esize) imm = if i1 == '0' then FPPointFive('0') else FPOne('0');

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the floating-point immediate value, encoded in “i1”:

i1 <const>
0 #0.5
1 #1.0

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = FPSub(imm, element1, FPCR[]);
else

Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

FSUBR (immediate) Page 1899

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUBR (immediate) Page 1900

FSUBR (vectors)

Floating-point reversed subtract vectors (predicated)

Reversed subtract active floating-point elements of the first source vector from corresponding floating-point elements
of the second source vector and destructively place the results in the corresponding elements of the first source
vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 0 1 1 1 0 0 Pg Zm Zdn

FSUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPSub(element2, element1, FPCR[]);

else
Elem[result, e, esize] = element1;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

FSUBR (vectors) Page 1901

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUBR (vectors) Page 1902

FTMAD

Floating-point trigonometric multiply-add coefficient

The FTMAD instruction calculates the series terms for either SIN(X) or COS(X), where the argument X has been adjusted
to be in the range -π/4 < X ≤ π/4.
To calculate the series terms of SIN(X) and COS(X) the initial source operands of FTMAD should be zero in the first source
vector and X2 in the second source vector. The FTMAD instruction is then executed eight times to calculate the sum of
eight series terms, which gives a result of sufficient precision.
The FTMAD instruction multiplies each element of the first source vector by the absolute value of the corresponding
element of the second source vector and performs a fused addition of each product with a value obtained from a table
of hard-wired coefficients, and places the results destructively in the first source vector.
The coefficients are different for SIN(X) and COS(X), and are selected by a combination of the sign bit in the second
source element and an immediate index in the range 0 to 7.
This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 imm3 1 0 0 0 0 0 Zm Zdn

FTMAD <Zdn>.<T>, <Zdn>.<T>, <Zm>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer imm = UInt(imm3);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<imm> Is the unsigned immediate operand, in the range 0 to 7, encoded in the "imm3" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPTrigMAdd(imm, element1, element2, FPCR[]);

Z[dn] = result;

FTMAD Page 1903

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FTMAD Page 1904

FTSMUL

Floating-point trigonometric starting value

The FTSMUL instruction calculates the initial value for the FTMAD instruction. The instruction squares each element in
the first source vector and then sets the sign bit to a copy of bit 0 of the corresponding element in the second source
register, and places the results in the destination vector. This instruction is unpredicated.
To compute SIN(X) or COS(X) the instruction is executed with elements of the first source vector set to X, adjusted to be
in the range -π/4 < X ≤ π/4.
The elements of the second source vector hold the corresponding value of the quadrant Q number as an integer not a
floating-point value. The value Q satisfies the relationship (2q-1) × π/4 < X ≤ (2q+1) × π/4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 0 1 1 Zn Zd

FTSMUL <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPTrigSMul(element1, element2, FPCR[]);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FTSMUL Page 1905

FTSSEL

Floating-point trigonometric select coefficient

The FTSSEL instruction selects the coefficient for the final multiplication in the polynomial series approximation. The
instruction places the value 1.0 or a copy of the first source vector element in the destination element, depending on
bit 0 of the quadrant number Q held in the corresponding element of the second source vector. The sign bit of the
destination element is copied from bit 1 of the corresponding value of Q. This instruction is unpredicated.
To compute SIN(X) or COS(X) the instruction is executed with elements of the first source vector set to X, adjusted to be
in the range -π/4 < X ≤ π/4.
The elements of the second source vector hold the corresponding value of the quadrant Q number as an integer not a
floating-point value. The value Q satisfies the relationship (2q-1) × π/4 < X ≤ (2q+1) × π/4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 1 0 1 1 0 0 Zn Zd

FTSSEL <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPTrigSSel(element1, element2);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FTSSEL Page 1906

INCB, INCD, INCH, INCW (scalar)

Increment scalar by multiple of predicate constraint element count

Determines the number of active elements implied by the named predicate constraint, multiplies that by an immediate
in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 4 classes: Byte , Doubleword , Halfword and Word

Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 0 0 0 pattern Rdn

size<1>size<0> D

INCB <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Doubleword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 0 0 0 pattern Rdn

size<1>size<0> D

INCD <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 0 0 0 pattern Rdn

size<1>size<0> D

INCH <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

INCB, INCD, INCH, INCW
(scalar) Page 1907

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 0 0 0 pattern Rdn

size<1>size<0> D

INCW <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(64) operand1 = X[dn];

X[dn] = operand1 + (count * imm);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INCB, INCD, INCH, INCW
(scalar) Page 1908

INCD, INCH, INCW (vector)

Increment vector by multiple of predicate constraint element count

Determines the number of active elements implied by the named predicate constraint, multiplies that by an immediate
in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 3 classes: Doubleword , Halfword and Word

Doubleword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 0 0 0 0 pattern Zdn

size<1>size<0> D

INCD <Zdn>.D{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 0 0 0 0 pattern Zdn

size<1>size<0> D

INCH <Zdn>.H{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 0 0 0 0 pattern Zdn

size<1>size<0> D

INCW <Zdn>.S{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;

INCD, INCH, INCW (vector) Page 1909

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
Elem[result, e, esize] = Elem[operand1, e, esize] + (count * imm);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INCD, INCH, INCW (vector) Page 1910

INCP (scalar)

Increment scalar by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to increment the scalar
destination.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 1 0 0 1 0 0 0 1 0 0 Pm Rdn

D

INCP <Xdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) operand1 = X[dn];
bits(PL) operand2 = P[m];
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

X[dn] = operand1 + count;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INCP (scalar) Page 1911

INCP (vector)

Increment vector by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to increment all destination
vector elements.
The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited in
a future release of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 1 0 0 1 0 0 0 0 0 0 Pm Zdn

D

INCP <Zdn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Zdn);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) operand2 = P[m];
bits(VL) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

for e = 0 to elements-1
Elem[result, e, esize] = Elem[operand1, e, esize] + count;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

INCP (vector) Page 1912

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INCP (vector) Page 1913

INDEX (immediates)

Create index starting from and incremented by immediate

Populates the destination vector by setting the first element to the first signed immediate integer operand and
monotonically incrementing the value by the second signed immediate integer operand for each subsequent element.
This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 imm5b 0 1 0 0 0 0 imm5 Zd

INDEX <Zd>.<T>, #<imm1>, #<imm2>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer d = UInt(Zd);
integer imm1 = SInt(imm5);
integer imm2 = SInt(imm5b);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm1> Is the first signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.

<imm2> Is the second signed immediate operand, in the range -16 to 15, encoded in the "imm5b" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) result;

for e = 0 to elements-1
integer index = imm1 + e * imm2;
Elem[result, e, esize] = index<esize-1:0>;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INDEX (immediates) Page 1914

INDEX (immediate, scalar)

Create index starting from immediate and incremented by general-purpose register

Populates the destination vector by setting the first element to the first signed immediate integer operand and
monotonically incrementing the value by the second signed scalar integer operand for each subsequent element. The
scalar source operand is a general-purpose register in which only the least significant bits corresponding to the vector
element size are used and any remaining bits are ignored. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Rm 0 1 0 0 1 0 imm5 Zd

INDEX <Zd>.<T>, #<imm>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Rm);
integer d = UInt(Zd);
integer imm = SInt(imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is the signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(esize) operand2 = X[m];
integer element2 = SInt(operand2);
bits(VL) result;

for e = 0 to elements-1
integer index = imm + e * element2;
Elem[result, e, esize] = index<esize-1:0>;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INDEX (immediate, scalar) Page 1915

INDEX (scalar, immediate)

Create index starting from general-purpose register and incremented by immediate

Populates the destination vector by setting the first element to the first signed scalar integer operand and
monotonically incrementing the value by the second signed immediate integer operand for each subsequent element.
The scalar source operand is a general-purpose register in which only the least significant bits corresponding to the
vector element size are used and any remaining bits are ignored. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 imm5 0 1 0 0 0 1 Rn Zd

INDEX <Zd>.<T>, <R><n>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Rn);
integer d = UInt(Zd);
integer imm = SInt(imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rn"
field.

<imm> Is the signed immediate operand, in the range -16 to 15, encoded in the "imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(esize) operand1 = X[n];
integer element1 = SInt(operand1);
bits(VL) result;

for e = 0 to elements-1
integer index = element1 + e * imm;
Elem[result, e, esize] = index<esize-1:0>;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INDEX (scalar, immediate) Page 1916

INDEX (scalars)

Create index starting from and incremented by general-purpose register

Populates the destination vector by setting the first element to the first signed scalar integer operand and
monotonically incrementing the value by the second signed scalar integer operand for each subsequent element. The
scalar source operands are general-purpose registers in which only the least significant bits corresponding to the
vector element size are used and any remaining bits are ignored. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Rm 0 1 0 0 1 1 Rn Zd

INDEX <Zd>.<T>, <R><n>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rn"
field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(esize) operand1 = X[n];
integer element1 = SInt(operand1);
bits(esize) operand2 = X[m];
integer element2 = SInt(operand2);
bits(VL) result;

for e = 0 to elements-1
integer index = element1 + e * element2;
Elem[result, e, esize] = index<esize-1:0>;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

INDEX (scalars) Page 1917

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INDEX (scalars) Page 1918

INSR (scalar)

Insert general-purpose register in shifted vector

Shift the destination vector left by one element, and then place a copy of the least-significant bits of the general-
purpose register in element 0 of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 1 0 0 0 0 1 1 1 0 Rm Zdn

INSR <Zdn>.<T>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer m = UInt(Rm);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

Operation

CheckSVEEnabled();
bits(VL) dest = Z[dn];
bits(esize) src = X[m];
Z[dn] = dest<VL-esize-1:0> : src;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INSR (scalar) Page 1919

INSR (SIMD&FP scalar)

Insert SIMD&FP scalar register in shifted vector

Shift the destination vector left by one element, and then place a copy of the SIMD&FP scalar register in element 0 of
the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 1 0 0 0 0 1 1 1 0 Vm Zdn

INSR <Zdn>.<T>, <V><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer m = UInt(Vm);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<m> Is the number [0-31] of the source SIMD&FP register, encoded in the "Vm" field.

Operation

CheckSVEEnabled();
bits(VL) dest = Z[dn];
bits(esize) src = V[m];
Z[dn] = dest<VL-esize-1:0> : src;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INSR (SIMD&FP scalar) Page 1920

LASTA (scalar)

Extract element after last to general-purpose register

If there is an active element then extract the element after the last active element modulo the number of elements
from the final source vector register. If there are no active elements, extract element zero. Then zero-extend and place
the extracted element in the destination general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 1 0 1 Pg Zn Rd

B

LASTA <R><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer rsize = if esize < 64 then 32 else 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Rd);
boolean isBefore = FALSE;

Assembler Symbols

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<d> Is the number [0-30] of the destination general-purpose register or the name ZR (31), encoded in the
"Rd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
bits(rsize) result;
integer last = LastActiveElement(mask, esize);

if isBefore then
if last < 0 then last = elements - 1;

else
last = last + 1;
if last >= elements then last = 0;

result = ZeroExtend(Elem[operand, last, esize]);

X[d] = result;

LASTA (scalar) Page 1921

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LASTA (scalar) Page 1922

LASTA (SIMD&FP scalar)

Extract element after last to SIMD&FP scalar register

If there is an active element then extract the element after the last active element modulo the number of elements
from the final source vector register. If there are no active elements, extract element zero. Then place the extracted
element in the destination SIMD&FP scalar register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 1 0 1 0 0 Pg Zn Vd

B

LASTA <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);
boolean isBefore = FALSE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
integer last = LastActiveElement(mask, esize);

if isBefore then
if last < 0 then last = elements - 1;

else
last = last + 1;
if last >= elements then last = 0;

V[d] = Elem[operand, last, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LASTA (SIMD&FP scalar) Page 1923

LASTB (scalar)

Extract last element to general-purpose register

If there is an active element then extract the last active element from the final source vector register. If there are no
active elements, extract the highest-numbered element. Then zero-extend and place the extracted element in the
destination general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 1 1 0 1 Pg Zn Rd

B

LASTB <R><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer rsize = if esize < 64 then 32 else 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Rd);
boolean isBefore = TRUE;

Assembler Symbols

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<d> Is the number [0-30] of the destination general-purpose register or the name ZR (31), encoded in the
"Rd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
bits(rsize) result;
integer last = LastActiveElement(mask, esize);

if isBefore then
if last < 0 then last = elements - 1;

else
last = last + 1;
if last >= elements then last = 0;

result = ZeroExtend(Elem[operand, last, esize]);

X[d] = result;

LASTB (scalar) Page 1924

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LASTB (scalar) Page 1925

LASTB (SIMD&FP scalar)

Extract last element to SIMD&FP scalar register

If there is an active element then extract the last active element from the final source vector register. If there are no
active elements, extract the highest-numbered element. Then place the extracted element in the destination SIMD&FP
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 1 1 1 0 0 Pg Zn Vd

B

LASTB <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);
boolean isBefore = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
integer last = LastActiveElement(mask, esize);

if isBefore then
if last < 0 then last = elements - 1;

else
last = last + 1;
if last >= elements then last = 0;

V[d] = Elem[operand, last, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LASTB (SIMD&FP scalar) Page 1926

LD1B (vector plus immediate)

Gather load unsigned bytes to vector (immediate index)

Gather load of unsigned bytes to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is in the range 0 to 31. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 0 1 imm5 1 1 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1B { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 0 1 imm5 1 1 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1B { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

LD1B (vector plus immediate) Page 1927

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1B (vector plus immediate) Page 1928

LD1B (scalar plus immediate)

Contiguous load unsigned bytes to vector (immediate index)

Contiguous load of unsigned bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements will not not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

It has encodings from 4 classes: 8-bit element , 16-bit element , 32-bit element and 64-bit element

8-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

LD1B (scalar plus immediate) Page 1929

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1B (scalar plus immediate) Page 1930

LD1B (scalar plus scalar)

Contiguous load unsigned bytes to vector (scalar index)

Contiguous load of unsigned bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements will not not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.

It has encodings from 4 classes: 8-bit element , 16-bit element , 32-bit element and 64-bit element

8-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer msize = 8;
boolean unsigned = TRUE;

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = TRUE;

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B (scalar plus scalar) Page 1931

LD1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = TRUE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = TRUE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD1B (scalar plus scalar) Page 1932

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1B (scalar plus scalar) Page 1933

LD1B (scalar plus vector)

Gather load unsigned bytes to vector (vector index)

Gather load of unsigned bytes to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally sign or zero-extended from 32 to 64 bits. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 3 classes: 32-bit unpacked unscaled offset , 32-bit unscaled offset and 64-bit unscaled offset

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 0 Zm 0 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 0 Zm 0 1 0 Pg Rn Zt

U ff

LD1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 0 Zm 1 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1B (scalar plus vector) Page 1934

LD1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1B (scalar plus vector) Page 1935

LD1D (vector plus immediate)

Gather load doublewords to vector (immediate index)

Gather load of doublewords to active elements of a vector register from memory addresses generated by a vector base
plus immediate index. The index is a multiple of 8 in the range 0 to 248. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 0 1 imm5 1 1 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1D { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to 0,
encoded in the "imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1D (vector plus immediate) Page 1936

LD1D (scalar plus immediate)

Contiguous load doublewords to vector (immediate index)

Contiguous load of doublewords to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements will not not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

LD1D (scalar plus immediate) Page 1937

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1D (scalar plus immediate) Page 1938

LD1D (scalar plus scalar)

Contiguous load doublewords to vector (scalar index)

Contiguous load of doublewords to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 8 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
boolean unsigned = TRUE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

LD1D (scalar plus scalar) Page 1939

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1D (scalar plus scalar) Page 1940

LD1D (scalar plus vector)

Gather load doublewords to vector (vector index)

Gather load of doublewords to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 8. Inactive elements will not cause a read from Device memory or signal faults, and are set to
zero in the destination vector.

It has encodings from 4 classes: 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset , 64-bit scaled offset
and 64-bit unscaled offset

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 xs 1 Zm 0 1 0 Pg Rn Zt

U ff

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #3]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 3;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 xs 0 Zm 0 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 1 1 Zm 1 1 0 Pg Rn Zt

U ff

LD1D (scalar plus vector) Page 1941

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #3]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 3;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 1 0 Zm 1 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LD1D (scalar plus vector) Page 1942

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1D (scalar plus vector) Page 1943

LD1H (vector plus immediate)

Gather load unsigned halfwords to vector (immediate index)

Gather load of unsigned halfwords to active elements of a vector register from memory addresses generated by a
vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive elements will not cause a
read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 0 1 imm5 1 1 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1H { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 0 1 imm5 1 1 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1H { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

LD1H (vector plus immediate) Page 1944

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1H (vector plus immediate) Page 1945

LD1H (scalar plus immediate)

Contiguous load unsigned halfwords to vector (immediate index)

Contiguous load of unsigned halfwords to elements of a vector register from the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

LD1H (scalar plus immediate) Page 1946

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1H (scalar plus immediate) Page 1947

LD1H (scalar plus scalar)

Contiguous load unsigned halfwords to vector (scalar index)

Contiguous load of unsigned halfwords to elements of a vector register from the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 2 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 16;
boolean unsigned = TRUE;

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = TRUE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1H (scalar plus scalar) Page 1948

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = TRUE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1H (scalar plus scalar) Page 1949

LD1H (scalar plus vector)

Gather load unsigned halfwords to vector (vector index)

Gather load of unsigned halfwords to active elements of a vector register from memory addresses generated by a
64-bit scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and
then optionally multiplied by 2. Inactive elements will not cause a read from Device memory or signal faults, and are
set to zero in the destination vector.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 1 Zm 0 1 0 Pg Rn Zt

U ff

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 1 Zm 0 1 0 Pg Rn Zt

U ff

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 0 Zm 0 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1H (scalar plus vector) Page 1950

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 0 Zm 0 1 0 Pg Rn Zt

U ff

LD1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 1 Zm 1 1 0 Pg Rn Zt

U ff

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 1;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 0 Zm 1 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1H (scalar plus vector) Page 1951

LD1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1H (scalar plus vector) Page 1952

LD1RB

Load and broadcast unsigned byte to vector

Load a single unsigned byte from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is in the range 0 to 63.
Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If all
elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

It has encodings from 4 classes: 8-bit element , 16-bit element , 32-bit element and 64-bit element

8-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 1 imm6 1 0 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RB { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

16-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 1 imm6 1 0 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

32-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 1 imm6 1 1 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

LD1RB Page 1953

64-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 1 imm6 1 1 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 63, defaulting to 0, encoded in the
"imm6" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
bits(64) addr = base + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Extend(data, esize, unsigned);
else

Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RB Page 1954

LD1RD

Load and broadcast doubleword to vector

Load a single doubleword from a memory address generated by a 64-bit scalar base address plus an immediate offset
which is a multiple of 8 in the range 0 to 504.
Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If all
elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 1 1 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RD { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 504, defaulting to 0,
encoded in the "imm6" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
bits(64) addr = base + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Extend(data, esize, unsigned);
else

Elem[result, e, esize] = Zeros();

Z[t] = result;

LD1RD Page 1955

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RD Page 1956

LD1RH

Load and broadcast unsigned halfword to vector

Load a single unsigned halfword from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is a multiple of 2 in the range 0 to 126.
Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If all
elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 1 imm6 1 0 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RH { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

32-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 1 imm6 1 1 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

64-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 1 imm6 1 1 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

LD1RH Page 1957

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 126, defaulting to 0,
encoded in the "imm6" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
bits(64) addr = base + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Extend(data, esize, unsigned);
else

Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RH Page 1958

LD1ROB (scalar plus immediate)

Contiguous load and replicate thirty-two bytes (immediate index)

Load thirty-two contiguous bytes to elements of a 256-bit (octaword) vector from the memory address generated by a
64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the base
address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first thirty-two predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROB { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to 0,
encoded in the "imm4" field.

LD1ROB (scalar plus
immediate) Page 1959

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROB (scalar plus
immediate) Page 1960

LD1ROB (scalar plus scalar)

Contiguous load and replicate thirty-two bytes (scalar index)

Load thirty-two contiguous bytes to elements of a 256-bit (octaword) vector from the memory address generated by a
64-bit scalar base address and scalar index which is added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first thirty-two predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROB { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD1ROB (scalar plus scalar) Page 1961

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(64) offset;
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROB (scalar plus scalar) Page 1962

LD1ROD (scalar plus immediate)

Contiguous load and replicate four doublewords (immediate index)

Load four contiguous doublewords to elements of a 256-bit (octaword) vector from the memory address generated by
a 64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the base
address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first four predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROD { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to 0,
encoded in the "imm4" field.

LD1ROD (scalar plus
immediate) Page 1963

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROD (scalar plus
immediate) Page 1964

LD1ROD (scalar plus scalar)

Contiguous load and replicate four doublewords (scalar index)

Load four contiguous doublewords to elements of a 256-bit (octaword) vector from the memory address generated by
a 64-bit scalar base address and scalar index which is multiplied by 8 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first four predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROD { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD1ROD (scalar plus scalar) Page 1965

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(64) offset;
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROD (scalar plus scalar) Page 1966

LD1ROH (scalar plus immediate)

Contiguous load and replicate sixteen halfwords (immediate index)

Load sixteen contiguous halfwords to elements of a 256-bit (octaword) vector from the memory address generated by
a 64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the base
address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first sixteen predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROH { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to 0,
encoded in the "imm4" field.

LD1ROH (scalar plus
immediate) Page 1967

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROH (scalar plus
immediate) Page 1968

LD1ROH (scalar plus scalar)

Contiguous load and replicate sixteen halfwords (scalar index)

Load sixteen contiguous halfwords to elements of a 256-bit (octaword) vector from the memory address generated by
a 64-bit scalar base address and scalar index which is multiplied by 2 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first sixteen predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROH { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD1ROH (scalar plus scalar) Page 1969

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(64) offset;
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROH (scalar plus scalar) Page 1970

LD1ROW (scalar plus immediate)

Contiguous load and replicate eight words (immediate index)

Load eight contiguous words to elements of a 256-bit (octaword) vector from the memory address generated by a
64-bit scalar base address and immediate index that is a multiple of 32 in the range -256 to +224 added to the base
address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first eight predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROW { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 32 in the range -256 to 224, defaulting to 0,
encoded in the "imm4" field.

LD1ROW (scalar plus
immediate) Page 1971

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROW (scalar plus
immediate) Page 1972

LD1ROW (scalar plus scalar)

Contiguous load and replicate eight words (scalar index)

Load eight contiguous words to elements of a 256-bit (octaword) vector from the memory address generated by a
64-bit scalar base address and scalar index which is multiplied by 4 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero.
The resulting 256-bit vector is then replicated to fill the destination vector. The instruction requires that the current
vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then the trailing
bits in the destination vector are set to zero.
Only the first eight predicate elements are used and higher numbered predicate elements are ignored.
ID_AA64ZFR0_EL1.F64MM indicates whether this instruction is implemented.

SVE
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1ROW { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVEFP64MatMulExt() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD1ROW (scalar plus scalar) Page 1973

Operation

CheckSVEEnabled();
if VL < 256 then UNDEFINED;
integer elements = 256 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low bits only
bits(64) offset;
bits(256) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = ZeroExtend(Replicate(result, VL DIV 256), VL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1ROW (scalar plus scalar) Page 1974

LD1RQB (scalar plus immediate)

Contiguous load and replicate sixteen bytes (immediate index)

Load sixteen contiguous bytes to elements of a short, 128-bit (quadword) vector from the memory address generated
by a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112 added to the
base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first sixteen predicate elements are used and
higher numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQB { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (offset * 16) + (e * mbytes);
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQB (scalar plus
immediate) Page 1975

LD1RQB (scalar plus scalar)

Contiguous load and replicate sixteen bytes (scalar index)

Load sixteen contiguous bytes to elements of a short, 128-bit (quadword) vector from the memory address generated
by a 64-bit scalar base address and scalar index which is added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first sixteen predicate elements are used and
higher numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQB { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(64) offset;
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

LD1RQB (scalar plus scalar) Page 1976

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQB (scalar plus scalar) Page 1977

LD1RQD (scalar plus immediate)

Contiguous load and replicate two doublewords (immediate index)

Load two contiguous doublewords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112
added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first two predicate elements are used and higher
numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQD { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (offset * 16) + (e * mbytes);
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQD (scalar plus
immediate) Page 1978

LD1RQD (scalar plus scalar)

Contiguous load and replicate two doublewords (scalar index)

Load two contiguous doublewords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and scalar index which is multiplied by 8 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first two predicate elements are used and higher
numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQD { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(64) offset;
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

LD1RQD (scalar plus scalar) Page 1979

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQD (scalar plus scalar) Page 1980

LD1RQH (scalar plus immediate)

Contiguous load and replicate eight halfwords (immediate index)

Load eight contiguous halfwords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112
added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first eight predicate elements are used and higher
numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQH { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (offset * 16) + (e * mbytes);
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQH (scalar plus
immediate) Page 1981

LD1RQH (scalar plus scalar)

Contiguous load and replicate eight halfwords (scalar index)

Load eight contiguous halfwords to elements of a short, 128-bit (quadword) vector from the memory address
generated by a 64-bit scalar base address and scalar index which is multiplied by 2 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first eight predicate elements are used and higher
numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQH { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(64) offset;
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

LD1RQH (scalar plus scalar) Page 1982

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQH (scalar plus scalar) Page 1983

LD1RQW (scalar plus immediate)

Contiguous load and replicate four words (immediate index)

Load four contiguous words to elements of a short, 128-bit (quadword) vector from the memory address generated by
a 64-bit scalar base address and immediate index that is a multiple of 16 in the range -128 to +112 added to the base
address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first four predicate elements are used and higher
numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 0 imm4 0 0 1 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQW { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -128 to 112, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (offset * 16) + (e * mbytes);
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQW (scalar plus
immediate) Page 1984

LD1RQW (scalar plus scalar)

Contiguous load and replicate four words (scalar index)

Load four contiguous words to elements of a short, 128-bit (quadword) vector from the memory address generated by
a 64-bit scalar base address and scalar index which is multiplied by 4 and added to the base address.
Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero. The resulting short
vector is then replicated to fill the long destination vector. Only the first four predicate elements are used and higher
numbered predicate elements are ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 Rm 0 0 0 Pg Rn Zt

msz<1>msz<0> ssz

LD1RQW { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = 128 DIV esize;
bits(64) base;
bits(PL) mask = P[g]; // low 16 bits only
bits(64) offset;
bits(128) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[result, e, esize] = Zeros();

Z[t] = Replicate(result, VL DIV 128);

LD1RQW (scalar plus scalar) Page 1985

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RQW (scalar plus scalar) Page 1986

LD1RSB

Load and broadcast signed byte to vector

Load a single signed byte from a memory address generated by a 64-bit scalar base address plus an immediate offset
which is in the range 0 to 63.
Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If all
elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 1 1 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RSB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = UInt(imm6);

32-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 1 0 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RSB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = UInt(imm6);

64-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 1 0 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RSB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = UInt(imm6);

LD1RSB Page 1987

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 63, defaulting to 0, encoded in the
"imm6" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
bits(64) addr = base + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Extend(data, esize, unsigned);
else

Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RSB Page 1988

LD1RSH

Load and broadcast signed halfword to vector

Load a single signed halfword from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is a multiple of 2 in the range 0 to 126.
Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If all
elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 1 imm6 1 0 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RSH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = UInt(imm6);

64-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 1 imm6 1 0 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RSH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = UInt(imm6);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 126, defaulting to 0,
encoded in the "imm6" field.

LD1RSH Page 1989

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
bits(64) addr = base + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Extend(data, esize, unsigned);
else

Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RSH Page 1990

LD1RSW

Load and broadcast signed word to vector

Load a single signed word from a memory address generated by a 64-bit scalar base address plus an immediate offset
which is a multiple of 4 in the range 0 to 252.
Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If all
elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 1 imm6 1 0 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RSW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = FALSE;
integer offset = UInt(imm6);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 252, defaulting to 0,
encoded in the "imm6" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
bits(64) addr = base + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Extend(data, esize, unsigned);
else

Elem[result, e, esize] = Zeros();

Z[t] = result;

LD1RSW Page 1991

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RSW Page 1992

LD1RW

Load and broadcast unsigned word to vector

Load a single unsigned word from a memory address generated by a 64-bit scalar base address plus an immediate
offset which is a multiple of 4 in the range 0 to 252.
Broadcast the loaded data into all active elements of the destination vector, setting the inactive elements to zero. If all
elements are inactive then the instruction will not perform a read from Device memory or cause a data abort.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 1 imm6 1 1 0 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RW { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

64-bit element

31302928272625 24 23 2221201918171615 14 13 121110 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 1 imm6 1 1 1 Pg Rn Zt

dtypeh<1>dtypeh<0> dtypel<1>dtypel<0>

LD1RW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = UInt(imm6);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 252, defaulting to 0,
encoded in the "imm6" field.

LD1RW Page 1993

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
bits(64) addr = base + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Extend(data, esize, unsigned);
else

Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1RW Page 1994

LD1SB (vector plus immediate)

Gather load signed bytes to vector (immediate index)

Gather load of signed bytes to active elements of a vector register from memory addresses generated by a vector base
plus immediate index. The index is in the range 0 to 31. Inactive elements will not cause a read from Device memory
or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 0 1 imm5 1 0 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1SB { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 0 1 imm5 1 0 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1SB { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

LD1SB (vector plus
immediate) Page 1995

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SB (vector plus
immediate) Page 1996

LD1SB (scalar plus immediate)

Contiguous load signed bytes to vector (immediate index)

Contiguous load of signed bytes to elements of a vector register from the memory address generated by a 64-bit scalar
base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements will not not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

LD1SB (scalar plus
immediate) Page 1997

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SB (scalar plus
immediate) Page 1998

LD1SB (scalar plus scalar)

Contiguous load signed bytes to vector (scalar index)

Contiguous load of signed bytes to elements of a vector register from the memory address generated by a 64-bit scalar
base and scalar index which is added to the base address. After each element access the index value is incremented,
but the index register is not updated. Inactive elements will not not cause a read from Device memory or signal a fault,
and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = FALSE;

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = FALSE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SB (scalar plus scalar) Page 1999

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = FALSE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SB (scalar plus scalar) Page 2000

LD1SB (scalar plus vector)

Gather load signed bytes to vector (vector index)

Gather load of signed bytes to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally sign or zero-extended from 32 to 64 bits. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 3 classes: 32-bit unpacked unscaled offset , 32-bit unscaled offset and 64-bit unscaled offset

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 0 Zm 0 0 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 0 Zm 0 0 0 Pg Rn Zt

U ff

LD1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 0 Zm 1 0 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1SB (scalar plus vector) Page 2001

LD1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SB (scalar plus vector) Page 2002

LD1SH (vector plus immediate)

Gather load signed halfwords to vector (immediate index)

Gather load of signed halfwords to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive elements will not cause a read
from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 0 1 imm5 1 0 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1SH { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 0 1 imm5 1 0 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1SH { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

LD1SH (vector plus
immediate) Page 2003

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SH (vector plus
immediate) Page 2004

LD1SH (scalar plus immediate)

Contiguous load signed halfwords to vector (immediate index)

Contiguous load of signed halfwords to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements will not not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

LD1SH (scalar plus
immediate) Page 2005

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SH (scalar plus
immediate) Page 2006

LD1SH (scalar plus scalar)

Contiguous load signed halfwords to vector (scalar index)

Contiguous load of signed halfwords to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 2 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = FALSE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = FALSE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD1SH (scalar plus scalar) Page 2007

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SH (scalar plus scalar) Page 2008

LD1SH (scalar plus vector)

Gather load signed halfwords to vector (vector index)

Gather load of signed halfwords to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 2. Inactive elements will not cause a read from Device memory or signal faults, and are set to
zero in the destination vector.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 1 Zm 0 0 0 Pg Rn Zt

U ff

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 1 Zm 0 0 0 Pg Rn Zt

U ff

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 0 Zm 0 0 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1SH (scalar plus vector) Page 2009

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 0 Zm 0 0 0 Pg Rn Zt

U ff

LD1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 1 Zm 1 0 0 Pg Rn Zt

U ff

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 1;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 0 Zm 1 0 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1SH (scalar plus vector) Page 2010

LD1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SH (scalar plus vector) Page 2011

LD1SW (vector plus immediate)

Gather load signed words to vector (immediate index)

Gather load of signed words to active elements of a vector register from memory addresses generated by a vector base
plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive elements will not cause a read from
Device memory or signal faults, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 0 1 imm5 1 0 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1SW { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to 0,
encoded in the "imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SW (vector plus
immediate) Page 2012

LD1SW (scalar plus immediate)

Contiguous load signed words to vector (immediate index)

Contiguous load of signed words to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements will not not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

LD1SW (scalar plus
immediate) Page 2013

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SW (scalar plus
immediate) Page 2014

LD1SW (scalar plus scalar)

Contiguous load signed words to vector (scalar index)

Contiguous load of signed words to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = FALSE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

LD1SW (scalar plus scalar) Page 2015

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SW (scalar plus scalar) Page 2016

LD1SW (scalar plus vector)

Gather load signed words to vector (vector index)

Gather load of signed words to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 4. Inactive elements will not cause a read from Device memory or signal faults, and are set to
zero in the destination vector.

It has encodings from 4 classes: 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset , 64-bit scaled offset
and 64-bit unscaled offset

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 1 Zm 0 0 0 Pg Rn Zt

U ff

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 0 Zm 0 0 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 1 Zm 1 0 0 Pg Rn Zt

U ff

LD1SW (scalar plus vector) Page 2017

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 2;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 0 Zm 1 0 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LD1SW (scalar plus vector) Page 2018

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1SW (scalar plus vector) Page 2019

LD1W (vector plus immediate)

Gather load unsigned words to vector (immediate index)

Gather load of unsigned words to active elements of a vector register from memory addresses generated by a vector
base plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive elements will not cause a read
from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 0 1 imm5 1 1 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1W { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 0 1 imm5 1 1 0 Pg Zn Zt

msz<1>msz<0> U ff

LD1W { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to 0,
encoded in the "imm5" field.

LD1W (vector plus
immediate) Page 2020

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1W (vector plus
immediate) Page 2021

LD1W (scalar plus immediate)

Contiguous load unsigned words to vector (immediate index)

Contiguous load of unsigned words to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements will not not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 0 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 1 0 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

LD1W (scalar plus immediate) Page 2022

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1W (scalar plus immediate) Page 2023

LD1W (scalar plus scalar)

Contiguous load unsigned words to vector (scalar index)

Contiguous load of unsigned words to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 0 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
boolean unsigned = TRUE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 1 Rm 0 1 0 Pg Rn Zt

dtype<3:1>dtype<0>

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = TRUE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD1W (scalar plus scalar) Page 2024

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1W (scalar plus scalar) Page 2025

LD1W (scalar plus vector)

Gather load unsigned words to vector (vector index)

Gather load of unsigned words to active elements of a vector register from memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 4. Inactive elements will not cause a read from Device memory or signal faults, and are set to
zero in the destination vector.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 xs 1 Zm 0 1 0 Pg Rn Zt

U ff

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 1 Zm 0 1 0 Pg Rn Zt

U ff

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 0 Zm 0 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1W (scalar plus vector) Page 2026

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 xs 0 Zm 0 1 0 Pg Rn Zt

U ff

LD1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 1 Zm 1 1 0 Pg Rn Zt

U ff

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 2;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 0 Zm 1 1 0 Pg Rn Zt

msz<1>msz<0> U ff

LD1W (scalar plus vector) Page 2027

LD1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) result;
bits(msize) data;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
data = Mem[addr, mbytes, AccType_NORMAL];
Elem[result, e, esize] = Extend(data, esize, unsigned);

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1W (scalar plus vector) Page 2028

LD2B (scalar plus immediate)

Contiguous load two-byte structures to two vectors (immediate index)

Contiguous load two-byte structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD2B { <Zt1>.B, <Zt2>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

LD2B (scalar plus immediate) Page 2029

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2B (scalar plus immediate) Page 2030

LD2B (scalar plus scalar)

Contiguous load two-byte structures to two vectors (scalar index)

Contiguous load two-byte structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by two. The index register is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD2B { <Zt1>.B, <Zt2>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD2B (scalar plus scalar) Page 2031

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2B (scalar plus scalar) Page 2032

LD2D (scalar plus immediate)

Contiguous load two-doubleword structures to two vectors (immediate index)

Contiguous load two-doubleword structures, each to the same element number in two vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to
14 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD2D { <Zt1>.D, <Zt2>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

LD2D (scalar plus immediate) Page 2033

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2D (scalar plus immediate) Page 2034

LD2D (scalar plus scalar)

Contiguous load two-doubleword structures to two vectors (scalar index)

Contiguous load two-doubleword structures, each to the same element number in two vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by two. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD2D { <Zt1>.D, <Zt2>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD2D (scalar plus scalar) Page 2035

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2D (scalar plus scalar) Page 2036

LD2H (scalar plus immediate)

Contiguous load two-halfword structures to two vectors (immediate index)

Contiguous load two-halfword structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD2H { <Zt1>.H, <Zt2>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

LD2H (scalar plus immediate) Page 2037

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2H (scalar plus immediate) Page 2038

LD2H (scalar plus scalar)

Contiguous load two-halfword structures to two vectors (scalar index)

Contiguous load two-halfword structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by two. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD2H { <Zt1>.H, <Zt2>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD2H (scalar plus scalar) Page 2039

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2H (scalar plus scalar) Page 2040

LD2W (scalar plus immediate)

Contiguous load two-word structures to two vectors (immediate index)

Contiguous load two-word structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive words in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD2W { <Zt1>.S, <Zt2>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

LD2W (scalar plus immediate) Page 2041

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2W (scalar plus immediate) Page 2042

LD2W (scalar plus scalar)

Contiguous load two-word structures to two vectors (scalar index)

Contiguous load two-word structures, each to the same element number in two vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by two. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive words in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the two destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD2W { <Zt1>.S, <Zt2>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD2W (scalar plus scalar) Page 2043

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2W (scalar plus scalar) Page 2044

LD3B (scalar plus immediate)

Contiguous load three-byte structures to three vectors (immediate index)

Contiguous load three-byte structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

LD3B (scalar plus immediate) Page 2045

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3B (scalar plus immediate) Page 2046

LD3B (scalar plus scalar)

Contiguous load three-byte structures to three vectors (scalar index)

Contiguous load three-byte structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by three. The index register is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD3B (scalar plus scalar) Page 2047

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3B (scalar plus scalar) Page 2048

LD3D (scalar plus immediate)

Contiguous load three-doubleword structures to three vectors (immediate index)

Contiguous load three-doubleword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to
21 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

LD3D (scalar plus immediate) Page 2049

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3D (scalar plus immediate) Page 2050

LD3D (scalar plus scalar)

Contiguous load three-doubleword structures to three vectors (scalar index)

Contiguous load three-doubleword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD3D (scalar plus scalar) Page 2051

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3D (scalar plus scalar) Page 2052

LD3H (scalar plus immediate)

Contiguous load three-halfword structures to three vectors (immediate index)

Contiguous load three-halfword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to
21 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

LD3H (scalar plus immediate) Page 2053

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3H (scalar plus immediate) Page 2054

LD3H (scalar plus scalar)

Contiguous load three-halfword structures to three vectors (scalar index)

Contiguous load three-halfword structures, each to the same element number in three vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read
from Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination
vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD3H (scalar plus scalar) Page 2055

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3H (scalar plus scalar) Page 2056

LD3W (scalar plus immediate)

Contiguous load three-word structures to three vectors (immediate index)

Contiguous load three-word structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

LD3W (scalar plus immediate) Page 2057

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3W (scalar plus immediate) Page 2058

LD3W (scalar plus scalar)

Contiguous load three-word structures to three vectors (scalar index)

Contiguous load three-word structures, each to the same element number in three vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by three. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the three destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD3W (scalar plus scalar) Page 2059

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3W (scalar plus scalar) Page 2060

LD4B (scalar plus immediate)

Contiguous load four-byte structures to four vectors (immediate index)

Contiguous load four-byte structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

LD4B (scalar plus immediate) Page 2061

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4B (scalar plus immediate) Page 2062

LD4B (scalar plus scalar)

Contiguous load four-byte structures to four vectors (scalar index)

Contiguous load four-byte structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by four. The index register is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive bytes in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD4B (scalar plus scalar) Page 2063

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4B (scalar plus scalar) Page 2064

LD4D (scalar plus immediate)

Contiguous load four-doubleword structures to four vectors (immediate index)

Contiguous load four-doubleword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to
28 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

LD4D (scalar plus immediate) Page 2065

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4D (scalar plus immediate) Page 2066

LD4D (scalar plus scalar)

Contiguous load four-doubleword structures to four vectors (scalar index)

Contiguous load four-doubleword structures, each to the same element number in four vector registers from the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive doublewords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD4D (scalar plus scalar) Page 2067

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4D (scalar plus scalar) Page 2068

LD4H (scalar plus immediate)

Contiguous load four-halfword structures to four vectors (immediate index)

Contiguous load four-halfword structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

LD4H (scalar plus immediate) Page 2069

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4H (scalar plus immediate) Page 2070

LD4H (scalar plus scalar)

Contiguous load four-halfword structures to four vectors (scalar index)

Contiguous load four-halfword structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by four. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive halfwords in memory which make up each structure. Inactive elements will not cause a read from
Device memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector
registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD4H (scalar plus scalar) Page 2071

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4H (scalar plus scalar) Page 2072

LD4W (scalar plus immediate)

Contiguous load four-word structures to four vectors (immediate index)

Contiguous load four-word structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive words in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 1 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LD4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

LD4W (scalar plus immediate) Page 2073

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4W (scalar plus immediate) Page 2074

LD4W (scalar plus scalar)

Contiguous load four-word structures to four vectors (scalar index)

Contiguous load four-word structures, each to the same element number in four vector registers from the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by four. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive words in memory which make up each structure. Inactive elements will not cause a read from Device
memory or signal a fault, and the corresponding element is set to zero in each of the four destination vector registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 1 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LD4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

LD4W (scalar plus scalar) Page 2075

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Elem[values[r], e, esize] = Mem[addr, mbytes, AccType_NORMAL];

else
Elem[values[r], e, esize] = Zeros();

for r = 0 to nreg-1
Z[(t+r) MOD 32] = values[r];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4W (scalar plus scalar) Page 2076

LDFF1B (vector plus immediate)

Gather load first-fault unsigned bytes to vector (immediate index)

Gather load with first-faulting behavior of unsigned bytes to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is in the range 0 to 31. Inactive elements will
not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 0 1 imm5 1 1 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1B { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 0 1 imm5 1 1 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1B { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

LDFF1B (vector plus
immediate) Page 2077

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1B (vector plus
immediate) Page 2078

LDFF1B (scalar plus scalar)

Contiguous load first-fault unsigned bytes to vector (scalar index)

Contiguous load with first-faulting behavior of unsigned bytes to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements will not not cause a
read from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 4 classes: 8-bit element , 16-bit element , 32-bit element and 64-bit element

8-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer msize = 8;
boolean unsigned = TRUE;

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = TRUE;

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = TRUE;

LDFF1B (scalar plus scalar) Page 2079

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = TRUE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

LDFF1B (scalar plus scalar) Page 2080

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_CNOTFIRST];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1B (scalar plus scalar) Page 2081

LDFF1B (scalar plus vector)

Gather load first-fault unsigned bytes to vector (vector index)

Gather load with first-faulting behavior of unsigned bytes to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally sign or zero-extended
from 32 to 64 bits. Inactive elements will not cause a read from Device memory or signal faults, and are set to zero in
the destination vector.

It has encodings from 3 classes: 32-bit unpacked unscaled offset , 32-bit unscaled offset and 64-bit unscaled offset

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 0 Zm 0 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 0 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 0 Zm 1 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1B (scalar plus vector) Page 2082

LDFF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LDFF1B (scalar plus vector) Page 2083

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1B (scalar plus vector) Page 2084

LDFF1D (vector plus immediate)

Gather load first-fault doublewords to vector (immediate index)

Gather load with first-faulting behavior of doublewords to active elements of a vector register from memory addresses
generated by a vector base plus immediate index. The index is a multiple of 8 in the range 0 to 248. Inactive elements
will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 0 1 imm5 1 1 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1D { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to 0,
encoded in the "imm5" field.

LDFF1D (vector plus
immediate) Page 2085

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1D (vector plus
immediate) Page 2086

LDFF1D (scalar plus scalar)

Contiguous load first-fault doublewords to vector (scalar index)

Contiguous load with first-faulting behavior of doublewords to elements of a vector register from the memory address
generated by a 64-bit scalar base and scalar index which is multiplied by 8 and added to the base address. After each
element access the index value is incremented, but the index register is not updated. Inactive elements will not not
cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #3}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
boolean unsigned = TRUE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

LDFF1D (scalar plus scalar) Page 2087

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_CNOTFIRST];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1D (scalar plus scalar) Page 2088

LDFF1D (scalar plus vector)

Gather load first-fault doublewords to vector (vector index)

Gather load with first-faulting behavior of doublewords to active elements of a vector register from memory addresses
generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or zero-extended from 32
to 64 bits and then optionally multiplied by 8. Inactive elements will not cause a read from Device memory or signal
faults, and are set to zero in the destination vector.

It has encodings from 4 classes: 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset , 64-bit scaled offset
and 64-bit unscaled offset

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 xs 1 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #3]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 3;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 xs 0 Zm 0 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 1 1 Zm 1 1 1 Pg Rn Zt

U ff

LDFF1D (scalar plus vector) Page 2089

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #3]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 3;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 1 0 Zm 1 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LDFF1D (scalar plus vector) Page 2090

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1D (scalar plus vector) Page 2091

LDFF1H (vector plus immediate)

Gather load first-fault unsigned halfwords to vector (immediate index)

Gather load with first-faulting behavior of unsigned halfwords to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 0 1 imm5 1 1 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1H { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 0 1 imm5 1 1 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1H { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

LDFF1H (vector plus
immediate) Page 2092

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1H (vector plus
immediate) Page 2093

LDFF1H (scalar plus scalar)

Contiguous load first-fault unsigned halfwords to vector (scalar index)

Contiguous load with first-faulting behavior of unsigned halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 2 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements will
not not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 16;
boolean unsigned = TRUE;

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = TRUE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = TRUE;

LDFF1H (scalar plus scalar) Page 2094

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_CNOTFIRST];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

LDFF1H (scalar plus scalar) Page 2095

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1H (scalar plus scalar) Page 2096

LDFF1H (scalar plus vector)

Gather load first-fault unsigned halfwords to vector (vector index)

Gather load with first-faulting behavior of unsigned halfwords to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or zero-
extended from 32 to 64 bits and then optionally multiplied by 2. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 1 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 1 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 0 Zm 0 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1H (scalar plus vector) Page 2097

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 0 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 1 Zm 1 1 1 Pg Rn Zt

U ff

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 1;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 0 Zm 1 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1H (scalar plus vector) Page 2098

LDFF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LDFF1H (scalar plus vector) Page 2099

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1H (scalar plus vector) Page 2100

LDFF1SB (vector plus immediate)

Gather load first-fault signed bytes to vector (immediate index)

Gather load with first-faulting behavior of signed bytes to active elements of a vector register from memory addresses
generated by a vector base plus immediate index. The index is in the range 0 to 31. Inactive elements will not cause a
read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 0 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1SB { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 0 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

LDFF1SB (vector plus
immediate) Page 2101

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SB (vector plus
immediate) Page 2102

LDFF1SB (scalar plus scalar)

Contiguous load first-fault signed bytes to vector (scalar index)

Contiguous load with first-faulting behavior of signed bytes to elements of a vector register from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = FALSE;

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = FALSE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = FALSE;

LDFF1SB (scalar plus scalar) Page 2103

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_CNOTFIRST];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

LDFF1SB (scalar plus scalar) Page 2104

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SB (scalar plus scalar) Page 2105

LDFF1SB (scalar plus vector)

Gather load first-fault signed bytes to vector (vector index)

Gather load with first-faulting behavior of signed bytes to active elements of a vector register from memory addresses
generated by a 64-bit scalar base plus vector index. The index values are optionally sign or zero-extended from 32 to
64 bits. Inactive elements will not cause a read from Device memory or signal faults, and are set to zero in the
destination vector.

It has encodings from 3 classes: 32-bit unpacked unscaled offset , 32-bit unscaled offset and 64-bit unscaled offset

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 0 Zm 0 0 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 0 Zm 0 0 1 Pg Rn Zt

U ff

LDFF1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 0 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1SB (scalar plus vector) Page 2106

LDFF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LDFF1SB (scalar plus vector) Page 2107

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SB (scalar plus vector) Page 2108

LDFF1SH (vector plus immediate)

Gather load first-fault signed halfwords to vector (immediate index)

Gather load with first-faulting behavior of signed halfwords to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 0 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 0 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

LDFF1SH (vector plus
immediate) Page 2109

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SH (vector plus
immediate) Page 2110

LDFF1SH (scalar plus scalar)

Contiguous load first-fault signed halfwords to vector (scalar index)

Contiguous load with first-faulting behavior of signed halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 2 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements will
not not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = FALSE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = FALSE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

LDFF1SH (scalar plus scalar) Page 2111

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_CNOTFIRST];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SH (scalar plus scalar) Page 2112

LDFF1SH (scalar plus vector)

Gather load first-fault signed halfwords to vector (vector index)

Gather load with first-faulting behavior of signed halfwords to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or zero-
extended from 32 to 64 bits and then optionally multiplied by 2. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 1 Zm 0 0 1 Pg Rn Zt

U ff

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 1 Zm 0 0 1 Pg Rn Zt

U ff

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 xs 0 Zm 0 0 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1SH (scalar plus vector) Page 2113

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 0 Zm 0 0 1 Pg Rn Zt

U ff

LDFF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 1 Zm 1 0 1 Pg Rn Zt

U ff

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 1;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 1 0 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1SH (scalar plus vector) Page 2114

LDFF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LDFF1SH (scalar plus vector) Page 2115

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SH (scalar plus vector) Page 2116

LDFF1SW (vector plus immediate)

Gather load first-fault signed words to vector (immediate index)

Gather load with first-faulting behavior of signed words to active elements of a vector register from memory addresses
generated by a vector base plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive elements
will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 0 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = FALSE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to 0,
encoded in the "imm5" field.

LDFF1SW (vector plus
immediate) Page 2117

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SW (vector plus
immediate) Page 2118

LDFF1SW (scalar plus scalar)

Contiguous load first-fault signed words to vector (scalar index)

Contiguous load with first-faulting behavior of signed words to elements of a vector register from the memory address
generated by a 64-bit scalar base and scalar index which is multiplied by 4 and added to the base address. After each
element access the index value is incremented, but the index register is not updated. Inactive elements will not not
cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = FALSE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

LDFF1SW (scalar plus scalar) Page 2119

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_CNOTFIRST];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SW (scalar plus scalar) Page 2120

LDFF1SW (scalar plus vector)

Gather load first-fault signed words to vector (vector index)

Gather load with first-faulting behavior of signed words to active elements of a vector register from memory addresses
generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or zero-extended from 32
to 64 bits and then optionally multiplied by 4. Inactive elements will not cause a read from Device memory or signal
faults, and are set to zero in the destination vector.

It has encodings from 4 classes: 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset , 64-bit scaled offset
and 64-bit unscaled offset

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 1 Zm 0 0 1 Pg Rn Zt

U ff

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 0 Zm 0 0 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = FALSE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 1 Zm 1 0 1 Pg Rn Zt

U ff

LDFF1SW (scalar plus vector) Page 2121

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 2;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 0 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = FALSE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LDFF1SW (scalar plus vector) Page 2122

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1SW (scalar plus vector) Page 2123

LDFF1W (vector plus immediate)

Gather load first-fault unsigned words to vector (immediate index)

Gather load with first-faulting behavior of unsigned words to active elements of a vector register from memory
addresses generated by a vector base plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive
elements will not cause a read from Device memory or signal faults, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 0 1 imm5 1 1 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1W { <Zt>.S }, <Pg>/Z, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 0 1 imm5 1 1 1 Pg Zn Zt

msz<1>msz<0> U ff

LDFF1W { <Zt>.D }, <Pg>/Z, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to 0,
encoded in the "imm5" field.

LDFF1W (vector plus
immediate) Page 2124

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1W (vector plus
immediate) Page 2125

LDFF1W (scalar plus scalar)

Contiguous load first-fault unsigned words to vector (scalar index)

Contiguous load with first-faulting behavior of unsigned words to elements of a vector register from the memory
address generated by a 64-bit scalar base and scalar index which is multiplied by 4 and added to the base address.
After each element access the index value is incremented, but the index register is not updated. Inactive elements will
not not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 0 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
boolean unsigned = TRUE;

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 1 Rm 0 1 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = TRUE;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the
"Rm" field.

LDFF1W (scalar plus scalar) Page 2126

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
bits(64) offset;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_CNOTFIRST];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1W (scalar plus scalar) Page 2127

LDFF1W (scalar plus vector)

Gather load first-fault unsigned words to vector (vector index)

Gather load with first-faulting behavior of unsigned words to active elements of a vector register from memory
addresses generated by a 64-bit scalar base plus vector index. The index values are optionally first sign or zero-
extended from 32 to 64 bits and then optionally multiplied by 4. Inactive elements will not cause a read from Device
memory or signal faults, and are set to zero in the destination vector.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 xs 1 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 1 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 xs 0 Zm 0 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1W (scalar plus vector) Page 2128

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 xs 0 Zm 0 1 1 Pg Rn Zt

U ff

LDFF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
integer offs_size = 32;
boolean unsigned = TRUE;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 1 Zm 1 1 1 Pg Rn Zt

U ff

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D, LSL #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 2;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 1 0 Zm 1 1 1 Pg Rn Zt

msz<1>msz<0> U ff

LDFF1W (scalar plus vector) Page 2129

LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean unsigned = TRUE;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

LDFF1W (scalar plus vector) Page 2130

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean first = TRUE;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
if first then

// Mem[] will not return if a fault is detected for the first active element
data = Mem[addr, mbytes, AccType_NORMAL];
first = FALSE;

else
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDFF1W (scalar plus vector) Page 2131

LDNF1B

Contiguous load non-fault unsigned bytes to vector (immediate index)

Contiguous load with non-faulting behavior of unsigned bytes to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 4 classes: 8-bit element , 16-bit element , 32-bit element and 64-bit element

8-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1B { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1B { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

LDNF1B Page 2132

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 1 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1B { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

LDNF1B Page 2133

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNF1B Page 2134

LDNF1D

Contiguous load non-fault doublewords to vector (immediate index)

Contiguous load with non-faulting behavior of doublewords to elements of a vector register from the memory address
generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-
memory size, irrespective of predication, and added to the base address. Inactive elements will not not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

LDNF1D Page 2135

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNF1D Page 2136

LDNF1H

Contiguous load non-fault unsigned halfwords to vector (immediate index)

Contiguous load with non-faulting behavior of unsigned halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1H { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 1 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1H { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

LDNF1H Page 2137

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNF1H Page 2138

LDNF1SB

Contiguous load non-fault signed bytes to vector (immediate index)

Contiguous load with non-faulting behavior of signed bytes to elements of a vector register from the memory address
generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-
memory size, irrespective of predication, and added to the base address. Inactive elements will not not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 3 classes: 16-bit element , 32-bit element and 64-bit element

16-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 1 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1SB { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1SB { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1SB { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

LDNF1SB Page 2139

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNF1SB Page 2140

LDNF1SH

Contiguous load non-fault signed halfwords to vector (immediate index)

Contiguous load with non-faulting behavior of signed halfwords to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1SH { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1SH { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

LDNF1SH Page 2141

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNF1SH Page 2142

LDNF1SW

Contiguous load non-fault signed words to vector (immediate index)

Contiguous load with non-faulting behavior of signed words to elements of a vector register from the memory address
generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-
memory size, irrespective of predication, and added to the base address. Inactive elements will not not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1SW { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = FALSE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

LDNF1SW Page 2143

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNF1SW Page 2144

LDNF1W

Contiguous load non-fault unsigned words to vector (immediate index)

Contiguous load with non-faulting behavior of unsigned words to elements of a vector register from the memory
address generated by a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's
in-memory size, irrespective of predication, and added to the base address. Inactive elements will not not cause a read
from Device memory or signal a fault, and are set to zero in the destination vector.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 0 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 1 1 1 imm4 1 0 1 Pg Rn Zt

dtype<3:1>dtype<0>

LDNF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
boolean unsigned = TRUE;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

LDNF1W Page 2145

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
bits(VL) orig = Z[t];
bits(msize) data;
constant integer mbytes = msize DIV 8;
boolean fault = FALSE;
boolean faulted = FALSE;
boolean unknown = FALSE;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
// MemNF[] will return fault=TRUE if access is not performed for any reason
(data, fault) = MemNF[addr, mbytes, AccType_NONFAULT];

else
(data, fault) = (Zeros(msize), FALSE);

// FFR elements set to FALSE following a supressed access/fault
faulted = faulted || fault;
if faulted then

ElemFFR[e, esize] = '0';

// Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE
unknown = unknown || ElemFFR[e, esize] == '0';
if unknown then

if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then
Elem[result, e, esize] = Extend(data, esize, unsigned);

elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then
Elem[result, e, esize] = Zeros();

else // merge
Elem[result, e, esize] = Elem[orig, e, esize];

else
Elem[result, e, esize] = Extend(data, esize, unsigned);

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNF1W Page 2146

LDNT1B (scalar plus immediate)

Contiguous load non-temporal bytes to vector (immediate index)

Contiguous load non-temporal of bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements will not not cause a read from Device memory or signal
a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LDNT1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1B (scalar plus
immediate) Page 2147

LDNT1B (scalar plus scalar)

Contiguous load non-temporal bytes to vector (scalar index)

Contiguous load non-temporal of bytes to elements of a vector register from the memory address generated by a 64-bit
scalar base and scalar index which is added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements will not not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 0 0 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LDNT1B { <Zt>.B }, <Pg>/Z, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

LDNT1B (scalar plus scalar) Page 2148

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1B (scalar plus scalar) Page 2149

LDNT1D (scalar plus immediate)

Contiguous load non-temporal doublewords to vector (immediate index)

Contiguous load non-temporal of doublewords to elements of a vector register from the memory address generated by
a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LDNT1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1D (scalar plus
immediate) Page 2150

LDNT1D (scalar plus scalar)

Contiguous load non-temporal doublewords to vector (scalar index)

Contiguous load non-temporal of doublewords to elements of a vector register from the memory address generated by
a 64-bit scalar base and scalar index which is multiplied by 8 and added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements will not not cause a
read from Device memory or signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 1 0 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LDNT1D { <Zt>.D }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

LDNT1D (scalar plus scalar) Page 2151

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1D (scalar plus scalar) Page 2152

LDNT1H (scalar plus immediate)

Contiguous load non-temporal halfwords to vector (immediate index)

Contiguous load non-temporal of halfwords to elements of a vector register from the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LDNT1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1H (scalar plus
immediate) Page 2153

LDNT1H (scalar plus scalar)

Contiguous load non-temporal halfwords to vector (scalar index)

Contiguous load non-temporal of halfwords to elements of a vector register from the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 2 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 0 1 0 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LDNT1H { <Zt>.H }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

LDNT1H (scalar plus scalar) Page 2154

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1H (scalar plus scalar) Page 2155

LDNT1W (scalar plus immediate)

Contiguous load non-temporal words to vector (immediate index)

Contiguous load non-temporal of words to elements of a vector register from the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements will not not cause a read from Device
memory or signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

LDNT1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1W (scalar plus
immediate) Page 2156

LDNT1W (scalar plus scalar)

Contiguous load non-temporal words to vector (scalar index)

Contiguous load non-temporal of words to elements of a vector register from the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements will not not cause a read from
Device memory or signal a fault, and are set to zero in the destination vector.
A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 1 0 0 0 Rm 1 1 0 Pg Rn Zt

msz<1>msz<0>

LDNT1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(PL) mask = P[g];
bits(VL) result;
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Elem[result, e, esize] = Mem[addr, mbytes, AccType_STREAM];

else
Elem[result, e, esize] = Zeros();

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

LDNT1W (scalar plus scalar) Page 2157

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNT1W (scalar plus scalar) Page 2158

LDR (predicate)

Load predicate register

Load a predicate register from a memory address generated by a 64-bit scalar base, plus an immediate offset in the
range -256 to 255 which is multiplied by the current predicate register size in bytes. This instruction is unpredicated.
The load is performed as a stream of bytes containing 8 consecutive predicate bits in ascending element order, without
any endian conversion.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 0 imm9h 0 0 0 imm9l Rn 0 Pt

LDR <Pt>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Pt);
integer n = UInt(Rn);
integer imm = SInt(imm9h:imm9l);

Assembler Symbols

<Pt> Is the name of the destination scalable predicate register, encoded in the "Pt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in the
"imm9h:imm9l" fields.

Operation

CheckSVEEnabled();
integer elements = PL DIV 8;
bits(64) base;
integer offset = imm * elements;
bits(PL) result;

if n == 31 then
CheckSPAlignment();
if HaveMTEExt() then SetTagCheckedInstruction(FALSE);
base = SP[];

else
if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
base = X[n];

boolean aligned = AArch64.CheckAlignment(base + offset, 2, AccType_NORMAL, FALSE);
for e = 0 to elements-1

Elem[result, e, 8] = AArch64.MemSingle[base + offset, 1, AccType_NORMAL, aligned];
offset = offset + 1;

P[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (predicate) Page 2159

LDR (vector)

Load vector register

Load a vector register from a memory address generated by a 64-bit scalar base, plus an immediate offset in the range
-256 to 255 which is multiplied by the current vector register size in bytes. This instruction is unpredicated.
The load is performed as a stream of byte elements in ascending element order, without any endian conversion.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 0 imm9h 0 1 0 imm9l Rn Zt

LDR <Zt>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer imm = SInt(imm9h:imm9l);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in the
"imm9h:imm9l" fields.

Operation

CheckSVEEnabled();
integer elements = VL DIV 8;
bits(64) base;
integer offset = imm * elements;
bits(VL) result;

if n == 31 then
CheckSPAlignment();
if HaveMTEExt() then SetTagCheckedInstruction(FALSE);
base = SP[];

else
if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
base = X[n];

boolean aligned = AArch64.CheckAlignment(base + offset, 16, AccType_NORMAL, FALSE);
for e = 0 to elements-1

Elem[result, e, 8] = AArch64.MemSingle[base + offset, 1, AccType_NORMAL, aligned];
offset = offset + 1;

Z[t] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (vector) Page 2160

LSL (immediate, predicated)

Logical shift left by immediate (predicated)

Shift left by immediate each active element of the source vector, and destructively place the results in the
corresponding elements of the source vector. The immediate shift amount is an unsigned value in the range 0 to
number of bits per element minus 1. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 0 0 0 0 1 1 1 0 0 Pg tszl imm3 Zdn

L U

LSL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
bits(4) tsize = tszh:tszl;
case tsize of

when '0000' UNDEFINED;
when '0001' esize = 8;
when '001x' esize = 16;
when '01xx' esize = 32;
when '1xxx' esize = 64;

integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer shift = UInt(tsize:imm3) - esize;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “tszh:tszl”:

tszh tszl <T>
00 00 RESERVED
00 01 B
00 1x H
01 xx S
1x xx D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tsz:imm3".

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) mask = P[g];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = LSL(element1, shift);
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

LSL (immediate, predicated) Page 2161

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (immediate, predicated) Page 2162

LSL (wide elements, predicated)

Logical shift left by 64-bit wide elements (predicated)

Shift left active elements of the first source vector by corresponding overlapping 64-bit elements of the second source
vector and destructively place the results in the corresponding elements of the first source vector. The shift amount is
a vector of unsigned 64-bit doubleword elements in which all bits are significant, and not used modulo the destination
element size. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 1 1 1 0 0 Pg Zm Zdn

R L U

LSL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = LSL(element1, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

LSL (wide elements,
predicated) Page 2163

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and destination element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (wide elements,
predicated) Page 2164

LSL (vectors)

Logical shift left by vector (predicated)

Shift left active elements of the first source vector by corresponding elements of the second source vector and
destructively place the results in the corresponding elements of the first source vector. The shift amount operand is a
vector of unsigned elements in which all bits are significant, and not used modulo the element size. Inactive elements
in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 1 1 1 0 0 Pg Zm Zdn

R L U

LSL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = LSL(element1, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

LSL (vectors) Page 2165

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (vectors) Page 2166

LSL (immediate, unpredicated)

Logical shift left by immediate (unpredicated)

Shift left by immediate each element of the source vector, and place the results in the corresponding elements of the
destination vector. The immediate shift amount is an unsigned value in the range 0 to number of bits per element
minus 1. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 1 1 Zn Zd

LSL <Zd>.<T>, <Zn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
bits(4) tsize = tszh:tszl;
case tsize of

when '0000' UNDEFINED;
when '0001' esize = 8;
when '001x' esize = 16;
when '01xx' esize = 32;
when '1xxx' esize = 64;

integer n = UInt(Zn);
integer d = UInt(Zd);
integer shift = UInt(tsize:imm3) - esize;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “tszh:tszl”:

tszh tszl <T>
00 00 RESERVED
00 01 B
00 1x H
01 xx S
1x xx D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 0 to number of bits per element minus 1, encoded in
"tsz:imm3".

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
Elem[result, e, esize] = LSL(element1, shift);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (immediate,
unpredicated) Page 2167

LSL (wide elements, unpredicated)

Logical shift left by 64-bit wide elements (unpredicated)

Shift left all elements of the first source vector by corresponding overlapping 64-bit elements of the second source
vector and place the first in the corresponding elements of the destination vector. The shift amount is a vector of
unsigned 64-bit doubleword elements in which all bits are significant, and not used modulo the destination element
size. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 1 1 Zn Zd

LSL <Zd>.<T>, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = LSL(element1, shift);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (wide elements,
unpredicated) Page 2168

LSLR

Reversed logical shift left by vector (predicated)

Reversed shift left active elements of the second source vector by corresponding elements of the first source vector
and destructively place the results in the corresponding elements of the first source vector. The shift amount operand
is a vector of unsigned elements in which all bits are significant, and not used modulo the element size. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 1 1 1 0 0 Pg Zm Zdn

R L U

LSLR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
integer shift = Min(UInt(element1), esize);
Elem[result, e, esize] = LSL(element2, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

LSLR Page 2169

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLR Page 2170

LSR (immediate, predicated)

Logical shift right by immediate (predicated)

Shift right by immediate, inserting zeroes, each active element of the source vector, and destructively place the results
in the corresponding elements of the source vector. The immediate shift amount is an unsigned value in the range 1 to
number of bits per element. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 0 0 0 0 0 1 1 0 0 Pg tszl imm3 Zdn

L U

LSR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
bits(4) tsize = tszh:tszl;
case tsize of

when '0000' UNDEFINED;
when '0001' esize = 8;
when '001x' esize = 16;
when '01xx' esize = 32;
when '1xxx' esize = 64;

integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “tszh:tszl”:

tszh tszl <T>
00 00 RESERVED
00 01 B
00 1x H
01 xx S
1x xx D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in "tsz:imm3".

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) mask = P[g];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = LSR(element1, shift);
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

LSR (immediate, predicated) Page 2171

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (immediate, predicated) Page 2172

LSR (wide elements, predicated)

Logical shift right by 64-bit wide elements (predicated)

Shift right, inserting zeroes, active elements of the first source vector by corresponding overlapping 64-bit elements of
the second source vector and destructively place the results in the corresponding elements of the first source vector.
The shift amount is a vector of unsigned 64-bit doubleword elements in which all bits are significant, and not used
modulo the destination element size. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 1 1 0 0 Pg Zm Zdn

R L U

LSR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = LSR(element1, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

LSR (wide elements,
predicated) Page 2173

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and destination element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (wide elements,
predicated) Page 2174

LSR (vectors)

Logical shift right by vector (predicated)

Shift right, inserting zeroes, active elements of the first source vector by corresponding elements of the second source
vector and destructively place the results in the corresponding elements of the first source vector. The shift amount
operand is a vector of unsigned elements in which all bits are significant, and not used modulo the element size.
Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 0 1 1 0 0 Pg Zm Zdn

R L U

LSR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = LSR(element1, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

LSR (vectors) Page 2175

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (vectors) Page 2176

LSR (immediate, unpredicated)

Logical shift right by immediate (unpredicated)

Shift right by immediate, inserting zeroes, each element of the source vector, and place the results in the
corresponding elements of the destination vector. The immediate shift amount is an unsigned value in the range 1 to
number of bits per element. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 0 1 Zn Zd

U

LSR <Zd>.<T>, <Zn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
bits(4) tsize = tszh:tszl;
case tsize of

when '0000' UNDEFINED;
when '0001' esize = 8;
when '001x' esize = 16;
when '01xx' esize = 32;
when '1xxx' esize = 64;

integer n = UInt(Zn);
integer d = UInt(Zd);
integer shift = (2 * esize) - UInt(tsize:imm3);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “tszh:tszl”:

tszh tszl <T>
00 00 RESERVED
00 01 B
00 1x H
01 xx S
1x xx D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<const> Is the immediate shift amount, in the range 1 to number of bits per element, encoded in "tsz:imm3".

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
Elem[result, e, esize] = LSR(element1, shift);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (immediate,
unpredicated) Page 2177

LSR (wide elements, unpredicated)

Logical shift right by 64-bit wide elements (unpredicated)

Shift right, inserting zeroes, all elements of the first source vector by corresponding overlapping 64-bit elements of the
second source vector and place the first in the corresponding elements of the destination vector. The shift amount is a
vector of unsigned 64-bit doubleword elements in which all bits are significant, and not used modulo the destination
element size. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 0 1 Zn Zd

U

LSR <Zd>.<T>, <Zn>.<T>, <Zm>.D

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(64) element2 = Elem[operand2, (e * esize) DIV 64, 64];
integer shift = Min(UInt(element2), esize);
Elem[result, e, esize] = LSR(element1, shift);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (wide elements,
unpredicated) Page 2178

LSRR

Reversed logical shift right by vector (predicated)

Reversed shift right, inserting zeroes, active elements of the second source vector by corresponding elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector. The
shift amount operand is a vector of unsigned elements in which all bits are significant, and not used modulo the
element size. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 0 1 1 0 0 Pg Zm Zdn

R L U

LSRR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
integer shift = Min(UInt(element1), esize);
Elem[result, e, esize] = LSR(element2, shift);

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

LSRR Page 2179

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRR Page 2180

MAD

Multiply-add vectors (predicated), writing multiplicand [Zdn = Za + Zdn * Zm]

Multiply the corresponding active elements of the first and second source vectors and add to elements of the third
(addend) vector. Destructively place the results in the destination and first source (multiplicand) vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 Zm 1 1 0 Pg Za Zdn

op

MAD <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer a = UInt(Za);
boolean sub_op = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element1 = UInt(Elem[operand1, e, esize]);
integer element2 = UInt(Elem[operand2, e, esize]);
integer product = element1 * element2;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

MAD Page 2181

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MAD Page 2182

MLA

Multiply-add vectors (predicated), writing addend [Zda = Zda + Zn * Zm]

Multiply the corresponding active elements of the first and second source vectors and add to elements of the third
source (addend) vector. Destructively place the results in the destination and third source (addend) vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 Zm 0 1 0 Pg Zn Zda

op

MLA <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean sub_op = FALSE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element1 = UInt(Elem[operand1, e, esize]);
integer element2 = UInt(Elem[operand2, e, esize]);
integer product = element1 * element2;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
else

Elem[result, e, esize] = Elem[operand3, e, esize];

Z[da] = result;

MLA Page 2183

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLA Page 2184

MLS

Multiply-subtract vectors (predicated), writing addend [Zda = Zda - Zn * Zm]

Multiply the corresponding active elements of the first and second source vectors and subtract from elements of the
third source (addend) vector. Destructively place the results in the destination and third source (addend) vector.
Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 Zm 0 1 1 Pg Zn Zda

op

MLS <Zda>.<T>, <Pg>/M, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean sub_op = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element1 = UInt(Elem[operand1, e, esize]);
integer element2 = UInt(Elem[operand2, e, esize]);
integer product = element1 * element2;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
else

Elem[result, e, esize] = Elem[operand3, e, esize];

Z[da] = result;

MLS Page 2185

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLS Page 2186

MOV (predicate, predicated, zeroing)

Move predicates (zeroing)

Read active elements from the source predicate and place in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register are set to zero. Does not set the condition flags.

This is an alias of AND (predicates). This means:

• The encodings in this description are named to match the encodings of AND (predicates).
• The description of AND (predicates) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

MOV <Pd>.B, <Pg>/Z, <Pn>.B

is equivalent to

AND <Pd>.B, <Pg>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '0' && Pn == Pm.

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of AND (predicates) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (predicate, predicated,
zeroing) Page 2187

MOV (immediate, predicated, zeroing)

Move signed integer immediate to vector elements (zeroing)

Move a signed integer immediate to each active element in the destination vector. Inactive elements in the destination
vector register are set to zero.
The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This is an alias of CPY (immediate, zeroing). This means:

• The encodings in this description are named to match the encodings of CPY (immediate, zeroing).
• The description of CPY (immediate, zeroing) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 0 0 sh imm8 Zd

M

MOV <Zd>.<T>, <Pg>/Z, #<imm>{, <shift>}

is equivalent to

CPY <Zd>.<T>, <Pg>/Z, #<imm>{, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

The description of CPY (immediate, zeroing) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (immediate, predicated,
zeroing) Page 2188

MOV (immediate, predicated, merging)

Move signed integer immediate to vector elements (merging)

Move a signed integer immediate to each active element in the destination vector. Inactive elements in the destination
vector register remain unmodified.
The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This is an alias of CPY (immediate, merging). This means:

• The encodings in this description are named to match the encodings of CPY (immediate, merging).
• The description of CPY (immediate, merging) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 0 1 sh imm8 Zd

M

MOV <Zd>.<T>, <Pg>/M, #<imm>{, <shift>}

is equivalent to

CPY <Zd>.<T>, <Pg>/M, #<imm>{, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

The description of CPY (immediate, merging) gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.

MOV (immediate, predicated,
merging) Page 2189

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (immediate, predicated,
merging) Page 2190

MOV (scalar, predicated)

Move general-purpose register to vector elements (predicated)

Move the general-purpose scalar source register to each active element in the destination vector. Inactive elements in
the destination vector register remain unmodified.

This is an alias of CPY (scalar). This means:

• The encodings in this description are named to match the encodings of CPY (scalar).
• The description of CPY (scalar) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 0 0 1 0 1 Pg Rn Zd

MOV <Zd>.<T>, <Pg>/M, <R><n|SP>

is equivalent to

CPY <Zd>.<T>, <Pg>/M, <R><n|SP>

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

The description of CPY (scalar) gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

MOV (scalar, predicated) Page 2191

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (scalar, predicated) Page 2192

MOV (SIMD&FP scalar, predicated)

Move SIMD&FP scalar register to vector elements (predicated)

Move the SIMD & floating-point scalar source register to each active element in the destination vector. Inactive
elements in the destination vector register remain unmodified.

This is an alias of CPY (SIMD&FP scalar). This means:

• The encodings in this description are named to match the encodings of CPY (SIMD&FP scalar).
• The description of CPY (SIMD&FP scalar) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 1 0 0 Pg Vn Zd

MOV <Zd>.<T>, <Pg>/M, <V><n>

is equivalent to

CPY <Zd>.<T>, <Pg>/M, <V><n>

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<n> Is the number [0-31] of the source SIMD&FP register, encoded in the "Vn" field.

Operation

The description of CPY (SIMD&FP scalar) gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

MOV (SIMD&FP scalar,
predicated) Page 2193

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (SIMD&FP scalar,
predicated) Page 2194

MOV (immediate, unpredicated)

Move signed immediate to vector elements (unpredicated)

Unconditionally broadcast the signed integer immediate into each element of the destination vector. This instruction is
unpredicated.
The immediate operand is a signed value in the range -128 to +127, and for element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512 (excluding 0).
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<simm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

This is an alias of DUP (immediate). This means:

• The encodings in this description are named to match the encodings of DUP (immediate).
• The description of DUP (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 1 0 0 0 1 1 sh imm8 Zd

MOV <Zd>.<T>, #<imm>{, <shift>}

is equivalent to

DUP <Zd>.<T>, #<imm>{, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is a signed immediate in the range -128 to 127, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

The description of DUP (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (immediate,
unpredicated) Page 2195

MOV (scalar, unpredicated)

Move general-purpose register to vector elements (unpredicated)

Unconditionally broadcast the general-purpose scalar source register into each element of the destination vector. This
instruction is unpredicated.

This is an alias of DUP (scalar). This means:

• The encodings in this description are named to match the encodings of DUP (scalar).
• The description of DUP (scalar) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Zd

MOV <Zd>.<T>, <R><n|SP>

is equivalent to

DUP <Zd>.<T>, <R><n|SP>

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “size”:

size <R>
01 W
x0 W
11 X

<n|SP> Is the number [0-30] of the general-purpose source register or the name SP (31), encoded in the "Rn"
field.

Operation

The description of DUP (scalar) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (scalar, unpredicated) Page 2196

MOV (SIMD&FP scalar, unpredicated)

Move indexed element or SIMD&FP scalar to vector (unpredicated)

Unconditionally broadcast the SIMD&FP scalar into each element of the destination vector. This instruction is
unpredicated.

This is an alias of DUP (indexed). This means:

• The encodings in this description are named to match the encodings of DUP (indexed).
• The description of DUP (indexed) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 imm2 1 tsz 0 0 1 0 0 0 Zn Zd

MOV <Zd>.<T>, <Zn>.<T>[<imm>]

is equivalent to

DUP <Zd>.<T>, <Zn>.<T>[<imm>]

and is the preferred disassembly when BitCount(imm2:tsz) > 1.

MOV <Zd>.<T>, <V><n>

is equivalent to

DUP <Zd>.<T>, <Zn>.<T>[0]

and is the preferred disassembly when BitCount(imm2:tsz) == 1.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “tsz”:

tsz <T>
00000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D
10000 Q

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<imm> Is the immediate index, in the range 0 to one less than the number of elements in 512 bits, encoded in
"imm2:tsz".

<V> Is a width specifier, encoded in “tsz”:

tsz <V>
00000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D
10000 Q

<n> Is the number [0-31] of the source SIMD&FP register, encoded in the "Zn" field.

MOV (SIMD&FP scalar,
unpredicated) Page 2197

Operation

The description of DUP (indexed) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (SIMD&FP scalar,
unpredicated) Page 2198

MOV (bitmask immediate)

Move logical bitmask immediate to vector (unpredicated)

Unconditionally broadcast the logical bitmask immediate into each element of the destination vector. This instruction
is unpredicated. The immediate is a 64-bit value consisting of a single run of ones or zeros repeating every 2, 4, 8, 16,
32 or 64 bits.

This is an alias of DUPM. This means:

• The encodings in this description are named to match the encodings of DUPM.
• The description of DUPM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 1 0 0 0 0 imm13 Zd

MOV <Zd>.<T>, #<const>

is equivalent to

DUPM <Zd>.<T>, #<const>

and is the preferred disassembly when SVEMoveMaskPreferred(imm13).

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of DUPM gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (bitmask immediate) Page 2199

MOV (predicate, unpredicated)

Move predicate (unpredicated)

Read all elements from the source predicate and place in the destination predicate. This instruction is unpredicated.
Does not set the condition flags.

This is an alias of ORR (predicates). This means:

• The encodings in this description are named to match the encodings of ORR (predicates).
• The description of ORR (predicates) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

MOV <Pd>.B, <Pn>.B

is equivalent to

ORR <Pd>.B, <Pn>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '0' && Pn == Pm && Pm == Pg.

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of ORR (predicates) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (predicate,
unpredicated) Page 2200

MOV (vector, unpredicated)

Move vector register (unpredicated)

Move vector register. This instruction is unpredicated.

This is an alias of ORR (vectors, unpredicated). This means:

• The encodings in this description are named to match the encodings of ORR (vectors, unpredicated).
• The description of ORR (vectors, unpredicated) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 Zm 0 0 1 1 0 0 Zn Zd

MOV <Zd>.D, <Zn>.D

is equivalent to

ORR <Zd>.D, <Zn>.D, <Zn>.D

and is the preferred disassembly when Zn == Zm.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

Operation

The description of ORR (vectors, unpredicated) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (vector, unpredicated) Page 2201

MOV (predicate, predicated, merging)

Move predicates (merging)

Read active elements from the source predicate and place in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register remain unmodified. Does not set the condition flags.

This is an alias of SEL (predicates). This means:

• The encodings in this description are named to match the encodings of SEL (predicates).
• The description of SEL (predicates) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 1 Pd

S

MOV <Pd>.B, <Pg>/M, <Pn>.B

is equivalent to

SEL <Pd>.B, <Pg>, <Pn>.B, <Pd>.B

and is the preferred disassembly when Pd == Pm.

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of SEL (predicates) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (predicate, predicated,
merging) Page 2202

MOV (vector, predicated)

Move vector elements (predicated)

Move elements from the source vector to the corresponding elements of the destination vector. Inactive elements in
the destination vector register remain unmodified.

This is an alias of SEL (vectors). This means:

• The encodings in this description are named to match the encodings of SEL (vectors).
• The description of SEL (vectors) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 1 1 Pg Zn Zd

MOV <Zd>.<T>, <Pg>/M, <Zn>.<T>

is equivalent to

SEL <Zd>.<T>, <Pg>, <Zn>.<T>, <Zd>.<T>

and is the preferred disassembly when Zd == Zm.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

Operation

The description of SEL (vectors) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (vector, predicated) Page 2203

MOVPRFX (predicated)

Move prefix (predicated)

The predicated MOVPRFX instruction is a hint to hardware that the instruction may be combined with the destructive
instruction which follows it in program order to create a single constructive operation. Since it is a hint it is also
permitted to be implemented as a discrete vector copy, and the result of executing the pair of instructions with or
without combining is identical. The choice of combined versus discrete operation may vary dynamically.
Unless the combination of a constructive operation with merging predication is specifically required, it is strongly
recommended that for performance reasons software should prefer to use the zeroing form of predicated MOVPRFX or
the unpredicated MOVPRFX instruction.
Although the operation of the instruction is defined as a simple predicated vector copy, it is required that the prefixed
instruction at PC+4 must be an SVE destructive binary or ternary instruction encoding, or a unary operation with
merging predication, but excluding other MOVPRFX instructions. The prefixed instruction must specify the same
predicate register, and have the same maximum element size (ignoring a fixed 64-bit "wide vector" operand), and the
same destination vector as the MOVPRFX instruction. The prefixed instruction must not use the destination register in
any other operand position, even if they have different names but refer to the same architectural register state. Any
other use is UNPREDICTABLE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 0 M 0 0 1 Pg Zn Zd

MOVPRFX <Zd>.<T>, <Pg>/<ZM>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean merging = (M == '1');

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZM> Is the predication qualifier, encoded in “M”:

M <ZM>
0 Z
1 M

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

MOVPRFX (predicated) Page 2204

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) dest = Z[d];
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand1, e, esize];
Elem[result, e, esize] = element;

elsif merging then
Elem[result, e, esize] = Elem[dest, e, esize];

else
Elem[result, e, esize] = Zeros();

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVPRFX (predicated) Page 2205

MOVPRFX (unpredicated)

Move prefix (unpredicated)

The unpredicated MOVPRFX instruction is a hint to hardware that the instruction may be combined with the destructive
instruction which follows it in program order to create a single constructive operation. Since it is a hint it is also
permitted to be implemented as a discrete vector copy, and the result of executing the pair of instructions with or
without combining is identical. The choice of combined versus discrete operation may vary dynamically.
Although the operation of the instruction is defined as a simple unpredicated vector copy, it is required that the
prefixed instruction at PC+4 must be an SVE destructive binary or ternary instruction encoding, or a unary operation
with merging predication, but excluding other MOVPRFX instructions. The prefixed instruction must specify the same
destination vector as the MOVPRFX instruction. The prefixed instruction must not use the destination register in any
other operand position, even if they have different names but refer to the same architectural register state. Any other
use is UNPREDICTABLE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 Zn Zd

MOVPRFX <Zd>, <Zn>

if !HaveSVE() then UNDEFINED;
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
bits(VL) result = Z[n];
Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVPRFX (unpredicated) Page 2206

MOVS (predicated)

Move predicates (zeroing), setting the condition flags

Read active elements from the source predicate and place in the corresponding elements of the destination predicate.
Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

This is an alias of ANDS. This means:

• The encodings in this description are named to match the encodings of ANDS.
• The description of ANDS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

MOVS <Pd>.B, <Pg>/Z, <Pn>.B

is equivalent to

ANDS <Pd>.B, <Pg>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '1' && Pn == Pm.

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of ANDS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVS (predicated) Page 2207

MOVS (unpredicated)

Move predicate (unpredicated), setting the condition flags

Read all elements from the source predicate and place in the destination predicate. This instruction is unpredicated.
Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This is an alias of ORRS. This means:

• The encodings in this description are named to match the encodings of ORRS.
• The description of ORRS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

MOVS <Pd>.B, <Pn>.B

is equivalent to

ORRS <Pd>.B, <Pn>/Z, <Pn>.B, <Pn>.B

and is the preferred disassembly when S == '1' && Pn == Pm && Pm == Pg.

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of ORRS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVS (unpredicated) Page 2208

MSB

Multiply-subtract vectors (predicated), writing multiplicand [Zdn = Za - Zdn * Zm]

Multiply the corresponding active elements of the first and second source vectors and subtract from elements of the
third (addend) vector. Destructively place the results in the destination and first source (multiplicand) vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 Zm 1 1 1 Pg Za Zdn

op

MSB <Zdn>.<T>, <Pg>/M, <Zm>.<T>, <Za>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
integer a = UInt(Za);
boolean sub_op = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

<Za> Is the name of the third source scalable vector register, encoded in the "Za" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) operand3 = if AnyActiveElement(mask, esize) then Z[a] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element1 = UInt(Elem[operand1, e, esize]);
integer element2 = UInt(Elem[operand2, e, esize]);
integer product = element1 * element2;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

MSB Page 2209

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSB Page 2210

MUL (vectors)

Multiply vectors (predicated)

Multiply active elements of the first source vector by corresponding elements of the second source vector and
destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 0 0 0 0 0 Pg Zm Zdn

H U

MUL <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = UInt(Elem[operand1, e, esize]);
integer element2 = UInt(Elem[operand2, e, esize]);
if ElemP[mask, e, esize] == '1' then

integer product = element1 * element2;
Elem[result, e, esize] = product<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

MUL (vectors) Page 2211

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL (vectors) Page 2212

MUL (immediate)

Multiply by immediate (unpredicated)

Multiply by an immediate each element of the source vector, and destructively place the results in the corresponding
elements of the source vector. The immediate is a signed 8-bit value in the range -128 to +127, inclusive. This
instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 0 0 0 0 1 1 0 imm8 Zdn

MUL <Zdn>.<T>, <Zdn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = SInt(imm8);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is the signed immediate operand, in the range -128 to 127, encoded in the "imm8" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = SInt(Elem[operand1, e, esize]);
Elem[result, e, esize] = (element1 * imm)<esize-1:0>;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL (immediate) Page 2213

NAND

Bitwise NAND predicates

Bitwise NAND active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 1 Pn 1 Pd

S

NAND <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = NOT(element1 AND element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NAND Page 2214

NANDS

Bitwise NAND predicates, setting the condition flags

Bitwise NAND active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 1 Pn 1 Pd

S

NANDS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = NOT(element1 AND element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NANDS Page 2215

NEG

Negate (predicated)

Negate the signed integer value in each active element of the source vector, and place the results in the corresponding
elements of the destination vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 1 1 1 0 1 Pg Zn Zd

NEG <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = SInt(Elem[operand, e, esize]);
element = -element;
Elem[result, e, esize] = element<esize-1:0>;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEG Page 2216

NOR

Bitwise NOR predicates

Bitwise NOR active elements of the second source predicate with corresponding elements of the first source predicate
and place the results in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 1 Pn 0 Pd

S

NOR <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = NOT(element1 OR element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOR Page 2217

NORS

Bitwise NOR predicates, setting the condition flags

Bitwise NOR active elements of the second source predicate with corresponding elements of the first source predicate
and place the results in the corresponding elements of the destination predicate. Inactive elements in the destination
predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result,
and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 1 Pn 0 Pd

S

NORS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = NOT(element1 OR element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NORS Page 2218

NOT (predicate)

Bitwise invert predicate

Bitwise invert each active element of the source predicate, and place the results in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Does not set the
condition flags.

This is an alias of EOR (predicates). This means:

• The encodings in this description are named to match the encodings of EOR (predicates).
• The description of EOR (predicates) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 0 Pd

S

NOT <Pd>.B, <Pg>/Z, <Pn>.B

is equivalent to

EOR <Pd>.B, <Pg>/Z, <Pn>.B, <Pg>.B

and is the preferred disassembly when Pm == Pg.

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of EOR (predicates) gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOT (predicate) Page 2219

NOT (vector)

Bitwise invert vector (predicated)

Bitwise invert each active element of the source vector, and place the results in the corresponding elements of the
destination vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 1 1 0 1 0 1 Pg Zn Zd

NOT <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = NOT element;

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOT (vector) Page 2220

NOTS

Bitwise invert predicate, setting the condition flags

Bitwise invert each active element of the source predicate, and place the results in the corresponding elements of the
destination predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE
(Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

This is an alias of EORS. This means:

• The encodings in this description are named to match the encodings of EORS.
• The description of EORS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 0 Pm 0 1 Pg 1 Pn 0 Pd

S

NOTS <Pd>.B, <Pg>/Z, <Pn>.B

is equivalent to

EORS <Pd>.B, <Pg>/Z, <Pn>.B, <Pg>.B

and is the preferred disassembly when Pm == Pg.

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

Operation

The description of EORS gives the operational pseudocode for this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOTS Page 2221

ORN (immediate)

Bitwise inclusive OR with inverted immediate (unpredicated)

Bitwise inclusive OR an inverted immediate with each 64-bit element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of
ones or zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This is a pseudo-instruction of ORR (immediate). This means:

• The encodings in this description are named to match the encodings of ORR (immediate).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of ORR (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 imm13 Zdn

ORN <Zdn>.<T>, <Zdn>.<T>, #<const>

is equivalent to

ORR <Zdn>.<T>, <Zdn>.<T>, #(-<const> - 1)

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

The description of ORR (immediate) gives the operational pseudocode for this instruction.

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN (immediate) Page 2222

ORN (predicates)

Bitwise inclusive OR inverted predicate

Bitwise inclusive OR inverted active elements of the second source predicate with corresponding elements of the first
source predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in
the destination predicate register are set to zero. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 0 Pn 1 Pd

S

ORN <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 OR (NOT element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN (predicates) Page 2223

ORNS

Bitwise inclusive OR inverted predicate, setting the condition flags

Bitwise inclusive OR inverted active elements of the second source predicate with corresponding elements of the first
source predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in
the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 0 Pn 1 Pd

S

ORNS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 OR (NOT element2);
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORNS Page 2224

ORR (predicates)

Bitwise inclusive OR predicates

Bitwise inclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Does not set the condition flags.

This instruction is used by the alias MOV (predicate, unpredicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 0 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

ORR <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Alias Conditions

Alias Is preferred when
MOV (predicate, unpredicated) S == '0' && Pn == Pm && Pm == Pg

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 OR element2;
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (predicates) Page 2225

ORR (vectors, predicated)

Bitwise inclusive OR vectors (predicated)

Bitwise inclusive OR active elements of the second source vector with corresponding elements of the first source
vector and destructively place the results in the corresponding elements of the first source vector. Inactive elements in
the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 0 0 0 Pg Zm Zdn

ORR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = element1 OR element2;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

ORR (vectors, predicated) Page 2226

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (vectors, predicated) Page 2227

ORR (immediate)

Bitwise inclusive OR with immediate (unpredicated)

Bitwise inclusive OR an immediate with each 64-bit element of the source vector, and destructively place the results in
the corresponding elements of the source vector. The immediate is a 64-bit value consisting of a single run of ones or
zeros repeating every 2, 4, 8, 16, 32 or 64 bits. This instruction is unpredicated.

This instruction is used by the pseudo-instruction ORN (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 imm13 Zdn

ORR <Zdn>.<T>, <Zdn>.<T>, #<const>

if !HaveSVE() then UNDEFINED;
integer dn = UInt(Zdn);
bits(64) imm;
(imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “imm13<12>:imm13<5:0>”:

imm13<12> imm13<5:0> <T>
0 0xxxxx S
0 10xxxx H
0 110xxx B
0 1110xx B
0 11110x B
0 111110 RESERVED
0 111111 RESERVED
1 xxxxxx D

<const> Is a 64, 32, 16 or 8-bit bitmask consisting of replicated 2, 4, 8, 16, 32 or 64 bit fields, each field
containing a rotated run of non-zero bits, encoded in the "imm13" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV 64;
bits(VL) operand = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(64) element1 = Elem[operand, e, 64];
Elem[result, e, 64] = element1 OR imm;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

ORR (immediate) Page 2228

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (immediate) Page 2229

ORR (vectors, unpredicated)

Bitwise inclusive OR vectors (unpredicated)

Bitwise inclusive OR all elements of the second source vector with corresponding elements of the first source vector
and place the first in the corresponding elements of the destination vector. This instruction is unpredicated.

This instruction is used by the alias MOV (vector, unpredicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 Zm 0 0 1 1 0 0 Zn Zd

ORR <Zd>.D, <Zn>.D, <Zm>.D

if !HaveSVE() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Alias Conditions

Alias Is preferred when
MOV (vector, unpredicated) Zn == Zm

Operation

CheckSVEEnabled();
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];

Z[d] = operand1 OR operand2;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (vectors, unpredicated) Page 2230

ORRS

Bitwise inclusive OR predicates, setting the condition flags

Bitwise inclusive OR active elements of the second source predicate with corresponding elements of the first source
predicate and place the results in the corresponding elements of the destination predicate. Inactive elements in the
destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the
predicate result, and the V flag to zero.

This instruction is used by the alias MOVS (unpredicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 1 1 0 0 Pm 0 1 Pg 0 Pn 0 Pd

S

ORRS <Pd>.B, <Pg>/Z, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Alias Conditions

Alias Is preferred when
MOVS (unpredicated) S == '1' && Pn == Pm && Pm == Pg

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1 OR element2;
else

ElemP[result, e, esize] = '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORRS Page 2231

ORV

Bitwise inclusive OR reduction to scalar

Bitwise inclusive OR horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 0 0 0 0 1 Pg Zn Vd

ORV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(esize) result = Zeros(esize);

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

result = result OR Elem[operand, e, esize];

V[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORV Page 2232

PFALSE

Set all predicate elements to false

Set all elements in the destination predicate to false.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 Pd

S

PFALSE <Pd>.B

if !HaveSVE() then UNDEFINED;
integer d = UInt(Pd);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

Operation

CheckSVEEnabled();
P[d] = Zeros(PL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PFALSE Page 2233

PFIRST

Set the first active predicate element to true

Sets the first active element in the destination predicate to true, otherwise elements from the source predicate are
passed through unchanged. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and
the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 Pg 0 Pdn

S

PFIRST <Pdn>.B, <Pg>, <Pdn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer dn = UInt(Pdn);

Assembler Symbols

<Pdn> Is the name of the source and destination scalable predicate register, encoded in the "Pdn" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) result = P[dn];
integer first = -1;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' && first == -1 then

first = e;

if first >= 0 then
ElemP[result, first, esize] = '1';

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[dn] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PFIRST Page 2234

PNEXT

Find next active predicate

An instruction used to construct a loop which iterates over all active elements in a predicate. If all source predicate
elements are false it sets the first active predicate element in the destination predicate to true. Otherwise it
determines the next active predicate element following the last true source predicate element, and if one is found sets
the corresponding destination predicate element to true. All other destination predicate elements are set to false. Sets
the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 1 1 0 0 1 1 1 0 0 0 1 0 Pg 0 Pdn

PNEXT <Pdn>.<T>, <Pg>, <Pdn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Pdn);

Assembler Symbols

<Pdn> Is the name of the source and destination scalable predicate register, encoded in the "Pdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand = P[dn];
bits(PL) result;

integer next = LastActiveElement(operand, esize) + 1;

while next < elements && (ElemP[mask, next, esize] == '0') do
next = next + 1;

result = Zeros();
if next < elements then

ElemP[result, next, esize] = '1';

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[dn] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PNEXT Page 2235

PRFB (vector plus immediate)

Gather prefetch bytes (vector plus immediate)

Gather prefetch of bytes from the active memory addresses generated by a vector base plus immediate index. The
index is in the range 0 to 31. Inactive addresses are not prefetched from memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFB <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 0;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFB <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 0;
integer offset = UInt(imm5);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

PRFB (vector plus immediate) Page 2236

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFB (vector plus immediate) Page 2237

PRFB (scalar plus immediate)

Contiguous prefetch bytes (immediate index)

Contiguous prefetch of byte elements from the memory address generated by a 64-bit scalar base and immediate
index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of predication, and added
to the base address.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 0 0 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFB <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 0;
integer offset = SInt(imm6);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

PRFB (scalar plus immediate) Page 2238

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFB (scalar plus immediate) Page 2239

PRFB (scalar plus scalar)

Contiguous prefetch bytes (scalar index)

Contiguous prefetch of byte elements from the memory address generated by a 64-bit scalar base and scalar index
which is added to the base address. After each element prefetch the index value is incremented, but the index register
is not updated.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 0 0 Rm 1 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFB <prfop>, <Pg>, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 0;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

PRFB (scalar plus scalar) Page 2240

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(64) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFB (scalar plus scalar) Page 2241

PRFB (scalar plus vector)

Gather prefetch bytes (scalar plus vector)

Gather prefetch of bytes from the active memory addresses generated by a 64-bit scalar base plus vector index. The
index values are optionally sign or zero-extended from 32 to 64 bits. Inactive addresses are not prefetched from
memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 3 classes: 32-bit scaled offset , 32-bit unpacked scaled offset and 64-bit scaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 1 Zm 0 0 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFB <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 0;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 1 Zm 0 0 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFB <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 1 Zm 1 0 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFB (scalar plus vector) Page 2242

PRFB <prfop>, <Pg>, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFB (scalar plus vector) Page 2243

PRFD (vector plus immediate)

Gather prefetch doublewords (vector plus immediate)

Gather prefetch of doublewords from the active memory addresses generated by a vector base plus immediate index.
The index is a multiple of 8 in the range 0 to 248. Inactive addresses are not prefetched from memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFD <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 3;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFD <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 3;
integer offset = UInt(imm5);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

PRFD (vector plus immediate) Page 2244

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to 0,
encoded in the "imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFD (vector plus immediate) Page 2245

PRFD (scalar plus immediate)

Contiguous prefetch doublewords (immediate index)

Contiguous prefetch of doubleword elements from the memory address generated by a 64-bit scalar base and
immediate index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of predication,
and added to the base address.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 0 1 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFD <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 3;
integer offset = SInt(imm6);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

PRFD (scalar plus immediate) Page 2246

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFD (scalar plus immediate) Page 2247

PRFD (scalar plus scalar)

Contiguous prefetch doublewords (scalar index)

Contiguous prefetch of doubleword elements from the memory address generated by a 64-bit scalar base and scalar
index which is multiplied by 8 and added to the base address. After each element prefetch the index value is
incremented, but the index register is not updated.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 0 0 Rm 1 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFD <prfop>, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 3;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

PRFD (scalar plus scalar) Page 2248

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(64) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFD (scalar plus scalar) Page 2249

PRFD (scalar plus vector)

Gather prefetch doublewords (scalar plus vector)

Gather prefetch of doublewords from the active memory addresses generated by a 64-bit scalar base plus vector
index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then multiplied by 8. Inactive
addresses are not prefetched from memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 3 classes: 32-bit scaled offset , 32-bit unpacked scaled offset and 64-bit scaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 1 Zm 0 1 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFD <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #3]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 3;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 1 Zm 0 1 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFD <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #3]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 3;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 1 Zm 1 1 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFD (scalar plus vector) Page 2250

PRFD <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, LSL #3]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 3;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFD (scalar plus vector) Page 2251

PRFH (vector plus immediate)

Gather prefetch halfwords (vector plus immediate)

Gather prefetch of halfwords from the active memory addresses generated by a vector base plus immediate index. The
index is a multiple of 2 in the range 0 to 62. Inactive addresses are not prefetched from memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFH <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 1;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 1 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFH <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 1;
integer offset = UInt(imm5);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

PRFH (vector plus immediate) Page 2252

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFH (vector plus immediate) Page 2253

PRFH (scalar plus immediate)

Contiguous prefetch halfwords (immediate index)

Contiguous prefetch of halfword elements from the memory address generated by a 64-bit scalar base and immediate
index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of predication, and added
to the base address.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 0 0 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFH <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 1;
integer offset = SInt(imm6);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

PRFH (scalar plus immediate) Page 2254

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFH (scalar plus immediate) Page 2255

PRFH (scalar plus scalar)

Contiguous prefetch halfwords (scalar index)

Contiguous prefetch of halfword elements from the memory address generated by a 64-bit scalar base and scalar
index which is multiplied by 2 and added to the base address. After each element prefetch the index value is
incremented, but the index register is not updated.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 0 0 Rm 1 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFH <prfop>, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer esize = 16;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 1;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

PRFH (scalar plus scalar) Page 2256

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(64) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFH (scalar plus scalar) Page 2257

PRFH (scalar plus vector)

Gather prefetch halfwords (scalar plus vector)

Gather prefetch of halfwords from the active memory addresses generated by a 64-bit scalar base plus vector index.
The index values are optionally first sign or zero-extended from 32 to 64 bits and then multiplied by 2. Inactive
addresses are not prefetched from memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 3 classes: 32-bit scaled offset , 32-bit unpacked scaled offset and 64-bit scaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 1 Zm 0 0 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFH <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 1;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 1 Zm 0 0 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFH <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 1;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 1 Zm 1 0 1 Pg Rn 0 prfop

msz<1>msz<0>

PRFH (scalar plus vector) Page 2258

PRFH <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, LSL #1]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 1;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFH (scalar plus vector) Page 2259

PRFW (vector plus immediate)

Gather prefetch words (vector plus immediate)

Gather prefetch of words from the active memory addresses generated by a vector base plus immediate index. The
index is a multiple of 4 in the range 0 to 124. Inactive addresses are not prefetched from memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFW <prfop>, <Pg>, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 2;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 1 0 0 0 imm5 1 1 1 Pg Zn 0 prfop

msz<1>msz<0>

PRFW <prfop>, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 2;
integer offset = UInt(imm5);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

PRFW (vector plus
immediate) Page 2260

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to 0,
encoded in the "imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;

if AnyActiveElement(mask, esize) then
base = Z[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + (offset << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFW (vector plus
immediate) Page 2261

PRFW (scalar plus immediate)

Contiguous prefetch words (immediate index)

Contiguous prefetch of word elements from the memory address generated by a 64-bit scalar base and immediate
index in the range -32 to 31 which is multiplied by the vector's in-memory size, irrespective of predication, and added
to the base address.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 0 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFW <prfop>, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 2;
integer offset = SInt(imm6);

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -32 to 31, defaulting to 0, encoded in the
"imm6" field.

PRFW (scalar plus immediate) Page 2262

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFW (scalar plus immediate) Page 2263

PRFW (scalar plus scalar)

Contiguous prefetch words (scalar index)

Contiguous prefetch of word elements from the memory address generated by a 64-bit scalar base and scalar index
which is multiplied by 4 and added to the base address. After each element prefetch the index value is incremented,
but the index register is not updated.
The predicate may be used to suppress prefetches from unwanted addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 0 0 Rm 1 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFW <prfop>, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer scale = 2;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

PRFW (scalar plus scalar) Page 2264

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(64) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = X[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = UInt(offset) + e;
bits(64) addr = base + (eoff << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFW (scalar plus scalar) Page 2265

PRFW (scalar plus vector)

Gather prefetch words (scalar plus vector)

Gather prefetch of words from the active memory addresses generated by a 64-bit scalar base plus vector index. The
index values are optionally first sign or zero-extended from 32 to 64 bits and then multiplied by 4. Inactive addresses
are not prefetched from memory.
The <prfop> symbol specifies the prefetch hint as a combination of three options: access type PLD for load or PST for
store; target cache level L1, L2 or L3; temporality (KEEP for temporal or STRM for non-temporal).

It has encodings from 3 classes: 32-bit scaled offset , 32-bit unpacked scaled offset and 64-bit scaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 1 Zm 0 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFW <prfop>, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 2;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 1 Zm 0 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFW <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 32;
boolean offs_unsigned = (xs == '0');
integer scale = 2;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 1 Zm 1 1 0 Pg Rn 0 prfop

msz<1>msz<0>

PRFW (scalar plus vector) Page 2266

PRFW <prfop>, <Pg>, [<Xn|SP>, <Zm>.D, LSL #2]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer level = UInt(prfop<2:1>);
boolean stream = (prfop<0> == '1');
pref_hint = if prfop<3> == '0' then Prefetch_READ else Prefetch_WRITE;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 2;

Assembler Symbols

<prfop> Is the prefetch operation specifier, encoded in “prfop”:

prfop <prfop>
0000 PLDL1KEEP
0001 PLDL1STRM
0010 PLDL2KEEP
0011 PLDL2STRM
0100 PLDL3KEEP
0101 PLDL3STRM
x11x #uimm4
1000 PSTL1KEEP
1001 PSTL1STRM
1010 PSTL2KEEP
1011 PSTL2STRM
1100 PSTL3KEEP
1101 PSTL3STRM

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(64) base;
bits(VL) offset;

if AnyActiveElement(mask, esize) then
base = if n == 31 then SP[] else X[n];
offset = Z[m];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Hint_Prefetch(addr, pref_hint, level, stream);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFW (scalar plus vector) Page 2267

PTEST

Set condition flags for predicate

Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate source register, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 Pg 0 Pn 0 0 0 0 0

S

PTEST <Pg>, <Pn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);

Assembler Symbols

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(PL) result = P[n];

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PTEST Page 2268

PTRUE

Initialise predicate from named constraint

Set elements of the destination predicate to true if the element number satisfies the named predicate constraint, or to
false otherwise. If the constraint specifies more elements than are available at the current vector length then all
elements of the destination predicate are set to false.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 1 1 0 0 0 1 1 1 0 0 0 pattern 0 Pd

S

PTRUE <Pd>.<T>{, <pattern>}

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer d = UInt(Pd);
boolean setflags = FALSE;
bits(5) pat = pattern;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

PTRUE Page 2269

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(PL) result;

for e = 0 to elements-1
ElemP[result, e, esize] = if e < count then '1' else '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(result, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PTRUE Page 2270

PTRUES

Initialise predicate from named constraint and set the condition flags

Set elements of the destination predicate to true if the element number satisfies the named predicate constraint, or to
false otherwise. If the constraint specifies more elements than are available at the current vector length then all
elements of the destination predicate are set to false.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result,
and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 1 1 0 0 1 1 1 1 0 0 0 pattern 0 Pd

S

PTRUES <Pd>.<T>{, <pattern>}

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer d = UInt(Pd);
boolean setflags = TRUE;
bits(5) pat = pattern;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

PTRUES Page 2271

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(PL) result;

for e = 0 to elements-1
ElemP[result, e, esize] = if e < count then '1' else '0';

if setflags then
PSTATE.<N,Z,C,V> = PredTest(result, result, esize);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PTRUES Page 2272

PUNPKHI, PUNPKLO

Unpack and widen half of predicate

Unpack elements from the lowest or highest half of the source predicate and place in elements of twice their size
within the destination predicate. This instruction is unpredicated.

It has encodings from 2 classes: High half and Low half

High half

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 Pn 0 Pd

H

PUNPKHI <Pd>.H, <Pn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer n = UInt(Pn);
integer d = UInt(Pd);
boolean hi = TRUE;

Low half

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 Pn 0 Pd

H

PUNPKLO <Pd>.H, <Pn>.B

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer n = UInt(Pn);
integer d = UInt(Pd);
boolean hi = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) operand = P[n];
bits(PL) result;

for e = 0 to elements-1
ElemP[result, e, esize] = ElemP[operand, if hi then e + elements else e, esize DIV 2];

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PUNPKHI, PUNPKLO Page 2273

RBIT

Reverse bits (predicated)

Reverse bits in each active element of the source vector, and place the results in the corresponding elements of the
destination vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 1 1 1 1 0 0 Pg Zn Zd

RBIT <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = BitReverse(element);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT Page 2274

RDFFR (unpredicated)

Read the first-fault register

Read the first-fault register (FFR) and place in the destination predicate without predication.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 Pd

S

RDFFR <Pd>.B

if !HaveSVE() then UNDEFINED;
integer d = UInt(Pd);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

Operation

CheckSVEEnabled();
bits(PL) ffr = FFR[];
P[d] = ffr;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RDFFR (unpredicated) Page 2275

RDFFR (predicated)

Return predicate of succesfully loaded elements

Read the first-fault register (FFR) and place active elements in the corresponding elements of the destination
predicate. Inactive elements in the destination predicate register are set to zero. Does not set the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 Pg 0 Pd

S

RDFFR <Pd>.B, <Pg>/Z

if !HaveSVE() then UNDEFINED;
integer g = UInt(Pg);
integer d = UInt(Pd);
boolean setflags = FALSE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(PL) ffr = FFR[];
bits(PL) result = ffr AND mask;

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, 8);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RDFFR (predicated) Page 2276

RDFFRS

Return predicate of succesfully loaded elements, setting the condition flags

Read the first-fault register (FFR) and place active elements in the corresponding elements of the destination
predicate. Inactive elements in the destination predicate register are set to zero. Sets the FIRST (N), NONE (Z), !LAST (C)
condition flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 Pg 0 Pd

S

RDFFRS <Pd>.B, <Pg>/Z

if !HaveSVE() then UNDEFINED;
integer g = UInt(Pg);
integer d = UInt(Pd);
boolean setflags = TRUE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

Operation

CheckSVEEnabled();
bits(PL) mask = P[g];
bits(PL) ffr = FFR[];
bits(PL) result = ffr AND mask;

if setflags then
PSTATE.<N,Z,C,V> = PredTest(mask, result, 8);

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RDFFRS Page 2277

RDVL

Read multiple of vector register size to scalar register

Multiply the current vector register size in bytes by an immediate in the range -32 to 31 and place the result in the
64-bit destination general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 imm6 Rd

RDVL <Xd>, #<imm>

if !HaveSVE() then UNDEFINED;
integer d = UInt(Rd);
integer imm = SInt(imm6);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation

CheckSVEEnabled();
integer len = imm * (VL DIV 8);
X[d] = len<63:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RDVL Page 2278

REV (predicate)

Reverse all elements in a predicate

Reverse the order of all elements in the source predicate and place in the destination predicate. This instruction is
unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 1 0 0 0 1 0 0 0 0 0 Pn 0 Pd

REV <Pd>.<T>, <Pn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Pn);
integer d = UInt(Pd);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
bits(PL) operand = P[n];
bits(PL) result = Reverse(operand, esize DIV 8);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV (predicate) Page 2279

REV (vector)

Reverse all elements in a vector (unpredicated)

Reverse the order of all elements in the source vector and place in the destination vector. This instruction is
unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 1 0 0 0 0 0 1 1 1 0 Zn Zd

REV <Zd>.<T>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
bits(VL) operand = Z[n];
bits(VL) result = Reverse(operand, esize);
Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV (vector) Page 2280

REVB, REVH, REVW

Reverse bytes / halfwords / words within elements (predicated)

Reverse the order of 8-bit bytes, 16-bit halfwords or 32-bit words within each active element of the source vector, and
place the results in the corresponding elements of the destination vector. Inactive elements in the destination vector
register remain unmodified.

It has encodings from 3 classes: Byte , Halfword and Word

Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 1 0 0 1 0 0 Pg Zn Zd

REVB <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer swsize = 8;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 1 0 1 1 0 0 Pg Zn Zd

REVH <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size != '1x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer swsize = 16;

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 1 1 0 1 0 0 Pg Zn Zd

REVW <Zd>.D, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer swsize = 32;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> For the byte variant: is the size specifier, encoded in “size”:

REVB, REVH, REVW Page 2281

size <T>
00 RESERVED
01 H
10 S
11 D

For the halfword variant: is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = Reverse(element, swsize);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REVB, REVH, REVW Page 2282

SABD

Signed absolute difference (predicated)

Compute the absolute difference between signed integer values in active elements of the second source vector and
corresponding elements of the first source vector and destructively place the difference in the corresponding elements
of the first source vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 1 0 0 0 0 0 Pg Zm Zdn

U

SABD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer absdiff = Abs(element1 - element2);
Elem[result, e, esize] = absdiff<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

SABD Page 2283

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABD Page 2284

SADDV

Signed add reduction to scalar

Signed add horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination register.
Narrow elements are first sign-extended to 64 bits. Inactive elements in the source vector are treated as zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 0 0 0 0 0 0 1 Pg Zn Vd

U

SADDV <Dd>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<Dd> Is the 64-bit name of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 RESERVED

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = Z[n];
integer sum = 0;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = SInt(Elem[operand, e, esize]);
sum = sum + element;

V[d] = sum<63:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDV Page 2285

SCVTF

Signed integer convert to floating-point (predicated)

Convert to floating-point from the signed integer in each active element of the source vector, and place the results in
the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.
If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

It has encodings from 7 classes: 16-bit to half-precision , 32-bit to half-precision , 32-bit to single-precision , 32-bit to
double-precision , 64-bit to half-precision , 64-bit to single-precision and 64-bit to double-precision

16-bit to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 Pg Zn Zd

int_U

SCVTF <Zd>.H, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 16;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

32-bit to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 Pg Zn Zd

int_U

SCVTF <Zd>.H, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 16;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

32-bit to single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 Pg Zn Zd

int_U

SCVTF Page 2286

SCVTF <Zd>.S, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 32;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

32-bit to double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 Pg Zn Zd

int_U

SCVTF <Zd>.D, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 64;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

64-bit to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 Pg Zn Zd

int_U

SCVTF <Zd>.H, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 16;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

64-bit to single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 Pg Zn Zd

int_U

SCVTF Page 2287

SCVTF <Zd>.S, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 32;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

64-bit to double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 Pg Zn Zd

int_U

SCVTF <Zd>.D, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 64;
boolean unsigned = FALSE;
FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
bits(d_esize) fpval = FixedToFP(element<s_esize-1:0>, 0, unsigned, FPCR[], rounding);
Elem[result, e, esize] = ZeroExtend(fpval);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

SCVTF Page 2288

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF Page 2289

SDIV

Signed divide (predicated)

Signed divide active elements of the first source vector by corresponding elements of the second source vector and
destructively place the quotient in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 0 0 0 0 0 Pg Zm Zdn

R U

SDIV <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '0x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer element2 = Int(Elem[operand2, e, esize], unsigned);
integer quotient;
if element2 == 0 then

quotient = 0;
else

quotient = RoundTowardsZero(Real(element1) / Real(element2));
Elem[result, e, esize] = quotient<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

SDIV Page 2290

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDIV Page 2291

SDIVR

Signed reversed divide (predicated)

Signed reversed divide active elements of the second source vector by corresponding elements of the first source
vector and destructively place the quotient in the corresponding elements of the first source vector. Inactive elements
in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 1 0 0 0 0 Pg Zm Zdn

R U

SDIVR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '0x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer element2 = Int(Elem[operand2, e, esize], unsigned);
integer quotient;
if element1 == 0 then

quotient = 0;
else

quotient = RoundTowardsZero(Real(element2) / Real(element1));
Elem[result, e, esize] = quotient<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

SDIVR Page 2292

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDIVR Page 2293

SDOT (vectors)

Signed integer dot product

The signed integer dot product instruction computes the dot product of a group of four signed 8-bit or 16-bit integer
values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four signed 8-bit or
16-bit integer values in the corresponding 32-bit or 64-bit element of the second source vector, and then destructively
adds the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.
This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 0 0 Zn Zda

U

SDOT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

if !HaveSVE() then UNDEFINED;
if size == '0x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in “size<0>”:

size<0> <Tb>
0 B
1 H

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
bits(esize) res = Elem[operand3, e, esize];
for i = 0 to 3

integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
res = res + element1 * element2;

Elem[result, e, esize] = res;

Z[da] = result;

SDOT (vectors) Page 2294

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDOT (vectors) Page 2295

SDOT (indexed)

Signed integer indexed dot product

The signed integer indexed dot product instruction computes the dot product of a group of four signed 8-bit or 16-bit
integer values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four signed 8-bit
or 16-bit integer values in an indexed 32-bit or 64-bit element of the second source vector, and then destructively adds
the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.
The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups per
128-bit segment, encoded in 1 to 2 bits depending on the size of the group. This instruction is unpredicated.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 0 Zn Zda

size<1>size<0> U

SDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 0 Zn Zda

size<1>size<0> U

SDOT <Zda>.D, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer index = UInt(i1);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in the
"Zm" field.
For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in the
"Zm" field.

<imm> For the 32-bit variant: is the immediate index of a quadtuplet of four 8-bit elements within each 128-bit
vector segment, in the range 0 to 3, encoded in the "i2" field.
For the 64-bit variant: is the immediate index of a quadtuplet of four 16-bit elements within each 128-bit
vector segment, in the range 0 to 1, encoded in the "i1" field.

SDOT (indexed) Page 2296

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer eltspersegment = 128 DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(esize) res = Elem[operand3, e, esize];
for i = 0 to 3

integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
res = res + element1 * element2;

Elem[result, e, esize] = res;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDOT (indexed) Page 2297

SEL (predicates)

Conditionally select elements from two predicates

Read active elements from the first source predicate and inactive elements from the second source predicate and
place in the corresponding elements of the destination predicate. Does not set the condition flags.

This instruction is used by the alias MOV (predicate, predicated, merging).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 0 0 Pm 0 1 Pg 1 Pn 1 Pd

S

SEL <Pd>.B, <Pg>, <Pn>.B, <Pm>.B

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer g = UInt(Pg);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

Alias Conditions

Alias Is preferred when
MOV (predicate, predicated, merging) Pd == Pm

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for e = 0 to elements-1
bit element1 = ElemP[operand1, e, esize];
bit element2 = ElemP[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

ElemP[result, e, esize] = element1;
else

ElemP[result, e, esize] = element2;

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEL (predicates) Page 2298

SEL (vectors)

Conditionally select elements from two vectors

Read active elements from the first source vector and inactive elements from the second source vector and place in
the corresponding elements of the destination vector.

This instruction is used by the alias MOV (vector, predicated).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 1 1 Pg Zn Zd

SEL <Zd>.<T>, <Pg>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register, encoded in the "Pg" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Alias Conditions

Alias Is preferred when
MOV (vector, predicated) Zd == Zm

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) operand2 = if AnyActiveElement(NOT(mask), esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = Elem[operand1, e, esize];
else

Elem[result, e, esize] = Elem[operand2, e, esize];

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

SEL (vectors) Page 2299

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEL (vectors) Page 2300

SETFFR

Initialise the first-fault register to all true

Initialise the first-fault register (FFR) to all true prior to a sequence of first-fault or non-fault loads. This instruction is
unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

SETFFR

if !HaveSVE() then UNDEFINED;

Operation

CheckSVEEnabled();
FFR[] = Ones(PL);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SETFFR Page 2301

SMAX (vectors)

Signed maximum vectors (predicated)

Determine the signed maximum of active elements of the second source vector and corresponding elements of the first
source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 0 0 0 0 0 Pg Zm Zdn

U

SMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer maximum = Max(element1, element2);
Elem[result, e, esize] = maximum<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

SMAX (vectors) Page 2302

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAX (vectors) Page 2303

SMAX (immediate)

Signed maximum with immediate (unpredicated)

Determine the signed maximum of an immediate and each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is a signed 8-bit value in the range -128 to
+127, inclusive. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 1 0 imm8 Zdn

U

SMAX <Zdn>.<T>, <Zdn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
boolean unsigned = FALSE;
integer imm = Int(imm8, unsigned);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is the signed immediate operand, in the range -128 to 127, encoded in the "imm8" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
Elem[result, e, esize] = Max(element1, imm)<esize-1:0>;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAX (immediate) Page 2304

SMAXV

Signed maximum reduction to scalar

Signed maximum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as the minimum signed integer for the element size.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 0 0 0 0 1 Pg Zn Vd

U

SMAXV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);
boolean unsigned = FALSE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
integer maximum = if unsigned then 0 else -(2^(esize-1));

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = Int(Elem[operand, e, esize], unsigned);
maximum = Max(maximum, element);

V[d] = maximum<esize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAXV Page 2305

SMIN (vectors)

Signed minimum vectors (predicated)

Determine the signed minimum of active elements of the second source vector and corresponding elements of the first
source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 1 0 0 0 0 Pg Zm Zdn

U

SMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer minimum = Min(element1, element2);
Elem[result, e, esize] = minimum<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

SMIN (vectors) Page 2306

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMIN (vectors) Page 2307

SMIN (immediate)

Signed minimum with immediate (unpredicated)

Determine the signed minimum of an immediate and each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is a signed 8-bit value in the range -128 to
+127, inclusive. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 1 0 imm8 Zdn

U

SMIN <Zdn>.<T>, <Zdn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
boolean unsigned = FALSE;
integer imm = Int(imm8, unsigned);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is the signed immediate operand, in the range -128 to 127, encoded in the "imm8" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
Elem[result, e, esize] = Min(element1, imm)<esize-1:0>;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMIN (immediate) Page 2308

SMINV

Signed minimum reduction to scalar

Signed minimum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as the maximum signed integer for the element size.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 1 0 0 0 1 Pg Zn Vd

U

SMINV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);
boolean unsigned = FALSE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
integer minimum = if unsigned then (2^esize - 1) else (2^(esize-1) - 1);

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = Int(Elem[operand, e, esize], unsigned);
minimum = Min(minimum, element);

V[d] = minimum<esize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMINV Page 2309

SMMLA

Signed integer matrix multiply-accumulate

The signed integer matrix multiply-accumulate instruction multiplies the 2×8 matrix of signed 8-bit integer values
held in each 128-bit segment of the first source vector by the 8×2 matrix of signed 8-bit integer values in the
corresponding segment of the second source vector. The resulting 2×2 widened 32-bit integer matrix product is then
destructively added to the 32-bit integer matrix accumulator held in the corresponding segment of the addend and
destination vector. This is equivalent to performing an 8-way dot product per destination element.
This instruction is unpredicated.
ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 1 0 0 0 Zm 1 0 0 1 1 0 Zn Zda

uns<1>uns<0>

SMMLA <Zda>.S, <Zn>.B, <Zm>.B

if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_unsigned = FALSE;
boolean op2_unsigned = FALSE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer segments = VL DIV 128;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result = Zeros();
bits(128) op1, op2;
bits(128) res, addend;

for s = 0 to segments-1
op1 = Elem[operand1, s, 128];
op2 = Elem[operand2, s, 128];
addend = Elem[operand3, s, 128];
res = MatMulAdd(addend, op1, op2, op1_unsigned, op2_unsigned);
Elem[result, s, 128] = res;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.

SMMLA Page 2310

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMLA Page 2311

SMULH

Signed multiply returning high half (predicated)

Widening multiply signed integer values in active elements of the first source vector by corresponding elements of the
second source vector and destructively place the high half of the result in the corresponding elements of the first
source vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 1 0 0 0 0 Pg Zm Zdn

H U

SMULH <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer product = (element1 * element2) >> esize;
Elem[result, e, esize] = product<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

SMULH Page 2312

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULH Page 2313

SPLICE

Splice two vectors under predicate control

Copy the first active to last active elements (inclusive) from the first source vector to the lowest-numbered elements of
the result. Then set any remaining elements of the result to a copy of the lowest-numbered elements from the second
source vector. The result is placed destructively in the first source vector.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 1 0 0 1 0 0 Pg Zm Zdn

SPLICE <Zdn>.<T>, <Pg>, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = Z[m];
bits(VL) result;
integer x = 0;
boolean active = FALSE;
integer lastnum = LastActiveElement(mask, esize);

if lastnum >= 0 then
for e = 0 to lastnum

active = active || ElemP[mask, e, esize] == '1';
if active then

Elem[result, x, esize] = Elem[operand1, e, esize];
x = x + 1;

elements = elements - x - 1;
for e = 0 to elements

Elem[result, x, esize] = Elem[operand2, e, esize];
x = x + 1;

Z[dn] = result;

SPLICE Page 2314

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPLICE Page 2315

SQADD (immediate)

Signed saturating add immediate (unpredicated)

Signed saturating add of an unsigned immediate to each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.
The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also be a
positive multiple of 256 in the range 256 to 65280.
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 1 0 0 1 1 sh imm8 Zdn

U

SQADD <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = UInt(imm8);
if sh == '1' then imm = imm << 8;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + imm, esize, unsigned);

Z[dn] = result;

SQADD (immediate) Page 2316

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQADD (immediate) Page 2317

SQADD (vectors)

Signed saturating add vectors (unpredicated)

Signed saturating add all elements of the second source vector to corresponding elements of the first source vector
and place the results in the corresponding elements of the destination vector. Each result element is saturated to the
N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 0 0 Zn Zd

U

SQADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
boolean unsigned = FALSE;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + element2, esize, unsigned);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQADD (vectors) Page 2318

SQDECB

Signed saturating decrement scalar by multiple of 8-bit predicate constraint element count

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECB <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECB <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQDECB Page 2319

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECB Page 2320

SQDECD (scalar)

Signed saturating decrement scalar by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECD <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECD <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQDECD (scalar) Page 2321

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECD (scalar) Page 2322

SQDECD (vector)

Signed saturating decrement vector by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 64-bit signed integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 1 0 pattern Zdn

size<1>size<0> D U

SQDECD <Zdn>.D{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

SQDECD (vector) Page 2323

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECD (vector) Page 2324

SQDECH (scalar)

Signed saturating decrement scalar by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECH <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECH <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQDECH (scalar) Page 2325

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECH (scalar) Page 2326

SQDECH (vector)

Signed saturating decrement vector by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 16-bit signed integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 1 0 pattern Zdn

size<1>size<0> D U

SQDECH <Zdn>.H{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

SQDECH (vector) Page 2327

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECH (vector) Page 2328

SQDECP (scalar)

Signed saturating decrement scalar by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to decrement the scalar
destination. The result is saturated to the source general-purpose register's signed integer range. A 32-bit saturated
result is then sign-extended to 64 bits.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 0 1 0 0 Pm Rdn

D U sf

SQDECP <Xdn>, <Pm>.<T>, <Wdn>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 0 1 1 0 Pm Rdn

D U sf

SQDECP <Xdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

SQDECP (scalar) Page 2329

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(ssize) operand1 = X[dn];
bits(PL) operand2 = P[m];
bits(ssize) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

integer element = Int(operand1, unsigned);
(result, -) = SatQ(element - count, ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECP (scalar) Page 2330

SQDECP (vector)

Signed saturating decrement vector by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to decrement all destination
vector elements. The results are saturated to the element signed integer range.
The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited in
a future release of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 0 1 0 0 0 0 0 0 Pm Zdn

D U

SQDECP <Zdn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Zdn);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) operand2 = P[m];
bits(VL) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

for e = 0 to elements-1
integer element = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element - count, esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.

SQDECP (vector) Page 2331

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECP (vector) Page 2332

SQDECW (scalar)

Signed saturating decrement scalar by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECW <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 1 0 pattern Rdn

size<1>size<0> sf D U

SQDECW <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQDECW (scalar) Page 2333

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECW (scalar) Page 2334

SQDECW (vector)

Signed saturating decrement vector by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 32-bit signed integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 1 0 pattern Zdn

size<1>size<0> D U

SQDECW <Zdn>.S{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

SQDECW (vector) Page 2335

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDECW (vector) Page 2336

SQINCB

Signed saturating increment scalar by multiple of 8-bit predicate constraint element count

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCB <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCB <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQINCB Page 2337

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCB Page 2338

SQINCD (scalar)

Signed saturating increment scalar by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCD <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCD <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQINCD (scalar) Page 2339

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCD (scalar) Page 2340

SQINCD (vector)

Signed saturating increment vector by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 64-bit signed integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 0 0 pattern Zdn

size<1>size<0> D U

SQINCD <Zdn>.D{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

SQINCD (vector) Page 2341

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCD (vector) Page 2342

SQINCH (scalar)

Signed saturating increment scalar by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCH <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCH <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQINCH (scalar) Page 2343

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCH (scalar) Page 2344

SQINCH (vector)

Signed saturating increment vector by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 16-bit signed integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 0 0 pattern Zdn

size<1>size<0> D U

SQINCH <Zdn>.H{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

SQINCH (vector) Page 2345

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCH (vector) Page 2346

SQINCP (scalar)

Signed saturating increment scalar by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to increment the scalar
destination. The result is saturated to the source general-purpose register's signed integer range. A 32-bit saturated
result is then sign-extended to 64 bits.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 0 1 0 0 Pm Rdn

D U sf

SQINCP <Xdn>, <Pm>.<T>, <Wdn>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 0 1 1 0 Pm Rdn

D U sf

SQINCP <Xdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

SQINCP (scalar) Page 2347

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(ssize) operand1 = X[dn];
bits(PL) operand2 = P[m];
bits(ssize) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

integer element = Int(operand1, unsigned);
(result, -) = SatQ(element + count, ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCP (scalar) Page 2348

SQINCP (vector)

Signed saturating increment vector by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to increment all destination
vector elements. The results are saturated to the element signed integer range.
The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited in
a future release of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 0 1 0 0 0 0 0 0 Pm Zdn

D U

SQINCP <Zdn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Zdn);
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) operand2 = P[m];
bits(VL) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

for e = 0 to elements-1
integer element = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element + count, esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.

SQINCP (vector) Page 2349

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCP (vector) Page 2350

SQINCW (scalar)

Signed saturating increment scalar by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the source general-purpose register's signed integer range. A 32-bit saturated result is then sign-
extended to 64 bits.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCW <Xdn>, <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 0 0 pattern Rdn

size<1>size<0> sf D U

SQINCW <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;
integer ssize = 64;

Assembler Symbols

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

SQINCW (scalar) Page 2351

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCW (scalar) Page 2352

SQINCW (vector)

Signed saturating increment vector by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 32-bit signed integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 0 0 pattern Zdn

size<1>size<0> D U

SQINCW <Zdn>.S{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

SQINCW (vector) Page 2353

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQINCW (vector) Page 2354

SQSUB (immediate)

Signed saturating subtract immediate (unpredicated)

Signed saturating subtract of an unsigned immediate from each element of the source vector, and destructively place
the results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.
The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also be a
positive multiple of 256 in the range 256 to 65280.
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 1 1 0 1 1 sh imm8 Zdn

U

SQSUB <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = UInt(imm8);
if sh == '1' then imm = imm << 8;
boolean unsigned = FALSE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - imm, esize, unsigned);

Z[dn] = result;

SQSUB (immediate) Page 2355

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSUB (immediate) Page 2356

SQSUB (vectors)

Signed saturating subtract vectors (unpredicated)

Signed saturating subtract all elements of the second source vector from corresponding elements of the first source
vector and place the results in the corresponding elements of the destination vector. Each result element is saturated
to the N-bit element's signed integer range -2(N-1) to (2(N-1))-1. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 1 0 Zn Zd

U

SQSUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
boolean unsigned = FALSE;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - element2, esize, unsigned);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSUB (vectors) Page 2357

ST1B (vector plus immediate)

Scatter store bytes from a vector (immediate index)

Scatter store of bytes from the active elements of a vector register to the memory addresses generated by a vector
base plus immediate index. The index is in the range 0 to 31. Inactive elements are not written to memory.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 1 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0>

ST1B { <Zt>.S }, <Pg>, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 1 0 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0>

ST1B { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 31, defaulting to 0, encoded in the
"imm5" field.

ST1B (vector plus immediate) Page 2358

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1B (vector plus immediate) Page 2359

ST1B (scalar plus immediate)

Contiguous store bytes from vector (immediate index)

Contiguous store of bytes from elements of a vector register to the memory address generated by a 64-bit scalar base
and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 size 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST1B { <Zt>.<T> }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8 << UInt(size);
integer msize = 8;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

ST1B (scalar plus immediate) Page 2360

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1B (scalar plus immediate) Page 2361

ST1B (scalar plus scalar)

Contiguous store bytes from vector (scalar index)

Contiguous store of bytes from elements of a vector register to the memory address generated by a 64-bit scalar base
and scalar index which is added to the base address. After each element access the index value is incremented, but the
index register is not updated. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 size Rm 0 1 0 Pg Rn Zt

ST1B { <Zt>.<T> }, <Pg>, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8 << UInt(size);
integer msize = 8;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

ST1B (scalar plus scalar) Page 2362

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1B (scalar plus scalar) Page 2363

ST1B (scalar plus vector)

Scatter store bytes from a vector (vector index)

Scatter store of bytes from the active elements of a vector register to the memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally sign or zero-extended from 32 to 64 bits. Inactive
elements are not written to memory.

It has encodings from 3 classes: 32-bit unpacked unscaled offset , 32-bit unscaled offset and 64-bit unscaled offset

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 0 0 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1B { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 1 0 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1B { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 8;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 0 0 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0>

ST1B (scalar plus vector) Page 2364

ST1B { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 8;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1B (scalar plus vector) Page 2365

ST1D (vector plus immediate)

Scatter store doublewords from a vector (immediate index)

Scatter store of doublewords from the active elements of a vector register to the memory addresses generated by a
vector base plus immediate index. The index is a multiple of 8 in the range 0 to 248. Inactive elements are not written
to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 1 0 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0>

ST1D { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 8 in the range 0 to 248, defaulting to 0,
encoded in the "imm5" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1D (vector plus immediate) Page 2366

ST1D (scalar plus immediate)

Contiguous store doublewords from vector (immediate index)

Contiguous store of doublewords from elements of a vector register to the memory address generated by a 64-bit
scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 size 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
if size != '11' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8 << UInt(size);
integer msize = 64;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1D (scalar plus immediate) Page 2367

ST1D (scalar plus scalar)

Contiguous store doublewords from vector (scalar index)

Contiguous store of doublewords from elements of a vector register to the memory address generated by a 64-bit
scalar base and scalar index which is multiplied by 8 and added to the base address. After each element access the
index value is incremented, but the index register is not updated. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 1 1 Rm 0 1 0 Pg Rn Zt

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1D (scalar plus scalar) Page 2368

ST1D (scalar plus vector)

Scatter store doublewords from a vector (vector index)

Scatter store of doublewords from the active elements of a vector register to the memory addresses generated by a
64-bit scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and
then optionally multiplied by 8. Inactive elements are not written to memory.

It has encodings from 4 classes: 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset , 64-bit scaled offset
and 64-bit unscaled offset

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 1 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #3]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 3;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 0 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 1 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0>

ST1D (scalar plus vector) Page 2369

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, LSL #3]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 3;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 0 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0>

ST1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 64;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

ST1D (scalar plus vector) Page 2370

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1D (scalar plus vector) Page 2371

ST1H (vector plus immediate)

Scatter store halfwords from a vector (immediate index)

Scatter store of halfwords from the active elements of a vector register to the memory addresses generated by a
vector base plus immediate index. The index is a multiple of 2 in the range 0 to 62. Inactive elements are not written
to memory.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0>

ST1H { <Zt>.S }, <Pg>, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 0 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0>

ST1H { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 2 in the range 0 to 62, defaulting to 0,
encoded in the "imm5" field.

ST1H (vector plus immediate) Page 2372

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1H (vector plus immediate) Page 2373

ST1H (scalar plus immediate)

Contiguous store halfwords from vector (immediate index)

Contiguous store of halfwords from elements of a vector register to the memory address generated by a 64-bit scalar
base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 size 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST1H { <Zt>.<T> }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8 << UInt(size);
integer msize = 16;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

ST1H (scalar plus immediate) Page 2374

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1H (scalar plus immediate) Page 2375

ST1H (scalar plus scalar)

Contiguous store halfwords from vector (scalar index)

Contiguous store of halfwords from elements of a vector register to the memory address generated by a 64-bit scalar
base and scalar index which is multiplied by 2 and added to the base address. After each element access the index
value is incremented, but the index register is not updated. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 size Rm 0 1 0 Pg Rn Zt

ST1H { <Zt>.<T> }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8 << UInt(size);
integer msize = 16;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST1H (scalar plus scalar) Page 2376

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1H (scalar plus scalar) Page 2377

ST1H (scalar plus vector)

Scatter store halfwords from a vector (vector index)

Scatter store of halfwords from the active elements of a vector register to the memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 2. Inactive elements are not written to memory.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 1 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1H { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 1 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 1;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 0 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1H (scalar plus vector) Page 2378

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 0 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1H { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 16;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 1 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0>

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, LSL #1]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 1;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 0 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0>

ST1H (scalar plus vector) Page 2379

ST1H { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 16;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1H (scalar plus vector) Page 2380

ST1W (vector plus immediate)

Scatter store words from a vector (immediate index)

Scatter store of words from the active elements of a vector register to the memory addresses generated by a vector
base plus immediate index. The index is a multiple of 4 in the range 0 to 124. Inactive elements are not written to
memory.

It has encodings from 2 classes: 32-bit element and 64-bit element

32-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 1 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0>

ST1W { <Zt>.S }, <Pg>, [<Zn>.S{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
integer offset = UInt(imm5);

64-bit element

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 0 imm5 1 0 1 Pg Zn Zt

msz<1>msz<0>

ST1W { <Zt>.D }, <Pg>, [<Zn>.D{, #<imm>}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Zn);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offset = UInt(imm5);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the base scalable vector register, encoded in the "Zn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 4 in the range 0 to 124, defaulting to 0,
encoded in the "imm5" field.

ST1W (vector plus immediate) Page 2381

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) base;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if AnyActiveElement(mask, esize) then
base = Z[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = ZeroExtend(Elem[base, e, esize], 64) + offset * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1W (vector plus immediate) Page 2382

ST1W (scalar plus immediate)

Contiguous store words from vector (immediate index)

Contiguous store of words from elements of a vector register to the memory address generated by a 64-bit scalar base
and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size, irrespective of
predication, and added to the base address. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 size 0 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST1W { <Zt>.<T> }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
if size != '1x' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8 << UInt(size);
integer msize = 32;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

ST1W (scalar plus immediate) Page 2383

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1W (scalar plus immediate) Page 2384

ST1W (scalar plus scalar)

Contiguous store words from vector (scalar index)

Contiguous store of words from elements of a vector register to the memory address generated by a 64-bit scalar base
and scalar index which is multiplied by 4 and added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 size Rm 0 1 0 Pg Rn Zt

ST1W { <Zt>.<T> }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if size != '1x' then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8 << UInt(size);
integer msize = 32;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

ST1W (scalar plus scalar) Page 2385

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1W (scalar plus scalar) Page 2386

ST1W (scalar plus vector)

Scatter store words from a vector (vector index)

Scatter store of words from the active elements of a vector register to the memory addresses generated by a 64-bit
scalar base plus vector index. The index values are optionally first sign or zero-extended from 32 to 64 bits and then
optionally multiplied by 4. Inactive elements are not written to memory.

It has encodings from 6 classes: 32-bit scaled offset , 32-bit unpacked scaled offset , 32-bit unpacked unscaled offset ,
32-bit unscaled offset , 64-bit scaled offset and 64-bit unscaled offset

32-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 1 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1W { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 1 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod> #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 2;

32-bit unpacked unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 0 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1W (scalar plus vector) Page 2387

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 0;

32-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 0 Zm 1 xs 0 Pg Rn Zt

msz<1>msz<0>

ST1W { <Zt>.S }, <Pg>, [<Xn|SP>, <Zm>.S, <mod>]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 32;
integer msize = 32;
integer offs_size = 32;
boolean offs_unsigned = xs == '0';
integer scale = 0;

64-bit scaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 1 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0>

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D, LSL #2]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 2;

64-bit unscaled offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 0 Zm 1 0 1 Pg Rn Zt

msz<1>msz<0>

ST1W (scalar plus vector) Page 2388

ST1W { <Zt>.D }, <Pg>, [<Xn|SP>, <Zm>.D]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Zm);
integer g = UInt(Pg);
integer esize = 64;
integer msize = 32;
integer offs_size = 64;
boolean offs_unsigned = TRUE;
integer scale = 0;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Zm> Is the name of the offset scalable vector register, encoded in the "Zm" field.

<mod> Is the index extend and shift specifier, encoded in “xs”:

xs <mod>
0 UXTW
1 SXTW

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(VL) offset;
bits(VL) src;
constant integer mbytes = msize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = Z[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer off = Int(Elem[offset, e, esize]<offs_size-1:0>, offs_unsigned);
bits(64) addr = base + (off << scale);
Mem[addr, mbytes, AccType_NORMAL] = Elem[src, e, esize]<msize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1W (scalar plus vector) Page 2389

ST2B (scalar plus immediate)

Contiguous store two-byte structures from two vectors (immediate index)

Contiguous store two-byte structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 0 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST2B { <Zt1>.B, <Zt2>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

ST2B (scalar plus immediate) Page 2390

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2B (scalar plus immediate) Page 2391

ST2B (scalar plus scalar)

Contiguous store two-byte structures from two vectors (scalar index)

Contiguous store two-byte structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by two. The index register is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 0 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST2B { <Zt1>.B, <Zt2>.B }, <Pg>, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

ST2B (scalar plus scalar) Page 2392

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2B (scalar plus scalar) Page 2393

ST2D (scalar plus immediate)

Contiguous store two-doubleword structures from two vectors (immediate index)

Contiguous store two-doubleword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to
14 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive doublewords in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST2D { <Zt1>.D, <Zt2>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

ST2D (scalar plus immediate) Page 2394

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2D (scalar plus immediate) Page 2395

ST2D (scalar plus scalar)

Contiguous store two-doubleword structures from two vectors (scalar index)

Contiguous store two-doubleword structures, each from the same element number in two vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by two. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive doublewords in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST2D { <Zt1>.D, <Zt2>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST2D (scalar plus scalar) Page 2396

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2D (scalar plus scalar) Page 2397

ST2H (scalar plus immediate)

Contiguous store two-halfword structures from two vectors (immediate index)

Contiguous store two-halfword structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive halfwords in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST2H { <Zt1>.H, <Zt2>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

ST2H (scalar plus immediate) Page 2398

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2H (scalar plus immediate) Page 2399

ST2H (scalar plus scalar)

Contiguous store two-halfword structures from two vectors (scalar index)

Contiguous store two-halfword structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by two. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive halfwords in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST2H { <Zt1>.H, <Zt2>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST2H (scalar plus scalar) Page 2400

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2H (scalar plus scalar) Page 2401

ST2W (scalar plus immediate)

Contiguous store two-word structures from two vectors (immediate index)

Contiguous store two-word structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 2 in the range -16 to 14 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive words in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST2W { <Zt1>.S, <Zt2>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 2 in the range -16 to 14, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

ST2W (scalar plus immediate) Page 2402

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2W (scalar plus immediate) Page 2403

ST2W (scalar plus scalar)

Contiguous store two-word structures from two vectors (scalar index)

Contiguous store two-word structures, each from the same element number in two vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by two. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the two vector registers, or equivalently to the
two consecutive words in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST2W { <Zt1>.S, <Zt2>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer nreg = 2;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST2W (scalar plus scalar) Page 2404

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..1] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2W (scalar plus scalar) Page 2405

ST3B (scalar plus immediate)

Contiguous store three-byte structures from three vectors (immediate index)

Contiguous store three-byte structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 1 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

ST3B (scalar plus immediate) Page 2406

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3B (scalar plus immediate) Page 2407

ST3B (scalar plus scalar)

Contiguous store three-byte structures from three vectors (scalar index)

Contiguous store three-byte structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by three. The index register is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 1 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST3B { <Zt1>.B, <Zt2>.B, <Zt3>.B }, <Pg>, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST3B (scalar plus scalar) Page 2408

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3B (scalar plus scalar) Page 2409

ST3D (scalar plus immediate)

Contiguous store three-doubleword structures from three vectors (immediate index)

Contiguous store three-doubleword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to
21 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 1 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

ST3D (scalar plus immediate) Page 2410

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3D (scalar plus immediate) Page 2411

ST3D (scalar plus scalar)

Contiguous store three-doubleword structures from three vectors (scalar index)

Contiguous store three-doubleword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 1 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST3D { <Zt1>.D, <Zt2>.D, <Zt3>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST3D (scalar plus scalar) Page 2412

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3D (scalar plus scalar) Page 2413

ST3H (scalar plus immediate)

Contiguous store three-halfword structures from three vectors (immediate index)

Contiguous store three-halfword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to
21 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

ST3H (scalar plus immediate) Page 2414

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3H (scalar plus immediate) Page 2415

ST3H (scalar plus scalar)

Contiguous store three-halfword structures from three vectors (scalar index)

Contiguous store three-halfword structures, each from the same element number in three vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by three. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive halfwords in memory which make up each structure. Inactive structures are not written to
memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST3H { <Zt1>.H, <Zt2>.H, <Zt3>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST3H (scalar plus scalar) Page 2416

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3H (scalar plus scalar) Page 2417

ST3W (scalar plus immediate)

Contiguous store three-word structures from three vectors (immediate index)

Contiguous store three-word structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 3 in the range -24 to 21 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 3 in the range -24 to 21, defaulting to 0,
encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

ST3W (scalar plus immediate) Page 2418

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3W (scalar plus immediate) Page 2419

ST3W (scalar plus scalar)

Contiguous store three-word structures from three vectors (scalar index)

Contiguous store three-word structures, each from the same element number in three vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by three. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the three vector registers, or equivalently to
the three consecutive words in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST3W { <Zt1>.S, <Zt2>.S, <Zt3>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer nreg = 3;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST3W (scalar plus scalar) Page 2420

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..2] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3W (scalar plus scalar) Page 2421

ST4B (scalar plus immediate)

Contiguous store four-byte structures from four vectors (immediate index)

Contiguous store four-byte structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 1 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

ST4B (scalar plus immediate) Page 2422

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4B (scalar plus immediate) Page 2423

ST4B (scalar plus scalar)

Contiguous store four-byte structures from four vectors (scalar index)

Contiguous store four-byte structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register and added to the base address. After each
structure access the index value is incremented by four. The index register is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive bytes in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 1 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST4B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <Pg>, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST4B (scalar plus scalar) Page 2424

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4B (scalar plus scalar) Page 2425

ST4D (scalar plus immediate)

Contiguous store four-doubleword structures from four vectors (immediate index)

Contiguous store four-doubleword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to
28 that is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 1 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

ST4D (scalar plus immediate) Page 2426

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4D (scalar plus immediate) Page 2427

ST4D (scalar plus scalar)

Contiguous store four-doubleword structures from four vectors (scalar index)

Contiguous store four-doubleword structures, each from the same element number in four vector registers to the
memory address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL
option) and added to the base address. After each structure access the index value is incremented by four. The index
register is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive doublewords in memory which make up each structure. Inactive structures are not written to
memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 1 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST4D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST4D (scalar plus scalar) Page 2428

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4D (scalar plus scalar) Page 2429

ST4H (scalar plus immediate)

Contiguous store four-halfword structures from four vectors (immediate index)

Contiguous store four-halfword structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive halfwords in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

ST4H (scalar plus immediate) Page 2430

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4H (scalar plus immediate) Page 2431

ST4H (scalar plus scalar)

Contiguous store four-halfword structures from four vectors (scalar index)

Contiguous store four-halfword structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by four. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive halfwords in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 1 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST4H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST4H (scalar plus scalar) Page 2432

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4H (scalar plus scalar) Page 2433

ST4W (scalar plus immediate)

Contiguous store four-word structures from four vectors (immediate index)

Contiguous store four-word structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and an immediate index which is a multiple of 4 in the range -32 to 28 that
is multiplied by the vector's in-memory size, irrespective of predication,
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive words in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 1 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

ST4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, a multiple of 4 in the range -32 to 28, defaulting to 0,
encoded in the "imm4" field.

ST4W (scalar plus immediate) Page 2434

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = (offset * elements * nreg) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4W (scalar plus immediate) Page 2435

ST4W (scalar plus scalar)

Contiguous store four-word structures from four vectors (scalar index)

Contiguous store four-word structures, each from the same element number in four vector registers to the memory
address generated by a 64-bit scalar base and a 64-bit scalar index register scaled by the element size (LSL option)
and added to the base address. After each structure access the index value is incremented by four. The index register
is not updated by the instruction.
Each predicate element applies to the same element number in each of the four vector registers, or equivalently to the
four consecutive words in memory which make up each structure. Inactive structures are not written to memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 1 1 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

ST4W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;
integer nreg = 4;

Assembler Symbols

<Zt1> Is the name of the first scalable vector register to be transferred, encoded in the "Zt" field.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" plus 1 modulo 32.

<Zt3> Is the name of the third scalable vector register to be transferred, encoded as "Zt" plus 2 modulo 32.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" plus 3 modulo 32.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

ST4W (scalar plus scalar) Page 2436

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(PL) mask = P[g];
bits(64) offset;
constant integer mbytes = esize DIV 8;
array [0..3] of bits(VL) values;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];

for r = 0 to nreg-1
values[r] = Z[(t+r) MOD 32];

for e = 0 to elements-1
for r = 0 to nreg-1

if ElemP[mask, e, esize] == '1' then
integer eoff = UInt(offset) + (e * nreg) + r;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_NORMAL] = Elem[values[r], e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4W (scalar plus scalar) Page 2437

STNT1B (scalar plus immediate)

Contiguous store non-temporal bytes from vector (immediate index)

Contiguous store non-temporal of bytes from elements of a vector register to the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 0 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1B { <Zt>.B }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 8;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
constant integer mbytes = esize DIV 8;
bits(VL) src;
bits(PL) mask = P[g];

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1B (scalar plus
immediate) Page 2438

STNT1B (scalar plus scalar)

Contiguous store non-temporal bytes from vector (scalar index)

Contiguous store non-temporal of bytes from elements of a vector register to the memory address generated by a
64-bit scalar base and scalar index which is added to the base address. After each element access the index value is
incremented, but the index register is not updated. Inactive elements are not written to memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 0 0 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1B { <Zt>.B }, <Pg>, [<Xn|SP>, <Xm>]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 8;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(VL) src;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1B (scalar plus scalar) Page 2439

STNT1D (scalar plus immediate)

Contiguous store non-temporal doublewords from vector (immediate index)

Contiguous store non-temporal of doublewords from elements of a vector register to the memory address generated by
a 64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1D { <Zt>.D }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 64;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
constant integer mbytes = esize DIV 8;
bits(VL) src;
bits(PL) mask = P[g];

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1D (scalar plus
immediate) Page 2440

STNT1D (scalar plus scalar)

Contiguous store non-temporal doublewords from vector (scalar index)

Contiguous store non-temporal of doublewords from elements of a vector register to the memory address generated by
a 64-bit scalar base and scalar index which is multiplied by 8 and added to the base address. After each element
access the index value is incremented, but the index register is not updated. Inactive elements are not written to
memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1D { <Zt>.D }, <Pg>, [<Xn|SP>, <Xm>, LSL #3]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 64;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(VL) src;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1D (scalar plus scalar) Page 2441

STNT1H (scalar plus immediate)

Contiguous store non-temporal halfwords from vector (immediate index)

Contiguous store non-temporal of halfwords from elements of a vector register to the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1H { <Zt>.H }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 16;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
constant integer mbytes = esize DIV 8;
bits(VL) src;
bits(PL) mask = P[g];

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1H (scalar plus
immediate) Page 2442

STNT1H (scalar plus scalar)

Contiguous store non-temporal halfwords from vector (scalar index)

Contiguous store non-temporal of halfwords from elements of a vector register to the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 2 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements are not written to memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 0 1 0 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1H { <Zt>.H }, <Pg>, [<Xn|SP>, <Xm>, LSL #1]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 16;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(VL) src;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1H (scalar plus scalar) Page 2443

STNT1W (scalar plus immediate)

Contiguous store non-temporal words from vector (immediate index)

Contiguous store non-temporal of words from elements of a vector register to the memory address generated by a
64-bit scalar base and immediate index in the range -8 to 7 which is multiplied by the vector's in-memory size,
irrespective of predication, and added to the base address. Inactive elements are not written to memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 0 1 imm4 1 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1W { <Zt>.S }, <Pg>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer g = UInt(Pg);
integer esize = 32;
integer offset = SInt(imm4);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -8 to 7, defaulting to 0, encoded in the
"imm4" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
constant integer mbytes = esize DIV 8;
bits(VL) src;
bits(PL) mask = P[g];

if HaveMTEExt() then SetTagCheckedInstruction(n != 31);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer eoff = (offset * elements) + e;
bits(64) addr = base + eoff * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1W (scalar plus
immediate) Page 2444

STNT1W (scalar plus scalar)

Contiguous store non-temporal words from vector (scalar index)

Contiguous store non-temporal of words from elements of a vector register to the memory address generated by a
64-bit scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access
the index value is incremented, but the index register is not updated. Inactive elements are not written to memory.
A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 0 0 0 Rm 0 1 1 Pg Rn Zt

msz<1>msz<0>

STNT1W { <Zt>.S }, <Pg>, [<Xn|SP>, <Xm>, LSL #2]

if !HaveSVE() then UNDEFINED;
if Rm == '11111' then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer g = UInt(Pg);
integer esize = 32;

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(64) base;
bits(64) offset;
bits(VL) src;
bits(PL) mask = P[g];
constant integer mbytes = esize DIV 8;

if HaveMTEExt() then SetTagCheckedInstruction(TRUE);

if !AnyActiveElement(mask, esize) then
if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then

CheckSPAlignment();
else

if n == 31 then CheckSPAlignment();
base = if n == 31 then SP[] else X[n];
offset = X[m];
src = Z[t];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(64) addr = base + (UInt(offset) + e) * mbytes;
Mem[addr, mbytes, AccType_STREAM] = Elem[src, e, esize];

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNT1W (scalar plus scalar) Page 2445

STR (predicate)

Store predicate register

Store a predicate register to a memory address generated by a 64-bit scalar base, plus an immediate offset in the
range -256 to 255 which is multiplied by the current predicate register size in bytes. This instruction is unpredicated.
The store is performed as a stream of bytes containing 8 consecutive predicate bits in ascending element order,
without any endian conversion.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 imm9h 0 0 0 imm9l Rn 0 Pt

STR <Pt>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Pt);
integer n = UInt(Rn);
integer imm = SInt(imm9h:imm9l);

Assembler Symbols

<Pt> Is the name of the scalable predicate transfer register, encoded in the "Pt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in the
"imm9h:imm9l" fields.

Operation

CheckSVEEnabled();
integer elements = PL DIV 8;
bits(PL) src;
bits(64) base;
integer offset = imm * elements;

if n == 31 then
CheckSPAlignment();
if HaveMTEExt() then SetTagCheckedInstruction(FALSE);
base = SP[];

else
if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
base = X[n];

src = P[t];
boolean aligned = AArch64.CheckAlignment(base + offset, 2, AccType_NORMAL, TRUE);
for e = 0 to elements-1

AArch64.MemSingle[base + offset, 1, AccType_NORMAL, aligned] = Elem[src, e, 8];
offset = offset + 1;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (predicate) Page 2446

STR (vector)

Store vector register

Store a vector register to a memory address generated by a 64-bit scalar base, plus an immediate offset in the range
-256 to 255 which is multiplied by the current vector register size in bytes. This instruction is unpredicated.
The store is performed as a stream of byte elements in ascending element order, without any endian conversion.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 1 1 0 imm9h 0 1 0 imm9l Rn Zt

STR <Zt>, [<Xn|SP>{, #<imm>, MUL VL}]

if !HaveSVE() then UNDEFINED;
integer t = UInt(Zt);
integer n = UInt(Rn);
integer imm = SInt(imm9h:imm9l);

Assembler Symbols

<Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate vector offset, in the range -256 to 255, defaulting to 0, encoded in the
"imm9h:imm9l" fields.

Operation

CheckSVEEnabled();
integer elements = VL DIV 8;
bits(VL) src;
bits(64) base;
integer offset = imm * elements;

if n == 31 then
CheckSPAlignment();
if HaveMTEExt() then SetTagCheckedInstruction(FALSE);
base = SP[];

else
if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
base = X[n];

src = Z[t];
boolean aligned = AArch64.CheckAlignment(base + offset, 16, AccType_NORMAL, TRUE);
for e = 0 to elements-1

AArch64.MemSingle[base + offset, 1, AccType_NORMAL, aligned] = Elem[src, e, 8];
offset = offset + 1;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (vector) Page 2447

SUB (vectors, predicated)

Subtract vectors (predicated)

Subtract active elements of the second source vector from corresponding elements of the first source vector and
destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 0 0 0 1 0 0 0 Pg Zm Zdn

SUB <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = element1 - element2;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

SUB (vectors, predicated) Page 2448

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (vectors, predicated) Page 2449

SUB (immediate)

Subtract immediate (unpredicated)

Subtract an unsigned immediate from each element of the source vector, and destructively place the results in the
corresponding elements of the source vector. This instruction is unpredicated.
The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also be a
positive multiple of 256 in the range 256 to 65280.
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 0 0 1 1 1 sh imm8 Zdn

SUB <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = UInt(imm8);
if sh == '1' then imm = imm << 8;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
Elem[result, e, esize] = element1 - imm;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

SUB (immediate) Page 2450

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (immediate) Page 2451

SUB (vectors, unpredicated)

Subtract vectors (unpredicated)

Subtract all elements of the second source vector from corresponding elements of the first source vector and place the
results in the corresponding elements of the destination vector. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 0 0 1 Zn Zd

SUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = element1 - element2;

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (vectors, unpredicated) Page 2452

SUBR (vectors)

Reversed subtract vectors (predicated)

Reversed subtract active elements of the first source vector from corresponding elements of the second source vector
and destructively place the results in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 0 0 1 1 0 0 0 Pg Zm Zdn

SUBR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
bits(esize) element1 = Elem[operand1, e, esize];
bits(esize) element2 = Elem[operand2, e, esize];
if ElemP[mask, e, esize] == '1' then

Elem[result, e, esize] = element2 - element1;
else

Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

SUBR (vectors) Page 2453

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBR (vectors) Page 2454

SUBR (immediate)

Reversed subtract from immediate (unpredicated)

Reversed subtract from an unsigned immediate each element of the source vector, and destructively place the results
in the corresponding elements of the source vector. This instruction is unpredicated.
The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also be a
positive multiple of 256 in the range 256 to 65280.
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 0 1 1 1 1 sh imm8 Zdn

SUBR <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = UInt(imm8);
if sh == '1' then imm = imm << 8;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = UInt(Elem[operand1, e, esize]);
Elem[result, e, esize] = (imm - element1)<esize-1:0>;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

SUBR (immediate) Page 2455

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBR (immediate) Page 2456

SUDOT

Signed by unsigned integer indexed dot product

The signed by unsigned integer indexed dot product instruction computes the dot product of a group of four signed
8-bit integer values held in each 32-bit element of the first source vector multiplied by a group of four unsigned 8-bit
integer values in an indexed 32-bit element of the second source vector, and then destructively adds the widened dot
product to the corresponding 32-bit element of the destination vector.
The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.
ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 1 1 Zn Zda

size<1>size<0> U

SUDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
integer esize = 32;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a quadtuplet of four 8-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer eltspersegment = 128 DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(esize) res = Elem[operand3, e, esize];
for i = 0 to 3

integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
res = res + element1 * element2;

Elem[result, e, esize] = res;

Z[da] = result;

SUDOT Page 2457

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUDOT Page 2458

SUNPKHI, SUNPKLO

Signed unpack and extend half of vector

Unpack elements from the lowest or highest half of the source vector and then sign-extend them to place in elements
of twice their size within the destination vector. This instruction is unpredicated.

It has encodings from 2 classes: High half and Low half

High half

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 0 1 0 0 1 1 1 0 Zn Zd

U H

SUNPKHI <Zd>.<T>, <Zn>.<Tb>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = FALSE;
boolean hi = TRUE;

Low half

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 0 0 0 0 1 1 1 0 Zn Zd

U H

SUNPKLO <Zd>.<T>, <Zn>.<Tb>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = FALSE;
boolean hi = FALSE;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in “size”:

SUNPKHI, SUNPKLO Page 2459

size <Tb>
00 RESERVED
01 B
10 H
11 S

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer hsize = esize DIV 2;
bits(VL) operand = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(hsize) element = if hi then Elem[operand, e + elements, hsize] else Elem[operand, e, hsize];
Elem[result, e, esize] = Extend(element, esize, unsigned);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUNPKHI, SUNPKLO Page 2460

SXTB, SXTH, SXTW

Signed byte / halfword / word extend (predicated)

Sign-extend the least-significant sub-element of each active element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

It has encodings from 3 classes: Byte , Halfword and Word

Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 0 0 1 0 1 Pg Zn Zd

U

SXTB <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer s_esize = 8;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = FALSE;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 1 0 1 0 1 Pg Zn Zd

U

SXTH <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size != '1x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer s_esize = 16;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = FALSE;

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 0 0 1 0 1 Pg Zn Zd

U

SXTW <Zd>.D, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer s_esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = FALSE;

SXTB, SXTH, SXTW Page 2461

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> For the byte variant: is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

For the halfword variant: is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = Extend(element<s_esize-1:0>, esize, unsigned);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTB, SXTH, SXTW Page 2462

TBL

Programmable table lookup in single vector table

Reads each element of the second source (index) vector and uses its value to select an indexed element from the first
source (table) vector, and places the indexed table element in the destination vector element corresponding to the
index vector element. If an index value is greater than or equal to the number of vector elements then it places zero in
the corresponding destination vector element.
Since the index values can select any element in a vector this operation is not naturally vector length agnostic.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 0 1 1 0 0 Zn Zd

TBL <Zd>.<T>, { <Zn>.<T> }, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
integer idx = UInt(Elem[operand2, e, esize]);
Elem[result, e, esize] = if idx < elements then Elem[operand1, idx, esize] else Zeros();

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBL Page 2463

TRN1, TRN2 (predicates)

Interleave even or odd elements from two predicates

Interleave alternating even or odd-numbered elements from the first and second source predicates and place in
elements of the destination predicate. This instruction is unpredicated.

It has encodings from 2 classes: Even and Odd

Even

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 1 0 0 0 Pn 0 Pd

H

TRN1 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
integer part = 0;

Odd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 1 0 1 0 Pn 0 Pd

H

TRN2 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
integer part = 1;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

TRN1, TRN2 (predicates) Page 2464

Operation

CheckSVEEnabled();
integer pairs = VL DIV (esize * 2);
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize DIV 8] = Elem[operand1, 2*p+part, esize DIV 8];
Elem[result, 2*p+1, esize DIV 8] = Elem[operand2, 2*p+part, esize DIV 8];

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRN1, TRN2 (predicates) Page 2465

TRN1, TRN2 (vectors)

Interleave even or odd elements from two vectors

Interleave alternating even or odd-numbered elements from the first and second source vectors and place in elements
of the destination vector. This instruction is unpredicated. The 128-bit element variant of this instruction requires that
the current vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then
the trailing bits are set to zero.
ID_AA64ZFR0_EL1.F64MM indicates whether the 128-bit element variant of the instruction is implemented.

It has encodings from 4 classes: Even , Even (quadwords) , Odd and Odd (quadwords)

Even

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 1 0 0 Zn Zd

H

TRN1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 0;

Even (quadwords)
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 1 1 0 Zn Zd

H

TRN1 <Zd>.Q, <Zn>.Q, <Zm>.Q

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer esize = 128;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 0;

Odd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 1 0 1 Zn Zd

H

TRN2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 1;

TRN1, TRN2 (vectors) Page 2466

Odd (quadwords)
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 1 1 1 Zn Zd

H

TRN2 <Zd>.Q, <Zn>.Q, <Zm>.Q

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer esize = 128;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 1;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
if VL < esize * 2 then UNDEFINED;
integer pairs = VL DIV (esize * 2);
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result = Zeros();

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRN1, TRN2 (vectors) Page 2467

UABD

Unsigned absolute difference (predicated)

Compute the absolute difference between unsigned integer values in active elements of the second source vector and
corresponding elements of the first source vector and destructively place the difference in the corresponding elements
of the first source vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 1 0 1 0 0 0 Pg Zm Zdn

U

UABD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer absdiff = Abs(element1 - element2);
Elem[result, e, esize] = absdiff<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

UABD Page 2468

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABD Page 2469

UADDV

Unsigned add reduction to scalar

Unsigned add horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination register.
Narrow elements are first zero-extended to 64 bits. Inactive elements in the source vector are treated as zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 0 0 0 1 0 0 1 Pg Zn Vd

U

UADDV <Dd>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);

Assembler Symbols

<Dd> Is the 64-bit name of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
integer sum = 0;

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = UInt(Elem[operand, e, esize]);
sum = sum + element;

V[d] = sum<63:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDV Page 2470

UCVTF

Unsigned integer convert to floating-point (predicated)

Convert to floating-point from the unsigned integer in each active element of the source vector, and place the results
in the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.
If the input and result types have a different size the smaller type is held unpacked in the least significant bits of
elements of the larger size. When the input is the smaller type the upper bits of each source element are ignored.
When the result is the smaller type the results are zero-extended to fill each destination element.

It has encodings from 7 classes: 16-bit to half-precision , 32-bit to half-precision , 32-bit to single-precision , 32-bit to
double-precision , 64-bit to half-precision , 64-bit to single-precision and 64-bit to double-precision

16-bit to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 Pg Zn Zd

int_U

UCVTF <Zd>.H, <Pg>/M, <Zn>.H

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 16;
integer d_esize = 16;
boolean unsigned = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

32-bit to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 Pg Zn Zd

int_U

UCVTF <Zd>.H, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 16;
boolean unsigned = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

32-bit to single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 Pg Zn Zd

int_U

UCVTF Page 2471

UCVTF <Zd>.S, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 32;
boolean unsigned = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

32-bit to double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 Pg Zn Zd

int_U

UCVTF <Zd>.D, <Pg>/M, <Zn>.S

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 32;
integer d_esize = 64;
boolean unsigned = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

64-bit to half-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 Pg Zn Zd

int_U

UCVTF <Zd>.H, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 16;
boolean unsigned = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

64-bit to single-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 Pg Zn Zd

int_U

UCVTF Page 2472

UCVTF <Zd>.S, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 32;
boolean unsigned = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

64-bit to double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 Pg Zn Zd

int_U

UCVTF <Zd>.D, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
integer s_esize = 64;
integer d_esize = 64;
boolean unsigned = TRUE;
FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
bits(d_esize) fpval = FixedToFP(element<s_esize-1:0>, 0, unsigned, FPCR[], rounding);
Elem[result, e, esize] = ZeroExtend(fpval);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

UCVTF Page 2473

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF Page 2474

UDIV

Unsigned divide (predicated)

Unsigned divide active elements of the first source vector by corresponding elements of the second source vector and
destructively place the quotient in the corresponding elements of the first source vector. Inactive elements in the
destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 0 1 0 0 0 Pg Zm Zdn

R U

UDIV <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '0x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer element2 = Int(Elem[operand2, e, esize], unsigned);
integer quotient;
if element2 == 0 then

quotient = 0;
else

quotient = RoundTowardsZero(Real(element1) / Real(element2));
Elem[result, e, esize] = quotient<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

UDIV Page 2475

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDIV Page 2476

UDIVR

Unsigned reversed divide (predicated)

Unsigned reversed divide active elements of the second source vector by corresponding elements of the first source
vector and destructively place the quotient in the corresponding elements of the first source vector. Inactive elements
in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 1 1 0 0 0 Pg Zm Zdn

R U

UDIVR <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '0x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer element2 = Int(Elem[operand2, e, esize], unsigned);
integer quotient;
if element1 == 0 then

quotient = 0;
else

quotient = RoundTowardsZero(Real(element2) / Real(element1));
Elem[result, e, esize] = quotient<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

UDIVR Page 2477

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDIVR Page 2478

UDOT (vectors)

Unsigned integer dot product

The unsigned integer dot product instruction computes the dot product of a group of four unsigned 8-bit or 16-bit
integer values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four unsigned
8-bit or 16-bit integer values in the corresponding 32-bit or 64-bit element of the second source vector, and then
destructively adds the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.
This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 0 1 Zn Zda

U

UDOT <Zda>.<T>, <Zn>.<Tb>, <Zm>.<Tb>

if !HaveSVE() then UNDEFINED;
if size == '0x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<T> Is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in “size<0>”:

size<0> <Tb>
0 B
1 H

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
bits(esize) res = Elem[operand3, e, esize];
for i = 0 to 3

integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
res = res + element1 * element2;

Elem[result, e, esize] = res;

Z[da] = result;

UDOT (vectors) Page 2479

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDOT (vectors) Page 2480

UDOT (indexed)

Unsigned integer indexed dot product

The unsigned integer indexed dot product instruction computes the dot product of a group of four unsigned 8-bit or
16-bit integer values held in each 32-bit or 64-bit element of the first source vector multiplied by a group of four
unsigned 8-bit or 16-bit integer values in an indexed 32-bit or 64-bit element of the second source vector, and then
destructively adds the widened dot product to the corresponding 32-bit or 64-bit element of the destination vector.
The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to one less than the number of groups per
128-bit segment, encoded in 1 to 2 bits depending on the size of the group. This instruction is unpredicated.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 0 0 1 Zn Zda

size<1>size<0> U

UDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 1 1 1 i1 Zm 0 0 0 0 0 1 Zn Zda

size<1>size<0> U

UDOT <Zda>.D, <Zn>.H, <Zm>.H[<imm>]

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer index = UInt(i1);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> For the 32-bit variant: is the name of the second source scalable vector register Z0-Z7, encoded in the
"Zm" field.
For the 64-bit variant: is the name of the second source scalable vector register Z0-Z15, encoded in the
"Zm" field.

<imm> For the 32-bit variant: is the immediate index of a quadtuplet of four 8-bit elements within each 128-bit
vector segment, in the range 0 to 3, encoded in the "i2" field.
For the 64-bit variant: is the immediate index of a quadtuplet of four 16-bit elements within each 128-bit
vector segment, in the range 0 to 1, encoded in the "i1" field.

UDOT (indexed) Page 2481

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer eltspersegment = 128 DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(esize) res = Elem[operand3, e, esize];
for i = 0 to 3

integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
res = res + element1 * element2;

Elem[result, e, esize] = res;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDOT (indexed) Page 2482

UMAX (vectors)

Unsigned maximum vectors (predicated)

Determine the unsigned maximum of active elements of the second source vector and corresponding elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 0 1 0 0 0 Pg Zm Zdn

U

UMAX <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer maximum = Max(element1, element2);
Elem[result, e, esize] = maximum<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

UMAX (vectors) Page 2483

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAX (vectors) Page 2484

UMAX (immediate)

Unsigned maximum with immediate (unpredicated)

Determine the unsigned maximum of an immediate and each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is an unsigned 8-bit value in the range 0 to
255, inclusive. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 1 0 imm8 Zdn

U

UMAX <Zdn>.<T>, <Zdn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
boolean unsigned = TRUE;
integer imm = Int(imm8, unsigned);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
Elem[result, e, esize] = Max(element1, imm)<esize-1:0>;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAX (immediate) Page 2485

UMAXV

Unsigned maximum reduction to scalar

Unsigned maximum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 0 1 0 0 1 Pg Zn Vd

U

UMAXV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);
boolean unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
integer maximum = if unsigned then 0 else -(2^(esize-1));

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = Int(Elem[operand, e, esize], unsigned);
maximum = Max(maximum, element);

V[d] = maximum<esize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAXV Page 2486

UMIN (vectors)

Unsigned minimum vectors (predicated)

Determine the unsigned minimum of active elements of the second source vector and corresponding elements of the
first source vector and destructively place the results in the corresponding elements of the first source vector. Inactive
elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 1 1 0 0 0 Pg Zm Zdn

U

UMIN <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer minimum = Min(element1, element2);
Elem[result, e, esize] = minimum<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

UMIN (vectors) Page 2487

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMIN (vectors) Page 2488

UMIN (immediate)

Unsigned minimum with immediate (unpredicated)

Determine the unsigned minimum of an immediate and each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. The immediate is an unsigned 8-bit value in the range 0 to
255, inclusive. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 1 0 imm8 Zdn

U

UMIN <Zdn>.<T>, <Zdn>.<T>, #<imm>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
boolean unsigned = TRUE;
integer imm = Int(imm8, unsigned);

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
Elem[result, e, esize] = Min(element1, imm)<esize-1:0>;

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMIN (immediate) Page 2489

UMINV

Unsigned minimum reduction to scalar

Unsigned minimum horizontally across all lanes of a vector, and place the result in the SIMD&FP scalar destination
register. Inactive elements in the source vector are treated as the maximum unsigned integer for the element size.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 1 1 0 0 1 Pg Zn Vd

U

UMINV <V><d>, <Pg>, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Vd);
boolean unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number [0-31] of the destination SIMD&FP register, encoded in the "Vd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
integer minimum = if unsigned then (2^esize - 1) else (2^(esize-1) - 1);

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

integer element = Int(Elem[operand, e, esize], unsigned);
minimum = Min(minimum, element);

V[d] = minimum<esize-1:0>;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMINV Page 2490

UMMLA

Unsigned integer matrix multiply-accumulate

The unsigned integer matrix multiply-accumulate instruction multiplies the 2×8 matrix of unsigned 8-bit integer
values held in each 128-bit segment of the first source vector by the 8×2 matrix of unsigned 8-bit integer values in the
corresponding segment of the second source vector. The resulting 2×2 widened 32-bit integer matrix product is then
destructively added to the 32-bit integer matrix accumulator held in the corresponding segment of the addend and
destination vector. This is equivalent to performing an 8-way dot product per destination element.
This instruction is unpredicated.
ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 1 1 1 0 Zm 1 0 0 1 1 0 Zn Zda

uns<1>uns<0>

UMMLA <Zda>.S, <Zn>.B, <Zm>.B

if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_unsigned = TRUE;
boolean op2_unsigned = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer segments = VL DIV 128;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result = Zeros();
bits(128) op1, op2;
bits(128) res, addend;

for s = 0 to segments-1
op1 = Elem[operand1, s, 128];
op2 = Elem[operand2, s, 128];
addend = Elem[operand3, s, 128];
res = MatMulAdd(addend, op1, op2, op1_unsigned, op2_unsigned);
Elem[result, s, 128] = res;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.

UMMLA Page 2491

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMMLA Page 2492

UMULH

Unsigned multiply returning high half (predicated)

Widening multiply unsigned integer values in active elements of the first source vector by corresponding elements of
the second source vector and destructively place the high half of the result in the corresponding elements of the first
source vector. Inactive elements in the destination vector register remain unmodified.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 1 1 0 0 0 Pg Zm Zdn

H U

UMULH <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer g = UInt(Pg);
integer dn = UInt(Zdn);
integer m = UInt(Zm);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand1 = Z[dn];
bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m] else Zeros();
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
if ElemP[mask, e, esize] == '1' then

integer product = (element1 * element2) >> esize;
Elem[result, e, esize] = product<esize-1:0>;

else
Elem[result, e, esize] = Elem[operand1, e, esize];

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

UMULH Page 2493

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULH Page 2494

UQADD (immediate)

Unsigned saturating add immediate (unpredicated)

Unsigned saturating add of an unsigned immediate to each element of the source vector, and destructively place the
results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
unsigned integer range 0 to (2N)-1. This instruction is unpredicated.
The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also be a
positive multiple of 256 in the range 256 to 65280.
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 1 0 1 1 1 sh imm8 Zdn

U

UQADD <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = UInt(imm8);
if sh == '1' then imm = imm << 8;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + imm, esize, unsigned);

Z[dn] = result;

UQADD (immediate) Page 2495

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQADD (immediate) Page 2496

UQADD (vectors)

Unsigned saturating add vectors (unpredicated)

Unsigned saturating add all elements of the second source vector to corresponding elements of the first source vector
and place the results in the corresponding elements of the destination vector. Each result element is saturated to the
N-bit element's unsigned integer range 0 to (2N)-1. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 0 1 Zn Zd

U

UQADD <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
boolean unsigned = TRUE;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + element2, esize, unsigned);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQADD (vectors) Page 2497

UQDECB

Unsigned saturating decrement scalar by multiple of 8-bit predicate constraint element count

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECB <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECB <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQDECB Page 2498

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECB Page 2499

UQDECD (scalar)

Unsigned saturating decrement scalar by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECD <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECD <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQDECD (scalar) Page 2500

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECD (scalar) Page 2501

UQDECD (vector)

Unsigned saturating decrement vector by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 64-bit unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 1 1 pattern Zdn

size<1>size<0> D U

UQDECD <Zdn>.D{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

UQDECD (vector) Page 2502

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECD (vector) Page 2503

UQDECH (scalar)

Unsigned saturating decrement scalar by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECH <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECH <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQDECH (scalar) Page 2504

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECH (scalar) Page 2505

UQDECH (vector)

Unsigned saturating decrement vector by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 16-bit unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 1 1 pattern Zdn

size<1>size<0> D U

UQDECH <Zdn>.H{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

UQDECH (vector) Page 2506

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECH (vector) Page 2507

UQDECP (scalar)

Unsigned saturating decrement scalar by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to decrement the scalar
destination. The result is saturated to the general-purpose register's unsigned integer range.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 0 1 0 0 Pm Rdn

D U sf

UQDECP <Wdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 0 1 1 0 Pm Rdn

D U sf

UQDECP <Xdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

UQDECP (scalar) Page 2508

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(ssize) operand1 = X[dn];
bits(PL) operand2 = P[m];
bits(ssize) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

integer element = Int(operand1, unsigned);
(result, -) = SatQ(element - count, ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECP (scalar) Page 2509

UQDECP (vector)

Unsigned saturating decrement vector by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to decrement all destination
vector elements. The results are saturated to the element unsigned integer range.
The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited in
a future release of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 1 1 1 0 0 0 0 0 0 Pm Zdn

D U

UQDECP <Zdn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Zdn);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) operand2 = P[m];
bits(VL) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

for e = 0 to elements-1
integer element = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element - count, esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.

UQDECP (vector) Page 2510

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECP (vector) Page 2511

UQDECW (scalar)

Unsigned saturating decrement scalar by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECW <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 1 1 pattern Rdn

size<1>size<0> sf D U

UQDECW <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQDECW (scalar) Page 2512

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 - (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECW (scalar) Page 2513

UQDECW (vector)

Unsigned saturating decrement vector by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to decrement all destination vector elements. The
results are saturated to the 32-bit unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 1 1 pattern Zdn

size<1>size<0> D U

UQDECW <Zdn>.S{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

UQDECW (vector) Page 2514

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQDECW (vector) Page 2515

UQINCB

Unsigned saturating increment scalar by multiple of 8-bit predicate constraint element count

Determines the number of active 8-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 0 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCB <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 0 1 1 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCB <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 8;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQINCB Page 2516

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCB Page 2517

UQINCD (scalar)

Unsigned saturating increment scalar by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCD <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 1 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCD <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQINCD (scalar) Page 2518

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCD (scalar) Page 2519

UQINCD (vector)

Unsigned saturating increment vector by multiple of 64-bit predicate constraint element count

Determines the number of active 64-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 64-bit unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 1 1 0 imm4 1 1 0 0 0 1 pattern Zdn

size<1>size<0> D U

UQINCD <Zdn>.D{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 64;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

UQINCD (vector) Page 2520

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCD (vector) Page 2521

UQINCH (scalar)

Unsigned saturating increment scalar by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCH <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 1 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCH <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQINCH (scalar) Page 2522

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCH (scalar) Page 2523

UQINCH (vector)

Unsigned saturating increment vector by multiple of 16-bit predicate constraint element count

Determines the number of active 16-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 16-bit unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 1 1 0 imm4 1 1 0 0 0 1 pattern Zdn

size<1>size<0> D U

UQINCH <Zdn>.H{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 16;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

UQINCH (vector) Page 2524

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCH (vector) Page 2525

UQINCP (scalar)

Unsigned saturating increment scalar by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to increment the scalar
destination. The result is saturated to the general-purpose register's unsigned integer range.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 0 1 0 0 Pm Rdn

D U sf

UQINCP <Wdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 0 1 1 0 Pm Rdn

D U sf

UQINCP <Xdn>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Rdn);
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

UQINCP (scalar) Page 2526

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(ssize) operand1 = X[dn];
bits(PL) operand2 = P[m];
bits(ssize) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

integer element = Int(operand1, unsigned);
(result, -) = SatQ(element + count, ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCP (scalar) Page 2527

UQINCP (vector)

Unsigned saturating increment vector by count of true predicate elements

Counts the number of true elements in the source predicate and then uses the result to increment all destination
vector elements. The results are saturated to the element unsigned integer range.
The predicate size specifier may be omitted in assembler source code, but this is deprecated and will be prohibited in
a future release of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 0 1 1 0 0 0 0 0 0 Pm Zdn

D U

UQINCP <Zdn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer m = UInt(Pm);
integer dn = UInt(Zdn);
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Pm> Is the name of the source scalable predicate register, encoded in the "Pm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(PL) operand2 = P[m];
bits(VL) result;
integer count = 0;

for e = 0 to elements-1
if ElemP[operand2, e, esize] == '1' then

count = count + 1;

for e = 0 to elements-1
integer element = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element + count, esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.

UQINCP (vector) Page 2528

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCP (vector) Page 2529

UQINCW (scalar)

Unsigned saturating increment scalar by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment the scalar destination. The result is
saturated to the general-purpose register's unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCW <Wdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 32;

64-bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 1 imm4 1 1 1 1 0 1 pattern Rdn

size<1>size<0> sf D U

UQINCW <Xdn>{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Rdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;
integer ssize = 64;

Assembler Symbols

<Wdn> Is the 32-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<Xdn> Is the 64-bit name of the source and destination general-purpose register, encoded in the "Rdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

UQINCW (scalar) Page 2530

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

Operation

CheckSVEEnabled();
integer count = DecodePredCount(pat, esize);
bits(ssize) operand1 = X[dn];
bits(ssize) result;

integer element1 = Int(operand1, unsigned);
(result, -) = SatQ(element1 + (count * imm), ssize, unsigned);
X[dn] = Extend(result, 64, unsigned);

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCW (scalar) Page 2531

UQINCW (vector)

Unsigned saturating increment vector by multiple of 32-bit predicate constraint element count

Determines the number of active 32-bit elements implied by the named predicate constraint, multiplies that by an
immediate in the range 1 to 16 inclusive, and then uses the result to increment all destination vector elements. The
results are saturated to the 32-bit unsigned integer range.
The named predicate constraint limits the number of active elements in a single predicate to:
* A fixed number (VL1 to VL256)
* The largest power of two (POW2)
* The largest multiple of three or four (MUL3 or MUL4)
* All available, implicitly a multiple of two (ALL).
Unspecified or out of range constraint encodings generate an empty predicate or zero element count rather than
Undefined Instruction exception.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 0 1 0 imm4 1 1 0 0 0 1 pattern Zdn

size<1>size<0> D U

UQINCW <Zdn>.S{, <pattern>{, MUL #<imm>}}

if !HaveSVE() then UNDEFINED;
integer esize = 32;
integer dn = UInt(Zdn);
bits(5) pat = pattern;
integer imm = UInt(imm4) + 1;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<pattern> Is the optional pattern specifier, defaulting to ALL, encoded in “pattern”:

pattern <pattern>
00000 POW2
00001 VL1
00010 VL2
00011 VL3
00100 VL4
00101 VL5
00110 VL6
00111 VL7
01000 VL8
01001 VL16
01010 VL32
01011 VL64
01100 VL128
01101 VL256
0111x #uimm5
101x1 #uimm5
10110 #uimm5
1x0x1 #uimm5
1x010 #uimm5
1xx00 #uimm5
11101 MUL4
11110 MUL3
11111 ALL

<imm> Is the immediate multiplier, in the range 1 to 16, defaulting to 1, encoded in the "imm4" field.

UQINCW (vector) Page 2532

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer count = DecodePredCount(pat, esize);
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 + (count * imm), esize, unsigned);

Z[dn] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQINCW (vector) Page 2533

UQSUB (immediate)

Unsigned saturating subtract immediate (unpredicated)

Unsigned saturating subtract an unsigned immediate from each element of the source vector, and destructively place
the results in the corresponding elements of the source vector. Each result element is saturated to the N-bit element's
unsigned integer range 0 to (2N)-1. This instruction is unpredicated.
The immediate is an unsigned value in the range 0 to 255, and for element widths of 16 bits or higher it may also be a
positive multiple of 256 in the range 256 to 65280.
The immediate is encoded in 8 bits with an optional left shift by 8. The preferred disassembly when the shift option is
specified is "#<uimm8>, LSL #8". However an assembler and disassembler may also allow use of the shifted 16-bit
value unless the immediate is 0 and the shift amount is 8, which must be unambiguously described as "#0, LSL #8".

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 1 1 1 1 1 sh imm8 Zdn

U

UQSUB <Zdn>.<T>, <Zdn>.<T>, #<imm>{, <shift>}

if !HaveSVE() then UNDEFINED;
if size:sh == '001' then UNDEFINED;
integer esize = 8 << UInt(size);
integer dn = UInt(Zdn);
integer imm = UInt(imm8);
if sh == '1' then imm = imm << 8;
boolean unsigned = TRUE;

Assembler Symbols

<Zdn> Is the name of the source and destination scalable vector register, encoded in the "Zdn" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<imm> Is an unsigned immediate in the range 0 to 255, encoded in the "imm8" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “sh”:

sh <shift>
0 LSL #0
1 LSL #8

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[dn];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - imm, esize, unsigned);

Z[dn] = result;

UQSUB (immediate) Page 2534

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSUB (immediate) Page 2535

UQSUB (vectors)

Unsigned saturating subtract vectors (unpredicated)

Unsigned saturating subtract all elements of the second source vector from corresponding elements of the first source
vector and place the results in the corresponding elements of the destination vector. Each result element is saturated
to the N-bit element's unsigned integer range 0 to (2N)-1. This instruction is unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 1 1 1 Zn Zd

U

UQSUB <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
boolean unsigned = TRUE;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result;

for e = 0 to elements-1
integer element1 = Int(Elem[operand1, e, esize], unsigned);
integer element2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], -) = SatQ(element1 - element2, esize, unsigned);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSUB (vectors) Page 2536

USDOT (vectors)

Unsigned by signed integer dot product

The unsigned by signed integer dot product instruction computes the dot product of a group of four unsigned 8-bit
integer values held in each 32-bit element of the first source vector multiplied by a group of four signed 8-bit integer
values in the corresponding 32-bit element of the second source vector, and then destructively adds the widened dot
product to the corresponding 32-bit element of the destination vector.
This instruction is unpredicated.
ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 1 0 0 Zm 0 1 1 1 1 0 Zn Zda

size<1>size<0>

USDOT <Zda>.S, <Zn>.B, <Zm>.B

if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
integer esize = 32;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
bits(esize) res = Elem[operand3, e, esize];
for i = 0 to 3

integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
res = res + element1 * element2;

Elem[result, e, esize] = res;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

USDOT (vectors) Page 2537

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USDOT (vectors) Page 2538

USDOT (indexed)

Unsigned by signed integer indexed dot product

The unsigned by signed integer indexed dot product instruction computes the dot product of a group of four unsigned
8-bit integer values held in each 32-bit element of the first source vector multiplied by a group of four signed 8-bit
integer values in an indexed 32-bit element of the second source vector, and then destructively adds the widened dot
product to the corresponding 32-bit element of the destination vector.
The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.
ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 1 0 1 i2 Zm 0 0 0 1 1 0 Zn Zda

size<1>size<0> U

USDOT <Zda>.S, <Zn>.B, <Zm>.B[<imm>]

if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
integer esize = 32;
integer index = UInt(i2);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a quadtuplet of four 8-bit elements within each 128-bit vector segment, in the
range 0 to 3, encoded in the "i2" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer eltspersegment = 128 DIV esize;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result;

for e = 0 to elements-1
integer segmentbase = e - (e MOD eltspersegment);
integer s = segmentbase + index;
bits(esize) res = Elem[operand3, e, esize];
for i = 0 to 3

integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
res = res + element1 * element2;

Elem[result, e, esize] = res;

Z[da] = result;

USDOT (indexed) Page 2539

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USDOT (indexed) Page 2540

USMMLA

Unsigned by signed integer matrix multiply-accumulate

The unsigned by signed integer matrix multiply-accumulate instruction multiplies the 2×8 matrix of unsigned 8-bit
integer values held in each 128-bit segment of the first source vector by the 8×2 matrix of signed 8-bit integer values
in the corresponding segment of the second source vector. The resulting 2×2 widened 32-bit integer matrix product is
then destructively added to the 32-bit integer matrix accumulator held in the corresponding segment of the addend
and destination vector. This is equivalent to performing an 8-way dot product per destination element.
This instruction is unpredicated.
ID_AA64ZFR0_EL1.I8MM indicates whether this instruction is implemented.

SVE
(FEAT_I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 1 1 0 0 Zm 1 0 0 1 1 0 Zn Zda

uns<1>uns<0>

USMMLA <Zda>.S, <Zn>.B, <Zm>.B

if !HaveSVE() || !HaveInt8MatMulExt() then UNDEFINED;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer da = UInt(Zda);
boolean op1_unsigned = TRUE;
boolean op2_unsigned = FALSE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
integer segments = VL DIV 128;
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) operand3 = Z[da];
bits(VL) result = Zeros();
bits(128) op1, op2;
bits(128) res, addend;

for s = 0 to segments-1
op1 = Elem[operand1, s, 128];
op2 = Elem[operand2, s, 128];
addend = Elem[operand3, s, 128];
res = MatMulAdd(addend, op1, op2, op1_unsigned, op2_unsigned);
Elem[result, s, 128] = res;

Z[da] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.
• The MOVPRFX instruction must specify the same destination register as this instruction.

USMMLA Page 2541

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USMMLA Page 2542

UUNPKHI, UUNPKLO

Unsigned unpack and extend half of vector

Unpack elements from the lowest or highest half of the source vector and then zero-extend them to place in elements
of twice their size within the destination vector. This instruction is unpredicated.

It has encodings from 2 classes: High half and Low half

High half

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 1 1 0 0 1 1 1 0 Zn Zd

U H

UUNPKHI <Zd>.<T>, <Zn>.<Tb>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = TRUE;
boolean hi = TRUE;

Low half

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 1 0 0 0 1 1 1 0 Zn Zd

U H

UUNPKLO <Zd>.<T>, <Zn>.<Tb>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = TRUE;
boolean hi = FALSE;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in “size”:

UUNPKHI, UUNPKLO Page 2543

size <Tb>
00 RESERVED
01 B
10 H
11 S

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
integer hsize = esize DIV 2;
bits(VL) operand = Z[n];
bits(VL) result;

for e = 0 to elements-1
bits(hsize) element = if hi then Elem[operand, e + elements, hsize] else Elem[operand, e, hsize];
Elem[result, e, esize] = Extend(element, esize, unsigned);

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UUNPKHI, UUNPKLO Page 2544

UXTB, UXTH, UXTW

Unsigned byte / halfword / word extend (predicated)

Zero-extend the least-significant sub-element of each active element of the source vector, and place the results in the
corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

It has encodings from 3 classes: Byte , Halfword and Word

Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 0 1 1 0 1 Pg Zn Zd

U

UXTB <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size == '00' then UNDEFINED;
integer esize = 8 << UInt(size);
integer s_esize = 8;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = TRUE;

Halfword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 1 1 1 0 1 Pg Zn Zd

U

UXTH <Zd>.<T>, <Pg>/M, <Zn>.<T>

if !HaveSVE() then UNDEFINED;
if size != '1x' then UNDEFINED;
integer esize = 8 << UInt(size);
integer s_esize = 16;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = TRUE;

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 0 1 1 0 1 Pg Zn Zd

U

UXTW <Zd>.D, <Pg>/M, <Zn>.D

if !HaveSVE() then UNDEFINED;
if size != '11' then UNDEFINED;
integer esize = 8 << UInt(size);
integer s_esize = 32;
integer g = UInt(Pg);
integer n = UInt(Zn);
integer d = UInt(Zd);
boolean unsigned = TRUE;

UXTB, UXTH, UXTW Page 2545

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> For the byte variant: is the size specifier, encoded in “size”:

size <T>
00 RESERVED
01 H
10 S
11 D

For the halfword variant: is the size specifier, encoded in “size<0>”:

size<0> <T>
0 S
1 D

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = P[g];
bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
bits(VL) result = Z[d];

for e = 0 to elements-1
if ElemP[mask, e, esize] == '1' then

bits(esize) element = Elem[operand, e, esize];
Elem[result, e, esize] = Extend(element<s_esize-1:0>, esize, unsigned);

Z[d] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated, or be predicated using the same governing predicate register
and source element size as this instruction.

• The MOVPRFX instruction must specify the same destination register as this instruction.
• The destination register must not refer to architectural register state referenced by any other source operand

register of this instruction.

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTB, UXTH, UXTW Page 2546

UZP1, UZP2 (predicates)

Concatenate even or odd elements from two predicates

Concatenate adjacent even or odd-numbered elements from the first and second source predicates and place in
elements of the destination predicate. This instruction is unpredicated.

It has encodings from 2 classes: Even and Odd

Even

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 1 0 0 Pn 0 Pd

H

UZP1 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
integer part = 0;

Odd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 1 1 0 Pn 0 Pd

H

UZP2 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
integer part = 1;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

UZP1, UZP2 (predicates) Page 2547

Operation

CheckSVEEnabled();
integer pairs = VL DIV (esize * 2);
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

for p = 0 to pairs - 1
Elem[result, p, esize DIV 8] = Elem[operand1, 2*p+part, esize DIV 8];

for p = 0 to pairs - 1
Elem[result, pairs+p, esize DIV 8] = Elem[operand2, 2*p+part, esize DIV 8];

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UZP1, UZP2 (predicates) Page 2548

UZP1, UZP2 (vectors)

Concatenate even or odd elements from two vectors

Concatenate adjacent even or odd-numbered elements from the first and second source vectors and place in elements
of the destination vector. This instruction is unpredicated. The 128-bit element variant of this instruction requires that
the current vector length is at least 256 bits, and if the current vector length is not an integer multiple of 256 bits then
the trailing bits are set to zero.
ID_AA64ZFR0_EL1.F64MM indicates whether the 128-bit element variant of the instruction is implemented.

It has encodings from 4 classes: Even , Even (quadwords) , Odd and Odd (quadwords)

Even

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 1 0 Zn Zd

H

UZP1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 0;

Even (quadwords)
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 1 0 Zn Zd

H

UZP1 <Zd>.Q, <Zn>.Q, <Zm>.Q

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer esize = 128;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 0;

Odd

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 1 1 Zn Zd

H

UZP2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 1;

UZP1, UZP2 (vectors) Page 2549

Odd (quadwords)
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 1 1 Zn Zd

H

UZP2 <Zd>.Q, <Zn>.Q, <Zm>.Q

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer esize = 128;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 1;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
if VL < esize * 2 then UNDEFINED;
integer pairs = VL DIV (esize * 2);
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result = Zeros();

for p = 0 to pairs - 1
Elem[result, p, esize] = Elem[operand1, 2*p+part, esize];

for p = 0 to pairs - 1
Elem[result, pairs+p, esize] = Elem[operand2, 2*p+part, esize];

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UZP1, UZP2 (vectors) Page 2550

WHILELE

While incrementing signed scalar less than or equal to scalar

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
signed scalar operand is less than or equal to the second scalar operand and false thereafter up to the highest
numbered element.
If the second scalar operand is equal to the maximum signed integer value then a condition which includes an equality
test can never fail and the result will be an all-true predicate.
The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand is
incremented by one for each destination predicate element, irrespective of the predicate result element size. The first
general-purpose source register is not itself updated.
The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 0 1 Rn 1 Pd

U lt eq

WHILELE <Pd>.<T>, <R><n>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer rsize = 32 << UInt(sf);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Pd);
boolean unsigned = FALSE;
SVECmp op = Cmp_LE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “sf”:

sf <R>
0 W
1 X

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rn"
field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

WHILELE Page 2551

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = Ones(PL);
bits(rsize) operand1 = X[n];
bits(rsize) operand2 = X[m];
bits(PL) result;
boolean last = TRUE;

for e = 0 to elements-1
boolean cond;
case op of

when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

last = last && cond;
ElemP[result, e, esize] = if last then '1' else '0';
operand1 = operand1 + 1;

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WHILELE Page 2552

WHILELO

While incrementing unsigned scalar lower than scalar

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
unsigned scalar operand is lower than the second scalar operand and false thereafter up to the highest numbered
element.
The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand is
incremented by one for each destination predicate element, irrespective of the predicate result element size. The first
general-purpose source register is not itself updated.
The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 1 1 Rn 0 Pd

U lt eq

WHILELO <Pd>.<T>, <R><n>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer rsize = 32 << UInt(sf);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Pd);
boolean unsigned = TRUE;
SVECmp op = Cmp_LT;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “sf”:

sf <R>
0 W
1 X

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rn"
field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

WHILELO Page 2553

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = Ones(PL);
bits(rsize) operand1 = X[n];
bits(rsize) operand2 = X[m];
bits(PL) result;
boolean last = TRUE;

for e = 0 to elements-1
boolean cond;
case op of

when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

last = last && cond;
ElemP[result, e, esize] = if last then '1' else '0';
operand1 = operand1 + 1;

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WHILELO Page 2554

WHILELS

While incrementing unsigned scalar lower or same as scalar

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
unsigned scalar operand is lower or same as the second scalar operand and false thereafter up to the highest
numbered element.
If the second scalar operand is equal to the maximum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.
The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand is
incremented by one for each destination predicate element, irrespective of the predicate result element size. The first
general-purpose source register is not itself updated.
The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 1 1 Rn 1 Pd

U lt eq

WHILELS <Pd>.<T>, <R><n>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer rsize = 32 << UInt(sf);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Pd);
boolean unsigned = TRUE;
SVECmp op = Cmp_LE;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “sf”:

sf <R>
0 W
1 X

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rn"
field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

WHILELS Page 2555

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = Ones(PL);
bits(rsize) operand1 = X[n];
bits(rsize) operand2 = X[m];
bits(PL) result;
boolean last = TRUE;

for e = 0 to elements-1
boolean cond;
case op of

when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

last = last && cond;
ElemP[result, e, esize] = if last then '1' else '0';
operand1 = operand1 + 1;

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WHILELS Page 2556

WHILELT

While incrementing signed scalar less than scalar

Generate a predicate that starting from the lowest numbered element is true while the incrementing value of the first,
signed scalar operand is less than the second scalar operand and false thereafter up to the highest numbered element.
The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand is
incremented by one for each destination predicate element, irrespective of the predicate result element size. The first
general-purpose source register is not itself updated.
The predicate result is placed in the predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition
flags based on the predicate result, and the V flag to zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf 0 1 Rn 0 Pd

U lt eq

WHILELT <Pd>.<T>, <R><n>, <R><m>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer rsize = 32 << UInt(sf);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer d = UInt(Pd);
boolean unsigned = FALSE;
SVECmp op = Cmp_LT;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<R> Is a width specifier, encoded in “sf”:

sf <R>
0 W
1 X

<n> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rn"
field.

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in the "Rm"
field.

WHILELT Page 2557

Operation

CheckSVEEnabled();
integer elements = VL DIV esize;
bits(PL) mask = Ones(PL);
bits(rsize) operand1 = X[n];
bits(rsize) operand2 = X[m];
bits(PL) result;
boolean last = TRUE;

for e = 0 to elements-1
boolean cond;
case op of

when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));

last = last && cond;
ElemP[result, e, esize] = if last then '1' else '0';
operand1 = operand1 + 1;

PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WHILELT Page 2558

WRFFR

Write the first-fault register

Read the source predicate register and place in the first-fault register (FFR). This instruction is intended to restore a
saved FFR and is not recommended for general use by applications.
This instruction requires that the source predicate contains a MONOTONIC predicate value, in which starting from bit 0
there are zero or more 1 bits, followed only by 0 bits in any remaining bit positions. If the source is not a monotonic
predicate value, then the resulting value in the FFR will be UNPREDICTABLE. It is not possible to generate a non-
monotonic value in FFR when using SETFFR followed by first-fault or non-fault loads.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 Pn 0 0 0 0 0

WRFFR <Pn>.B

if !HaveSVE() then UNDEFINED;
integer n = UInt(Pn);

Assembler Symbols

<Pn> Is the name of the source scalable predicate register, encoded in the "Pn" field.

Operation

CheckSVEEnabled();
bits(PL) operand = P[n];

hsb = HighestSetBit(operand);
if hsb < 0 || IsOnes(operand<hsb:0>) then

FFR[] = operand;
else // not a monotonic predicate

FFR[] = bits(PL) UNKNOWN;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WRFFR Page 2559

ZIP1, ZIP2 (predicates)

Interleave elements from two half predicates

Interleave alternating elements from the lowest or highest halves of the first and second source predicates and place
in elements of the destination predicate. This instruction is unpredicated.

It has encodings from 2 classes: High halves and Low halves

High halves

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 0 1 0 Pn 0 Pd

H

ZIP2 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
integer part = 1;

Low halves

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 0 0 0 0 Pn 0 Pd

H

ZIP1 <Pd>.<T>, <Pn>.<T>, <Pm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Pn);
integer m = UInt(Pm);
integer d = UInt(Pd);
integer part = 0;

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

ZIP1, ZIP2 (predicates) Page 2560

Operation

CheckSVEEnabled();
integer pairs = VL DIV (esize * 2);
bits(PL) operand1 = P[n];
bits(PL) operand2 = P[m];
bits(PL) result;

integer base = part * pairs;
for p = 0 to pairs-1

Elem[result, 2*p+0, esize DIV 8] = Elem[operand1, base+p, esize DIV 8];
Elem[result, 2*p+1, esize DIV 8] = Elem[operand2, base+p, esize DIV 8];

P[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZIP1, ZIP2 (predicates) Page 2561

ZIP1, ZIP2 (vectors)

Interleave elements from two half vectors

Interleave alternating elements from the lowest or highest halves of the first and second source vectors and place in
elements of the destination vector. This instruction is unpredicated. The 128-bit element variant of this instruction
requires that the current vector length is at least 256 bits, and if the current vector length is not an integer multiple of
256 bits then the trailing bits are set to zero.
ID_AA64ZFR0_EL1.F64MM indicates whether the 128-bit element variant of the instruction is implemented.

It has encodings from 4 classes: High halves , High halves (quadwords) , Low halves and Low halves (quadwords)

High halves

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 0 1 Zn Zd

H

ZIP2 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 1;

High halves (quadwords)
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 0 1 Zn Zd

H

ZIP2 <Zd>.Q, <Zn>.Q, <Zm>.Q

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer esize = 128;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 1;

Low halves

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 0 0 0 Zn Zd

H

ZIP1 <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

if !HaveSVE() then UNDEFINED;
integer esize = 8 << UInt(size);
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 0;

ZIP1, ZIP2 (vectors) Page 2562

Low halves (quadwords)
(FEAT_F64MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 0 1 Zm 0 0 0 0 0 0 Zn Zd

H

ZIP1 <Zd>.Q, <Zn>.Q, <Zm>.Q

if !HaveSVEFP64MatMulExt() then UNDEFINED;
integer esize = 128;
integer n = UInt(Zn);
integer m = UInt(Zm);
integer d = UInt(Zd);
integer part = 0;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in “size”:

size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

CheckSVEEnabled();
if VL < esize * 2 then UNDEFINED;
integer pairs = VL DIV (esize * 2);
bits(VL) operand1 = Z[n];
bits(VL) operand2 = Z[m];
bits(VL) result = Zeros();

integer base = part * pairs;
for p = 0 to pairs-1

Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

Z[d] = result;

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZIP1, ZIP2 (vectors) Page 2563

Top-level encodings for A64
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0

Decode fields
op0 Instruction details

0000 Reserved
0001 UNALLOCATED
0010 SVE encodings
0011 UNALLOCATED
100x Data Processing -- Immediate
101x Branches, Exception Generating and System instructions
x1x0 Loads and Stores
x101 Data Processing -- Register
x111 Data Processing -- Scalar Floating-Point and Advanced SIMD

Reserved

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 0000 op1

Decode fields
op0 op1 Instruction details

000 000000000 UDF
!= 000000000 UNALLOCATED

!= 000 UNALLOCATED

SVE encodings

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 0010 op1 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details

000 0x 0xxxx x1xxxx SVE Integer Multiply-Add - Predicated
000 0x 0xxxx 000xxx SVE Integer Binary Arithmetic - Predicated
000 0x 0xxxx 001xxx SVE Integer Reduction
000 0x 0xxxx 100xxx SVE Bitwise Shift - Predicated
000 0x 0xxxx 101xxx SVE Integer Unary Arithmetic - Predicated
000 0x 1xxxx 000xxx SVE integer add/subtract vectors (unpredicated)
000 0x 1xxxx 001xxx SVE Bitwise Logical - Unpredicated
000 0x 1xxxx 0100xx SVE Index Generation
000 0x 1xxxx 0101xx SVE Stack Allocation
000 0x 1xxxx 011xxx UNALLOCATED
000 0x 1xxxx 100xxx SVE Bitwise Shift - Unpredicated
000 0x 1xxxx 1010xx SVE address generation
000 0x 1xxxx 1011xx SVE Integer Misc - Unpredicated

Top-level encodings for A64

Page 2564

000 0x 1xxxx 11xxxx SVE Element Count
000 1x 00xxx SVE Bitwise Immediate
000 1x 01xxx SVE Integer Wide Immediate - Predicated
000 1x 1xxxx 001000 DUP (indexed)
000 1x 1xxxx 001001 UNALLOCATED
000 1x 1xxxx 00101x UNALLOCATED
000 1x 1xxxx 0011x1 UNALLOCATED
000 1x 1xxxx 001100 TBL
000 1x 1xxxx 001110 SVE Permute Vector - Unpredicated
000 1x 1xxxx 010xxx SVE Permute Predicate
000 1x 1xxxx 011xxx SVE permute vector elements
000 1x 1xxxx 10xxxx SVE Permute Vector - Predicated
000 1x 1xxxx 11xxxx SEL (vectors)
000 10 1xxxx 000xxx SVE Permute Vector - Extract
000 11 1xxxx 000xxx SVE permute vector segments
001 0x 0xxxx SVE Integer Compare - Vectors
001 0x 1xxxx SVE integer compare with unsigned immediate
001 1x 0xxxx x0xxxx SVE integer compare with signed immediate
001 1x 00xxx 01xxxx SVE predicate logical operations
001 1x 00xxx 11xxxx SVE Propagate Break
001 1x 01xxx 01xxxx SVE Partition Break
001 1x 01xxx 11xxxx SVE Predicate Misc
001 1x 1xxxx 00xxxx SVE Integer Compare - Scalars
001 1x 1xxxx 01xxxx UNALLOCATED
001 1x 1xxxx 11xxxx SVE Integer Wide Immediate - Unpredicated
001 1x 100xx 10xxxx SVE Predicate Count
001 1x 101xx 1000xx SVE Inc/Dec by Predicate Count
001 1x 101xx 1001xx SVE Write FFR
001 1x 101xx 101xxx UNALLOCATED
001 1x 11xxx 10xxxx UNALLOCATED
010 0x 0xxxx 0xxxxx SVE Integer Multiply-Add - Unpredicated
010 0x 0xxxx 1xxxxx UNALLOCATED
010 0x 1xxxx SVE Multiply - Indexed
010 1x 0xxxx 0xxxxx UNALLOCATED
010 1x 0xxxx 10xxxx SVE Misc
010 1x 0xxxx 11xxxx UNALLOCATED
010 1x 1xxxx UNALLOCATED
011 0x 0xxxx 0xxxxx FCMLA (vectors)
011 0x 00x1x 1xxxxx UNALLOCATED
011 0x 00000 100xxx FCADD
011 0x 00000 101xxx UNALLOCATED
011 0x 00000 11xxxx UNALLOCATED
011 0x 00001 1xxxxx UNALLOCATED
011 0x 0010x 100xxx UNALLOCATED
011 0x 0010x 101xxx SVE floating-point convert precision odd elements
011 0x 0010x 11xxxx UNALLOCATED
011 0x 01xxx 1xxxxx UNALLOCATED
011 0x 1xxxx x0x01x UNALLOCATED
011 0x 1xxxx 00000x SVE floating-point multiply-add (indexed)

Top-level encodings for A64

Page 2565

011 0x 1xxxx 0001xx SVE floating-point complex multiply-add (indexed)
011 0x 1xxxx 001000 SVE floating-point multiply (indexed)
011 0x 1xxxx 001001 UNALLOCATED
011 0x 1xxxx 0011xx UNALLOCATED
011 0x 1xxxx 01x0xx SVE Floating Point Widening Multiply-Add - Indexed
011 0x 1xxxx 01x1xx UNALLOCATED
011 0x 1xxxx 10x00x SVE Floating Point Widening Multiply-Add
011 0x 1xxxx 10x1xx UNALLOCATED
011 0x 1xxxx 110xxx UNALLOCATED
011 0x 1xxxx 111000 UNALLOCATED
011 0x 1xxxx 111001 SVE floating point matrix multiply accumulate
011 0x 1xxxx 11101x UNALLOCATED
011 0x 1xxxx 1111xx UNALLOCATED
011 1x 0xxxx x1xxxx SVE floating-point compare vectors
011 1x 0xxxx 000xxx SVE floating-point arithmetic (unpredicated)
011 1x 0xxxx 100xxx SVE Floating Point Arithmetic - Predicated
011 1x 0xxxx 101xxx SVE Floating Point Unary Operations - Predicated
011 1x 000xx 001xxx SVE floating-point recursive reduction
011 1x 001xx 0010xx UNALLOCATED
011 1x 001xx 0011xx SVE Floating Point Unary Operations - Unpredicated
011 1x 010xx 001xxx SVE Floating Point Compare - with Zero
011 1x 011xx 001xxx SVE Floating Point Accumulating Reduction
011 1x 1xxxx SVE Floating Point Multiply-Add
100 SVE Memory - 32-bit Gather and Unsized Contiguous
101 SVE Memory - Contiguous Load
110 SVE Memory - 64-bit Gather
111 0x0xxx SVE Memory - Contiguous Store and Unsized Contiguous
111 0x1xxx SVE Memory - Non-temporal and Multi-register Store
111 1x0xxx SVE Memory - Scatter with Optional Sign Extend
111 101xxx SVE Memory - Scatter
111 111xxx SVE Memory - Contiguous Store with Immediate Offset

SVE Integer Multiply-Add - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 0 op0 1

Decode fields
op0 Instruction details

0 SVE integer multiply-accumulate writing addend (predicated)
1 SVE integer multiply-add writing multiplicand (predicated)

SVE integer multiply-accumulate writing addend (predicated)

These instructions are under SVE Integer Multiply-Add - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 Zm 0 1 op Pg Zn Zda

Top-level encodings for A64

Page 2566

Decode fields
op Instruction Details

0 MLA
1 MLS

SVE integer multiply-add writing multiplicand (predicated)

These instructions are under SVE Integer Multiply-Add - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 Zm 1 1 op Pg Za Zdn

Decode fields
op Instruction Details

0 MAD
1 MSB

SVE Integer Binary Arithmetic - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 0 op0 000

Decode fields
op0 Instruction details

00x SVE integer add/subtract vectors (predicated)
01x SVE integer min/max/difference (predicated)
100 SVE integer multiply vectors (predicated)
101 SVE integer divide vectors (predicated)
11x SVE bitwise logical operations (predicated)

SVE integer add/subtract vectors (predicated)

These instructions are under SVE Integer Binary Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 0 opc 0 0 0 Pg Zm Zdn

Decode fields
opc Instruction Details

000 ADD (vectors, predicated)
001 SUB (vectors, predicated)
010 UNALLOCATED
011 SUBR (vectors)
1xx UNALLOCATED

SVE integer min/max/difference (predicated)

These instructions are under SVE Integer Binary Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 opc U 0 0 0 Pg Zm Zdn

Top-level encodings for A64

Page 2567

Decode fields
opc U Instruction Details

00 0 SMAX (vectors)
00 1 UMAX (vectors)
01 0 SMIN (vectors)
01 1 UMIN (vectors)
10 0 SABD
10 1 UABD
11 UNALLOCATED

SVE integer multiply vectors (predicated)

These instructions are under SVE Integer Binary Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 0 H U 0 0 0 Pg Zm Zdn

Decode fields
H U Instruction Details

0 0 MUL (vectors)
0 1 UNALLOCATED
1 0 SMULH
1 1 UMULH

SVE integer divide vectors (predicated)

These instructions are under SVE Integer Binary Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 1 R U 0 0 0 Pg Zm Zdn

Decode fields
R U Instruction Details

0 0 SDIV
0 1 UDIV
1 0 SDIVR
1 1 UDIVR

SVE bitwise logical operations (predicated)

These instructions are under SVE Integer Binary Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 opc 0 0 0 Pg Zm Zdn

Decode fields
opc Instruction Details

000 ORR (vectors, predicated)
001 EOR (vectors, predicated)
010 AND (vectors, predicated)
011 BIC (vectors, predicated)
1xx UNALLOCATED

Top-level encodings for A64

Page 2568

SVE Integer Reduction

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 0 op0 001

Decode fields
op0 Instruction details

000 SVE integer add reduction (predicated)
010 SVE integer min/max reduction (predicated)
0x1 UNALLOCATED
10x SVE constructive prefix (predicated)
110 SVE bitwise logical reduction (predicated)
111 UNALLOCATED

SVE integer add reduction (predicated)

These instructions are under SVE Integer Reduction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 0 0 op U 0 0 1 Pg Zn Vd

Decode fields
op U Instruction Details

0 0 SADDV
0 1 UADDV
1 UNALLOCATED

SVE integer min/max reduction (predicated)

These instructions are under SVE Integer Reduction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 0 1 0 op U 0 0 1 Pg Zn Vd

Decode fields
op U Instruction Details

0 0 SMAXV
0 1 UMAXV
1 0 SMINV
1 1 UMINV

SVE constructive prefix (predicated)

These instructions are under SVE Integer Reduction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 opc M 0 0 1 Pg Zn Zd

Decode fields
opc Instruction Details

00 MOVPRFX (predicated)
01 UNALLOCATED
1x UNALLOCATED

Top-level encodings for A64

Page 2569

SVE bitwise logical reduction (predicated)

These instructions are under SVE Integer Reduction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 0 opc 0 0 1 Pg Zn Vd

Decode fields
opc Instruction Details

00 ORV
01 EORV
10 ANDV
11 UNALLOCATED

SVE Bitwise Shift - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 0 op0 100

Decode fields
op0 Instruction details

0x SVE bitwise shift by immediate (predicated)
10 SVE bitwise shift by vector (predicated)
11 SVE bitwise shift by wide elements (predicated)

SVE bitwise shift by immediate (predicated)

These instructions are under SVE Bitwise Shift - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 0 0 opc L U 1 0 0 Pg tszl imm3 Zdn

Decode fields
opc L U Instruction Details

00 0 0 ASR (immediate, predicated)
00 0 1 LSR (immediate, predicated)
00 1 0 UNALLOCATED
00 1 1 LSL (immediate, predicated)
01 0 0 ASRD
01 0 1 UNALLOCATED
01 1 UNALLOCATED
1x UNALLOCATED

SVE bitwise shift by vector (predicated)

These instructions are under SVE Bitwise Shift - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 R L U 1 0 0 Pg Zm Zdn

Decode fields
R L U Instruction Details

1 0 UNALLOCATED
0 0 0 ASR (vectors)

Top-level encodings for A64

Page 2570

Decode fields
R L U Instruction Details

0 0 1 LSR (vectors)
0 1 1 LSL (vectors)
1 0 0 ASRR
1 0 1 LSRR
1 1 1 LSLR

SVE bitwise shift by wide elements (predicated)

These instructions are under SVE Bitwise Shift - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 R L U 1 0 0 Pg Zm Zdn

Decode fields
R L U Instruction Details

0 0 0 ASR (wide elements, predicated)
0 0 1 LSR (wide elements, predicated)
0 1 0 UNALLOCATED
0 1 1 LSL (wide elements, predicated)
1 UNALLOCATED

SVE Integer Unary Arithmetic - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 0 op0 101

Decode fields
op0 Instruction details

0x UNALLOCATED
10 SVE integer unary operations (predicated)
11 SVE bitwise unary operations (predicated)

SVE integer unary operations (predicated)

These instructions are under SVE Integer Unary Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 0 opc 1 0 1 Pg Zn Zd

Decode fields
opc Instruction Details

000 SXTB, SXTH, SXTW — SXTB
001 UXTB, UXTH, UXTW — UXTB
010 SXTB, SXTH, SXTW — SXTH
011 UXTB, UXTH, UXTW — UXTH
100 SXTB, SXTH, SXTW — SXTW
101 UXTB, UXTH, UXTW — UXTW
110 ABS
111 NEG

Top-level encodings for A64

Page 2571

SVE bitwise unary operations (predicated)

These instructions are under SVE Integer Unary Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 0 1 1 opc 1 0 1 Pg Zn Zd

Decode fields
opc Instruction Details

000 CLS
001 CLZ
010 CNT
011 CNOT
100 FABS
101 FNEG
110 NOT (vector)
111 UNALLOCATED

SVE integer add/subtract vectors (unpredicated)

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 0 0 0 opc Zn Zd

Decode fields
opc Instruction Details

000 ADD (vectors, unpredicated)
001 SUB (vectors, unpredicated)
01x UNALLOCATED
100 SQADD (vectors)
101 UQADD (vectors)
110 SQSUB (vectors)
111 UQSUB (vectors)

SVE Bitwise Logical - Unpredicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 1 001 op0 op1

Decode fields
op0 op1 Instruction details

0 UNALLOCATED
1 00 SVE bitwise logical operations (unpredicated)
1 != 00 UNALLOCATED

SVE bitwise logical operations (unpredicated)

These instructions are under SVE Bitwise Logical - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 opc 1 Zm 0 0 1 1 0 0 Zn Zd

Top-level encodings for A64

Page 2572

Decode fields
opc Instruction Details

00 AND (vectors, unpredicated)
01 ORR (vectors, unpredicated)
10 EOR (vectors, unpredicated)
11 BIC (vectors, unpredicated)

SVE Index Generation

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 1 0100 op0

Decode fields
op0 Instruction details

00 INDEX (immediates)
01 INDEX (scalar, immediate)
10 INDEX (immediate, scalar)
11 INDEX (scalars)

SVE Stack Allocation

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 op0 1 0101 op1

Decode fields
op0 op1 Instruction details

0 0 SVE stack frame adjustment
1 0 SVE stack frame size

1 UNALLOCATED

SVE stack frame adjustment

These instructions are under SVE Stack Allocation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 0 op 1 Rn 0 1 0 1 0 imm6 Rd

Decode fields
op Instruction Details

0 ADDVL
1 ADDPL

SVE stack frame size

These instructions are under SVE Stack Allocation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 1 op 1 opc2 0 1 0 1 0 imm6 Rd

Top-level encodings for A64

Page 2573

Decode fields
op opc2 Instruction Details

0 0xxxx UNALLOCATED
0 10xxx UNALLOCATED
0 110xx UNALLOCATED
0 1110x UNALLOCATED
0 11110 UNALLOCATED
0 11111 RDVL
1 UNALLOCATED

SVE Bitwise Shift - Unpredicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 1 100 op0

Decode fields
op0 Instruction details

0 SVE bitwise shift by wide elements (unpredicated)
1 SVE bitwise shift by immediate (unpredicated)

SVE bitwise shift by wide elements (unpredicated)

These instructions are under SVE Bitwise Shift - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 1 0 0 0 opc Zn Zd

Decode fields
opc Instruction Details

00 ASR (wide elements, unpredicated)
01 LSR (wide elements, unpredicated)
10 UNALLOCATED
11 LSL (wide elements, unpredicated)

SVE bitwise shift by immediate (unpredicated)

These instructions are under SVE Bitwise Shift - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 tszh 1 tszl imm3 1 0 0 1 opc Zn Zd

Decode fields
opc Instruction Details

00 ASR (immediate, unpredicated)
01 LSR (immediate, unpredicated)
10 UNALLOCATED
11 LSL (immediate, unpredicated)

SVE address generation

These instructions are under SVE encodings.

Top-level encodings for A64

Page 2574

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 opc 1 Zm 1 0 1 0 msz Zn Zd

Decode fields
opc Instruction Details

00 ADR — Unpacked 32-bit signed offsets
01 ADR — Unpacked 32-bit unsigned offsets
1x ADR — Packed offsets

SVE Integer Misc - Unpredicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 1 1011 op0

Decode fields
op0 Instruction details

0x SVE floating-point trig select coefficient
10 SVE floating-point exponential accelerator
11 SVE constructive prefix (unpredicated)

SVE floating-point trig select coefficient

These instructions are under SVE Integer Misc - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 Zm 1 0 1 1 0 op Zn Zd

Decode fields
op Instruction Details

0 FTSSEL
1 UNALLOCATED

SVE floating-point exponential accelerator

These instructions are under SVE Integer Misc - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 opc 1 0 1 1 1 0 Zn Zd

Decode fields
opc Instruction Details

00000 FEXPA
00001 UNALLOCATED
0001x UNALLOCATED
001xx UNALLOCATED
01xxx UNALLOCATED
1xxxx UNALLOCATED

SVE constructive prefix (unpredicated)

These instructions are under SVE Integer Misc - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 opc 1 opc2 1 0 1 1 1 1 Zn Zd

Top-level encodings for A64

Page 2575

Decode fields
opc opc2 Instruction Details

00 00000 MOVPRFX (unpredicated)
00 00001 UNALLOCATED
00 0001x UNALLOCATED
00 001xx UNALLOCATED
00 01xxx UNALLOCATED
00 1xxxx UNALLOCATED
01 UNALLOCATED
1x UNALLOCATED

SVE Element Count

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000100 1 op0 11 op1

Decode fields
op0 op1 Instruction details

0 00x SVE saturating inc/dec vector by element count
0 100 SVE element count
0 101 UNALLOCATED
1 000 SVE inc/dec vector by element count
1 100 SVE inc/dec register by element count
1 x01 UNALLOCATED

01x UNALLOCATED
11x SVE saturating inc/dec register by element count

SVE saturating inc/dec vector by element count

These instructions are under SVE Element Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 0 imm4 1 1 0 0 D U pattern Zdn

Decode fields
size D U Instruction Details

00 UNALLOCATED
01 0 0 SQINCH (vector)
01 0 1 UQINCH (vector)
01 1 0 SQDECH (vector)
01 1 1 UQDECH (vector)
10 0 0 SQINCW (vector)
10 0 1 UQINCW (vector)
10 1 0 SQDECW (vector)
10 1 1 UQDECW (vector)
11 0 0 SQINCD (vector)
11 0 1 UQINCD (vector)
11 1 0 SQDECD (vector)
11 1 1 UQDECD (vector)

Top-level encodings for A64

Page 2576

SVE element count

These instructions are under SVE Element Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 0 imm4 1 1 1 0 0 op pattern Rd

Decode fields
size op Instruction Details

1 UNALLOCATED
00 0 CNTB, CNTD, CNTH, CNTW — CNTB
01 0 CNTB, CNTD, CNTH, CNTW — CNTH
10 0 CNTB, CNTD, CNTH, CNTW — CNTW
11 0 CNTB, CNTD, CNTH, CNTW — CNTD

SVE inc/dec vector by element count

These instructions are under SVE Element Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 1 imm4 1 1 0 0 0 D pattern Zdn

Decode fields
size D Instruction Details

00 UNALLOCATED
01 0 INCD, INCH, INCW (vector) — INCH
01 1 DECD, DECH, DECW (vector) — DECH
10 0 INCD, INCH, INCW (vector) — INCW
10 1 DECD, DECH, DECW (vector) — DECW
11 0 INCD, INCH, INCW (vector) — INCD
11 1 DECD, DECH, DECW (vector) — DECD

SVE inc/dec register by element count

These instructions are under SVE Element Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 1 imm4 1 1 1 0 0 D pattern Rdn

Decode fields
size D Instruction Details

00 0 INCB, INCD, INCH, INCW (scalar) — INCB
00 1 DECB, DECD, DECH, DECW (scalar) — DECB
01 0 INCB, INCD, INCH, INCW (scalar) — INCH
01 1 DECB, DECD, DECH, DECW (scalar) — DECH
10 0 INCB, INCD, INCH, INCW (scalar) — INCW
10 1 DECB, DECD, DECH, DECW (scalar) — DECW
11 0 INCB, INCD, INCH, INCW (scalar) — INCD
11 1 DECB, DECD, DECH, DECW (scalar) — DECD

SVE saturating inc/dec register by element count

These instructions are under SVE Element Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 0 size 1 sf imm4 1 1 1 1 D U pattern Rdn

Top-level encodings for A64

Page 2577

Decode fields
size sf D U Instruction Details

00 0 0 0 SQINCB — 32-bit
00 0 0 1 UQINCB — 32-bit
00 0 1 0 SQDECB — 32-bit
00 0 1 1 UQDECB — 32-bit
00 1 0 0 SQINCB — 64-bit
00 1 0 1 UQINCB — 64-bit
00 1 1 0 SQDECB — 64-bit
00 1 1 1 UQDECB — 64-bit
01 0 0 0 SQINCH (scalar) — 32-bit
01 0 0 1 UQINCH (scalar) — 32-bit
01 0 1 0 SQDECH (scalar) — 32-bit
01 0 1 1 UQDECH (scalar) — 32-bit
01 1 0 0 SQINCH (scalar) — 64-bit
01 1 0 1 UQINCH (scalar) — 64-bit
01 1 1 0 SQDECH (scalar) — 64-bit
01 1 1 1 UQDECH (scalar) — 64-bit
10 0 0 0 SQINCW (scalar) — 32-bit
10 0 0 1 UQINCW (scalar) — 32-bit
10 0 1 0 SQDECW (scalar) — 32-bit
10 0 1 1 UQDECW (scalar) — 32-bit
10 1 0 0 SQINCW (scalar) — 64-bit
10 1 0 1 UQINCW (scalar) — 64-bit
10 1 1 0 SQDECW (scalar) — 64-bit
10 1 1 1 UQDECW (scalar) — 64-bit
11 0 0 0 SQINCD (scalar) — 32-bit
11 0 0 1 UQINCD (scalar) — 32-bit
11 0 1 0 SQDECD (scalar) — 32-bit
11 0 1 1 UQDECD (scalar) — 32-bit
11 1 0 0 SQINCD (scalar) — 64-bit
11 1 0 1 UQINCD (scalar) — 64-bit
11 1 1 0 SQDECD (scalar) — 64-bit
11 1 1 1 UQDECD (scalar) — 64-bit

SVE Bitwise Immediate

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000101 op0 00 op1

Decode fields
op0 op1 Instruction details

11 00 DUPM
!= 11 00 SVE bitwise logical with immediate (unpredicated)

!= 00 UNALLOCATED

SVE bitwise logical with immediate (unpredicated)

These instructions are under SVE Bitwise Immediate.

Top-level encodings for A64

Page 2578

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 != 11 0 0 0 0 imm13 Zdn

opc

The following constraints also apply to this encoding: opc != 11 && opc != 11

Decode fields
opc Instruction Details

00 ORR (immediate)
01 EOR (immediate)
10 AND (immediate)

SVE Integer Wide Immediate - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000101 01 op0

Decode fields
op0 Instruction details

0xx SVE copy integer immediate (predicated)
10x UNALLOCATED
110 FCPY
111 UNALLOCATED

SVE copy integer immediate (predicated)

These instructions are under SVE Integer Wide Immediate - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 0 1 Pg 0 M sh imm8 Zd

Decode fields
M Instruction Details

0 CPY (immediate, zeroing)
1 CPY (immediate, merging)

SVE Permute Vector - Unpredicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000101 1 op0 op1 001110

Decode fields
op0 op1 Instruction details

00 000 DUP (scalar)
00 100 INSR (scalar)
00 x10 UNALLOCATED
00 xx1 UNALLOCATED
01 UNALLOCATED
10 0xx SVE unpack vector elements
10 100 INSR (SIMD&FP scalar)
10 110 UNALLOCATED

Top-level encodings for A64

Page 2579

10 1x1 UNALLOCATED
11 000 REV (vector)
11 != 000 UNALLOCATED

SVE unpack vector elements

These instructions are under SVE Permute Vector - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 U H 0 0 1 1 1 0 Zn Zd

Decode fields
U H Instruction Details

0 0 SUNPKHI, SUNPKLO — SUNPKLO
0 1 SUNPKHI, SUNPKLO — SUNPKHI
1 0 UUNPKHI, UUNPKLO — UUNPKLO
1 1 UUNPKHI, UUNPKLO — UUNPKHI

SVE Permute Predicate

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000101 op0 1 op1 010 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details

00 1000x 0000 0 SVE unpack predicate elements
01 1000x 0000 0 UNALLOCATED
10 1000x 0000 0 UNALLOCATED
11 1000x 0000 0 UNALLOCATED

0xxxx xxx0 0 SVE permute predicate elements
0xxxx xxx1 0 UNALLOCATED
10100 0000 0 REV (predicate)
10101 0000 0 UNALLOCATED
10x0x 1000 0 UNALLOCATED
10x0x x100 0 UNALLOCATED
10x0x xx10 0 UNALLOCATED
10x0x xxx1 0 UNALLOCATED
10x1x 0 UNALLOCATED
11xxx 0 UNALLOCATED

1 UNALLOCATED

SVE unpack predicate elements

These instructions are under SVE Permute Predicate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 H 0 1 0 0 0 0 0 Pn 0 Pd

Decode fields
H Instruction Details

0 PUNPKHI, PUNPKLO — PUNPKLO

Top-level encodings for A64

Page 2580

Decode fields
H Instruction Details

1 PUNPKHI, PUNPKLO — PUNPKHI

SVE permute predicate elements

These instructions are under SVE Permute Predicate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 Pm 0 1 0 opc H 0 Pn 0 Pd

Decode fields
opc H Instruction Details

00 0 ZIP1, ZIP2 (predicates) — ZIP1
00 1 ZIP1, ZIP2 (predicates) — ZIP2
01 0 UZP1, UZP2 (predicates) — UZP1
01 1 UZP1, UZP2 (predicates) — UZP2
10 0 TRN1, TRN2 (predicates) — TRN1
10 1 TRN1, TRN2 (predicates) — TRN2
11 UNALLOCATED

SVE permute vector elements

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 Zm 0 1 1 opc Zn Zd

Decode fields
opc Instruction Details

000 ZIP1, ZIP2 (vectors) — ZIP1
001 ZIP1, ZIP2 (vectors) — ZIP2
010 UZP1, UZP2 (vectors) — UZP1
011 UZP1, UZP2 (vectors) — UZP2
100 TRN1, TRN2 (vectors) — TRN1
101 TRN1, TRN2 (vectors) — TRN2
11x UNALLOCATED

SVE Permute Vector - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00000101 1 op0 op1 op2 10 op3

Decode fields
op0 op1 op2 op3 Instruction details

0 000 0 0 CPY (SIMD&FP scalar)
0 000 1 0 COMPACT
0 000 1 SVE extract element to general register
0 001 0 SVE extract element to SIMD&FP scalar register
0 01x 0 SVE reverse within elements
0 01x 1 UNALLOCATED
0 100 0 1 CPY (scalar)

Top-level encodings for A64

Page 2581

0 100 1 1 UNALLOCATED
0 100 0 SVE conditionally broadcast element to vector
0 101 0 SVE conditionally extract element to SIMD&FP scalar
0 110 0 0 SPLICE
0 110 0 1 UNALLOCATED
0 110 1 UNALLOCATED
0 111 0 0 UNALLOCATED
0 111 0 1 UNALLOCATED
0 111 1 UNALLOCATED
0 x01 1 UNALLOCATED
1 000 0 UNALLOCATED
1 000 1 SVE conditionally extract element to general register
1 != 000 UNALLOCATED

SVE extract element to general register

These instructions are under SVE Permute Vector - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 0 B 1 0 1 Pg Zn Rd

Decode fields
B Instruction Details

0 LASTA (scalar)
1 LASTB (scalar)

SVE extract element to SIMD&FP scalar register

These instructions are under SVE Permute Vector - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 0 1 B 1 0 0 Pg Zn Vd

Decode fields
B Instruction Details

0 LASTA (SIMD&FP scalar)
1 LASTB (SIMD&FP scalar)

SVE reverse within elements

These instructions are under SVE Permute Vector - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 0 1 opc 1 0 0 Pg Zn Zd

Decode fields
opc Instruction Details

00 REVB, REVH, REVW — REVB
01 REVB, REVH, REVW — REVH
10 REVB, REVH, REVW — REVW
11 RBIT

Top-level encodings for A64

Page 2582

SVE conditionally broadcast element to vector

These instructions are under SVE Permute Vector - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 0 B 1 0 0 Pg Zm Zdn

Decode fields
B Instruction Details

0 CLASTA (vectors)
1 CLASTB (vectors)

SVE conditionally extract element to SIMD&FP scalar

These instructions are under SVE Permute Vector - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 0 1 0 1 B 1 0 0 Pg Zm Vdn

Decode fields
B Instruction Details

0 CLASTA (SIMD&FP scalar)
1 CLASTB (SIMD&FP scalar)

SVE conditionally extract element to general register

These instructions are under SVE Permute Vector - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 size 1 1 0 0 0 B 1 0 1 Pg Zm Rdn

Decode fields
B Instruction Details

0 CLASTA (scalar)
1 CLASTB (scalar)

SVE Permute Vector - Extract

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000001010 op0 1 000

Decode fields
op0 Instruction details

0 EXT
1 UNALLOCATED

SVE permute vector segments

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 0 1 1 op 1 Zm 0 0 0 opc2 Zn Zd

Decode fields
op opc2 Instruction Details Feature

0 000 ZIP1, ZIP2 (vectors) — ZIP1 FEAT_F64MM

Top-level encodings for A64

Page 2583

Decode fields
op opc2 Instruction Details Feature

0 001 ZIP1, ZIP2 (vectors) — ZIP2 FEAT_F64MM
0 010 UZP1, UZP2 (vectors) — UZP1 FEAT_F64MM
0 011 UZP1, UZP2 (vectors) — UZP2 FEAT_F64MM
0 10x UNALLOCATED -
0 110 TRN1, TRN2 (vectors) — TRN1 FEAT_F64MM
0 111 TRN1, TRN2 (vectors) — TRN2 FEAT_F64MM
1 UNALLOCATED -

SVE Integer Compare - Vectors

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100100 0 op0

Decode fields
op0 Instruction details

0 SVE integer compare vectors
1 SVE integer compare with wide elements

SVE integer compare vectors

These instructions are under SVE Integer Compare - Vectors.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm op 0 o2 Pg Zn ne Pd

Decode fields
op o2 ne Instruction Details

0 0 0 CMP<cc> (vectors) — CMPHS
0 0 1 CMP<cc> (vectors) — CMPHI
0 1 0 CMP<cc> (wide elements) — CMPEQ
0 1 1 CMP<cc> (wide elements) — CMPNE
1 0 0 CMP<cc> (vectors) — CMPGE
1 0 1 CMP<cc> (vectors) — CMPGT
1 1 0 CMP<cc> (vectors) — CMPEQ
1 1 1 CMP<cc> (vectors) — CMPNE

SVE integer compare with wide elements

These instructions are under SVE Integer Compare - Vectors.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 0 Zm U 1 lt Pg Zn ne Pd

Decode fields
U lt ne Instruction Details

0 0 0 CMP<cc> (wide elements) — CMPGE
0 0 1 CMP<cc> (wide elements) — CMPGT
0 1 0 CMP<cc> (wide elements) — CMPLT
0 1 1 CMP<cc> (wide elements) — CMPLE
1 0 0 CMP<cc> (wide elements) — CMPHS

Top-level encodings for A64

Page 2584

Decode fields
U lt ne Instruction Details

1 0 1 CMP<cc> (wide elements) — CMPHI
1 1 0 CMP<cc> (wide elements) — CMPLO
1 1 1 CMP<cc> (wide elements) — CMPLS

SVE integer compare with unsigned immediate

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 size 1 imm7 lt Pg Zn ne Pd

Decode fields
lt ne Instruction Details

0 0 CMP<cc> (immediate) — CMPHS
0 1 CMP<cc> (immediate) — CMPHI
1 0 CMP<cc> (immediate) — CMPLO
1 1 CMP<cc> (immediate) — CMPLS

SVE integer compare with signed immediate

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 imm5 op 0 o2 Pg Zn ne Pd

Decode fields
op o2 ne Instruction Details

0 0 0 CMP<cc> (immediate) — CMPGE
0 0 1 CMP<cc> (immediate) — CMPGT
0 1 0 CMP<cc> (immediate) — CMPLT
0 1 1 CMP<cc> (immediate) — CMPLE
1 0 0 CMP<cc> (immediate) — CMPEQ
1 0 1 CMP<cc> (immediate) — CMPNE
1 1 UNALLOCATED

SVE predicate logical operations

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op S 0 0 Pm 0 1 Pg o2 Pn o3 Pd

Decode fields
op S o2 o3 Instruction Details

0 0 0 0 AND (predicates)
0 0 0 1 BIC (predicates)
0 0 1 0 EOR (predicates)
0 0 1 1 SEL (predicates)
0 1 0 0 ANDS
0 1 0 1 BICS
0 1 1 0 EORS
0 1 1 1 UNALLOCATED

Top-level encodings for A64

Page 2585

Decode fields
op S o2 o3 Instruction Details

1 0 0 0 ORR (predicates)
1 0 0 1 ORN (predicates)
1 0 1 0 NOR
1 0 1 1 NAND
1 1 0 0 ORRS
1 1 0 1 ORNS
1 1 1 0 NORS
1 1 1 1 NANDS

SVE Propagate Break

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 00 11 op0

Decode fields
op0 Instruction details

0 SVE propagate break from previous partition
1 UNALLOCATED

SVE propagate break from previous partition

These instructions are under SVE Propagate Break.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op S 0 0 Pm 1 1 Pg 0 Pn B Pd

Decode fields
op S B Instruction Details

0 0 0 BRKPA
0 0 1 BRKPB
0 1 0 BRKPAS
0 1 1 BRKPBS
1 UNALLOCATED

SVE Partition Break

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 op0 01 op1 01 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details

0 1000 0 0 SVE propagate break to next partition
0 1000 0 1 UNALLOCATED
0 x000 1 UNALLOCATED
0 x1xx UNALLOCATED
0 xx1x UNALLOCATED
0 xxx1 UNALLOCATED

Top-level encodings for A64

Page 2586

1 0000 1 UNALLOCATED
1 != 0000 UNALLOCATED

0000 0 SVE partition break condition

SVE propagate break to next partition

These instructions are under SVE Partition Break.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 0 S 0 1 1 0 0 0 0 1 Pg 0 Pn 0 Pdm

Decode fields
S Instruction Details

0 BRKN
1 BRKNS

SVE partition break condition

These instructions are under SVE Partition Break.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 B S 0 1 0 0 0 0 0 1 Pg 0 Pn M Pd

Decode fields
B S M Instruction Details

1 1 UNALLOCATED
0 0 BRKA
0 1 0 BRKAS
1 0 BRKB
1 1 0 BRKBS

SVE Predicate Misc

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 01 op0 11 op1 op2 op3 op4

Decode fields
op0 op1 op2 op3 op4 Instruction details

0000 x0 0 SVE predicate test
0100 x0 0 UNALLOCATED
0x10 x0 0 UNALLOCATED
0xx1 x0 0 UNALLOCATED
0xxx x1 0 UNALLOCATED
1000 000 00 0 SVE predicate first active
1000 000 != 00 0 UNALLOCATED
1000 100 10 0000 0 SVE predicate zero
1000 100 10 != 0000 0 UNALLOCATED
1000 110 00 0 SVE predicate read from FFR (predicated)
1001 000 0x 0 UNALLOCATED
1001 000 10 0 PNEXT
1001 000 11 0 UNALLOCATED

Top-level encodings for A64

Page 2587

1001 100 10 0 UNALLOCATED
1001 110 00 0000 0 SVE predicate read from FFR (unpredicated)
1001 110 00 != 0000 0 UNALLOCATED
100x 010 0 UNALLOCATED
100x 100 0x 0 SVE predicate initialize
100x 100 11 0 UNALLOCATED
100x 110 != 00 0 UNALLOCATED
100x xx1 0 UNALLOCATED
110x 0 UNALLOCATED
1x1x 0 UNALLOCATED

1 UNALLOCATED

SVE predicate test

These instructions are under SVE Predicate Misc.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op S 0 1 0 0 0 0 1 1 Pg 0 Pn 0 opc2

Decode fields
op S opc2 Instruction Details

0 0 UNALLOCATED
0 1 0000 PTEST
0 1 0001 UNALLOCATED
0 1 001x UNALLOCATED
0 1 01xx UNALLOCATED
0 1 1xxx UNALLOCATED
1 UNALLOCATED

SVE predicate first active

These instructions are under SVE Predicate Misc.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op S 0 1 1 0 0 0 1 1 0 0 0 0 0 Pg 0 Pdn

Decode fields
op S Instruction Details

0 0 UNALLOCATED
0 1 PFIRST
1 UNALLOCATED

SVE predicate zero

These instructions are under SVE Predicate Misc.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op S 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 Pd

Decode fields
op S Instruction Details

0 0 PFALSE
0 1 UNALLOCATED

Top-level encodings for A64

Page 2588

Decode fields
op S Instruction Details

1 UNALLOCATED

SVE predicate read from FFR (predicated)

These instructions are under SVE Predicate Misc.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op S 0 1 1 0 0 0 1 1 1 1 0 0 0 Pg 0 Pd

Decode fields
op S Instruction Details

0 0 RDFFR (predicated)
0 1 RDFFRS
1 UNALLOCATED

SVE predicate read from FFR (unpredicated)

These instructions are under SVE Predicate Misc.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op S 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 Pd

Decode fields
op S Instruction Details

0 0 RDFFR (unpredicated)
0 1 UNALLOCATED
1 UNALLOCATED

SVE predicate initialize

These instructions are under SVE Predicate Misc.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 0 1 1 0 0 S 1 1 1 0 0 0 pattern 0 Pd

Decode fields
S Instruction Details

0 PTRUE
1 PTRUES

SVE Integer Compare - Scalars

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 1 00 op0 op1 op2

Decode fields
op0 op1 op2 Instruction details

0 SVE integer compare scalar count and limit
1 000 0000 SVE conditionally terminate scalars
1 000 != 0000 UNALLOCATED
1 != 000 UNALLOCATED

Top-level encodings for A64

Page 2589

SVE integer compare scalar count and limit

These instructions are under SVE Integer Compare - Scalars.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 Rm 0 0 0 sf U lt Rn eq Pd

Decode fields
U lt eq Instruction Details

0 UNALLOCATED
0 1 0 WHILELT
0 1 1 WHILELE
1 1 0 WHILELO
1 1 1 WHILELS

SVE conditionally terminate scalars

These instructions are under SVE Integer Compare - Scalars.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 op sz 1 Rm 0 0 1 0 0 0 Rn ne 0 0 0 0

Decode fields
op ne Instruction Details

0 UNALLOCATED
1 0 CTERMEQ, CTERMNE — CTERMEQ
1 1 CTERMEQ, CTERMNE — CTERMNE

SVE Integer Wide Immediate - Unpredicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 1 op0 op1 11

Decode fields
op0 op1 Instruction details

00 SVE integer add/subtract immediate (unpredicated)
01 SVE integer min/max immediate (unpredicated)
10 SVE integer multiply immediate (unpredicated)
11 0 SVE broadcast integer immediate (unpredicated)
11 1 SVE broadcast floating-point immediate (unpredicated)

SVE integer add/subtract immediate (unpredicated)

These instructions are under SVE Integer Wide Immediate - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 opc 1 1 sh imm8 Zdn

Decode fields
opc Instruction Details

000 ADD (immediate)
001 SUB (immediate)
010 UNALLOCATED
011 SUBR (immediate)

Top-level encodings for A64

Page 2590

Decode fields
opc Instruction Details

100 SQADD (immediate)
101 UQADD (immediate)
110 SQSUB (immediate)
111 UQSUB (immediate)

SVE integer min/max immediate (unpredicated)

These instructions are under SVE Integer Wide Immediate - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 opc 1 1 o2 imm8 Zdn

Decode fields
opc o2 Instruction Details

0xx 1 UNALLOCATED
000 0 SMAX (immediate)
001 0 UMAX (immediate)
010 0 SMIN (immediate)
011 0 UMIN (immediate)
1xx UNALLOCATED

SVE integer multiply immediate (unpredicated)

These instructions are under SVE Integer Wide Immediate - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 0 opc 1 1 o2 imm8 Zdn

Decode fields
opc o2 Instruction Details

000 0 MUL (immediate)
000 1 UNALLOCATED
001 UNALLOCATED
01x UNALLOCATED
1xx UNALLOCATED

SVE broadcast integer immediate (unpredicated)

These instructions are under SVE Integer Wide Immediate - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 1 opc 0 1 1 sh imm8 Zd

Decode fields
opc Instruction Details

00 DUP (immediate)
01 UNALLOCATED
1x UNALLOCATED

SVE broadcast floating-point immediate (unpredicated)

These instructions are under SVE Integer Wide Immediate - Unpredicated.

Top-level encodings for A64

Page 2591

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 1 1 opc 1 1 1 o2 imm8 Zd

Decode fields
opc o2 Instruction Details

00 0 FDUP
00 1 UNALLOCATED
01 UNALLOCATED
1x UNALLOCATED

SVE Predicate Count

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 100 10 op0

Decode fields
op0 Instruction details

0 SVE predicate count
1 UNALLOCATED

SVE predicate count

These instructions are under SVE Predicate Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 0 opc 1 0 Pg 0 Pn Rd

Decode fields
opc Instruction Details

000 CNTP
001 UNALLOCATED
01x UNALLOCATED
1xx UNALLOCATED

SVE Inc/Dec by Predicate Count

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 101 op0 1000 op1

Decode fields
op0 op1 Instruction details

0 0 SVE saturating inc/dec vector by predicate count
0 1 SVE saturating inc/dec register by predicate count
1 0 SVE inc/dec vector by predicate count
1 1 SVE inc/dec register by predicate count

SVE saturating inc/dec vector by predicate count

These instructions are under SVE Inc/Dec by Predicate Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 D U 1 0 0 0 0 opc Pm Zdn

Top-level encodings for A64

Page 2592

Decode fields
D U opc Instruction Details

01 UNALLOCATED
1x UNALLOCATED

0 0 00 SQINCP (vector)
0 1 00 UQINCP (vector)
1 0 00 SQDECP (vector)
1 1 00 UQDECP (vector)

SVE saturating inc/dec register by predicate count

These instructions are under SVE Inc/Dec by Predicate Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 0 D U 1 0 0 0 1 sf op Pm Rdn

Decode fields
D U sf op Instruction Details

1 UNALLOCATED
0 0 0 0 SQINCP (scalar) — 32-bit
0 0 1 0 SQINCP (scalar) — 64-bit
0 1 0 0 UQINCP (scalar) — 32-bit
0 1 1 0 UQINCP (scalar) — 64-bit
1 0 0 0 SQDECP (scalar) — 32-bit
1 0 1 0 SQDECP (scalar) — 64-bit
1 1 0 0 UQDECP (scalar) — 32-bit
1 1 1 0 UQDECP (scalar) — 64-bit

SVE inc/dec vector by predicate count

These instructions are under SVE Inc/Dec by Predicate Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 1 op D 1 0 0 0 0 opc2 Pm Zdn

Decode fields
op D opc2 Instruction Details

0 01 UNALLOCATED
0 1x UNALLOCATED
0 0 00 INCP (vector)
0 1 00 DECP (vector)
1 UNALLOCATED

SVE inc/dec register by predicate count

These instructions are under SVE Inc/Dec by Predicate Count.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 size 1 0 1 1 op D 1 0 0 0 1 opc2 Pm Rdn

Decode fields
op D opc2 Instruction Details

0 01 UNALLOCATED
0 1x UNALLOCATED

Top-level encodings for A64

Page 2593

Decode fields
op D opc2 Instruction Details

0 0 00 INCP (scalar)
0 1 00 DECP (scalar)
1 UNALLOCATED

SVE Write FFR

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00100101 101 op0 op1 1001 op2 op3 op4

Decode fields
op0 op1 op2 op3 op4 Instruction details

0 00 000 00000 SVE FFR write from predicate
1 00 000 0000 00000 SVE FFR initialise
1 00 000 1xxx 00000 UNALLOCATED
1 00 000 x1xx 00000 UNALLOCATED
1 00 000 xx1x 00000 UNALLOCATED
1 00 000 xxx1 00000 UNALLOCATED

00 000 != 00000 UNALLOCATED
00 != 000 UNALLOCATED

!= 00 UNALLOCATED

SVE FFR write from predicate

These instructions are under SVE Write FFR.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 opc 1 0 1 0 0 0 1 0 0 1 0 0 0 Pn 0 0 0 0 0

Decode fields
opc Instruction Details

00 WRFFR
01 UNALLOCATED
1x UNALLOCATED

SVE FFR initialise

These instructions are under SVE Write FFR.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 1 opc 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Decode fields
opc Instruction Details

00 SETFFR
01 UNALLOCATED
1x UNALLOCATED

SVE Integer Multiply-Add - Unpredicated

These instructions are under SVE encodings.

Top-level encodings for A64

Page 2594

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01000100 0 0 op0 op1 op2

Decode fields
op0 op1 op2 Instruction details

0 000 SVE integer dot product (unpredicated)
0 != 000 UNALLOCATED
1 0xx UNALLOCATED
1 10x UNALLOCATED
1 110 UNALLOCATED
1 111 0 SVE mixed sign dot product
1 111 1 UNALLOCATED

SVE integer dot product (unpredicated)

These instructions are under SVE Integer Multiply-Add - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 size 0 Zm 0 0 0 0 0 U Zn Zda

Decode fields
U Instruction Details

0 SDOT (vectors)
1 UDOT (vectors)

SVE mixed sign dot product

These instructions are under SVE Integer Multiply-Add - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 size 0 Zm 0 1 1 1 1 0 Zn Zda

Decode fields
size Instruction Details Feature

0x UNALLOCATED -
10 USDOT (vectors) FEAT_I8MM
11 UNALLOCATED -

SVE Multiply - Indexed

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01000100 1 op0 op1

Decode fields
op0 op1 Instruction details

000 00 SVE integer dot product (indexed)
000 01 UNALLOCATED
000 10 UNALLOCATED
000 11 SVE mixed sign dot product (indexed)

!= 000 UNALLOCATED

SVE integer dot product (indexed)

These instructions are under SVE Multiply - Indexed.

Top-level encodings for A64

Page 2595

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 size 1 opc 0 0 0 0 0 U Zn Zda

Decode fields
size U Instruction Details

0x UNALLOCATED
10 0 SDOT (indexed) — 32-bit
10 1 UDOT (indexed) — 32-bit
11 0 SDOT (indexed) — 64-bit
11 1 UDOT (indexed) — 64-bit

SVE mixed sign dot product (indexed)

These instructions are under SVE Multiply - Indexed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 0 size 1 opc 0 0 0 1 1 U Zn Zda

Decode fields
size U Instruction Details Feature

0x UNALLOCATED -
10 0 USDOT (indexed) FEAT_I8MM
10 1 SUDOT FEAT_I8MM
11 UNALLOCATED -

SVE Misc

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01000101 0 10 op0

Decode fields
op0 Instruction details

00xx UNALLOCATED
010x UNALLOCATED
0110 SVE integer matrix multiply accumulate
0111 UNALLOCATED
1xxx UNALLOCATED

SVE integer matrix multiply accumulate

These instructions are under SVE Misc.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 1 0 1 uns 0 Zm 1 0 0 1 1 0 Zn Zd

Decode fields
uns Instruction Details Feature

00 SMMLA FEAT_I8MM
01 UNALLOCATED -
10 USMMLA FEAT_I8MM
11 UMMLA FEAT_I8MM

Top-level encodings for A64

Page 2596

SVE floating-point convert precision odd elements

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 opc 0 0 1 0 opc2 1 0 1 Pg Zn Zd

Decode fields
opc opc2 Instruction Details Feature

0x UNALLOCATED -
10 0x UNALLOCATED -
10 10 BFCVTNT FEAT_BF16
10 11 UNALLOCATED -
11 UNALLOCATED -

SVE floating-point multiply-add (indexed)

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 size 1 opc 0 0 0 0 0 op Zn Zda

Decode fields
size op Instruction Details

0x 0 FMLA (indexed) — half-precision
0x 1 FMLS (indexed) — half-precision
10 0 FMLA (indexed) — single-precision
10 1 FMLS (indexed) — single-precision
11 0 FMLA (indexed) — double-precision
11 1 FMLS (indexed) — double-precision

SVE floating-point complex multiply-add (indexed)

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 size 1 opc 0 0 0 1 rot Zn Zda

Decode fields
size Instruction Details

0x UNALLOCATED
10 FCMLA (indexed) — half-precision
11 FCMLA (indexed) — single-precision

SVE floating-point multiply (indexed)

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 size 1 opc 0 0 1 0 0 0 Zn Zd

Decode fields
size Instruction Details

0x FMUL (indexed) — half-precision
10 FMUL (indexed) — single-precision
11 FMUL (indexed) — double-precision

Top-level encodings for A64

Page 2597

SVE Floating Point Widening Multiply-Add - Indexed

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100100 op0 1 01 op1 0 op2

Decode fields
op0 op1 op2 Instruction details

0 0 00 SVE BFloat16 floating-point dot product (indexed)
0 0 != 00 UNALLOCATED
0 1 UNALLOCATED
1 SVE floating-point multiply-add long (indexed)

SVE BFloat16 floating-point dot product (indexed)

These instructions are under SVE Floating Point Widening Multiply-Add - Indexed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 op 1 i2 Zm 0 1 0 0 0 0 Zn Zda

Decode fields
op Instruction Details Feature

0 UNALLOCATED -
1 BFDOT (indexed) FEAT_BF16

SVE floating-point multiply-add long (indexed)

These instructions are under SVE Floating Point Widening Multiply-Add - Indexed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 o2 1 i3h Zm 0 1 op 0 i3l T Zn Zda

Decode fields
o2 op T Instruction Details Feature

0 UNALLOCATED -
1 0 0 BFMLALB (indexed) FEAT_BF16
1 0 1 BFMLALT (indexed) FEAT_BF16
1 1 UNALLOCATED -

SVE Floating Point Widening Multiply-Add

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100100 op0 1 10 op1 00 op2

Decode fields
op0 op1 op2 Instruction details

0 0 0 SVE BFloat16 floating-point dot product
0 0 1 UNALLOCATED
0 1 UNALLOCATED
1 SVE floating-point multiply-add long

Top-level encodings for A64

Page 2598

SVE BFloat16 floating-point dot product

These instructions are under SVE Floating Point Widening Multiply-Add.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 0 op 1 Zm 1 0 0 0 0 0 Zn Zda

Decode fields
op Instruction Details Feature

0 UNALLOCATED -
1 BFDOT (vectors) FEAT_BF16

SVE floating-point multiply-add long

These instructions are under SVE Floating Point Widening Multiply-Add.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 1 o2 1 Zm 1 0 op 0 0 T Zn Zda

Decode fields
o2 op T Instruction Details Feature

0 UNALLOCATED -
1 0 0 BFMLALB (vectors) FEAT_BF16
1 0 1 BFMLALT (vectors) FEAT_BF16
1 1 UNALLOCATED -

SVE floating point matrix multiply accumulate

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 0 opc 1 Zm 1 1 1 0 0 1 Zn Zda

Decode fields
opc Instruction Details Feature

00 UNALLOCATED -
01 BFMMLA FEAT_BF16
10 FMMLA — 32-bit element FEAT_F32MM
11 FMMLA — 64-bit element FEAT_F64MM

SVE floating-point compare vectors

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm op 1 o2 Pg Zn o3 Pd

Decode fields
op o2 o3 Instruction Details

0 0 0 FCM<cc> (vectors) — FCMGE
0 0 1 FCM<cc> (vectors) — FCMGT
0 1 0 FCM<cc> (vectors) — FCMEQ
0 1 1 FCM<cc> (vectors) — FCMNE
1 0 0 FCM<cc> (vectors) — FCMUO
1 0 1 FAC<cc> — FACGE
1 1 0 UNALLOCATED

Top-level encodings for A64

Page 2599

Decode fields
op o2 o3 Instruction Details

1 1 1 FAC<cc> — FACGT

SVE floating-point arithmetic (unpredicated)

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 Zm 0 0 0 opc Zn Zd

Decode fields
opc Instruction Details

000 FADD (vectors, unpredicated)
001 FSUB (vectors, unpredicated)
010 FMUL (vectors, unpredicated)
011 FTSMUL
10x UNALLOCATED
110 FRECPS
111 FRSQRTS

SVE Floating Point Arithmetic - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100101 0 op0 100 op1 op2

Decode fields
op0 op1 op2 Instruction details

0x SVE floating-point arithmetic (predicated)
10 000 FTMAD
10 != 000 UNALLOCATED
11 0000 SVE floating-point arithmetic with immediate (predicated)
11 != 0000 UNALLOCATED

SVE floating-point arithmetic (predicated)

These instructions are under SVE Floating Point Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 opc 1 0 0 Pg Zm Zdn

Decode fields
opc Instruction Details

0000 FADD (vectors, predicated)
0001 FSUB (vectors, predicated)
0010 FMUL (vectors, predicated)
0011 FSUBR (vectors)
0100 FMAXNM (vectors)
0101 FMINNM (vectors)
0110 FMAX (vectors)
0111 FMIN (vectors)
1000 FABD

Top-level encodings for A64

Page 2600

Decode fields
opc Instruction Details

1001 FSCALE
1010 FMULX
1011 UNALLOCATED
1100 FDIVR
1101 FDIV
111x UNALLOCATED

SVE floating-point arithmetic with immediate (predicated)

These instructions are under SVE Floating Point Arithmetic - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 opc 1 0 0 Pg 0 0 0 0 i1 Zdn

Decode fields
opc Instruction Details

000 FADD (immediate)
001 FSUB (immediate)
010 FMUL (immediate)
011 FSUBR (immediate)
100 FMAXNM (immediate)
101 FMINNM (immediate)
110 FMAX (immediate)
111 FMIN (immediate)

SVE Floating Point Unary Operations - Predicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100101 0 op0 101

Decode fields
op0 Instruction details

00x SVE floating-point round to integral value
010 SVE floating-point convert precision
011 SVE floating-point unary operations
10x SVE integer convert to floating-point
11x SVE floating-point convert to integer

SVE floating-point round to integral value

These instructions are under SVE Floating Point Unary Operations - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 opc 1 0 1 Pg Zn Zd

Decode fields
opc Instruction Details

000 FRINT<r> — nearest with ties to even
001 FRINT<r> — toward plus infinity
010 FRINT<r> — toward minus infinity

Top-level encodings for A64

Page 2601

Decode fields
opc Instruction Details

011 FRINT<r> — toward zero
100 FRINT<r> — nearest with ties to away
101 UNALLOCATED
110 FRINT<r> — current mode signalling inexact
111 FRINT<r> — current mode

SVE floating-point convert precision

These instructions are under SVE Floating Point Unary Operations - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 opc 0 0 1 0 opc2 1 0 1 Pg Zn Zd

Decode fields
opc opc2 Instruction Details Feature

0x UNALLOCATED -
10 00 FCVT — single-precision to half-precision -
10 01 FCVT — half-precision to single-precision -
10 10 BFCVT FEAT_BF16
10 11 UNALLOCATED -
11 00 FCVT — double-precision to half-precision -
11 01 FCVT — half-precision to double-precision -
11 10 FCVT — double-precision to single-precision -
11 11 FCVT — single-precision to double-precision -

SVE floating-point unary operations

These instructions are under SVE Floating Point Unary Operations - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 1 opc 1 0 1 Pg Zn Zd

Decode fields
opc Instruction Details

00 FRECPX
01 FSQRT
1x UNALLOCATED

SVE integer convert to floating-point

These instructions are under SVE Floating Point Unary Operations - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 opc 0 1 0 opc2 U 1 0 1 Pg Zn Zd

Decode fields
opc opc2 U Instruction Details

00 UNALLOCATED
01 00 UNALLOCATED
01 01 0 SCVTF — 16-bit to half-precision
01 01 1 UCVTF — 16-bit to half-precision
01 10 0 SCVTF — 32-bit to half-precision

Top-level encodings for A64

Page 2602

Decode fields
opc opc2 U Instruction Details

01 10 1 UCVTF — 32-bit to half-precision
01 11 0 SCVTF — 64-bit to half-precision
01 11 1 UCVTF — 64-bit to half-precision
10 0x UNALLOCATED
10 10 0 SCVTF — 32-bit to single-precision
10 10 1 UCVTF — 32-bit to single-precision
10 11 UNALLOCATED
11 00 0 SCVTF — 32-bit to double-precision
11 00 1 UCVTF — 32-bit to double-precision
11 01 UNALLOCATED
11 10 0 SCVTF — 64-bit to single-precision
11 10 1 UCVTF — 64-bit to single-precision
11 11 0 SCVTF — 64-bit to double-precision
11 11 1 UCVTF — 64-bit to double-precision

SVE floating-point convert to integer

These instructions are under SVE Floating Point Unary Operations - Predicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 opc 0 1 1 opc2 U 1 0 1 Pg Zn Zd

Decode fields
opc opc2 U Instruction Details

00 UNALLOCATED
01 00 UNALLOCATED
01 01 0 FCVTZS — half-precision to 16-bit
01 01 1 FCVTZU — half-precision to 16-bit
01 10 0 FCVTZS — half-precision to 32-bit
01 10 1 FCVTZU — half-precision to 32-bit
01 11 0 FCVTZS — half-precision to 64-bit
01 11 1 FCVTZU — half-precision to 64-bit
10 0x UNALLOCATED
10 10 0 FCVTZS — single-precision to 32-bit
10 10 1 FCVTZU — single-precision to 32-bit
10 11 UNALLOCATED
11 00 0 FCVTZS — double-precision to 32-bit
11 00 1 FCVTZU — double-precision to 32-bit
11 01 UNALLOCATED
11 10 0 FCVTZS — single-precision to 64-bit
11 10 1 FCVTZU — single-precision to 64-bit
11 11 0 FCVTZS — double-precision to 64-bit
11 11 1 FCVTZU — double-precision to 64-bit

SVE floating-point recursive reduction

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 0 opc 0 0 1 Pg Zn Vd

Top-level encodings for A64

Page 2603

Decode fields
opc Instruction Details

000 FADDV
001 UNALLOCATED
01x UNALLOCATED
100 FMAXNMV
101 FMINNMV
110 FMAXV
111 FMINV

SVE Floating Point Unary Operations - Unpredicated

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100101 001 0011 op0

Decode fields
op0 Instruction details

00 SVE floating-point reciprocal estimate (unpredicated)
!= 00 UNALLOCATED

SVE floating-point reciprocal estimate (unpredicated)

These instructions are under SVE Floating Point Unary Operations - Unpredicated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 0 1 opc 0 0 1 1 0 0 Zn Zd

Decode fields
opc Instruction Details

0xx UNALLOCATED
10x UNALLOCATED
110 FRECPE
111 FRSQRTE

SVE Floating Point Compare - with Zero

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100101 010 op0 001

Decode fields
op0 Instruction details

0 SVE floating-point compare with zero
1 UNALLOCATED

SVE floating-point compare with zero

These instructions are under SVE Floating Point Compare - with Zero.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 0 0 eq lt 0 0 1 Pg Zn ne Pd

Top-level encodings for A64

Page 2604

Decode fields
eq lt ne Instruction Details

0 0 0 FCM<cc> (zero) — FCMGE
0 0 1 FCM<cc> (zero) — FCMGT
0 1 0 FCM<cc> (zero) — FCMLT
0 1 1 FCM<cc> (zero) — FCMLE
1 1 UNALLOCATED
1 0 0 FCM<cc> (zero) — FCMEQ
1 1 0 FCM<cc> (zero) — FCMNE

SVE Floating Point Accumulating Reduction

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100101 011 op0 001

Decode fields
op0 Instruction details

0 SVE floating-point serial reduction (predicated)
1 UNALLOCATED

SVE floating-point serial reduction (predicated)

These instructions are under SVE Floating Point Accumulating Reduction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 0 1 1 0 opc 0 0 1 Pg Zm Vdn

Decode fields
opc Instruction Details

00 FADDA
01 UNALLOCATED
1x UNALLOCATED

SVE Floating Point Multiply-Add

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01100101 1 op0

Decode fields
op0 Instruction details

0 SVE floating-point multiply-accumulate writing addend
1 SVE floating-point multiply-accumulate writing multiplicand

SVE floating-point multiply-accumulate writing addend

These instructions are under SVE Floating Point Multiply-Add.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Zm 0 opc Pg Zn Zda

Top-level encodings for A64

Page 2605

Decode fields
opc Instruction Details

00 FMLA (vectors)
01 FMLS (vectors)
10 FNMLA
11 FNMLS

SVE floating-point multiply-accumulate writing multiplicand

These instructions are under SVE Floating Point Multiply-Add.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 size 1 Za 1 opc Pg Zm Zdn

Decode fields
opc Instruction Details

00 FMAD
01 FMSB
10 FNMAD
11 FNMSB

SVE Memory - 32-bit Gather and Unsized Contiguous

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1000010 op0 op1 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details

00 x1 0xx 0 SVE 32-bit gather prefetch (scalar plus 32-bit scaled offsets)
00 x1 0xx 1 UNALLOCATED
01 x1 0xx SVE 32-bit gather load halfwords (scalar plus 32-bit scaled offsets)
10 x1 0xx SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)
11 0x 000 0 LDR (predicate)
11 0x 000 1 UNALLOCATED
11 0x 010 LDR (vector)
11 0x 0x1 UNALLOCATED
11 1x 0xx 0 SVE contiguous prefetch (scalar plus immediate)
11 1x 0xx 1 UNALLOCATED

!= 11 x0 0xx SVE 32-bit gather load (scalar plus 32-bit unscaled offsets)
00 10x UNALLOCATED
00 110 0 SVE contiguous prefetch (scalar plus scalar)
00 111 0 SVE 32-bit gather prefetch (vector plus immediate)
00 11x 1 UNALLOCATED
01 1xx SVE 32-bit gather load (vector plus immediate)
1x 1xx SVE load and broadcast element

SVE 32-bit gather prefetch (scalar plus 32-bit scaled offsets)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

Top-level encodings for A64

Page 2606

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 0 xs 1 Zm 0 msz Pg Rn 0 prfop

Decode fields
msz Instruction Details

00 PRFB (scalar plus vector)
01 PRFH (scalar plus vector)
10 PRFW (scalar plus vector)
11 PRFD (scalar plus vector)

SVE 32-bit gather load halfwords (scalar plus 32-bit scaled offsets)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 0 1 xs 1 Zm 0 U ff Pg Rn Zt

Decode fields
U ff Instruction Details

0 0 LD1SH (scalar plus vector)
0 1 LDFF1SH (scalar plus vector)
1 0 LD1H (scalar plus vector)
1 1 LDFF1H (scalar plus vector)

SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 0 xs 1 Zm 0 U ff Pg Rn Zt

Decode fields
U ff Instruction Details

0 UNALLOCATED
1 0 LD1W (scalar plus vector)
1 1 LDFF1W (scalar plus vector)

SVE contiguous prefetch (scalar plus immediate)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 1 1 1 imm6 0 msz Pg Rn 0 prfop

Decode fields
msz Instruction Details

00 PRFB (scalar plus immediate)
01 PRFH (scalar plus immediate)
10 PRFW (scalar plus immediate)
11 PRFD (scalar plus immediate)

SVE 32-bit gather load (scalar plus 32-bit unscaled offsets)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

Top-level encodings for A64

Page 2607

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 != 11 xs 0 Zm 0 U ff Pg Rn Zt

opc

The following constraints also apply to this encoding: opc != 11 && opc != 11

Decode fields
opc U ff Instruction Details

00 0 0 LD1SB (scalar plus vector)
00 0 1 LDFF1SB (scalar plus vector)
00 1 0 LD1B (scalar plus vector)
00 1 1 LDFF1B (scalar plus vector)
01 0 0 LD1SH (scalar plus vector)
01 0 1 LDFF1SH (scalar plus vector)
01 1 0 LD1H (scalar plus vector)
01 1 1 LDFF1H (scalar plus vector)
10 0 UNALLOCATED
10 1 0 LD1W (scalar plus vector)
10 1 1 LDFF1W (scalar plus vector)

SVE contiguous prefetch (scalar plus scalar)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 msz 0 0 Rm 1 1 0 Pg Rn 0 prfop

Decode fields
msz Instruction Details

00 PRFB (scalar plus scalar)
01 PRFH (scalar plus scalar)
10 PRFW (scalar plus scalar)
11 PRFD (scalar plus scalar)

SVE 32-bit gather prefetch (vector plus immediate)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 msz 0 0 imm5 1 1 1 Pg Zn 0 prfop

Decode fields
msz Instruction Details

00 PRFB (vector plus immediate)
01 PRFH (vector plus immediate)
10 PRFW (vector plus immediate)
11 PRFD (vector plus immediate)

SVE 32-bit gather load (vector plus immediate)

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 msz 0 1 imm5 1 U ff Pg Zn Zt

Top-level encodings for A64

Page 2608

Decode fields
msz U ff Instruction Details

00 0 0 LD1SB (vector plus immediate)
00 0 1 LDFF1SB (vector plus immediate)
00 1 0 LD1B (vector plus immediate)
00 1 1 LDFF1B (vector plus immediate)
01 0 0 LD1SH (vector plus immediate)
01 0 1 LDFF1SH (vector plus immediate)
01 1 0 LD1H (vector plus immediate)
01 1 1 LDFF1H (vector plus immediate)
10 0 UNALLOCATED
10 1 0 LD1W (vector plus immediate)
10 1 1 LDFF1W (vector plus immediate)
11 UNALLOCATED

SVE load and broadcast element

These instructions are under SVE Memory - 32-bit Gather and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 0 0 1 0 dtypeh 1 imm6 1 dtypel Pg Rn Zt

Decode fields
dtypeh dtypel Instruction Details

00 00 LD1RB — 8-bit element
00 01 LD1RB — 16-bit element
00 10 LD1RB — 32-bit element
00 11 LD1RB — 64-bit element
01 00 LD1RSW
01 01 LD1RH — 16-bit element
01 10 LD1RH — 32-bit element
01 11 LD1RH — 64-bit element
10 00 LD1RSH — 64-bit element
10 01 LD1RSH — 32-bit element
10 10 LD1RW — 32-bit element
10 11 LD1RW — 64-bit element
11 00 LD1RSB — 64-bit element
11 01 LD1RSB — 32-bit element
11 10 LD1RSB — 16-bit element
11 11 LD1RD

SVE Memory - Contiguous Load

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1010010 op0 op1 op2

Decode fields
op0 op1 op2 Instruction details

00 0 111 SVE contiguous non-temporal load (scalar plus immediate)
00 110 SVE contiguous non-temporal load (scalar plus scalar)

Top-level encodings for A64

Page 2609

!= 00 0 111 SVE load multiple structures (scalar plus immediate)
!= 00 110 SVE load multiple structures (scalar plus scalar)

0 001 SVE load and broadcast quadword (scalar plus immediate)
0 101 SVE contiguous load (scalar plus immediate)
1 001 UNALLOCATED
1 101 SVE contiguous non-fault load (scalar plus immediate)
1 111 UNALLOCATED

000 SVE load and broadcast quadword (scalar plus scalar)
010 SVE contiguous load (scalar plus scalar)
011 SVE contiguous first-fault load (scalar plus scalar)
100 UNALLOCATED

SVE contiguous non-temporal load (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 msz 0 0 0 imm4 1 1 1 Pg Rn Zt

Decode fields
msz Instruction Details

00 LDNT1B (scalar plus immediate)
01 LDNT1H (scalar plus immediate)
10 LDNT1W (scalar plus immediate)
11 LDNT1D (scalar plus immediate)

SVE contiguous non-temporal load (scalar plus scalar)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 msz 0 0 Rm 1 1 0 Pg Rn Zt

Decode fields
msz Instruction Details

00 LDNT1B (scalar plus scalar)
01 LDNT1H (scalar plus scalar)
10 LDNT1W (scalar plus scalar)
11 LDNT1D (scalar plus scalar)

SVE load multiple structures (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 msz != 00 0 imm4 1 1 1 Pg Rn Zt

opc

The following constraints also apply to this encoding: opc != 00 && opc != 00

Decode fields
msz opc Instruction Details

00 01 LD2B (scalar plus immediate)
00 10 LD3B (scalar plus immediate)

Top-level encodings for A64

Page 2610

Decode fields
msz opc Instruction Details

00 11 LD4B (scalar plus immediate)
01 01 LD2H (scalar plus immediate)
01 10 LD3H (scalar plus immediate)
01 11 LD4H (scalar plus immediate)
10 01 LD2W (scalar plus immediate)
10 10 LD3W (scalar plus immediate)
10 11 LD4W (scalar plus immediate)
11 01 LD2D (scalar plus immediate)
11 10 LD3D (scalar plus immediate)
11 11 LD4D (scalar plus immediate)

SVE load multiple structures (scalar plus scalar)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 msz != 00 Rm 1 1 0 Pg Rn Zt

opc

The following constraints also apply to this encoding: opc != 00 && opc != 00

Decode fields
msz opc Instruction Details

00 01 LD2B (scalar plus scalar)
00 10 LD3B (scalar plus scalar)
00 11 LD4B (scalar plus scalar)
01 01 LD2H (scalar plus scalar)
01 10 LD3H (scalar plus scalar)
01 11 LD4H (scalar plus scalar)
10 01 LD2W (scalar plus scalar)
10 10 LD3W (scalar plus scalar)
10 11 LD4W (scalar plus scalar)
11 01 LD2D (scalar plus scalar)
11 10 LD3D (scalar plus scalar)
11 11 LD4D (scalar plus scalar)

SVE load and broadcast quadword (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 msz ssz 0 imm4 0 0 1 Pg Rn Zt

Decode fields
msz ssz Instruction Details Feature

1x UNALLOCATED -
00 00 LD1RQB (scalar plus immediate) -
00 01 LD1ROB (scalar plus immediate) FEAT_F64MM
01 00 LD1RQH (scalar plus immediate) -
01 01 LD1ROH (scalar plus immediate) FEAT_F64MM
10 00 LD1RQW (scalar plus immediate) -

Top-level encodings for A64

Page 2611

Decode fields
msz ssz Instruction Details Feature

10 01 LD1ROW (scalar plus immediate) FEAT_F64MM
11 00 LD1RQD (scalar plus immediate) -
11 01 LD1ROD (scalar plus immediate) FEAT_F64MM

SVE contiguous load (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 dtype 0 imm4 1 0 1 Pg Rn Zt

Decode fields
dtype Instruction Details

0000 LD1B (scalar plus immediate) — 8-bit element
0001 LD1B (scalar plus immediate) — 16-bit element
0010 LD1B (scalar plus immediate) — 32-bit element
0011 LD1B (scalar plus immediate) — 64-bit element
0100 LD1SW (scalar plus immediate)
0101 LD1H (scalar plus immediate) — 16-bit element
0110 LD1H (scalar plus immediate) — 32-bit element
0111 LD1H (scalar plus immediate) — 64-bit element
1000 LD1SH (scalar plus immediate) — 64-bit element
1001 LD1SH (scalar plus immediate) — 32-bit element
1010 LD1W (scalar plus immediate) — 32-bit element
1011 LD1W (scalar plus immediate) — 64-bit element
1100 LD1SB (scalar plus immediate) — 64-bit element
1101 LD1SB (scalar plus immediate) — 32-bit element
1110 LD1SB (scalar plus immediate) — 16-bit element
1111 LD1D (scalar plus immediate)

SVE contiguous non-fault load (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 dtype 1 imm4 1 0 1 Pg Rn Zt

Decode fields
dtype Instruction Details

0000 LDNF1B — 8-bit element
0001 LDNF1B — 16-bit element
0010 LDNF1B — 32-bit element
0011 LDNF1B — 64-bit element
0100 LDNF1SW
0101 LDNF1H — 16-bit element
0110 LDNF1H — 32-bit element
0111 LDNF1H — 64-bit element
1000 LDNF1SH — 64-bit element
1001 LDNF1SH — 32-bit element
1010 LDNF1W — 32-bit element

Top-level encodings for A64

Page 2612

Decode fields
dtype Instruction Details

1011 LDNF1W — 64-bit element
1100 LDNF1SB — 64-bit element
1101 LDNF1SB — 32-bit element
1110 LDNF1SB — 16-bit element
1111 LDNF1D

SVE load and broadcast quadword (scalar plus scalar)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 msz ssz Rm 0 0 0 Pg Rn Zt

Decode fields
msz ssz Instruction Details Feature

1x UNALLOCATED -
00 00 LD1RQB (scalar plus scalar) -
00 01 LD1ROB (scalar plus scalar) FEAT_F64MM
01 00 LD1RQH (scalar plus scalar) -
01 01 LD1ROH (scalar plus scalar) FEAT_F64MM
10 00 LD1RQW (scalar plus scalar) -
10 01 LD1ROW (scalar plus scalar) FEAT_F64MM
11 00 LD1RQD (scalar plus scalar) -
11 01 LD1ROD (scalar plus scalar) FEAT_F64MM

SVE contiguous load (scalar plus scalar)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 dtype Rm 0 1 0 Pg Rn Zt

Decode fields
dtype Instruction Details

0000 LD1B (scalar plus scalar) — 8-bit element
0001 LD1B (scalar plus scalar) — 16-bit element
0010 LD1B (scalar plus scalar) — 32-bit element
0011 LD1B (scalar plus scalar) — 64-bit element
0100 LD1SW (scalar plus scalar)
0101 LD1H (scalar plus scalar) — 16-bit element
0110 LD1H (scalar plus scalar) — 32-bit element
0111 LD1H (scalar plus scalar) — 64-bit element
1000 LD1SH (scalar plus scalar) — 64-bit element
1001 LD1SH (scalar plus scalar) — 32-bit element
1010 LD1W (scalar plus scalar) — 32-bit element
1011 LD1W (scalar plus scalar) — 64-bit element
1100 LD1SB (scalar plus scalar) — 64-bit element
1101 LD1SB (scalar plus scalar) — 32-bit element
1110 LD1SB (scalar plus scalar) — 16-bit element
1111 LD1D (scalar plus scalar)

Top-level encodings for A64

Page 2613

SVE contiguous first-fault load (scalar plus scalar)

These instructions are under SVE Memory - Contiguous Load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 1 0 dtype Rm 0 1 1 Pg Rn Zt

Decode fields
dtype Instruction Details

0000 LDFF1B (scalar plus scalar) — 8-bit element
0001 LDFF1B (scalar plus scalar) — 16-bit element
0010 LDFF1B (scalar plus scalar) — 32-bit element
0011 LDFF1B (scalar plus scalar) — 64-bit element
0100 LDFF1SW (scalar plus scalar)
0101 LDFF1H (scalar plus scalar) — 16-bit element
0110 LDFF1H (scalar plus scalar) — 32-bit element
0111 LDFF1H (scalar plus scalar) — 64-bit element
1000 LDFF1SH (scalar plus scalar) — 64-bit element
1001 LDFF1SH (scalar plus scalar) — 32-bit element
1010 LDFF1W (scalar plus scalar) — 32-bit element
1011 LDFF1W (scalar plus scalar) — 64-bit element
1100 LDFF1SB (scalar plus scalar) — 64-bit element
1101 LDFF1SB (scalar plus scalar) — 32-bit element
1110 LDFF1SB (scalar plus scalar) — 16-bit element
1111 LDFF1D (scalar plus scalar)

SVE Memory - 64-bit Gather

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1100010 op0 op1 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details

00 01 0xx 1 UNALLOCATED
00 11 1xx 0 SVE 64-bit gather prefetch (scalar plus 64-bit scaled offsets)
00 11 1 UNALLOCATED
00 x1 0xx 0 SVE 64-bit gather prefetch (scalar plus unpacked 32-bit scaled offsets)

!= 00 11 1xx SVE 64-bit gather load (scalar plus 64-bit scaled offsets)
!= 00 x1 0xx SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)

00 10x UNALLOCATED
00 110 UNALLOCATED
00 111 0 SVE 64-bit gather prefetch (vector plus immediate)
00 111 1 UNALLOCATED
01 1xx SVE 64-bit gather load (vector plus immediate)
10 1xx SVE 64-bit gather load (scalar plus 64-bit unscaled offsets)
x0 0xx SVE 64-bit gather load (scalar plus unpacked 32-bit unscaled offsets)

SVE 64-bit gather prefetch (scalar plus 64-bit scaled offsets)

These instructions are under SVE Memory - 64-bit Gather.

Top-level encodings for A64

Page 2614

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 1 1 Zm 1 msz Pg Rn 0 prfop

Decode fields
msz Instruction Details

00 PRFB (scalar plus vector)
01 PRFH (scalar plus vector)
10 PRFW (scalar plus vector)
11 PRFD (scalar plus vector)

SVE 64-bit gather prefetch (scalar plus unpacked 32-bit scaled offsets)

These instructions are under SVE Memory - 64-bit Gather.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 0 0 xs 1 Zm 0 msz Pg Rn 0 prfop

Decode fields
msz Instruction Details

00 PRFB (scalar plus vector)
01 PRFH (scalar plus vector)
10 PRFW (scalar plus vector)
11 PRFD (scalar plus vector)

SVE 64-bit gather load (scalar plus 64-bit scaled offsets)

These instructions are under SVE Memory - 64-bit Gather.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 != 00 1 1 Zm 1 U ff Pg Rn Zt

opc

The following constraints also apply to this encoding: opc != 00 && opc != 00

Decode fields
opc U ff Instruction Details

01 0 0 LD1SH (scalar plus vector)
01 0 1 LDFF1SH (scalar plus vector)
01 1 0 LD1H (scalar plus vector)
01 1 1 LDFF1H (scalar plus vector)
10 0 0 LD1SW (scalar plus vector)
10 0 1 LDFF1SW (scalar plus vector)
10 1 0 LD1W (scalar plus vector)
10 1 1 LDFF1W (scalar plus vector)
11 0 UNALLOCATED
11 1 0 LD1D (scalar plus vector)
11 1 1 LDFF1D (scalar plus vector)

SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)

These instructions are under SVE Memory - 64-bit Gather.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 != 00 xs 1 Zm 0 U ff Pg Rn Zt

opc

Top-level encodings for A64

Page 2615

The following constraints also apply to this encoding: opc != 00 && opc != 00

Decode fields
opc U ff Instruction Details

01 0 0 LD1SH (scalar plus vector)
01 0 1 LDFF1SH (scalar plus vector)
01 1 0 LD1H (scalar plus vector)
01 1 1 LDFF1H (scalar plus vector)
10 0 0 LD1SW (scalar plus vector)
10 0 1 LDFF1SW (scalar plus vector)
10 1 0 LD1W (scalar plus vector)
10 1 1 LDFF1W (scalar plus vector)
11 0 UNALLOCATED
11 1 0 LD1D (scalar plus vector)
11 1 1 LDFF1D (scalar plus vector)

SVE 64-bit gather prefetch (vector plus immediate)

These instructions are under SVE Memory - 64-bit Gather.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 msz 0 0 imm5 1 1 1 Pg Zn 0 prfop

Decode fields
msz Instruction Details

00 PRFB (vector plus immediate)
01 PRFH (vector plus immediate)
10 PRFW (vector plus immediate)
11 PRFD (vector plus immediate)

SVE 64-bit gather load (vector plus immediate)

These instructions are under SVE Memory - 64-bit Gather.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 msz 0 1 imm5 1 U ff Pg Zn Zt

Decode fields
msz U ff Instruction Details

00 0 0 LD1SB (vector plus immediate)
00 0 1 LDFF1SB (vector plus immediate)
00 1 0 LD1B (vector plus immediate)
00 1 1 LDFF1B (vector plus immediate)
01 0 0 LD1SH (vector plus immediate)
01 0 1 LDFF1SH (vector plus immediate)
01 1 0 LD1H (vector plus immediate)
01 1 1 LDFF1H (vector plus immediate)
10 0 0 LD1SW (vector plus immediate)
10 0 1 LDFF1SW (vector plus immediate)
10 1 0 LD1W (vector plus immediate)
10 1 1 LDFF1W (vector plus immediate)
11 0 UNALLOCATED
11 1 0 LD1D (vector plus immediate)

Top-level encodings for A64

Page 2616

Decode fields
msz U ff Instruction Details

11 1 1 LDFF1D (vector plus immediate)

SVE 64-bit gather load (scalar plus 64-bit unscaled offsets)

These instructions are under SVE Memory - 64-bit Gather.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 msz 1 0 Zm 1 U ff Pg Rn Zt

Decode fields
msz U ff Instruction Details

00 0 0 LD1SB (scalar plus vector)
00 0 1 LDFF1SB (scalar plus vector)
00 1 0 LD1B (scalar plus vector)
00 1 1 LDFF1B (scalar plus vector)
01 0 0 LD1SH (scalar plus vector)
01 0 1 LDFF1SH (scalar plus vector)
01 1 0 LD1H (scalar plus vector)
01 1 1 LDFF1H (scalar plus vector)
10 0 0 LD1SW (scalar plus vector)
10 0 1 LDFF1SW (scalar plus vector)
10 1 0 LD1W (scalar plus vector)
10 1 1 LDFF1W (scalar plus vector)
11 0 UNALLOCATED
11 1 0 LD1D (scalar plus vector)
11 1 1 LDFF1D (scalar plus vector)

SVE 64-bit gather load (scalar plus unpacked 32-bit unscaled offsets)

These instructions are under SVE Memory - 64-bit Gather.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 0 1 0 msz xs 0 Zm 0 U ff Pg Rn Zt

Decode fields
msz U ff Instruction Details

00 0 0 LD1SB (scalar plus vector)
00 0 1 LDFF1SB (scalar plus vector)
00 1 0 LD1B (scalar plus vector)
00 1 1 LDFF1B (scalar plus vector)
01 0 0 LD1SH (scalar plus vector)
01 0 1 LDFF1SH (scalar plus vector)
01 1 0 LD1H (scalar plus vector)
01 1 1 LDFF1H (scalar plus vector)
10 0 0 LD1SW (scalar plus vector)
10 0 1 LDFF1SW (scalar plus vector)
10 1 0 LD1W (scalar plus vector)
10 1 1 LDFF1W (scalar plus vector)
11 0 UNALLOCATED
11 1 0 LD1D (scalar plus vector)

Top-level encodings for A64

Page 2617

Decode fields
msz U ff Instruction Details

11 1 1 LDFF1D (scalar plus vector)

SVE Memory - Contiguous Store and Unsized Contiguous

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1110010 op0 0 op1 0 op2

Decode fields
op0 op1 op2 Instruction details

0xx 0 UNALLOCATED
10x 0 UNALLOCATED
110 0 0 STR (predicate)
110 0 1 UNALLOCATED
110 1 STR (vector)
111 0 UNALLOCATED

!= 110 1 SVE contiguous store (scalar plus scalar)

SVE contiguous store (scalar plus scalar)

These instructions are under SVE Memory - Contiguous Store and Unsized Contiguous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 != 110 o2 Rm 0 1 0 Pg Rn Zt

opc

The following constraints also apply to this encoding: opc != 110 && opc != 110

Decode fields
opc o2 Instruction Details

00x ST1B (scalar plus scalar)
01x ST1H (scalar plus scalar)
10x ST1W (scalar plus scalar)
111 0 UNALLOCATED
111 1 ST1D (scalar plus scalar)

SVE Memory - Non-temporal and Multi-register Store

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1110010 op0 0 op1 1

Decode fields
op0 op1 Instruction details

00 1 SVE contiguous non-temporal store (scalar plus scalar)
!= 00 1 SVE store multiple structures (scalar plus scalar)

0 UNALLOCATED

Top-level encodings for A64

Page 2618

SVE contiguous non-temporal store (scalar plus scalar)

These instructions are under SVE Memory - Non-temporal and Multi-register Store.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 0 0 Rm 0 1 1 Pg Rn Zt

Decode fields
msz Instruction Details

00 STNT1B (scalar plus scalar)
01 STNT1H (scalar plus scalar)
10 STNT1W (scalar plus scalar)
11 STNT1D (scalar plus scalar)

SVE store multiple structures (scalar plus scalar)

These instructions are under SVE Memory - Non-temporal and Multi-register Store.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz != 00 Rm 0 1 1 Pg Rn Zt

opc

The following constraints also apply to this encoding: opc != 00 && opc != 00

Decode fields
msz opc Instruction Details

00 01 ST2B (scalar plus scalar)
00 10 ST3B (scalar plus scalar)
00 11 ST4B (scalar plus scalar)
01 01 ST2H (scalar plus scalar)
01 10 ST3H (scalar plus scalar)
01 11 ST4H (scalar plus scalar)
10 01 ST2W (scalar plus scalar)
10 10 ST3W (scalar plus scalar)
10 11 ST4W (scalar plus scalar)
11 01 ST2D (scalar plus scalar)
11 10 ST3D (scalar plus scalar)
11 11 ST4D (scalar plus scalar)

SVE Memory - Scatter with Optional Sign Extend

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1110010 op0 1 0

Decode fields
op0 Instruction details

00 SVE 64-bit scatter store (scalar plus unpacked 32-bit unscaled offsets)
01 SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)
10 SVE 32-bit scatter store (scalar plus 32-bit unscaled offsets)
11 SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)

Top-level encodings for A64

Page 2619

SVE 64-bit scatter store (scalar plus unpacked 32-bit unscaled offsets)

These instructions are under SVE Memory - Scatter with Optional Sign Extend.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 0 0 Zm 1 xs 0 Pg Rn Zt

Decode fields
msz Instruction Details

00 ST1B (scalar plus vector)
01 ST1H (scalar plus vector)
10 ST1W (scalar plus vector)
11 ST1D (scalar plus vector)

SVE 64-bit scatter store (scalar plus unpacked 32-bit scaled offsets)

These instructions are under SVE Memory - Scatter with Optional Sign Extend.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 0 1 Zm 1 xs 0 Pg Rn Zt

Decode fields
msz Instruction Details

00 UNALLOCATED
01 ST1H (scalar plus vector)
10 ST1W (scalar plus vector)
11 ST1D (scalar plus vector)

SVE 32-bit scatter store (scalar plus 32-bit unscaled offsets)

These instructions are under SVE Memory - Scatter with Optional Sign Extend.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 1 0 Zm 1 xs 0 Pg Rn Zt

Decode fields
msz Instruction Details

00 ST1B (scalar plus vector)
01 ST1H (scalar plus vector)
10 ST1W (scalar plus vector)
11 UNALLOCATED

SVE 32-bit scatter store (scalar plus 32-bit scaled offsets)

These instructions are under SVE Memory - Scatter with Optional Sign Extend.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 1 1 Zm 1 xs 0 Pg Rn Zt

Decode fields
msz Instruction Details

00 UNALLOCATED
01 ST1H (scalar plus vector)
10 ST1W (scalar plus vector)
11 UNALLOCATED

Top-level encodings for A64

Page 2620

SVE Memory - Scatter

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1110010 op0 101

Decode fields
op0 Instruction details

00 SVE 64-bit scatter store (scalar plus 64-bit unscaled offsets)
01 SVE 64-bit scatter store (scalar plus 64-bit scaled offsets)
10 SVE 64-bit scatter store (vector plus immediate)
11 SVE 32-bit scatter store (vector plus immediate)

SVE 64-bit scatter store (scalar plus 64-bit unscaled offsets)

These instructions are under SVE Memory - Scatter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 0 0 Zm 1 0 1 Pg Rn Zt

Decode fields
msz Instruction Details

00 ST1B (scalar plus vector)
01 ST1H (scalar plus vector)
10 ST1W (scalar plus vector)
11 ST1D (scalar plus vector)

SVE 64-bit scatter store (scalar plus 64-bit scaled offsets)

These instructions are under SVE Memory - Scatter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 0 1 Zm 1 0 1 Pg Rn Zt

Decode fields
msz Instruction Details

00 UNALLOCATED
01 ST1H (scalar plus vector)
10 ST1W (scalar plus vector)
11 ST1D (scalar plus vector)

SVE 64-bit scatter store (vector plus immediate)

These instructions are under SVE Memory - Scatter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 1 0 imm5 1 0 1 Pg Zn Zt

Decode fields
msz Instruction Details

00 ST1B (vector plus immediate)
01 ST1H (vector plus immediate)
10 ST1W (vector plus immediate)
11 ST1D (vector plus immediate)

Top-level encodings for A64

Page 2621

SVE 32-bit scatter store (vector plus immediate)

These instructions are under SVE Memory - Scatter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 1 1 imm5 1 0 1 Pg Zn Zt

Decode fields
msz Instruction Details

00 ST1B (vector plus immediate)
01 ST1H (vector plus immediate)
10 ST1W (vector plus immediate)
11 UNALLOCATED

SVE Memory - Contiguous Store with Immediate Offset

These instructions are under SVE encodings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1110010 op0 op1 111

Decode fields
op0 op1 Instruction details

00 1 SVE contiguous non-temporal store (scalar plus immediate)
!= 00 1 SVE store multiple structures (scalar plus immediate)

0 SVE contiguous store (scalar plus immediate)

SVE contiguous non-temporal store (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Store with Immediate Offset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz 0 0 1 imm4 1 1 1 Pg Rn Zt

Decode fields
msz Instruction Details

00 STNT1B (scalar plus immediate)
01 STNT1H (scalar plus immediate)
10 STNT1W (scalar plus immediate)
11 STNT1D (scalar plus immediate)

SVE store multiple structures (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Store with Immediate Offset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz != 00 1 imm4 1 1 1 Pg Rn Zt

opc

The following constraints also apply to this encoding: opc != 00 && opc != 00

Decode fields
msz opc Instruction Details

00 01 ST2B (scalar plus immediate)
00 10 ST3B (scalar plus immediate)
00 11 ST4B (scalar plus immediate)

Top-level encodings for A64

Page 2622

Decode fields
msz opc Instruction Details

01 01 ST2H (scalar plus immediate)
01 10 ST3H (scalar plus immediate)
01 11 ST4H (scalar plus immediate)
10 01 ST2W (scalar plus immediate)
10 10 ST3W (scalar plus immediate)
10 11 ST4W (scalar plus immediate)
11 01 ST2D (scalar plus immediate)
11 10 ST3D (scalar plus immediate)
11 11 ST4D (scalar plus immediate)

SVE contiguous store (scalar plus immediate)

These instructions are under SVE Memory - Contiguous Store with Immediate Offset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 0 0 1 0 msz size 0 imm4 1 1 1 Pg Rn Zt

Decode fields
msz Instruction Details

00 ST1B (scalar plus immediate)
01 ST1H (scalar plus immediate)
10 ST1W (scalar plus immediate)
11 ST1D (scalar plus immediate)

Data Processing -- Immediate

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
100 op0

Decode fields
op0 Instruction details

00x PC-rel. addressing
010 Add/subtract (immediate)
011 Add/subtract (immediate, with tags)
100 Logical (immediate)
101 Move wide (immediate)
110 Bitfield
111 Extract

PC-rel. addressing

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op immlo 1 0 0 0 0 immhi Rd

Decode fields
op Instruction Details

0 ADR
1 ADRP

Top-level encodings for A64

Page 2623

Add/subtract (immediate)

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 0 0 0 1 0 sh imm12 Rn Rd

Decode fields
sf op S Instruction Details

0 0 0 ADD (immediate) — 32-bit
0 0 1 ADDS (immediate) — 32-bit
0 1 0 SUB (immediate) — 32-bit
0 1 1 SUBS (immediate) — 32-bit
1 0 0 ADD (immediate) — 64-bit
1 0 1 ADDS (immediate) — 64-bit
1 1 0 SUB (immediate) — 64-bit
1 1 1 SUBS (immediate) — 64-bit

Add/subtract (immediate, with tags)

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 0 0 0 1 1 o2 uimm6 op3 uimm4 Rn Rd

Decode fields
sf op S o2 Instruction Details Feature

1 UNALLOCATED -
0 0 UNALLOCATED -
1 1 0 UNALLOCATED -
1 0 0 0 ADDG FEAT_MTE
1 1 0 0 SUBG FEAT_MTE

Logical (immediate)

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf opc 1 0 0 1 0 0 N immr imms Rn Rd

Decode fields
sf opc N Instruction Details

0 1 UNALLOCATED
0 00 0 AND (immediate) — 32-bit
0 01 0 ORR (immediate) — 32-bit
0 10 0 EOR (immediate) — 32-bit
0 11 0 ANDS (immediate) — 32-bit
1 00 AND (immediate) — 64-bit
1 01 ORR (immediate) — 64-bit
1 10 EOR (immediate) — 64-bit
1 11 ANDS (immediate) — 64-bit

Move wide (immediate)

These instructions are under Data Processing -- Immediate.

Top-level encodings for A64

Page 2624

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf opc 1 0 0 1 0 1 hw imm16 Rd

Decode fields
sf opc hw Instruction Details

01 UNALLOCATED
0 1x UNALLOCATED
0 00 0x MOVN — 32-bit
0 10 0x MOVZ — 32-bit
0 11 0x MOVK — 32-bit
1 00 MOVN — 64-bit
1 10 MOVZ — 64-bit
1 11 MOVK — 64-bit

Bitfield

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf opc 1 0 0 1 1 0 N immr imms Rn Rd

Decode fields
sf opc N Instruction Details

11 UNALLOCATED
0 1 UNALLOCATED
0 00 0 SBFM — 32-bit
0 01 0 BFM — 32-bit
0 10 0 UBFM — 32-bit
1 0 UNALLOCATED
1 00 1 SBFM — 64-bit
1 01 1 BFM — 64-bit
1 10 1 UBFM — 64-bit

Extract

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op21 1 0 0 1 1 1 N o0 Rm imms Rn Rd

Decode fields
sf op21 N o0 imms Instruction Details

x1 UNALLOCATED
00 1 UNALLOCATED
1x UNALLOCATED

0 1xxxxx UNALLOCATED
0 1 UNALLOCATED
0 00 0 0 0xxxxx EXTR — 32-bit
1 0 UNALLOCATED
1 00 1 0 EXTR — 64-bit

Branches, Exception Generating and System instructions

These instructions are under the top-level.

Top-level encodings for A64

Page 2625

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 101 op1 op2

Decode fields
op0 op1 op2 Instruction details

010 0xxxxxxxxxxxxx Conditional branch (immediate)
110 00xxxxxxxxxxxx Exception generation
110 01000000110001 System instructions with register argument
110 01000000110010 11111 Hints
110 01000000110011 Barriers
110 0100000xxx0100 PSTATE
110 0100x01xxxxxxx System instructions
110 0100x1xxxxxxxx System register move
110 1xxxxxxxxxxxxx Unconditional branch (register)
x00 Unconditional branch (immediate)
x01 0xxxxxxxxxxxxx Compare and branch (immediate)
x01 1xxxxxxxxxxxxx Test and branch (immediate)

Conditional branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 0 1 0 o1 imm19 o0 cond

Decode fields
o1 o0 Instruction Details

0 0 B.cond
0 1 UNALLOCATED
1 UNALLOCATED

Exception generation

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 0 opc imm16 op2 LL

Decode fields
opc op2 LL Instruction Details

001 UNALLOCATED
01x UNALLOCATED
1xx UNALLOCATED

000 000 00 UNALLOCATED
000 000 01 SVC
000 000 10 HVC
000 000 11 SMC
001 000 x1 UNALLOCATED
001 000 00 BRK
001 000 1x UNALLOCATED
010 000 x1 UNALLOCATED
010 000 00 HLT
010 000 1x UNALLOCATED
011 000 01 UNALLOCATED

Top-level encodings for A64

Page 2626

Decode fields
opc op2 LL Instruction Details

011 000 1x UNALLOCATED
100 000 UNALLOCATED
101 000 00 UNALLOCATED
101 000 01 DCPS1
101 000 10 DCPS2
101 000 11 DCPS3
110 000 UNALLOCATED
111 000 UNALLOCATED

System instructions with register argument

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 CRm op2 Rt

Decode fields
CRm op2 Instruction Details Feature

!= 0000 UNALLOCATED -
0000 000 WFET FEAT_WFxT
0000 001 WFIT FEAT_WFxT
0000 01x UNALLOCATED -
0000 1xx UNALLOCATED -

Hints

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1

Decode fields
CRm op2 Instruction Details Feature

HINT -
0000 000 NOP -
0000 001 YIELD -
0000 010 WFE -
0000 011 WFI -
0000 100 SEV -
0000 101 SEVL -
0000 110 DGH FEAT_DGH
0000 111 XPACD, XPACI, XPACLRI FEAT_PAuth
0001 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA — PACIA1716 FEAT_PAuth
0001 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB — PACIB1716 FEAT_PAuth
0001 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA — AUTIA1716 FEAT_PAuth
0001 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB — AUTIB1716 FEAT_PAuth
0010 000 ESB FEAT_RAS
0010 001 PSB CSYNC FEAT_SPE
0010 010 TSB CSYNC FEAT_TRF
0010 100 CSDB -
0011 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA — PACIAZ FEAT_PAuth

Top-level encodings for A64

Page 2627

Decode fields
CRm op2 Instruction Details Feature

0011 001 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA — PACIASP FEAT_PAuth
0011 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB — PACIBZ FEAT_PAuth
0011 011 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB — PACIBSP FEAT_PAuth
0011 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA — AUTIAZ FEAT_PAuth
0011 101 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA — AUTIASP FEAT_PAuth
0011 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB — AUTIBZ FEAT_PAuth
0011 111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB — AUTIBSP FEAT_PAuth
0100 xx0 BTI FEAT_BTI

Barriers

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm op2 Rt

Decode fields
CRm op2 Rt Instruction Details Feature

000 UNALLOCATED -
001 != 11111 UNALLOCATED -
010 11111 CLREX -
100 11111 DSB — memory barrier -
101 11111 DMB -
110 11111 ISB -
111 != 11111 UNALLOCATED -
111 11111 SB -

xx0x 001 11111 UNALLOCATED -
xx10 001 11111 DSB — Memory nXS barrier FEAT_XS
xx11 001 11111 UNALLOCATED -
0001 011 UNALLOCATED -
001x 011 UNALLOCATED -
01xx 011 UNALLOCATED -
1xxx 011 UNALLOCATED -

PSTATE

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 Rt

Decode fields
op1 op2 Rt Instruction Details Feature

!= 11111 UNALLOCATED -
11111 MSR (immediate) -

000 000 11111 CFINV FEAT_FlagM
000 001 11111 XAFLAG FEAT_FlagM2
000 010 11111 AXFLAG FEAT_FlagM2

Top-level encodings for A64

Page 2628

System instructions

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 L 0 1 op1 CRn CRm op2 Rt

Decode fields
L Instruction Details

0 SYS
1 SYSL

System register move

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 0 1 0 0 L 1 o0 op1 CRn CRm op2 Rt

Decode fields
L Instruction Details

0 MSR (register)
1 MRS

Unconditional branch (register)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 0 1 1 opc op2 op3 Rn op4

Decode fields
opc op2 op3 Rn op4 Instruction Details Feature

!=
11111

UNALLOCATED -

0000 11111 000000 !=
00000

UNALLOCATED -

0000 11111 000000 00000 BR -
0000 11111 000001 UNALLOCATED -
0000 11111 000010 !=

11111
UNALLOCATED -

0000 11111 000010 11111 BRAA, BRAAZ, BRAB, BRABZ — key A, zero
modifier

FEAT_PAuth

0000 11111 000011 !=
11111

UNALLOCATED -

0000 11111 000011 11111 BRAA, BRAAZ, BRAB, BRABZ — key B, zero
modifier

FEAT_PAuth

0000 11111 0001xx UNALLOCATED -
0000 11111 001xxx UNALLOCATED -
0000 11111 01xxxx UNALLOCATED -
0000 11111 1xxxxx UNALLOCATED -
0001 11111 000000 !=

00000
UNALLOCATED -

0001 11111 000000 00000 BLR -
0001 11111 000001 UNALLOCATED -

Top-level encodings for A64

Page 2629

Decode fields
opc op2 op3 Rn op4 Instruction Details Feature

0001 11111 000010 !=
11111

UNALLOCATED -

0001 11111 000010 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ — key A,
zero modifier

FEAT_PAuth

0001 11111 000011 !=
11111

UNALLOCATED -

0001 11111 000011 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ — key B,
zero modifier

FEAT_PAuth

0001 11111 0001xx UNALLOCATED -
0001 11111 001xxx UNALLOCATED -
0001 11111 01xxxx UNALLOCATED -
0001 11111 1xxxxx UNALLOCATED -
0010 11111 000000 !=

00000
UNALLOCATED -

0010 11111 000000 00000 RET -
0010 11111 000001 UNALLOCATED -
0010 11111 000010 !=

11111
!=

11111
UNALLOCATED -

0010 11111 000010 11111 11111 RETAA, RETAB — RETAA FEAT_PAuth
0010 11111 000011 !=

11111
!=

11111
UNALLOCATED -

0010 11111 000011 11111 11111 RETAA, RETAB — RETAB FEAT_PAuth
0010 11111 0001xx UNALLOCATED -
0010 11111 001xxx UNALLOCATED -
0010 11111 01xxxx UNALLOCATED -
0010 11111 1xxxxx UNALLOCATED -
0011 11111 UNALLOCATED -
0100 11111 000000 !=

11111
!=

00000
UNALLOCATED -

0100 11111 000000 !=
11111

00000 UNALLOCATED -

0100 11111 000000 11111 !=
00000

UNALLOCATED -

0100 11111 000000 11111 00000 ERET -
0100 11111 000001 UNALLOCATED -
0100 11111 000010 !=

11111
!=

11111
UNALLOCATED -

0100 11111 000010 !=
11111

11111 UNALLOCATED -

0100 11111 000010 11111 !=
11111

UNALLOCATED -

0100 11111 000010 11111 11111 ERETAA, ERETAB — ERETAA FEAT_PAuth
0100 11111 000011 !=

11111
!=

11111
UNALLOCATED -

0100 11111 000011 !=
11111

11111 UNALLOCATED -

0100 11111 000011 11111 !=
11111

UNALLOCATED -

Top-level encodings for A64

Page 2630

Decode fields
opc op2 op3 Rn op4 Instruction Details Feature

0100 11111 000011 11111 11111 ERETAA, ERETAB — ERETAB FEAT_PAuth
0100 11111 0001xx UNALLOCATED -
0100 11111 001xxx UNALLOCATED -
0100 11111 01xxxx UNALLOCATED -
0100 11111 1xxxxx UNALLOCATED -
0101 11111 !=

000000
UNALLOCATED -

0101 11111 000000 !=
11111

!=
00000

UNALLOCATED -

0101 11111 000000 !=
11111

00000 UNALLOCATED -

0101 11111 000000 11111 !=
00000

UNALLOCATED -

0101 11111 000000 11111 00000 DRPS -
011x 11111 UNALLOCATED -
1000 11111 00000x UNALLOCATED -
1000 11111 000010 BRAA, BRAAZ, BRAB, BRABZ — key A,

register modifier
FEAT_PAuth

1000 11111 000011 BRAA, BRAAZ, BRAB, BRABZ — key B,
register modifier

FEAT_PAuth

1000 11111 0001xx UNALLOCATED -
1000 11111 001xxx UNALLOCATED -
1000 11111 01xxxx UNALLOCATED -
1000 11111 1xxxxx UNALLOCATED -
1001 11111 00000x UNALLOCATED -
1001 11111 000010 BLRAA, BLRAAZ, BLRAB, BLRABZ — key A,

register modifier
FEAT_PAuth

1001 11111 000011 BLRAA, BLRAAZ, BLRAB, BLRABZ — key B,
register modifier

FEAT_PAuth

1001 11111 0001xx UNALLOCATED -
1001 11111 001xxx UNALLOCATED -
1001 11111 01xxxx UNALLOCATED -
1001 11111 1xxxxx UNALLOCATED -
101x 11111 UNALLOCATED -
11xx 11111 UNALLOCATED -

Unconditional branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op 0 0 1 0 1 imm26

Decode fields
op Instruction Details

0 B
1 BL

Compare and branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

Top-level encodings for A64

Page 2631

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 1 1 0 1 0 op imm19 Rt

Decode fields
sf op Instruction Details

0 0 CBZ — 32-bit
0 1 CBNZ — 32-bit
1 0 CBZ — 64-bit
1 1 CBNZ — 64-bit

Test and branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
b5 0 1 1 0 1 1 op b40 imm14 Rt

Decode fields
op Instruction Details

0 TBZ
1 TBNZ

Loads and Stores

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 1 op1 0 op2 op3 op4

Decode fields
op0 op1 op2 op3 op4 Instruction details

0x00 0 00 1xxxxx Compare and swap pair
0x00 1 00 000000 Advanced SIMD load/store multiple structures
0x00 1 01 0xxxxx Advanced SIMD load/store multiple structures (post-indexed)
0x00 1 0x 1xxxxx UNALLOCATED
0x00 1 10 x00000 Advanced SIMD load/store single structure
0x00 1 11 Advanced SIMD load/store single structure (post-indexed)
0x00 1 x0 x1xxxx UNALLOCATED
0x00 1 x0 xx1xxx UNALLOCATED
0x00 1 x0 xxx1xx UNALLOCATED
0x00 1 x0 xxxx1x UNALLOCATED
0x00 1 x0 xxxxx1 UNALLOCATED
1101 0 1x 1xxxxx Load/store memory tags
1x00 0 00 1xxxxx Load/store exclusive pair
1x00 1 UNALLOCATED
xx00 0 00 0xxxxx Load/store exclusive register
xx00 0 01 0xxxxx Load/store ordered
xx00 0 01 1xxxxx Compare and swap
xx01 0 1x 0xxxxx 00 LDAPR/STLR (unscaled immediate)
xx01 0x Load register (literal)
xx10 00 Load/store no-allocate pair (offset)
xx10 01 Load/store register pair (post-indexed)
xx10 10 Load/store register pair (offset)
xx10 11 Load/store register pair (pre-indexed)

Top-level encodings for A64

Page 2632

xx11 0x 0xxxxx 00 Load/store register (unscaled immediate)
xx11 0x 0xxxxx 01 Load/store register (immediate post-indexed)
xx11 0x 0xxxxx 10 Load/store register (unprivileged)
xx11 0x 0xxxxx 11 Load/store register (immediate pre-indexed)
xx11 0x 1xxxxx 00 Atomic memory operations
xx11 0x 1xxxxx 10 Load/store register (register offset)
xx11 0x 1xxxxx x1 Load/store register (pac)
xx11 1x Load/store register (unsigned immediate)

Compare and swap pair

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 sz 0 0 1 0 0 0 0 L 1 Rs o0 Rt2 Rn Rt

Decode fields
sz L o0 Rt2 Instruction Details Feature

!= 11111 UNALLOCATED -
0 0 0 11111 CASP, CASPA, CASPAL, CASPL — 32-bit CASP FEAT_LSE
0 0 1 11111 CASP, CASPA, CASPAL, CASPL — 32-bit CASPL FEAT_LSE
0 1 0 11111 CASP, CASPA, CASPAL, CASPL — 32-bit CASPA FEAT_LSE
0 1 1 11111 CASP, CASPA, CASPAL, CASPL — 32-bit CASPAL FEAT_LSE
1 0 0 11111 CASP, CASPA, CASPAL, CASPL — 64-bit CASP FEAT_LSE
1 0 1 11111 CASP, CASPA, CASPAL, CASPL — 64-bit CASPL FEAT_LSE
1 1 0 11111 CASP, CASPA, CASPAL, CASPL — 64-bit CASPA FEAT_LSE
1 1 1 11111 CASP, CASPA, CASPAL, CASPL — 64-bit CASPAL FEAT_LSE

Advanced SIMD load/store multiple structures

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 0 L 0 0 0 0 0 0 opcode size Rn Rt

Decode fields
L opcode Instruction Details

0 0000 ST4 (multiple structures)
0 0001 UNALLOCATED
0 0010 ST1 (multiple structures) — four registers
0 0011 UNALLOCATED
0 0100 ST3 (multiple structures)
0 0101 UNALLOCATED
0 0110 ST1 (multiple structures) — three registers
0 0111 ST1 (multiple structures) — one register
0 1000 ST2 (multiple structures)
0 1001 UNALLOCATED
0 1010 ST1 (multiple structures) — two registers
0 1011 UNALLOCATED
0 11xx UNALLOCATED
1 0000 LD4 (multiple structures)
1 0001 UNALLOCATED

Top-level encodings for A64

Page 2633

Decode fields
L opcode Instruction Details

1 0010 LD1 (multiple structures) — four registers
1 0011 UNALLOCATED
1 0100 LD3 (multiple structures)
1 0101 UNALLOCATED
1 0110 LD1 (multiple structures) — three registers
1 0111 LD1 (multiple structures) — one register
1 1000 LD2 (multiple structures)
1 1001 UNALLOCATED
1 1010 LD1 (multiple structures) — two registers
1 1011 UNALLOCATED
1 11xx UNALLOCATED

Advanced SIMD load/store multiple structures (post-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 0 1 L 0 Rm opcode size Rn Rt

Decode fields
L Rm opcode Instruction Details

0 0001 UNALLOCATED
0 0011 UNALLOCATED
0 0101 UNALLOCATED
0 1001 UNALLOCATED
0 1011 UNALLOCATED
0 11xx UNALLOCATED
0 != 11111 0000 ST4 (multiple structures) — register offset
0 != 11111 0010 ST1 (multiple structures) — four registers, register offset
0 != 11111 0100 ST3 (multiple structures) — register offset
0 != 11111 0110 ST1 (multiple structures) — three registers, register offset
0 != 11111 0111 ST1 (multiple structures) — one register, register offset
0 != 11111 1000 ST2 (multiple structures) — register offset
0 != 11111 1010 ST1 (multiple structures) — two registers, register offset
0 11111 0000 ST4 (multiple structures) — immediate offset
0 11111 0010 ST1 (multiple structures) — four registers, immediate offset
0 11111 0100 ST3 (multiple structures) — immediate offset
0 11111 0110 ST1 (multiple structures) — three registers, immediate offset
0 11111 0111 ST1 (multiple structures) — one register, immediate offset
0 11111 1000 ST2 (multiple structures) — immediate offset
0 11111 1010 ST1 (multiple structures) — two registers, immediate offset
1 0001 UNALLOCATED
1 0011 UNALLOCATED
1 0101 UNALLOCATED
1 1001 UNALLOCATED
1 1011 UNALLOCATED
1 11xx UNALLOCATED
1 != 11111 0000 LD4 (multiple structures) — register offset
1 != 11111 0010 LD1 (multiple structures) — four registers, register offset

Top-level encodings for A64

Page 2634

Decode fields
L Rm opcode Instruction Details

1 != 11111 0100 LD3 (multiple structures) — register offset
1 != 11111 0110 LD1 (multiple structures) — three registers, register offset
1 != 11111 0111 LD1 (multiple structures) — one register, register offset
1 != 11111 1000 LD2 (multiple structures) — register offset
1 != 11111 1010 LD1 (multiple structures) — two registers, register offset
1 11111 0000 LD4 (multiple structures) — immediate offset
1 11111 0010 LD1 (multiple structures) — four registers, immediate offset
1 11111 0100 LD3 (multiple structures) — immediate offset
1 11111 0110 LD1 (multiple structures) — three registers, immediate offset
1 11111 0111 LD1 (multiple structures) — one register, immediate offset
1 11111 1000 LD2 (multiple structures) — immediate offset
1 11111 1010 LD1 (multiple structures) — two registers, immediate offset

Advanced SIMD load/store single structure

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 0 L R 0 0 0 0 0 opcode S size Rn Rt

Decode fields
L R opcode S size Instruction Details

0 11x UNALLOCATED
0 0 000 ST1 (single structure) — 8-bit
0 0 001 ST3 (single structure) — 8-bit
0 0 010 x0 ST1 (single structure) — 16-bit
0 0 010 x1 UNALLOCATED
0 0 011 x0 ST3 (single structure) — 16-bit
0 0 011 x1 UNALLOCATED
0 0 100 00 ST1 (single structure) — 32-bit
0 0 100 1x UNALLOCATED
0 0 100 0 01 ST1 (single structure) — 64-bit
0 0 100 1 01 UNALLOCATED
0 0 101 00 ST3 (single structure) — 32-bit
0 0 101 10 UNALLOCATED
0 0 101 0 01 ST3 (single structure) — 64-bit
0 0 101 0 11 UNALLOCATED
0 0 101 1 x1 UNALLOCATED
0 1 000 ST2 (single structure) — 8-bit
0 1 001 ST4 (single structure) — 8-bit
0 1 010 x0 ST2 (single structure) — 16-bit
0 1 010 x1 UNALLOCATED
0 1 011 x0 ST4 (single structure) — 16-bit
0 1 011 x1 UNALLOCATED
0 1 100 00 ST2 (single structure) — 32-bit
0 1 100 10 UNALLOCATED
0 1 100 0 01 ST2 (single structure) — 64-bit
0 1 100 0 11 UNALLOCATED
0 1 100 1 x1 UNALLOCATED

Top-level encodings for A64

Page 2635

Decode fields
L R opcode S size Instruction Details

0 1 101 00 ST4 (single structure) — 32-bit
0 1 101 10 UNALLOCATED
0 1 101 0 01 ST4 (single structure) — 64-bit
0 1 101 0 11 UNALLOCATED
0 1 101 1 x1 UNALLOCATED
1 0 000 LD1 (single structure) — 8-bit
1 0 001 LD3 (single structure) — 8-bit
1 0 010 x0 LD1 (single structure) — 16-bit
1 0 010 x1 UNALLOCATED
1 0 011 x0 LD3 (single structure) — 16-bit
1 0 011 x1 UNALLOCATED
1 0 100 00 LD1 (single structure) — 32-bit
1 0 100 1x UNALLOCATED
1 0 100 0 01 LD1 (single structure) — 64-bit
1 0 100 1 01 UNALLOCATED
1 0 101 00 LD3 (single structure) — 32-bit
1 0 101 10 UNALLOCATED
1 0 101 0 01 LD3 (single structure) — 64-bit
1 0 101 0 11 UNALLOCATED
1 0 101 1 x1 UNALLOCATED
1 0 110 0 LD1R
1 0 110 1 UNALLOCATED
1 0 111 0 LD3R
1 0 111 1 UNALLOCATED
1 1 000 LD2 (single structure) — 8-bit
1 1 001 LD4 (single structure) — 8-bit
1 1 010 x0 LD2 (single structure) — 16-bit
1 1 010 x1 UNALLOCATED
1 1 011 x0 LD4 (single structure) — 16-bit
1 1 011 x1 UNALLOCATED
1 1 100 00 LD2 (single structure) — 32-bit
1 1 100 10 UNALLOCATED
1 1 100 0 01 LD2 (single structure) — 64-bit
1 1 100 0 11 UNALLOCATED
1 1 100 1 x1 UNALLOCATED
1 1 101 00 LD4 (single structure) — 32-bit
1 1 101 10 UNALLOCATED
1 1 101 0 01 LD4 (single structure) — 64-bit
1 1 101 0 11 UNALLOCATED
1 1 101 1 x1 UNALLOCATED
1 1 110 0 LD2R
1 1 110 1 UNALLOCATED
1 1 111 0 LD4R
1 1 111 1 UNALLOCATED

Advanced SIMD load/store single structure (post-indexed)

These instructions are under Loads and Stores.

Top-level encodings for A64

Page 2636

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 0 1 1 L R Rm opcode S size Rn Rt

Decode fields
L R Rm opcode S size Instruction Details

0 11x UNALLOCATED
0 0 010 x1 UNALLOCATED
0 0 011 x1 UNALLOCATED
0 0 100 1x UNALLOCATED
0 0 100 1 01 UNALLOCATED
0 0 101 10 UNALLOCATED
0 0 101 0 11 UNALLOCATED
0 0 101 1 x1 UNALLOCATED
0 0 != 11111 000 ST1 (single structure) — 8-bit, register offset
0 0 != 11111 001 ST3 (single structure) — 8-bit, register offset
0 0 != 11111 010 x0 ST1 (single structure) — 16-bit, register offset
0 0 != 11111 011 x0 ST3 (single structure) — 16-bit, register offset
0 0 != 11111 100 00 ST1 (single structure) — 32-bit, register offset
0 0 != 11111 100 0 01 ST1 (single structure) — 64-bit, register offset
0 0 != 11111 101 00 ST3 (single structure) — 32-bit, register offset
0 0 != 11111 101 0 01 ST3 (single structure) — 64-bit, register offset
0 0 11111 000 ST1 (single structure) — 8-bit, immediate offset
0 0 11111 001 ST3 (single structure) — 8-bit, immediate offset
0 0 11111 010 x0 ST1 (single structure) — 16-bit, immediate offset
0 0 11111 011 x0 ST3 (single structure) — 16-bit, immediate offset
0 0 11111 100 00 ST1 (single structure) — 32-bit, immediate offset
0 0 11111 100 0 01 ST1 (single structure) — 64-bit, immediate offset
0 0 11111 101 00 ST3 (single structure) — 32-bit, immediate offset
0 0 11111 101 0 01 ST3 (single structure) — 64-bit, immediate offset
0 1 010 x1 UNALLOCATED
0 1 011 x1 UNALLOCATED
0 1 100 10 UNALLOCATED
0 1 100 0 11 UNALLOCATED
0 1 100 1 x1 UNALLOCATED
0 1 101 10 UNALLOCATED
0 1 101 0 11 UNALLOCATED
0 1 101 1 x1 UNALLOCATED
0 1 != 11111 000 ST2 (single structure) — 8-bit, register offset
0 1 != 11111 001 ST4 (single structure) — 8-bit, register offset
0 1 != 11111 010 x0 ST2 (single structure) — 16-bit, register offset
0 1 != 11111 011 x0 ST4 (single structure) — 16-bit, register offset
0 1 != 11111 100 00 ST2 (single structure) — 32-bit, register offset
0 1 != 11111 100 0 01 ST2 (single structure) — 64-bit, register offset
0 1 != 11111 101 00 ST4 (single structure) — 32-bit, register offset
0 1 != 11111 101 0 01 ST4 (single structure) — 64-bit, register offset
0 1 11111 000 ST2 (single structure) — 8-bit, immediate offset
0 1 11111 001 ST4 (single structure) — 8-bit, immediate offset
0 1 11111 010 x0 ST2 (single structure) — 16-bit, immediate offset
0 1 11111 011 x0 ST4 (single structure) — 16-bit, immediate offset
0 1 11111 100 00 ST2 (single structure) — 32-bit, immediate offset
0 1 11111 100 0 01 ST2 (single structure) — 64-bit, immediate offset

Top-level encodings for A64

Page 2637

Decode fields
L R Rm opcode S size Instruction Details

0 1 11111 101 00 ST4 (single structure) — 32-bit, immediate offset
0 1 11111 101 0 01 ST4 (single structure) — 64-bit, immediate offset
1 0 010 x1 UNALLOCATED
1 0 011 x1 UNALLOCATED
1 0 100 1x UNALLOCATED
1 0 100 1 01 UNALLOCATED
1 0 101 10 UNALLOCATED
1 0 101 0 11 UNALLOCATED
1 0 101 1 x1 UNALLOCATED
1 0 110 1 UNALLOCATED
1 0 111 1 UNALLOCATED
1 0 != 11111 000 LD1 (single structure) — 8-bit, register offset
1 0 != 11111 001 LD3 (single structure) — 8-bit, register offset
1 0 != 11111 010 x0 LD1 (single structure) — 16-bit, register offset
1 0 != 11111 011 x0 LD3 (single structure) — 16-bit, register offset
1 0 != 11111 100 00 LD1 (single structure) — 32-bit, register offset
1 0 != 11111 100 0 01 LD1 (single structure) — 64-bit, register offset
1 0 != 11111 101 00 LD3 (single structure) — 32-bit, register offset
1 0 != 11111 101 0 01 LD3 (single structure) — 64-bit, register offset
1 0 != 11111 110 0 LD1R — register offset
1 0 != 11111 111 0 LD3R — register offset
1 0 11111 000 LD1 (single structure) — 8-bit, immediate offset
1 0 11111 001 LD3 (single structure) — 8-bit, immediate offset
1 0 11111 010 x0 LD1 (single structure) — 16-bit, immediate offset
1 0 11111 011 x0 LD3 (single structure) — 16-bit, immediate offset
1 0 11111 100 00 LD1 (single structure) — 32-bit, immediate offset
1 0 11111 100 0 01 LD1 (single structure) — 64-bit, immediate offset
1 0 11111 101 00 LD3 (single structure) — 32-bit, immediate offset
1 0 11111 101 0 01 LD3 (single structure) — 64-bit, immediate offset
1 0 11111 110 0 LD1R — immediate offset
1 0 11111 111 0 LD3R — immediate offset
1 1 010 x1 UNALLOCATED
1 1 011 x1 UNALLOCATED
1 1 100 10 UNALLOCATED
1 1 100 0 11 UNALLOCATED
1 1 100 1 x1 UNALLOCATED
1 1 101 10 UNALLOCATED
1 1 101 0 11 UNALLOCATED
1 1 101 1 x1 UNALLOCATED
1 1 110 1 UNALLOCATED
1 1 111 1 UNALLOCATED
1 1 != 11111 000 LD2 (single structure) — 8-bit, register offset
1 1 != 11111 001 LD4 (single structure) — 8-bit, register offset
1 1 != 11111 010 x0 LD2 (single structure) — 16-bit, register offset
1 1 != 11111 011 x0 LD4 (single structure) — 16-bit, register offset
1 1 != 11111 100 00 LD2 (single structure) — 32-bit, register offset
1 1 != 11111 100 0 01 LD2 (single structure) — 64-bit, register offset

Top-level encodings for A64

Page 2638

Decode fields
L R Rm opcode S size Instruction Details

1 1 != 11111 101 00 LD4 (single structure) — 32-bit, register offset
1 1 != 11111 101 0 01 LD4 (single structure) — 64-bit, register offset
1 1 != 11111 110 0 LD2R — register offset
1 1 != 11111 111 0 LD4R — register offset
1 1 11111 000 LD2 (single structure) — 8-bit, immediate offset
1 1 11111 001 LD4 (single structure) — 8-bit, immediate offset
1 1 11111 010 x0 LD2 (single structure) — 16-bit, immediate offset
1 1 11111 011 x0 LD4 (single structure) — 16-bit, immediate offset
1 1 11111 100 00 LD2 (single structure) — 32-bit, immediate offset
1 1 11111 100 0 01 LD2 (single structure) — 64-bit, immediate offset
1 1 11111 101 00 LD4 (single structure) — 32-bit, immediate offset
1 1 11111 101 0 01 LD4 (single structure) — 64-bit, immediate offset
1 1 11111 110 0 LD2R — immediate offset
1 1 11111 111 0 LD4R — immediate offset

Load/store memory tags

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 1 1 0 0 1 opc 1 imm9 op2 Rn Rt

Decode fields
opc imm9 op2 Instruction Details Feature

00 01 STG — post-index FEAT_MTE
00 10 STG — signed offset FEAT_MTE
00 11 STG — pre-index FEAT_MTE
00 000000000 00 STZGM FEAT_MTE2
01 00 LDG FEAT_MTE
01 01 STZG — post-index FEAT_MTE
01 10 STZG — signed offset FEAT_MTE
01 11 STZG — pre-index FEAT_MTE
10 01 ST2G — post-index FEAT_MTE
10 10 ST2G — signed offset FEAT_MTE
10 11 ST2G — pre-index FEAT_MTE
10 != 000000000 00 UNALLOCATED -
10 000000000 00 STGM FEAT_MTE2
11 01 STZ2G — post-index FEAT_MTE
11 10 STZ2G — signed offset FEAT_MTE
11 11 STZ2G — pre-index FEAT_MTE
11 != 000000000 00 UNALLOCATED -
11 000000000 00 LDGM FEAT_MTE2

Load/store exclusive pair

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 sz 0 0 1 0 0 0 0 L 1 Rs o0 Rt2 Rn Rt

Top-level encodings for A64

Page 2639

Decode fields
sz L o0 Instruction Details

0 0 0 STXP — 32-bit
0 0 1 STLXP — 32-bit
0 1 0 LDXP — 32-bit
0 1 1 LDAXP — 32-bit
1 0 0 STXP — 64-bit
1 0 1 STLXP — 64-bit
1 1 0 LDXP — 64-bit
1 1 1 LDAXP — 64-bit

Load/store exclusive register

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 0 0 1 0 0 0 0 L 0 Rs o0 Rt2 Rn Rt

Decode fields
size L o0 Instruction Details

00 0 0 STXRB
00 0 1 STLXRB
00 1 0 LDXRB
00 1 1 LDAXRB
01 0 0 STXRH
01 0 1 STLXRH
01 1 0 LDXRH
01 1 1 LDAXRH
10 0 0 STXR — 32-bit
10 0 1 STLXR — 32-bit
10 1 0 LDXR — 32-bit
10 1 1 LDAXR — 32-bit
11 0 0 STXR — 64-bit
11 0 1 STLXR — 64-bit
11 1 0 LDXR — 64-bit
11 1 1 LDAXR — 64-bit

Load/store ordered

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 0 0 1 0 0 0 1 L 0 Rs o0 Rt2 Rn Rt

Decode fields
size L o0 Instruction Details Feature

00 0 0 STLLRB FEAT_LOR
00 0 1 STLRB -
00 1 0 LDLARB FEAT_LOR
00 1 1 LDARB -
01 0 0 STLLRH FEAT_LOR
01 0 1 STLRH -

Top-level encodings for A64

Page 2640

Decode fields
size L o0 Instruction Details Feature

01 1 0 LDLARH FEAT_LOR
01 1 1 LDARH -
10 0 0 STLLR — 32-bit FEAT_LOR
10 0 1 STLR — 32-bit -
10 1 0 LDLAR — 32-bit FEAT_LOR
10 1 1 LDAR — 32-bit -
11 0 0 STLLR — 64-bit FEAT_LOR
11 0 1 STLR — 64-bit -
11 1 0 LDLAR — 64-bit FEAT_LOR
11 1 1 LDAR — 64-bit -

Compare and swap

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 0 0 1 0 0 0 1 L 1 Rs o0 Rt2 Rn Rt

Decode fields
size L o0 Rt2 Instruction Details Feature

!= 11111 UNALLOCATED -
00 0 0 11111 CASB, CASAB, CASALB, CASLB — CASB FEAT_LSE
00 0 1 11111 CASB, CASAB, CASALB, CASLB — CASLB FEAT_LSE
00 1 0 11111 CASB, CASAB, CASALB, CASLB — CASAB FEAT_LSE
00 1 1 11111 CASB, CASAB, CASALB, CASLB — CASALB FEAT_LSE
01 0 0 11111 CASH, CASAH, CASALH, CASLH — CASH FEAT_LSE
01 0 1 11111 CASH, CASAH, CASALH, CASLH — CASLH FEAT_LSE
01 1 0 11111 CASH, CASAH, CASALH, CASLH — CASAH FEAT_LSE
01 1 1 11111 CASH, CASAH, CASALH, CASLH — CASALH FEAT_LSE
10 0 0 11111 CAS, CASA, CASAL, CASL — 32-bit CAS FEAT_LSE
10 0 1 11111 CAS, CASA, CASAL, CASL — 32-bit CASL FEAT_LSE
10 1 0 11111 CAS, CASA, CASAL, CASL — 32-bit CASA FEAT_LSE
10 1 1 11111 CAS, CASA, CASAL, CASL — 32-bit CASAL FEAT_LSE
11 0 0 11111 CAS, CASA, CASAL, CASL — 64-bit CAS FEAT_LSE
11 0 1 11111 CAS, CASA, CASAL, CASL — 64-bit CASL FEAT_LSE
11 1 0 11111 CAS, CASA, CASAL, CASL — 64-bit CASA FEAT_LSE
11 1 1 11111 CAS, CASA, CASAL, CASL — 64-bit CASAL FEAT_LSE

LDAPR/STLR (unscaled immediate)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 0 1 1 0 0 1 opc 0 imm9 0 0 Rn Rt

Decode fields
size opc Instruction Details Feature

00 00 STLURB FEAT_LRCPC2
00 01 LDAPURB FEAT_LRCPC2
00 10 LDAPURSB — 64-bit FEAT_LRCPC2

Top-level encodings for A64

Page 2641

Decode fields
size opc Instruction Details Feature

00 11 LDAPURSB — 32-bit FEAT_LRCPC2
01 00 STLURH FEAT_LRCPC2
01 01 LDAPURH FEAT_LRCPC2
01 10 LDAPURSH — 64-bit FEAT_LRCPC2
01 11 LDAPURSH — 32-bit FEAT_LRCPC2
10 00 STLUR — 32-bit FEAT_LRCPC2
10 01 LDAPUR — 32-bit FEAT_LRCPC2
10 10 LDAPURSW FEAT_LRCPC2
10 11 UNALLOCATED -
11 00 STLUR — 64-bit FEAT_LRCPC2
11 01 LDAPUR — 64-bit FEAT_LRCPC2
11 10 UNALLOCATED -
11 11 UNALLOCATED -

Load register (literal)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 0 1 1 V 0 0 imm19 Rt

Decode fields
opc V Instruction Details

00 0 LDR (literal) — 32-bit
00 1 LDR (literal, SIMD&FP) — 32-bit
01 0 LDR (literal) — 64-bit
01 1 LDR (literal, SIMD&FP) — 64-bit
10 0 LDRSW (literal)
10 1 LDR (literal, SIMD&FP) — 128-bit
11 0 PRFM (literal)
11 1 UNALLOCATED

Load/store no-allocate pair (offset)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 V 0 0 0 L imm7 Rt2 Rn Rt

Decode fields
opc V L Instruction Details

00 0 0 STNP — 32-bit
00 0 1 LDNP — 32-bit
00 1 0 STNP (SIMD&FP) — 32-bit
00 1 1 LDNP (SIMD&FP) — 32-bit
01 0 UNALLOCATED
01 1 0 STNP (SIMD&FP) — 64-bit
01 1 1 LDNP (SIMD&FP) — 64-bit
10 0 0 STNP — 64-bit
10 0 1 LDNP — 64-bit

Top-level encodings for A64

Page 2642

Decode fields
opc V L Instruction Details

10 1 0 STNP (SIMD&FP) — 128-bit
10 1 1 LDNP (SIMD&FP) — 128-bit
11 UNALLOCATED

Load/store register pair (post-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 V 0 0 1 L imm7 Rt2 Rn Rt

Decode fields
opc V L Instruction Details Feature

00 0 0 STP — 32-bit -
00 0 1 LDP — 32-bit -
00 1 0 STP (SIMD&FP) — 32-bit -
00 1 1 LDP (SIMD&FP) — 32-bit -
01 0 0 STGP FEAT_MTE
01 0 1 LDPSW -
01 1 0 STP (SIMD&FP) — 64-bit -
01 1 1 LDP (SIMD&FP) — 64-bit -
10 0 0 STP — 64-bit -
10 0 1 LDP — 64-bit -
10 1 0 STP (SIMD&FP) — 128-bit -
10 1 1 LDP (SIMD&FP) — 128-bit -
11 UNALLOCATED -

Load/store register pair (offset)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 V 0 1 0 L imm7 Rt2 Rn Rt

Decode fields
opc V L Instruction Details Feature

00 0 0 STP — 32-bit -
00 0 1 LDP — 32-bit -
00 1 0 STP (SIMD&FP) — 32-bit -
00 1 1 LDP (SIMD&FP) — 32-bit -
01 0 0 STGP FEAT_MTE
01 0 1 LDPSW -
01 1 0 STP (SIMD&FP) — 64-bit -
01 1 1 LDP (SIMD&FP) — 64-bit -
10 0 0 STP — 64-bit -
10 0 1 LDP — 64-bit -
10 1 0 STP (SIMD&FP) — 128-bit -
10 1 1 LDP (SIMD&FP) — 128-bit -
11 UNALLOCATED -

Top-level encodings for A64

Page 2643

Load/store register pair (pre-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
opc 1 0 1 V 0 1 1 L imm7 Rt2 Rn Rt

Decode fields
opc V L Instruction Details Feature

00 0 0 STP — 32-bit -
00 0 1 LDP — 32-bit -
00 1 0 STP (SIMD&FP) — 32-bit -
00 1 1 LDP (SIMD&FP) — 32-bit -
01 0 0 STGP FEAT_MTE
01 0 1 LDPSW -
01 1 0 STP (SIMD&FP) — 64-bit -
01 1 1 LDP (SIMD&FP) — 64-bit -
10 0 0 STP — 64-bit -
10 0 1 LDP — 64-bit -
10 1 0 STP (SIMD&FP) — 128-bit -
10 1 1 LDP (SIMD&FP) — 128-bit -
11 UNALLOCATED -

Load/store register (unscaled immediate)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 0 opc 0 imm9 0 0 Rn Rt

Decode fields
size V opc Instruction Details

x1 1 1x UNALLOCATED
00 0 00 STURB
00 0 01 LDURB
00 0 10 LDURSB — 64-bit
00 0 11 LDURSB — 32-bit
00 1 00 STUR (SIMD&FP) — 8-bit
00 1 01 LDUR (SIMD&FP) — 8-bit
00 1 10 STUR (SIMD&FP) — 128-bit
00 1 11 LDUR (SIMD&FP) — 128-bit
01 0 00 STURH
01 0 01 LDURH
01 0 10 LDURSH — 64-bit
01 0 11 LDURSH — 32-bit
01 1 00 STUR (SIMD&FP) — 16-bit
01 1 01 LDUR (SIMD&FP) — 16-bit
1x 0 11 UNALLOCATED
1x 1 1x UNALLOCATED
10 0 00 STUR — 32-bit
10 0 01 LDUR — 32-bit
10 0 10 LDURSW
10 1 00 STUR (SIMD&FP) — 32-bit

Top-level encodings for A64

Page 2644

Decode fields
size V opc Instruction Details

10 1 01 LDUR (SIMD&FP) — 32-bit
11 0 00 STUR — 64-bit
11 0 01 LDUR — 64-bit
11 0 10 PRFUM
11 1 00 STUR (SIMD&FP) — 64-bit
11 1 01 LDUR (SIMD&FP) — 64-bit

Load/store register (immediate post-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 0 opc 0 imm9 0 1 Rn Rt

Decode fields
size V opc Instruction Details

x1 1 1x UNALLOCATED
00 0 00 STRB (immediate)
00 0 01 LDRB (immediate)
00 0 10 LDRSB (immediate) — 64-bit
00 0 11 LDRSB (immediate) — 32-bit
00 1 00 STR (immediate, SIMD&FP) — 8-bit
00 1 01 LDR (immediate, SIMD&FP) — 8-bit
00 1 10 STR (immediate, SIMD&FP) — 128-bit
00 1 11 LDR (immediate, SIMD&FP) — 128-bit
01 0 00 STRH (immediate)
01 0 01 LDRH (immediate)
01 0 10 LDRSH (immediate) — 64-bit
01 0 11 LDRSH (immediate) — 32-bit
01 1 00 STR (immediate, SIMD&FP) — 16-bit
01 1 01 LDR (immediate, SIMD&FP) — 16-bit
1x 0 11 UNALLOCATED
1x 1 1x UNALLOCATED
10 0 00 STR (immediate) — 32-bit
10 0 01 LDR (immediate) — 32-bit
10 0 10 LDRSW (immediate)
10 1 00 STR (immediate, SIMD&FP) — 32-bit
10 1 01 LDR (immediate, SIMD&FP) — 32-bit
11 0 00 STR (immediate) — 64-bit
11 0 01 LDR (immediate) — 64-bit
11 0 10 UNALLOCATED
11 1 00 STR (immediate, SIMD&FP) — 64-bit
11 1 01 LDR (immediate, SIMD&FP) — 64-bit

Load/store register (unprivileged)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 0 opc 0 imm9 1 0 Rn Rt

Top-level encodings for A64

Page 2645

Decode fields
size V opc Instruction Details

1 UNALLOCATED
00 0 00 STTRB
00 0 01 LDTRB
00 0 10 LDTRSB — 64-bit
00 0 11 LDTRSB — 32-bit
01 0 00 STTRH
01 0 01 LDTRH
01 0 10 LDTRSH — 64-bit
01 0 11 LDTRSH — 32-bit
1x 0 11 UNALLOCATED
10 0 00 STTR — 32-bit
10 0 01 LDTR — 32-bit
10 0 10 LDTRSW
11 0 00 STTR — 64-bit
11 0 01 LDTR — 64-bit
11 0 10 UNALLOCATED

Load/store register (immediate pre-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 0 opc 0 imm9 1 1 Rn Rt

Decode fields
size V opc Instruction Details

x1 1 1x UNALLOCATED
00 0 00 STRB (immediate)
00 0 01 LDRB (immediate)
00 0 10 LDRSB (immediate) — 64-bit
00 0 11 LDRSB (immediate) — 32-bit
00 1 00 STR (immediate, SIMD&FP) — 8-bit
00 1 01 LDR (immediate, SIMD&FP) — 8-bit
00 1 10 STR (immediate, SIMD&FP) — 128-bit
00 1 11 LDR (immediate, SIMD&FP) — 128-bit
01 0 00 STRH (immediate)
01 0 01 LDRH (immediate)
01 0 10 LDRSH (immediate) — 64-bit
01 0 11 LDRSH (immediate) — 32-bit
01 1 00 STR (immediate, SIMD&FP) — 16-bit
01 1 01 LDR (immediate, SIMD&FP) — 16-bit
1x 0 11 UNALLOCATED
1x 1 1x UNALLOCATED
10 0 00 STR (immediate) — 32-bit
10 0 01 LDR (immediate) — 32-bit
10 0 10 LDRSW (immediate)
10 1 00 STR (immediate, SIMD&FP) — 32-bit
10 1 01 LDR (immediate, SIMD&FP) — 32-bit
11 0 00 STR (immediate) — 64-bit

Top-level encodings for A64

Page 2646

Decode fields
size V opc Instruction Details

11 0 01 LDR (immediate) — 64-bit
11 0 10 UNALLOCATED
11 1 00 STR (immediate, SIMD&FP) — 64-bit
11 1 01 LDR (immediate, SIMD&FP) — 64-bit

Atomic memory operations

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 0 A R 1 Rs o3 opc 0 0 Rn Rt

Decode fields
size V A R Rs o3 opc Instruction Details Feature

0 1 11x UNALLOCATED -
0 0 1 100 UNALLOCATED -
0 0 1 1 001 UNALLOCATED -
0 0 1 1 010 UNALLOCATED -
0 0 1 1 011 UNALLOCATED -
0 0 1 1 101 UNALLOCATED -
0 1 0 1 001 UNALLOCATED -
0 1 0 1 010 UNALLOCATED -
0 1 0 1 011 UNALLOCATED -
0 1 0 1 101 UNALLOCATED -
0 1 1 1 001 UNALLOCATED -
0 1 1 1 010 UNALLOCATED -
0 1 1 1 011 UNALLOCATED -
0 1 1 1 100 UNALLOCATED -
0 1 1 1 101 UNALLOCATED -
1 UNALLOCATED -

00 0 0 0 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB —
LDADDB

FEAT_LSE

00 0 0 0 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB —
LDCLRB

FEAT_LSE

00 0 0 0 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB —
LDEORB

FEAT_LSE

00 0 0 0 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB —
LDSETB

FEAT_LSE

00 0 0 0 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB,
LDSMAXLB — LDSMAXB

FEAT_LSE

00 0 0 0 0 101 LDSMINB, LDSMINAB, LDSMINALB,
LDSMINLB — LDSMINB

FEAT_LSE

00 0 0 0 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB,
LDUMAXLB — LDUMAXB

FEAT_LSE

00 0 0 0 0 111 LDUMINB, LDUMINAB, LDUMINALB,
LDUMINLB — LDUMINB

FEAT_LSE

00 0 0 0 1 000 SWPB, SWPAB, SWPALB, SWPLB — SWPB FEAT_LSE
00 0 0 0 1 001 UNALLOCATED -
00 0 0 0 1 010 UNALLOCATED -
00 0 0 0 1 011 UNALLOCATED -
00 0 0 0 1 101 UNALLOCATED -

Top-level encodings for A64

Page 2647

Decode fields
size V A R Rs o3 opc Instruction Details Feature

00 0 0 1 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB —
LDADDLB

FEAT_LSE

00 0 0 1 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB —
LDCLRLB

FEAT_LSE

00 0 0 1 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB —
LDEORLB

FEAT_LSE

00 0 0 1 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB —
LDSETLB

FEAT_LSE

00 0 0 1 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB,
LDSMAXLB — LDSMAXLB

FEAT_LSE

00 0 0 1 0 101 LDSMINB, LDSMINAB, LDSMINALB,
LDSMINLB — LDSMINLB

FEAT_LSE

00 0 0 1 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB,
LDUMAXLB — LDUMAXLB

FEAT_LSE

00 0 0 1 0 111 LDUMINB, LDUMINAB, LDUMINALB,
LDUMINLB — LDUMINLB

FEAT_LSE

00 0 0 1 1 000 SWPB, SWPAB, SWPALB, SWPLB — SWPLB FEAT_LSE
00 0 1 0 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB —

LDADDAB
FEAT_LSE

00 0 1 0 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB —
LDCLRAB

FEAT_LSE

00 0 1 0 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB —
LDEORAB

FEAT_LSE

00 0 1 0 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB —
LDSETAB

FEAT_LSE

00 0 1 0 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB,
LDSMAXLB — LDSMAXAB

FEAT_LSE

00 0 1 0 0 101 LDSMINB, LDSMINAB, LDSMINALB,
LDSMINLB — LDSMINAB

FEAT_LSE

00 0 1 0 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB,
LDUMAXLB — LDUMAXAB

FEAT_LSE

00 0 1 0 0 111 LDUMINB, LDUMINAB, LDUMINALB,
LDUMINLB — LDUMINAB

FEAT_LSE

00 0 1 0 1 000 SWPB, SWPAB, SWPALB, SWPLB — SWPAB FEAT_LSE
00 0 1 0 1 100 LDAPRB FEAT_LRCPC
00 0 1 1 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB —

LDADDALB
FEAT_LSE

00 0 1 1 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB —
LDCLRALB

FEAT_LSE

00 0 1 1 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB —
LDEORALB

FEAT_LSE

00 0 1 1 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB —
LDSETALB

FEAT_LSE

00 0 1 1 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB,
LDSMAXLB — LDSMAXALB

FEAT_LSE

00 0 1 1 0 101 LDSMINB, LDSMINAB, LDSMINALB,
LDSMINLB — LDSMINALB

FEAT_LSE

00 0 1 1 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB,
LDUMAXLB — LDUMAXALB

FEAT_LSE

00 0 1 1 0 111 LDUMINB, LDUMINAB, LDUMINALB,
LDUMINLB — LDUMINALB

FEAT_LSE

00 0 1 1 1 000 SWPB, SWPAB, SWPALB, SWPLB — SWPALB FEAT_LSE
01 0 0 0 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH —

LDADDH
FEAT_LSE

01 0 0 0 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH —
LDCLRH

FEAT_LSE

Top-level encodings for A64

Page 2648

Decode fields
size V A R Rs o3 opc Instruction Details Feature

01 0 0 0 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH —
LDEORH

FEAT_LSE

01 0 0 0 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH —
LDSETH

FEAT_LSE

01 0 0 0 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH,
LDSMAXLH — LDSMAXH

FEAT_LSE

01 0 0 0 0 101 LDSMINH, LDSMINAH, LDSMINALH,
LDSMINLH — LDSMINH

FEAT_LSE

01 0 0 0 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH,
LDUMAXLH — LDUMAXH

FEAT_LSE

01 0 0 0 0 111 LDUMINH, LDUMINAH, LDUMINALH,
LDUMINLH — LDUMINH

FEAT_LSE

01 0 0 0 1 000 SWPH, SWPAH, SWPALH, SWPLH — SWPH FEAT_LSE
01 0 0 0 1 001 UNALLOCATED -
01 0 0 0 1 010 UNALLOCATED -
01 0 0 0 1 011 UNALLOCATED -
01 0 0 0 1 101 UNALLOCATED -
01 0 0 1 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH —

LDADDLH
FEAT_LSE

01 0 0 1 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH —
LDCLRLH

FEAT_LSE

01 0 0 1 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH —
LDEORLH

FEAT_LSE

01 0 0 1 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH —
LDSETLH

FEAT_LSE

01 0 0 1 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH,
LDSMAXLH — LDSMAXLH

FEAT_LSE

01 0 0 1 0 101 LDSMINH, LDSMINAH, LDSMINALH,
LDSMINLH — LDSMINLH

FEAT_LSE

01 0 0 1 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH,
LDUMAXLH — LDUMAXLH

FEAT_LSE

01 0 0 1 0 111 LDUMINH, LDUMINAH, LDUMINALH,
LDUMINLH — LDUMINLH

FEAT_LSE

01 0 0 1 1 000 SWPH, SWPAH, SWPALH, SWPLH — SWPLH FEAT_LSE
01 0 1 0 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH —

LDADDAH
FEAT_LSE

01 0 1 0 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH —
LDCLRAH

FEAT_LSE

01 0 1 0 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH —
LDEORAH

FEAT_LSE

01 0 1 0 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH —
LDSETAH

FEAT_LSE

01 0 1 0 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH,
LDSMAXLH — LDSMAXAH

FEAT_LSE

01 0 1 0 0 101 LDSMINH, LDSMINAH, LDSMINALH,
LDSMINLH — LDSMINAH

FEAT_LSE

01 0 1 0 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH,
LDUMAXLH — LDUMAXAH

FEAT_LSE

01 0 1 0 0 111 LDUMINH, LDUMINAH, LDUMINALH,
LDUMINLH — LDUMINAH

FEAT_LSE

01 0 1 0 1 000 SWPH, SWPAH, SWPALH, SWPLH — SWPAH FEAT_LSE
01 0 1 0 1 100 LDAPRH FEAT_LRCPC
01 0 1 1 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH —

LDADDALH
FEAT_LSE

Top-level encodings for A64

Page 2649

Decode fields
size V A R Rs o3 opc Instruction Details Feature

01 0 1 1 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH —
LDCLRALH

FEAT_LSE

01 0 1 1 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH —
LDEORALH

FEAT_LSE

01 0 1 1 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH —
LDSETALH

FEAT_LSE

01 0 1 1 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH,
LDSMAXLH — LDSMAXALH

FEAT_LSE

01 0 1 1 0 101 LDSMINH, LDSMINAH, LDSMINALH,
LDSMINLH — LDSMINALH

FEAT_LSE

01 0 1 1 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH,
LDUMAXLH — LDUMAXALH

FEAT_LSE

01 0 1 1 0 111 LDUMINH, LDUMINAH, LDUMINALH,
LDUMINLH — LDUMINALH

FEAT_LSE

01 0 1 1 1 000 SWPH, SWPAH, SWPALH, SWPLH — SWPALH FEAT_LSE
10 0 0 0 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 32-bit

LDADD
FEAT_LSE

10 0 0 0 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit
LDCLR

FEAT_LSE

10 0 0 0 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit
LDEOR

FEAT_LSE

10 0 0 0 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 32-bit
LDSET

FEAT_LSE

10 0 0 0 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
32-bit LDSMAX

FEAT_LSE

10 0 0 0 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
32-bit LDSMIN

FEAT_LSE

10 0 0 0 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit LDUMAX

FEAT_LSE

10 0 0 0 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
32-bit LDUMIN

FEAT_LSE

10 0 0 0 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit SWP FEAT_LSE
10 0 0 0 1 001 UNALLOCATED -
10 0 0 0 1 010 UNALLOCATED -
10 0 0 0 1 011 UNALLOCATED -
10 0 0 0 1 101 UNALLOCATED -
10 0 0 1 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 32-bit

LDADDL
FEAT_LSE

10 0 0 1 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit
LDCLRL

FEAT_LSE

10 0 0 1 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit
LDEORL

FEAT_LSE

10 0 0 1 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 32-bit
LDSETL

FEAT_LSE

10 0 0 1 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
32-bit LDSMAXL

FEAT_LSE

10 0 0 1 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
32-bit LDSMINL

FEAT_LSE

10 0 0 1 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit LDUMAXL

FEAT_LSE

10 0 0 1 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
32-bit LDUMINL

FEAT_LSE

10 0 0 1 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit SWPL FEAT_LSE
10 0 1 0 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 32-bit

LDADDA
FEAT_LSE

Top-level encodings for A64

Page 2650

Decode fields
size V A R Rs o3 opc Instruction Details Feature

10 0 1 0 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit
LDCLRA

FEAT_LSE

10 0 1 0 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit
LDEORA

FEAT_LSE

10 0 1 0 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 32-bit
LDSETA

FEAT_LSE

10 0 1 0 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
32-bit LDSMAXA

FEAT_LSE

10 0 1 0 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
32-bit LDSMINA

FEAT_LSE

10 0 1 0 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit LDUMAXA

FEAT_LSE

10 0 1 0 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
32-bit LDUMINA

FEAT_LSE

10 0 1 0 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit SWPA FEAT_LSE
10 0 1 0 1 100 LDAPR — 32-bit FEAT_LRCPC
10 0 1 1 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 32-bit

LDADDAL
FEAT_LSE

10 0 1 1 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit
LDCLRAL

FEAT_LSE

10 0 1 1 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit
LDEORAL

FEAT_LSE

10 0 1 1 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 32-bit
LDSETAL

FEAT_LSE

10 0 1 1 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
32-bit LDSMAXAL

FEAT_LSE

10 0 1 1 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
32-bit LDSMINAL

FEAT_LSE

10 0 1 1 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit LDUMAXAL

FEAT_LSE

10 0 1 1 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
32-bit LDUMINAL

FEAT_LSE

10 0 1 1 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit SWPAL FEAT_LSE
11 0 0 0 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 64-bit

LDADD
FEAT_LSE

11 0 0 0 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit
LDCLR

FEAT_LSE

11 0 0 0 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit
LDEOR

FEAT_LSE

11 0 0 0 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 64-bit
LDSET

FEAT_LSE

11 0 0 0 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
64-bit LDSMAX

FEAT_LSE

11 0 0 0 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
64-bit LDSMIN

FEAT_LSE

11 0 0 0 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit LDUMAX

FEAT_LSE

11 0 0 0 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
64-bit LDUMIN

FEAT_LSE

11 0 0 0 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit SWP FEAT_LSE
11 0 0 0 1 010 ST64BV0 FEAT_LS64_V
11 0 0 0 1 011 ST64BV FEAT_LS64_V
11 0 0 0 11111 1 001 ST64B FEAT_LS64
11 0 0 0 11111 1 101 LD64B FEAT_LS64

Top-level encodings for A64

Page 2651

Decode fields
size V A R Rs o3 opc Instruction Details Feature

11 0 0 1 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 64-bit
LDADDL

FEAT_LSE

11 0 0 1 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit
LDCLRL

FEAT_LSE

11 0 0 1 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit
LDEORL

FEAT_LSE

11 0 0 1 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 64-bit
LDSETL

FEAT_LSE

11 0 0 1 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
64-bit LDSMAXL

FEAT_LSE

11 0 0 1 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
64-bit LDSMINL

FEAT_LSE

11 0 0 1 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit LDUMAXL

FEAT_LSE

11 0 0 1 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
64-bit LDUMINL

FEAT_LSE

11 0 0 1 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit SWPL FEAT_LSE
11 0 1 0 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 64-bit

LDADDA
FEAT_LSE

11 0 1 0 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit
LDCLRA

FEAT_LSE

11 0 1 0 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit
LDEORA

FEAT_LSE

11 0 1 0 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 64-bit
LDSETA

FEAT_LSE

11 0 1 0 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
64-bit LDSMAXA

FEAT_LSE

11 0 1 0 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
64-bit LDSMINA

FEAT_LSE

11 0 1 0 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit LDUMAXA

FEAT_LSE

11 0 1 0 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
64-bit LDUMINA

FEAT_LSE

11 0 1 0 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit SWPA FEAT_LSE
11 0 1 0 1 100 LDAPR — 64-bit FEAT_LRCPC
11 0 1 1 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 64-bit

LDADDAL
FEAT_LSE

11 0 1 1 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit
LDCLRAL

FEAT_LSE

11 0 1 1 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit
LDEORAL

FEAT_LSE

11 0 1 1 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 64-bit
LDSETAL

FEAT_LSE

11 0 1 1 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL —
64-bit LDSMAXAL

FEAT_LSE

11 0 1 1 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL —
64-bit LDSMINAL

FEAT_LSE

11 0 1 1 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit LDUMAXAL

FEAT_LSE

11 0 1 1 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL —
64-bit LDUMINAL

FEAT_LSE

11 0 1 1 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit SWPAL FEAT_LSE

Load/store register (register offset)

These instructions are under Loads and Stores.

Top-level encodings for A64

Page 2652

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 0 opc 1 Rm option S 1 0 Rn Rt

Decode fields
size V opc option Instruction Details

x1 1 1x UNALLOCATED
00 0 00 != 011 STRB (register) — extended register
00 0 00 011 STRB (register) — shifted register
00 0 01 != 011 LDRB (register) — extended register
00 0 01 011 LDRB (register) — shifted register
00 0 10 != 011 LDRSB (register) — 64-bit with extended register offset
00 0 10 011 LDRSB (register) — 64-bit with shifted register offset
00 0 11 != 011 LDRSB (register) — 32-bit with extended register offset
00 0 11 011 LDRSB (register) — 32-bit with shifted register offset
00 1 00 != 011 STR (register, SIMD&FP)
00 1 00 011 STR (register, SIMD&FP)
00 1 01 != 011 LDR (register, SIMD&FP)
00 1 01 011 LDR (register, SIMD&FP)
00 1 10 STR (register, SIMD&FP)
00 1 11 LDR (register, SIMD&FP)
01 0 00 STRH (register)
01 0 01 LDRH (register)
01 0 10 LDRSH (register) — 64-bit
01 0 11 LDRSH (register) — 32-bit
01 1 00 STR (register, SIMD&FP)
01 1 01 LDR (register, SIMD&FP)
1x 0 11 UNALLOCATED
1x 1 1x UNALLOCATED
10 0 00 STR (register) — 32-bit
10 0 01 LDR (register) — 32-bit
10 0 10 LDRSW (register)
10 1 00 STR (register, SIMD&FP)
10 1 01 LDR (register, SIMD&FP)
11 0 00 STR (register) — 64-bit
11 0 01 LDR (register) — 64-bit
11 0 10 PRFM (register)
11 1 00 STR (register, SIMD&FP)
11 1 01 LDR (register, SIMD&FP)

Load/store register (pac)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 0 M S 1 imm9 W 1 Rn Rt

Decode fields
size V M W Instruction Details Feature

!= 11 UNALLOCATED -
11 0 0 0 LDRAA, LDRAB — key A, offset FEAT_PAuth
11 0 0 1 LDRAA, LDRAB — key A, pre-indexed FEAT_PAuth
11 0 1 0 LDRAA, LDRAB — key B, offset FEAT_PAuth

Top-level encodings for A64

Page 2653

Decode fields
size V M W Instruction Details Feature

11 0 1 1 LDRAA, LDRAB — key B, pre-indexed FEAT_PAuth
11 1 UNALLOCATED -

Load/store register (unsigned immediate)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
size 1 1 1 V 0 1 opc imm12 Rn Rt

Decode fields
size V opc Instruction Details

x1 1 1x UNALLOCATED
00 0 00 STRB (immediate)
00 0 01 LDRB (immediate)
00 0 10 LDRSB (immediate) — 64-bit
00 0 11 LDRSB (immediate) — 32-bit
00 1 00 STR (immediate, SIMD&FP) — 8-bit
00 1 01 LDR (immediate, SIMD&FP) — 8-bit
00 1 10 STR (immediate, SIMD&FP) — 128-bit
00 1 11 LDR (immediate, SIMD&FP) — 128-bit
01 0 00 STRH (immediate)
01 0 01 LDRH (immediate)
01 0 10 LDRSH (immediate) — 64-bit
01 0 11 LDRSH (immediate) — 32-bit
01 1 00 STR (immediate, SIMD&FP) — 16-bit
01 1 01 LDR (immediate, SIMD&FP) — 16-bit
1x 0 11 UNALLOCATED
1x 1 1x UNALLOCATED
10 0 00 STR (immediate) — 32-bit
10 0 01 LDR (immediate) — 32-bit
10 0 10 LDRSW (immediate)
10 1 00 STR (immediate, SIMD&FP) — 32-bit
10 1 01 LDR (immediate, SIMD&FP) — 32-bit
11 0 00 STR (immediate) — 64-bit
11 0 01 LDR (immediate) — 64-bit
11 0 10 PRFM (immediate)
11 1 00 STR (immediate, SIMD&FP) — 64-bit
11 1 01 LDR (immediate, SIMD&FP) — 64-bit

Data Processing -- Register

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 op1 101 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details

0 1 0110 Data-processing (2 source)

Top-level encodings for A64

Page 2654

1 1 0110 Data-processing (1 source)
0 0xxx Logical (shifted register)
0 1xx0 Add/subtract (shifted register)
0 1xx1 Add/subtract (extended register)
1 0000 000000 Add/subtract (with carry)
1 0000 x00001 Rotate right into flags
1 0000 xx0010 Evaluate into flags
1 0010 xxxx0x Conditional compare (register)
1 0010 xxxx1x Conditional compare (immediate)
1 0100 Conditional select
1 1xxx Data-processing (3 source)

Data-processing (2 source)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 S 1 1 0 1 0 1 1 0 Rm opcode Rn Rd

Decode fields
sf S opcode Instruction Details Feature

000001 UNALLOCATED -
011xxx UNALLOCATED -
1xxxxx UNALLOCATED -

0 00011x UNALLOCATED -
0 001101 UNALLOCATED -
0 00111x UNALLOCATED -
1 00001x UNALLOCATED -
1 0001xx UNALLOCATED -
1 001xxx UNALLOCATED -
1 01xxxx UNALLOCATED -

0 000000 UNALLOCATED -
0 0 000010 UDIV — 32-bit -
0 0 000011 SDIV — 32-bit -
0 0 00010x UNALLOCATED -
0 0 001000 LSLV — 32-bit -
0 0 001001 LSRV — 32-bit -
0 0 001010 ASRV — 32-bit -
0 0 001011 RORV — 32-bit -
0 0 001100 UNALLOCATED -
0 0 010x11 UNALLOCATED -
0 0 010000 CRC32B, CRC32H, CRC32W, CRC32X — CRC32B -
0 0 010001 CRC32B, CRC32H, CRC32W, CRC32X — CRC32H -
0 0 010010 CRC32B, CRC32H, CRC32W, CRC32X — CRC32W -
0 0 010100 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CB -
0 0 010101 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CH -
0 0 010110 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CW -
1 0 000000 SUBP FEAT_MTE
1 0 000010 UDIV — 64-bit -
1 0 000011 SDIV — 64-bit -

Top-level encodings for A64

Page 2655

Decode fields
sf S opcode Instruction Details Feature

1 0 000100 IRG FEAT_MTE
1 0 000101 GMI FEAT_MTE
1 0 001000 LSLV — 64-bit -
1 0 001001 LSRV — 64-bit -
1 0 001010 ASRV — 64-bit -
1 0 001011 RORV — 64-bit -
1 0 001100 PACGA FEAT_PAuth
1 0 010xx0 UNALLOCATED -
1 0 010x0x UNALLOCATED -
1 0 010011 CRC32B, CRC32H, CRC32W, CRC32X — CRC32X -
1 0 010111 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CX -
1 1 000000 SUBPS FEAT_MTE

Data-processing (1 source)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 1 S 1 1 0 1 0 1 1 0 opcode2 opcode Rn Rd

Decode fields
sf S opcode2 opcode Rn Instruction Details Feature

1xxxxx UNALLOCATED -
xxx1x UNALLOCATED -
xx1xx UNALLOCATED -
x1xxx UNALLOCATED -
1xxxx UNALLOCATED -

0 00000 00011x UNALLOCATED -
0 00000 001xxx UNALLOCATED -
0 00000 01xxxx UNALLOCATED -
1 UNALLOCATED -

0 00001 UNALLOCATED -
0 0 00000 000000 RBIT — 32-bit -
0 0 00000 000001 REV16 — 32-bit -
0 0 00000 000010 REV — 32-bit -
0 0 00000 000011 UNALLOCATED -
0 0 00000 000100 CLZ — 32-bit -
0 0 00000 000101 CLS — 32-bit -
1 0 00000 000000 RBIT — 64-bit -
1 0 00000 000001 REV16 — 64-bit -
1 0 00000 000010 REV32 -
1 0 00000 000011 REV — 64-bit -
1 0 00000 000100 CLZ — 64-bit -
1 0 00000 000101 CLS — 64-bit -
1 0 00001 000000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA —

PACIA
FEAT_PAuth

1 0 00001 000001 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB —
PACIB

FEAT_PAuth

1 0 00001 000010 PACDA, PACDZA — PACDA FEAT_PAuth

Top-level encodings for A64

Page 2656

Decode fields
sf S opcode2 opcode Rn Instruction Details Feature

1 0 00001 000011 PACDB, PACDZB — PACDB FEAT_PAuth
1 0 00001 000100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA —

AUTIA
FEAT_PAuth

1 0 00001 000101 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB —
AUTIB

FEAT_PAuth

1 0 00001 000110 AUTDA, AUTDZA — AUTDA FEAT_PAuth
1 0 00001 000111 AUTDB, AUTDZB — AUTDB FEAT_PAuth
1 0 00001 001000 11111 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA —

PACIZA
FEAT_PAuth

1 0 00001 001001 11111 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB —
PACIZB

FEAT_PAuth

1 0 00001 001010 11111 PACDA, PACDZA — PACDZA FEAT_PAuth
1 0 00001 001011 11111 PACDB, PACDZB — PACDZB FEAT_PAuth
1 0 00001 001100 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA —

AUTIZA
FEAT_PAuth

1 0 00001 001101 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB —
AUTIZB

FEAT_PAuth

1 0 00001 001110 11111 AUTDA, AUTDZA — AUTDZA FEAT_PAuth
1 0 00001 001111 11111 AUTDB, AUTDZB — AUTDZB FEAT_PAuth
1 0 00001 010000 11111 XPACD, XPACI, XPACLRI — XPACI FEAT_PAuth
1 0 00001 010001 11111 XPACD, XPACI, XPACLRI — XPACD FEAT_PAuth
1 0 00001 01001x UNALLOCATED -
1 0 00001 0101xx UNALLOCATED -
1 0 00001 011xxx UNALLOCATED -

Logical (shifted register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf opc 0 1 0 1 0 shift N Rm imm6 Rn Rd

Decode fields
sf opc N imm6 Instruction Details

0 1xxxxx UNALLOCATED
0 00 0 AND (shifted register) — 32-bit
0 00 1 BIC (shifted register) — 32-bit
0 01 0 ORR (shifted register) — 32-bit
0 01 1 ORN (shifted register) — 32-bit
0 10 0 EOR (shifted register) — 32-bit
0 10 1 EON (shifted register) — 32-bit
0 11 0 ANDS (shifted register) — 32-bit
0 11 1 BICS (shifted register) — 32-bit
1 00 0 AND (shifted register) — 64-bit
1 00 1 BIC (shifted register) — 64-bit
1 01 0 ORR (shifted register) — 64-bit
1 01 1 ORN (shifted register) — 64-bit
1 10 0 EOR (shifted register) — 64-bit
1 10 1 EON (shifted register) — 64-bit
1 11 0 ANDS (shifted register) — 64-bit
1 11 1 BICS (shifted register) — 64-bit

Top-level encodings for A64

Page 2657

Add/subtract (shifted register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

Decode fields
sf op S shift imm6 Instruction Details

11 UNALLOCATED
0 1xxxxx UNALLOCATED
0 0 0 ADD (shifted register) — 32-bit
0 0 1 ADDS (shifted register) — 32-bit
0 1 0 SUB (shifted register) — 32-bit
0 1 1 SUBS (shifted register) — 32-bit
1 0 0 ADD (shifted register) — 64-bit
1 0 1 ADDS (shifted register) — 64-bit
1 1 0 SUB (shifted register) — 64-bit
1 1 1 SUBS (shifted register) — 64-bit

Add/subtract (extended register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 0 1 0 1 1 opt 1 Rm option imm3 Rn Rd

Decode fields
sf op S opt imm3 Instruction Details

1x1 UNALLOCATED
11x UNALLOCATED

x1 UNALLOCATED
1x UNALLOCATED

0 0 0 00 ADD (extended register) — 32-bit
0 0 1 00 ADDS (extended register) — 32-bit
0 1 0 00 SUB (extended register) — 32-bit
0 1 1 00 SUBS (extended register) — 32-bit
1 0 0 00 ADD (extended register) — 64-bit
1 0 1 00 ADDS (extended register) — 64-bit
1 1 0 00 SUB (extended register) — 64-bit
1 1 1 00 SUBS (extended register) — 64-bit

Add/subtract (with carry)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

Decode fields
sf op S Instruction Details

0 0 0 ADC — 32-bit
0 0 1 ADCS — 32-bit
0 1 0 SBC — 32-bit
0 1 1 SBCS — 32-bit

Top-level encodings for A64

Page 2658

Decode fields
sf op S Instruction Details

1 0 0 ADC — 64-bit
1 0 1 ADCS — 64-bit
1 1 0 SBC — 64-bit
1 1 1 SBCS — 64-bit

Rotate right into flags

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 1 0 1 0 0 0 0 imm6 0 0 0 0 1 Rn o2 mask

Decode fields
sf op S o2 Instruction Details Feature

0 UNALLOCATED -
1 0 0 UNALLOCATED -
1 0 1 0 RMIF FEAT_FlagM
1 0 1 1 UNALLOCATED -
1 1 UNALLOCATED -

Evaluate into flags

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 1 0 1 0 0 0 0 opcode2 sz 0 0 1 0 Rn o3 mask

Decode fields
sf op S opcode2 sz o3 mask Instruction Details Feature

0 0 0 UNALLOCATED -
0 0 1 != 000000 UNALLOCATED -
0 0 1 000000 0 != 1101 UNALLOCATED -
0 0 1 000000 1 UNALLOCATED -
0 0 1 000000 0 0 1101 SETF8, SETF16 — SETF8 FEAT_FlagM
0 0 1 000000 1 0 1101 SETF8, SETF16 — SETF16 FEAT_FlagM
0 1 UNALLOCATED -
1 UNALLOCATED -

Conditional compare (register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 1 0 1 0 0 1 0 Rm cond 0 o2 Rn o3 nzcv

Decode fields
sf op S o2 o3 Instruction Details

1 UNALLOCATED
1 UNALLOCATED

0 UNALLOCATED
0 0 1 0 0 CCMN (register) — 32-bit
0 1 1 0 0 CCMP (register) — 32-bit

Top-level encodings for A64

Page 2659

Decode fields
sf op S o2 o3 Instruction Details

1 0 1 0 0 CCMN (register) — 64-bit
1 1 1 0 0 CCMP (register) — 64-bit

Conditional compare (immediate)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 1 0 1 0 0 1 0 imm5 cond 1 o2 Rn o3 nzcv

Decode fields
sf op S o2 o3 Instruction Details

1 UNALLOCATED
1 UNALLOCATED

0 UNALLOCATED
0 0 1 0 0 CCMN (immediate) — 32-bit
0 1 1 0 0 CCMP (immediate) — 32-bit
1 0 1 0 0 CCMN (immediate) — 64-bit
1 1 1 0 0 CCMP (immediate) — 64-bit

Conditional select

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op S 1 1 0 1 0 1 0 0 Rm cond op2 Rn Rd

Decode fields
sf op S op2 Instruction Details

1x UNALLOCATED
1 UNALLOCATED

0 0 0 00 CSEL — 32-bit
0 0 0 01 CSINC — 32-bit
0 1 0 00 CSINV — 32-bit
0 1 0 01 CSNEG — 32-bit
1 0 0 00 CSEL — 64-bit
1 0 0 01 CSINC — 64-bit
1 1 0 00 CSINV — 64-bit
1 1 0 01 CSNEG — 64-bit

Data-processing (3 source)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf op54 1 1 0 1 1 op31 Rm o0 Ra Rn Rd

Decode fields
sf op54 op31 o0 Instruction Details

00 010 1 UNALLOCATED
00 011 UNALLOCATED
00 100 UNALLOCATED

Top-level encodings for A64

Page 2660

Decode fields
sf op54 op31 o0 Instruction Details

00 110 1 UNALLOCATED
00 111 UNALLOCATED
01 UNALLOCATED
1x UNALLOCATED

0 00 000 0 MADD — 32-bit
0 00 000 1 MSUB — 32-bit
0 00 001 0 UNALLOCATED
0 00 001 1 UNALLOCATED
0 00 010 0 UNALLOCATED
0 00 101 0 UNALLOCATED
0 00 101 1 UNALLOCATED
0 00 110 0 UNALLOCATED
1 00 000 0 MADD — 64-bit
1 00 000 1 MSUB — 64-bit
1 00 001 0 SMADDL
1 00 001 1 SMSUBL
1 00 010 0 SMULH
1 00 101 0 UMADDL
1 00 101 1 UMSUBL
1 00 110 0 UMULH

Data Processing -- Scalar Floating-Point and Advanced SIMD

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
op0 111 op1 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details Architecture

version
0000 0x x101 00xxxxx10 UNALLOCATED -
0010 0x x101 00xxxxx10 UNALLOCATED -
0100 0x x101 00xxxxx10 Cryptographic AES -
0101 0x x0xx xxx0xxx00 Cryptographic three-register SHA -
0101 0x x0xx xxx0xxx10 UNALLOCATED -
0101 0x x101 00xxxxx10 Cryptographic two-register SHA -
0110 0x x101 00xxxxx10 UNALLOCATED -
0111 0x x0xx xxx0xxxx0 UNALLOCATED -
0111 0x x101 00xxxxx10 UNALLOCATED -
01x1 00 00xx xxx0xxxx1 Advanced SIMD scalar copy -
01x1 01 00xx xxx0xxxx1 UNALLOCATED -
01x1 0x 0111 00xxxxx10 UNALLOCATED -
01x1 0x 10xx xxx00xxx1 Advanced SIMD scalar three same FP16 -
01x1 0x 10xx xxx01xxx1 UNALLOCATED -
01x1 0x 1111 00xxxxx10 Advanced SIMD scalar two-register

miscellaneous FP16
-

01x1 0x x0xx xxx1xxxx0 UNALLOCATED -
01x1 0x x0xx xxx1xxxx1 Advanced SIMD scalar three same extra -

Top-level encodings for A64

Page 2661

01x1 0x x100 00xxxxx10 Advanced SIMD scalar two-register
miscellaneous

-

01x1 0x x110 00xxxxx10 Advanced SIMD scalar pairwise -
01x1 0x x1xx 1xxxxxx10 UNALLOCATED -
01x1 0x x1xx x1xxxxx10 UNALLOCATED -
01x1 0x x1xx xxxxxxx00 Advanced SIMD scalar three different -
01x1 0x x1xx xxxxxxxx1 Advanced SIMD scalar three same -
01x1 10 xxxxxxxx1 Advanced SIMD scalar shift by immediate -
01x1 11 xxxxxxxx1 UNALLOCATED -
01x1 1x xxxxxxxx0 Advanced SIMD scalar x indexed element -
0x00 0x x0xx xxx0xxx00 Advanced SIMD table lookup -
0x00 0x x0xx xxx0xxx10 Advanced SIMD permute -
0x10 0x x0xx xxx0xxxx0 Advanced SIMD extract -
0xx0 00 00xx xxx0xxxx1 Advanced SIMD copy -
0xx0 01 00xx xxx0xxxx1 UNALLOCATED -
0xx0 0x 0111 00xxxxx10 UNALLOCATED -
0xx0 0x 10xx xxx00xxx1 Advanced SIMD three same (FP16) -
0xx0 0x 10xx xxx01xxx1 UNALLOCATED -
0xx0 0x 1111 00xxxxx10 Advanced SIMD two-register miscellaneous

(FP16)
-

0xx0 0x x0xx xxx1xxxx0 UNALLOCATED -
0xx0 0x x0xx xxx1xxxx1 Advanced SIMD three-register extension -
0xx0 0x x100 00xxxxx10 Advanced SIMD two-register miscellaneous -
0xx0 0x x110 00xxxxx10 Advanced SIMD across lanes -
0xx0 0x x1xx 1xxxxxx10 UNALLOCATED -
0xx0 0x x1xx x1xxxxx10 UNALLOCATED -
0xx0 0x x1xx xxxxxxx00 Advanced SIMD three different -
0xx0 0x x1xx xxxxxxxx1 Advanced SIMD three same -
0xx0 10 0000 xxxxxxxx1 Advanced SIMD modified immediate -
0xx0 10 !=

0000
xxxxxxxx1 Advanced SIMD shift by immediate -

0xx0 11 xxxxxxxx1 UNALLOCATED -
0xx0 1x xxxxxxxx0 Advanced SIMD vector x indexed element -
1100 00 10xx xxx10xxxx Cryptographic three-register, imm2 -
1100 00 11xx xxx1x00xx Cryptographic three-register SHA 512 -
1100 00 xxx0xxxxx Cryptographic four-register -
1100 01 00xx XAR FEAT_SHA3
1100 01 1000 0001000xx Cryptographic two-register SHA 512 -
1xx0 1x UNALLOCATED -
x0x1 0x x0xx Conversion between floating-point and fixed-

point
-

x0x1 0x x1xx xxx000000 Conversion between floating-point and integer -
x0x1 0x x1xx xxxx10000 Floating-point data-processing (1 source) -
x0x1 0x x1xx xxxxx1000 Floating-point compare -
x0x1 0x x1xx xxxxxx100 Floating-point immediate -
x0x1 0x x1xx xxxxxxx01 Floating-point conditional compare -
x0x1 0x x1xx xxxxxxx10 Floating-point data-processing (2 source) -
x0x1 0x x1xx xxxxxxx11 Floating-point conditional select -
x0x1 1x Floating-point data-processing (3 source) -

Top-level encodings for A64

Page 2662

Cryptographic AES

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd

Decode fields
size opcode Instruction Details

x1xxx UNALLOCATED
000xx UNALLOCATED
1xxxx UNALLOCATED

x1 UNALLOCATED
00 00100 AESE
00 00101 AESD
00 00110 AESMC
00 00111 AESIMC
1x UNALLOCATED

Cryptographic three-register SHA

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 0 Rm 0 opcode 0 0 Rn Rd

Decode fields
size opcode Instruction Details

111 UNALLOCATED
x1 UNALLOCATED
00 000 SHA1C
00 001 SHA1P
00 010 SHA1M
00 011 SHA1SU0
00 100 SHA256H
00 101 SHA256H2
00 110 SHA256SU1
1x UNALLOCATED

Cryptographic two-register SHA

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd

Decode fields
size opcode Instruction Details

xx1xx UNALLOCATED
x1xxx UNALLOCATED
1xxxx UNALLOCATED

x1 UNALLOCATED
00 00000 SHA1H
00 00001 SHA1SU1
00 00010 SHA256SU0

Top-level encodings for A64

Page 2663

Decode fields
size opcode Instruction Details

00 00011 UNALLOCATED
1x UNALLOCATED

Advanced SIMD scalar copy

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 op 1 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

Decode fields
op imm4 Instruction Details

0 xxx1 UNALLOCATED
0 xx1x UNALLOCATED
0 x1xx UNALLOCATED
0 0000 DUP (element)
0 1xxx UNALLOCATED
1 UNALLOCATED

Advanced SIMD scalar three same FP16

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd

Decode fields
U a opcode Instruction Details Feature

110 UNALLOCATED -
1 011 UNALLOCATED -

0 0 011 FMULX FEAT_FP16
0 0 100 FCMEQ (register) FEAT_FP16
0 0 101 UNALLOCATED -
0 0 111 FRECPS FEAT_FP16
0 1 100 UNALLOCATED -
0 1 101 UNALLOCATED -
0 1 111 FRSQRTS FEAT_FP16
1 0 011 UNALLOCATED -
1 0 100 FCMGE (register) FEAT_FP16
1 0 101 FACGE FEAT_FP16
1 0 111 UNALLOCATED -
1 1 010 FABD FEAT_FP16
1 1 100 FCMGT (register) FEAT_FP16
1 1 101 FACGT FEAT_FP16
1 1 111 UNALLOCATED -

Advanced SIMD scalar two-register miscellaneous FP16

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd

Top-level encodings for A64

Page 2664

Decode fields
U a opcode Instruction Details Feature

00xxx UNALLOCATED -
010xx UNALLOCATED -
10xxx UNALLOCATED -
1100x UNALLOCATED -
11110 UNALLOCATED -

0 011xx UNALLOCATED -
0 11111 UNALLOCATED -
1 01111 UNALLOCATED -
1 11100 UNALLOCATED -

0 0 11010 FCVTNS (vector) FEAT_FP16
0 0 11011 FCVTMS (vector) FEAT_FP16
0 0 11100 FCVTAS (vector) FEAT_FP16
0 0 11101 SCVTF (vector, integer) FEAT_FP16
0 1 01100 FCMGT (zero) FEAT_FP16
0 1 01101 FCMEQ (zero) FEAT_FP16
0 1 01110 FCMLT (zero) FEAT_FP16
0 1 11010 FCVTPS (vector) FEAT_FP16
0 1 11011 FCVTZS (vector, integer) FEAT_FP16
0 1 11101 FRECPE FEAT_FP16
0 1 11111 FRECPX FEAT_FP16
1 0 11010 FCVTNU (vector) FEAT_FP16
1 0 11011 FCVTMU (vector) FEAT_FP16
1 0 11100 FCVTAU (vector) FEAT_FP16
1 0 11101 UCVTF (vector, integer) FEAT_FP16
1 1 01100 FCMGE (zero) FEAT_FP16
1 1 01101 FCMLE (zero) FEAT_FP16
1 1 01110 UNALLOCATED -
1 1 11010 FCVTPU (vector) FEAT_FP16
1 1 11011 FCVTZU (vector, integer) FEAT_FP16
1 1 11101 FRSQRTE FEAT_FP16
1 1 11111 UNALLOCATED -

Advanced SIMD scalar three same extra

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd

Decode fields
U opcode Instruction Details Feature

001x UNALLOCATED -
01xx UNALLOCATED -
1xxx UNALLOCATED -

0 0000 UNALLOCATED -
0 0001 UNALLOCATED -
1 0000 SQRDMLAH (vector) FEAT_RDM
1 0001 SQRDMLSH (vector) FEAT_RDM

Top-level encodings for A64

Page 2665

Advanced SIMD scalar two-register miscellaneous

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd

Decode fields
U size opcode Instruction Details

0000x UNALLOCATED
00010 UNALLOCATED
0010x UNALLOCATED
00110 UNALLOCATED
01111 UNALLOCATED
1000x UNALLOCATED
10011 UNALLOCATED
10101 UNALLOCATED
10111 UNALLOCATED
1100x UNALLOCATED
11110 UNALLOCATED

0x 011xx UNALLOCATED
0x 11111 UNALLOCATED
1x 10110 UNALLOCATED
1x 11100 UNALLOCATED

0 00011 SUQADD
0 00111 SQABS
0 01000 CMGT (zero)
0 01001 CMEQ (zero)
0 01010 CMLT (zero)
0 01011 ABS
0 10010 UNALLOCATED
0 10100 SQXTN, SQXTN2
0 0x 10110 UNALLOCATED
0 0x 11010 FCVTNS (vector)
0 0x 11011 FCVTMS (vector)
0 0x 11100 FCVTAS (vector)
0 0x 11101 SCVTF (vector, integer)
0 1x 01100 FCMGT (zero)
0 1x 01101 FCMEQ (zero)
0 1x 01110 FCMLT (zero)
0 1x 11010 FCVTPS (vector)
0 1x 11011 FCVTZS (vector, integer)
0 1x 11101 FRECPE
0 1x 11111 FRECPX
1 00011 USQADD
1 00111 SQNEG
1 01000 CMGE (zero)
1 01001 CMLE (zero)
1 01010 UNALLOCATED
1 01011 NEG (vector)
1 10010 SQXTUN, SQXTUN2

Top-level encodings for A64

Page 2666

Decode fields
U size opcode Instruction Details

1 10100 UQXTN, UQXTN2
1 0x 10110 FCVTXN, FCVTXN2
1 0x 11010 FCVTNU (vector)
1 0x 11011 FCVTMU (vector)
1 0x 11100 FCVTAU (vector)
1 0x 11101 UCVTF (vector, integer)
1 1x 01100 FCMGE (zero)
1 1x 01101 FCMLE (zero)
1 1x 01110 UNALLOCATED
1 1x 11010 FCVTPU (vector)
1 1x 11011 FCVTZU (vector, integer)
1 1x 11101 FRSQRTE
1 1x 11111 UNALLOCATED

Advanced SIMD scalar pairwise

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd

Decode fields
U size opcode Instruction Details Feature

00xxx UNALLOCATED -
010xx UNALLOCATED -
01110 UNALLOCATED -
10xxx UNALLOCATED -
1100x UNALLOCATED -
11010 UNALLOCATED -
111xx UNALLOCATED -

1x 01101 UNALLOCATED -
0 11011 ADDP (scalar) -
0 0x 01100 FMAXNMP (scalar) — half-precision FEAT_FP16
0 0x 01101 FADDP (scalar) — half-precision FEAT_FP16
0 0x 01111 FMAXP (scalar) — half-precision FEAT_FP16
0 1x 01100 FMINNMP (scalar) — half-precision FEAT_FP16
0 1x 01111 FMINP (scalar) — half-precision FEAT_FP16
1 11011 UNALLOCATED -
1 0x 01100 FMAXNMP (scalar) — single-precision and double-precision -
1 0x 01101 FADDP (scalar) — single-precision and double-precision -
1 0x 01111 FMAXP (scalar) — single-precision and double-precision -
1 1x 01100 FMINNMP (scalar) — single-precision and double-precision -
1 1x 01111 FMINP (scalar) — single-precision and double-precision -

Advanced SIMD scalar three different

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd

Top-level encodings for A64

Page 2667

Decode fields
U opcode Instruction Details

00xx UNALLOCATED
01xx UNALLOCATED
1000 UNALLOCATED
1010 UNALLOCATED
1100 UNALLOCATED
111x UNALLOCATED

0 1001 SQDMLAL, SQDMLAL2 (vector)
0 1011 SQDMLSL, SQDMLSL2 (vector)
0 1101 SQDMULL, SQDMULL2 (vector)
1 1001 UNALLOCATED
1 1011 UNALLOCATED
1 1101 UNALLOCATED

Advanced SIMD scalar three same

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 0 size 1 Rm opcode 1 Rn Rd

Decode fields
U size opcode Instruction Details

00000 UNALLOCATED
0001x UNALLOCATED
00100 UNALLOCATED
011xx UNALLOCATED
1001x UNALLOCATED

1x 11011 UNALLOCATED
0 00001 SQADD
0 00101 SQSUB
0 00110 CMGT (register)
0 00111 CMGE (register)
0 01000 SSHL
0 01001 SQSHL (register)
0 01010 SRSHL
0 01011 SQRSHL
0 10000 ADD (vector)
0 10001 CMTST
0 10100 UNALLOCATED
0 10101 UNALLOCATED
0 10110 SQDMULH (vector)
0 10111 UNALLOCATED
0 0x 11000 UNALLOCATED
0 0x 11001 UNALLOCATED
0 0x 11010 UNALLOCATED
0 0x 11011 FMULX
0 0x 11100 FCMEQ (register)
0 0x 11101 UNALLOCATED
0 0x 11110 UNALLOCATED

Top-level encodings for A64

Page 2668

Decode fields
U size opcode Instruction Details

0 0x 11111 FRECPS
0 1x 11000 UNALLOCATED
0 1x 11001 UNALLOCATED
0 1x 11010 UNALLOCATED
0 1x 11100 UNALLOCATED
0 1x 11101 UNALLOCATED
0 1x 11110 UNALLOCATED
0 1x 11111 FRSQRTS
1 00001 UQADD
1 00101 UQSUB
1 00110 CMHI (register)
1 00111 CMHS (register)
1 01000 USHL
1 01001 UQSHL (register)
1 01010 URSHL
1 01011 UQRSHL
1 10000 SUB (vector)
1 10001 CMEQ (register)
1 10100 UNALLOCATED
1 10101 UNALLOCATED
1 10110 SQRDMULH (vector)
1 10111 UNALLOCATED
1 0x 11000 UNALLOCATED
1 0x 11001 UNALLOCATED
1 0x 11010 UNALLOCATED
1 0x 11011 UNALLOCATED
1 0x 11100 FCMGE (register)
1 0x 11101 FACGE
1 0x 11110 UNALLOCATED
1 0x 11111 UNALLOCATED
1 1x 11000 UNALLOCATED
1 1x 11001 UNALLOCATED
1 1x 11010 FABD
1 1x 11100 FCMGT (register)
1 1x 11101 FACGT
1 1x 11110 UNALLOCATED
1 1x 11111 UNALLOCATED

Advanced SIMD scalar shift by immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 1 0 immh immb opcode 1 Rn Rd

Decode fields
U immh opcode Instruction Details

!= 0000 00001 UNALLOCATED
!= 0000 00011 UNALLOCATED

Top-level encodings for A64

Page 2669

Decode fields
U immh opcode Instruction Details

!= 0000 00101 UNALLOCATED
!= 0000 00111 UNALLOCATED
!= 0000 01001 UNALLOCATED
!= 0000 01011 UNALLOCATED
!= 0000 01101 UNALLOCATED
!= 0000 01111 UNALLOCATED
!= 0000 101xx UNALLOCATED
!= 0000 110xx UNALLOCATED
!= 0000 11101 UNALLOCATED
!= 0000 11110 UNALLOCATED
0000 UNALLOCATED

0 != 0000 00000 SSHR
0 != 0000 00010 SSRA
0 != 0000 00100 SRSHR
0 != 0000 00110 SRSRA
0 != 0000 01000 UNALLOCATED
0 != 0000 01010 SHL
0 != 0000 01100 UNALLOCATED
0 != 0000 01110 SQSHL (immediate)
0 != 0000 10000 UNALLOCATED
0 != 0000 10001 UNALLOCATED
0 != 0000 10010 SQSHRN, SQSHRN2
0 != 0000 10011 SQRSHRN, SQRSHRN2
0 != 0000 11100 SCVTF (vector, fixed-point)
0 != 0000 11111 FCVTZS (vector, fixed-point)
1 != 0000 00000 USHR
1 != 0000 00010 USRA
1 != 0000 00100 URSHR
1 != 0000 00110 URSRA
1 != 0000 01000 SRI
1 != 0000 01010 SLI
1 != 0000 01100 SQSHLU
1 != 0000 01110 UQSHL (immediate)
1 != 0000 10000 SQSHRUN, SQSHRUN2
1 != 0000 10001 SQRSHRUN, SQRSHRUN2
1 != 0000 10010 UQSHRN, UQSHRN2
1 != 0000 10011 UQRSHRN, UQRSHRN2
1 != 0000 11100 UCVTF (vector, fixed-point)
1 != 0000 11111 FCVTZU (vector, fixed-point)

Advanced SIMD scalar x indexed element

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 U 1 1 1 1 1 size L M Rm opcode H 0 Rn Rd

Top-level encodings for A64

Page 2670

Decode fields
U size opcode Instruction Details Feature

0000 UNALLOCATED -
0010 UNALLOCATED -
0100 UNALLOCATED -
0110 UNALLOCATED -
1000 UNALLOCATED -
1010 UNALLOCATED -
1110 UNALLOCATED -

01 0001 UNALLOCATED -
01 0101 UNALLOCATED -
01 1001 UNALLOCATED -

0 0011 SQDMLAL, SQDMLAL2 (by element) -
0 0111 SQDMLSL, SQDMLSL2 (by element) -
0 1011 SQDMULL, SQDMULL2 (by element) -
0 1100 SQDMULH (by element) -
0 1101 SQRDMULH (by element) -
0 1111 UNALLOCATED -
0 00 0001 FMLA (by element) — half-precision FEAT_FP16
0 00 0101 FMLS (by element) — half-precision FEAT_FP16
0 00 1001 FMUL (by element) — half-precision FEAT_FP16
0 1x 0001 FMLA (by element) — single-precision and double-precision -
0 1x 0101 FMLS (by element) — single-precision and double-precision -
0 1x 1001 FMUL (by element) — single-precision and double-precision -
1 0011 UNALLOCATED -
1 0111 UNALLOCATED -
1 1011 UNALLOCATED -
1 1100 UNALLOCATED -
1 1101 SQRDMLAH (by element) FEAT_RDM
1 1111 SQRDMLSH (by element) FEAT_RDM
1 00 0001 UNALLOCATED -
1 00 0101 UNALLOCATED -
1 00 1001 FMULX (by element) — half-precision FEAT_FP16
1 1x 0001 UNALLOCATED -
1 1x 0101 UNALLOCATED -
1 1x 1001 FMULX (by element) — single-precision and double-precision -

Advanced SIMD table lookup

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 op2 0 Rm 0 len op 0 0 Rn Rd

Decode fields
op2 len op Instruction Details

x1 UNALLOCATED
00 00 0 TBL — single register table
00 00 1 TBX — single register table
00 01 0 TBL — two register table
00 01 1 TBX — two register table

Top-level encodings for A64

Page 2671

Decode fields
op2 len op Instruction Details

00 10 0 TBL — three register table
00 10 1 TBX — three register table
00 11 0 TBL — four register table
00 11 1 TBX — four register table
1x UNALLOCATED

Advanced SIMD permute

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 0 0 1 1 1 0 size 0 Rm 0 opcode 1 0 Rn Rd

Decode fields
opcode Instruction Details

000 UNALLOCATED
001 UZP1
010 TRN1
011 ZIP1
100 UNALLOCATED
101 UZP2
110 TRN2
111 ZIP2

Advanced SIMD extract

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q 1 0 1 1 1 0 op2 0 Rm 0 imm4 0 Rn Rd

Decode fields
op2 Instruction Details

x1 UNALLOCATED
00 EXT
1x UNALLOCATED

Advanced SIMD copy

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q op 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

Decode fields
Q op imm5 imm4 Instruction Details

x0000 UNALLOCATED
0 0000 DUP (element)
0 0001 DUP (general)
0 0010 UNALLOCATED
0 0100 UNALLOCATED
0 0110 UNALLOCATED

Top-level encodings for A64

Page 2672

Decode fields
Q op imm5 imm4 Instruction Details

0 1xxx UNALLOCATED
0 0 0011 UNALLOCATED
0 0 0101 SMOV
0 0 0111 UMOV
0 1 UNALLOCATED
1 0 0011 INS (general)
1 0 0101 SMOV
1 0 x1000 0111 UMOV
1 1 INS (element)

Advanced SIMD three same (FP16)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd

Decode fields
U a opcode Instruction Details Feature

0 0 000 FMAXNM (vector) FEAT_FP16
0 0 001 FMLA (vector) FEAT_FP16
0 0 010 FADD (vector) FEAT_FP16
0 0 011 FMULX FEAT_FP16
0 0 100 FCMEQ (register) FEAT_FP16
0 0 101 UNALLOCATED -
0 0 110 FMAX (vector) FEAT_FP16
0 0 111 FRECPS FEAT_FP16
0 1 000 FMINNM (vector) FEAT_FP16
0 1 001 FMLS (vector) FEAT_FP16
0 1 010 FSUB (vector) FEAT_FP16
0 1 011 UNALLOCATED -
0 1 100 UNALLOCATED -
0 1 101 UNALLOCATED -
0 1 110 FMIN (vector) FEAT_FP16
0 1 111 FRSQRTS FEAT_FP16
1 0 000 FMAXNMP (vector) FEAT_FP16
1 0 001 UNALLOCATED -
1 0 010 FADDP (vector) FEAT_FP16
1 0 011 FMUL (vector) FEAT_FP16
1 0 100 FCMGE (register) FEAT_FP16
1 0 101 FACGE FEAT_FP16
1 0 110 FMAXP (vector) FEAT_FP16
1 0 111 FDIV (vector) FEAT_FP16
1 1 000 FMINNMP (vector) FEAT_FP16
1 1 001 UNALLOCATED -
1 1 010 FABD FEAT_FP16
1 1 011 UNALLOCATED -
1 1 100 FCMGT (register) FEAT_FP16
1 1 101 FACGT FEAT_FP16

Top-level encodings for A64

Page 2673

Decode fields
U a opcode Instruction Details Feature

1 1 110 FMINP (vector) FEAT_FP16
1 1 111 UNALLOCATED -

Advanced SIMD two-register miscellaneous (FP16)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd

Decode fields
U a opcode Instruction Details Feature

00xxx UNALLOCATED -
010xx UNALLOCATED -
10xxx UNALLOCATED -
11110 UNALLOCATED -

0 011xx UNALLOCATED -
0 11111 UNALLOCATED -
1 11100 UNALLOCATED -

0 0 11000 FRINTN (vector) FEAT_FP16
0 0 11001 FRINTM (vector) FEAT_FP16
0 0 11010 FCVTNS (vector) FEAT_FP16
0 0 11011 FCVTMS (vector) FEAT_FP16
0 0 11100 FCVTAS (vector) FEAT_FP16
0 0 11101 SCVTF (vector, integer) FEAT_FP16
0 1 01100 FCMGT (zero) FEAT_FP16
0 1 01101 FCMEQ (zero) FEAT_FP16
0 1 01110 FCMLT (zero) FEAT_FP16
0 1 01111 FABS (vector) FEAT_FP16
0 1 11000 FRINTP (vector) FEAT_FP16
0 1 11001 FRINTZ (vector) FEAT_FP16
0 1 11010 FCVTPS (vector) FEAT_FP16
0 1 11011 FCVTZS (vector, integer) FEAT_FP16
0 1 11101 FRECPE FEAT_FP16
0 1 11111 UNALLOCATED -
1 0 11000 FRINTA (vector) FEAT_FP16
1 0 11001 FRINTX (vector) FEAT_FP16
1 0 11010 FCVTNU (vector) FEAT_FP16
1 0 11011 FCVTMU (vector) FEAT_FP16
1 0 11100 FCVTAU (vector) FEAT_FP16
1 0 11101 UCVTF (vector, integer) FEAT_FP16
1 1 01100 FCMGE (zero) FEAT_FP16
1 1 01101 FCMLE (zero) FEAT_FP16
1 1 01110 UNALLOCATED -
1 1 01111 FNEG (vector) FEAT_FP16
1 1 11000 UNALLOCATED -
1 1 11001 FRINTI (vector) FEAT_FP16
1 1 11010 FCVTPU (vector) FEAT_FP16
1 1 11011 FCVTZU (vector, integer) FEAT_FP16

Top-level encodings for A64

Page 2674

Decode fields
U a opcode Instruction Details Feature

1 1 11101 FRSQRTE FEAT_FP16
1 1 11111 FSQRT (vector) FEAT_FP16

Advanced SIMD three-register extension

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd

Decode fields
Q U size opcode Instruction Details Feature

0x 0011 UNALLOCATED -
11 0011 UNALLOCATED -

0 0000 UNALLOCATED -
0 0001 UNALLOCATED -
0 0010 SDOT (vector) FEAT_DotProd
0 1xxx UNALLOCATED -
0 10 0011 USDOT (vector) FEAT_I8MM
1 0000 SQRDMLAH (vector) FEAT_RDM
1 0001 SQRDMLSH (vector) FEAT_RDM
1 0010 UDOT (vector) FEAT_DotProd
1 10xx FCMLA FEAT_FCMA
1 11x0 FCADD FEAT_FCMA
1 00 1101 UNALLOCATED -
1 00 1111 UNALLOCATED -
1 01 1111 BFDOT (vector) FEAT_BF16
1 1x 1101 UNALLOCATED -
1 10 0011 UNALLOCATED -
1 10 1111 UNALLOCATED -
1 11 1111 BFMLALB, BFMLALT (vector) FEAT_BF16

0 01xx UNALLOCATED -
0 1 01 1101 UNALLOCATED -
1 0x 01xx UNALLOCATED -
1 1x 011x UNALLOCATED -
1 0 10 0100 SMMLA (vector) FEAT_I8MM
1 0 10 0101 USMMLA (vector) FEAT_I8MM
1 1 01 1101 BFMMLA FEAT_BF16
1 1 10 0100 UMMLA (vector) FEAT_I8MM
1 1 10 0101 UNALLOCATED -

Advanced SIMD two-register miscellaneous

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd

Top-level encodings for A64

Page 2675

Decode fields
U size opcode Instruction Details Feature

1000x UNALLOCATED -
10101 UNALLOCATED -

0x 011xx UNALLOCATED -
1x 10111 UNALLOCATED -
1x 11110 UNALLOCATED -
11 10110 UNALLOCATED -

0 00000 REV64 -
0 00001 REV16 (vector) -
0 00010 SADDLP -
0 00011 SUQADD -
0 00100 CLS (vector) -
0 00101 CNT -
0 00110 SADALP -
0 00111 SQABS -
0 01000 CMGT (zero) -
0 01001 CMEQ (zero) -
0 01010 CMLT (zero) -
0 01011 ABS -
0 10010 XTN, XTN2 -
0 10011 UNALLOCATED -
0 10100 SQXTN, SQXTN2 -
0 0x 10110 FCVTN, FCVTN2 -
0 0x 10111 FCVTL, FCVTL2 -
0 0x 11000 FRINTN (vector) -
0 0x 11001 FRINTM (vector) -
0 0x 11010 FCVTNS (vector) -
0 0x 11011 FCVTMS (vector) -
0 0x 11100 FCVTAS (vector) -
0 0x 11101 SCVTF (vector, integer) -
0 0x 11110 FRINT32Z (vector) FEAT_FRINTTS
0 0x 11111 FRINT64Z (vector) FEAT_FRINTTS
0 1x 01100 FCMGT (zero) -
0 1x 01101 FCMEQ (zero) -
0 1x 01110 FCMLT (zero) -
0 1x 01111 FABS (vector) -
0 1x 11000 FRINTP (vector) -
0 1x 11001 FRINTZ (vector) -
0 1x 11010 FCVTPS (vector) -
0 1x 11011 FCVTZS (vector, integer) -
0 1x 11100 URECPE -
0 1x 11101 FRECPE -
0 1x 11111 UNALLOCATED -
0 10 10110 BFCVTN, BFCVTN2 FEAT_BF16
1 00000 REV32 (vector) -
1 00001 UNALLOCATED -
1 00010 UADDLP -
1 00011 USQADD -

Top-level encodings for A64

Page 2676

Decode fields
U size opcode Instruction Details Feature

1 00100 CLZ (vector) -
1 00110 UADALP -
1 00111 SQNEG -
1 01000 CMGE (zero) -
1 01001 CMLE (zero) -
1 01010 UNALLOCATED -
1 01011 NEG (vector) -
1 10010 SQXTUN, SQXTUN2 -
1 10011 SHLL, SHLL2 -
1 10100 UQXTN, UQXTN2 -
1 0x 10110 FCVTXN, FCVTXN2 -
1 0x 10111 UNALLOCATED -
1 0x 11000 FRINTA (vector) -
1 0x 11001 FRINTX (vector) -
1 0x 11010 FCVTNU (vector) -
1 0x 11011 FCVTMU (vector) -
1 0x 11100 FCVTAU (vector) -
1 0x 11101 UCVTF (vector, integer) -
1 0x 11110 FRINT32X (vector) FEAT_FRINTTS
1 0x 11111 FRINT64X (vector) FEAT_FRINTTS
1 00 00101 NOT -
1 01 00101 RBIT (vector) -
1 1x 00101 UNALLOCATED -
1 1x 01100 FCMGE (zero) -
1 1x 01101 FCMLE (zero) -
1 1x 01110 UNALLOCATED -
1 1x 01111 FNEG (vector) -
1 1x 11000 UNALLOCATED -
1 1x 11001 FRINTI (vector) -
1 1x 11010 FCVTPU (vector) -
1 1x 11011 FCVTZU (vector, integer) -
1 1x 11100 URSQRTE -
1 1x 11101 FRSQRTE -
1 1x 11111 FSQRT (vector) -
1 10 10110 UNALLOCATED -

Advanced SIMD across lanes

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd

Decode fields
U size opcode Instruction Details Feature

0000x UNALLOCATED -
00010 UNALLOCATED -
001xx UNALLOCATED -
0100x UNALLOCATED -

Top-level encodings for A64

Page 2677

Decode fields
U size opcode Instruction Details Feature

01011 UNALLOCATED -
01101 UNALLOCATED -
01110 UNALLOCATED -
10xxx UNALLOCATED -
1100x UNALLOCATED -
111xx UNALLOCATED -

0 00011 SADDLV -
0 01010 SMAXV -
0 11010 SMINV -
0 11011 ADDV -
0 00 01100 FMAXNMV — half-precision FEAT_FP16
0 00 01111 FMAXV — half-precision FEAT_FP16
0 01 01100 UNALLOCATED -
0 01 01111 UNALLOCATED -
0 10 01100 FMINNMV — half-precision FEAT_FP16
0 10 01111 FMINV — half-precision FEAT_FP16
0 11 01100 UNALLOCATED -
0 11 01111 UNALLOCATED -
1 00011 UADDLV -
1 01010 UMAXV -
1 11010 UMINV -
1 11011 UNALLOCATED -
1 0x 01100 FMAXNMV — single-precision and double-precision -
1 0x 01111 FMAXV — single-precision and double-precision -
1 1x 01100 FMINNMV — single-precision and double-precision -
1 1x 01111 FMINV — single-precision and double-precision -

Advanced SIMD three different

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd

Decode fields
U opcode Instruction Details

1111 UNALLOCATED
0 0000 SADDL, SADDL2
0 0001 SADDW, SADDW2
0 0010 SSUBL, SSUBL2
0 0011 SSUBW, SSUBW2
0 0100 ADDHN, ADDHN2
0 0101 SABAL, SABAL2
0 0110 SUBHN, SUBHN2
0 0111 SABDL, SABDL2
0 1000 SMLAL, SMLAL2 (vector)
0 1001 SQDMLAL, SQDMLAL2 (vector)
0 1010 SMLSL, SMLSL2 (vector)
0 1011 SQDMLSL, SQDMLSL2 (vector)

Top-level encodings for A64

Page 2678

Decode fields
U opcode Instruction Details

0 1100 SMULL, SMULL2 (vector)
0 1101 SQDMULL, SQDMULL2 (vector)
0 1110 PMULL, PMULL2
1 0000 UADDL, UADDL2
1 0001 UADDW, UADDW2
1 0010 USUBL, USUBL2
1 0011 USUBW, USUBW2
1 0100 RADDHN, RADDHN2
1 0101 UABAL, UABAL2
1 0110 RSUBHN, RSUBHN2
1 0111 UABDL, UABDL2
1 1000 UMLAL, UMLAL2 (vector)
1 1001 UNALLOCATED
1 1010 UMLSL, UMLSL2 (vector)
1 1011 UNALLOCATED
1 1100 UMULL, UMULL2 (vector)
1 1101 UNALLOCATED
1 1110 UNALLOCATED

Advanced SIMD three same

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 0 size 1 Rm opcode 1 Rn Rd

Decode fields
U size opcode Instruction Details Feature

0 00000 SHADD -
0 00001 SQADD -
0 00010 SRHADD -
0 00100 SHSUB -
0 00101 SQSUB -
0 00110 CMGT (register) -
0 00111 CMGE (register) -
0 01000 SSHL -
0 01001 SQSHL (register) -
0 01010 SRSHL -
0 01011 SQRSHL -
0 01100 SMAX -
0 01101 SMIN -
0 01110 SABD -
0 01111 SABA -
0 10000 ADD (vector) -
0 10001 CMTST -
0 10010 MLA (vector) -
0 10011 MUL (vector) -
0 10100 SMAXP -
0 10101 SMINP -

Top-level encodings for A64

Page 2679

Decode fields
U size opcode Instruction Details Feature

0 10110 SQDMULH (vector) -
0 10111 ADDP (vector) -
0 0x 11000 FMAXNM (vector) -
0 0x 11001 FMLA (vector) -
0 0x 11010 FADD (vector) -
0 0x 11011 FMULX -
0 0x 11100 FCMEQ (register) -
0 0x 11110 FMAX (vector) -
0 0x 11111 FRECPS -
0 00 00011 AND (vector) -
0 00 11101 FMLAL, FMLAL2 (vector) — FMLAL FEAT_FHM
0 01 00011 BIC (vector, register) -
0 01 11101 UNALLOCATED -
0 1x 11000 FMINNM (vector) -
0 1x 11001 FMLS (vector) -
0 1x 11010 FSUB (vector) -
0 1x 11011 UNALLOCATED -
0 1x 11100 UNALLOCATED -
0 1x 11110 FMIN (vector) -
0 1x 11111 FRSQRTS -
0 10 00011 ORR (vector, register) -
0 10 11101 FMLSL, FMLSL2 (vector) — FMLSL FEAT_FHM
0 11 00011 ORN (vector) -
0 11 11101 UNALLOCATED -
1 00000 UHADD -
1 00001 UQADD -
1 00010 URHADD -
1 00100 UHSUB -
1 00101 UQSUB -
1 00110 CMHI (register) -
1 00111 CMHS (register) -
1 01000 USHL -
1 01001 UQSHL (register) -
1 01010 URSHL -
1 01011 UQRSHL -
1 01100 UMAX -
1 01101 UMIN -
1 01110 UABD -
1 01111 UABA -
1 10000 SUB (vector) -
1 10001 CMEQ (register) -
1 10010 MLS (vector) -
1 10011 PMUL -
1 10100 UMAXP -
1 10101 UMINP -
1 10110 SQRDMULH (vector) -
1 10111 UNALLOCATED -

Top-level encodings for A64

Page 2680

Decode fields
U size opcode Instruction Details Feature

1 0x 11000 FMAXNMP (vector) -
1 0x 11010 FADDP (vector) -
1 0x 11011 FMUL (vector) -
1 0x 11100 FCMGE (register) -
1 0x 11101 FACGE -
1 0x 11110 FMAXP (vector) -
1 0x 11111 FDIV (vector) -
1 00 00011 EOR (vector) -
1 00 11001 FMLAL, FMLAL2 (vector) — FMLAL2 FEAT_FHM
1 01 00011 BSL -
1 01 11001 UNALLOCATED -
1 1x 11000 FMINNMP (vector) -
1 1x 11010 FABD -
1 1x 11011 UNALLOCATED -
1 1x 11100 FCMGT (register) -
1 1x 11101 FACGT -
1 1x 11110 FMINP (vector) -
1 1x 11111 UNALLOCATED -
1 10 00011 BIT -
1 10 11001 FMLSL, FMLSL2 (vector) — FMLSL2 FEAT_FHM
1 11 00011 BIF -
1 11 11001 UNALLOCATED -

Advanced SIMD modified immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode o2 1 d e f g h Rd

Decode fields
Q op cmode o2 Instruction Details Feature

0 0xxx 1 UNALLOCATED -
0 0xx0 0 MOVI — 32-bit shifted immediate -
0 0xx1 0 ORR (vector, immediate) — 32-bit -
0 10xx 1 UNALLOCATED -
0 10x0 0 MOVI — 16-bit shifted immediate -
0 10x1 0 ORR (vector, immediate) — 16-bit -
0 110x 0 MOVI — 32-bit shifting ones -
0 110x 1 UNALLOCATED -
0 1110 0 MOVI — 8-bit -
0 1110 1 UNALLOCATED -
0 1111 0 FMOV (vector, immediate) — single-precision -
0 1111 1 FMOV (vector, immediate) — half-precision FEAT_FP16
1 1 UNALLOCATED -
1 0xx0 0 MVNI — 32-bit shifted immediate -
1 0xx1 0 BIC (vector, immediate) — 32-bit -
1 10x0 0 MVNI — 16-bit shifted immediate -
1 10x1 0 BIC (vector, immediate) — 16-bit -

Top-level encodings for A64

Page 2681

Decode fields
Q op cmode o2 Instruction Details Feature

1 110x 0 MVNI — 32-bit shifting ones -
0 1 1110 0 MOVI — 64-bit scalar -
0 1 1111 0 UNALLOCATED -
1 1 1110 0 MOVI — 64-bit vector -
1 1 1111 0 FMOV (vector, immediate) — double-precision -

Advanced SIMD shift by immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 1 0 != 0000 immb opcode 1 Rn Rd

immh

The following constraints also apply to this encoding: immh != 0000 && immh != 0000

Decode fields
U opcode Instruction Details

00001 UNALLOCATED
00011 UNALLOCATED
00101 UNALLOCATED
00111 UNALLOCATED
01001 UNALLOCATED
01011 UNALLOCATED
01101 UNALLOCATED
01111 UNALLOCATED
10101 UNALLOCATED
1011x UNALLOCATED
110xx UNALLOCATED
11101 UNALLOCATED
11110 UNALLOCATED

0 00000 SSHR
0 00010 SSRA
0 00100 SRSHR
0 00110 SRSRA
0 01000 UNALLOCATED
0 01010 SHL
0 01100 UNALLOCATED
0 01110 SQSHL (immediate)
0 10000 SHRN, SHRN2
0 10001 RSHRN, RSHRN2
0 10010 SQSHRN, SQSHRN2
0 10011 SQRSHRN, SQRSHRN2
0 10100 SSHLL, SSHLL2
0 11100 SCVTF (vector, fixed-point)
0 11111 FCVTZS (vector, fixed-point)
1 00000 USHR
1 00010 USRA
1 00100 URSHR

Top-level encodings for A64

Page 2682

Decode fields
U opcode Instruction Details

1 00110 URSRA
1 01000 SRI
1 01010 SLI
1 01100 SQSHLU
1 01110 UQSHL (immediate)
1 10000 SQSHRUN, SQSHRUN2
1 10001 SQRSHRUN, SQRSHRUN2
1 10010 UQSHRN, UQSHRN2
1 10011 UQRSHRN, UQRSHRN2
1 10100 USHLL, USHLL2
1 11100 UCVTF (vector, fixed-point)
1 11111 FCVTZU (vector, fixed-point)

Advanced SIMD vector x indexed element

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 Q U 0 1 1 1 1 size L M Rm opcode H 0 Rn Rd

Decode fields
U size opcode Instruction Details Feature

01 1001 UNALLOCATED -
0 0010 SMLAL, SMLAL2 (by element) -
0 0011 SQDMLAL, SQDMLAL2 (by element) -
0 0110 SMLSL, SMLSL2 (by element) -
0 0111 SQDMLSL, SQDMLSL2 (by element) -
0 1000 MUL (by element) -
0 1010 SMULL, SMULL2 (by element) -
0 1011 SQDMULL, SQDMULL2 (by element) -
0 1100 SQDMULH (by element) -
0 1101 SQRDMULH (by element) -
0 1110 SDOT (by element) FEAT_DotProd
0 0x 0000 UNALLOCATED -
0 0x 0100 UNALLOCATED -
0 00 0001 FMLA (by element) — half-precision FEAT_FP16
0 00 0101 FMLS (by element) — half-precision FEAT_FP16
0 00 1001 FMUL (by element) — half-precision FEAT_FP16
0 00 1111 SUDOT (by element) FEAT_I8MM
0 01 0001 UNALLOCATED -
0 01 0101 UNALLOCATED -
0 01 1111 BFDOT (by element) FEAT_BF16
0 1x 0001 FMLA (by element) — single-precision and double-precision -
0 1x 0101 FMLS (by element) — single-precision and double-precision -
0 1x 1001 FMUL (by element) — single-precision and double-precision -
0 10 0000 FMLAL, FMLAL2 (by element) — FMLAL FEAT_FHM
0 10 0100 FMLSL, FMLSL2 (by element) — FMLSL FEAT_FHM
0 10 1111 USDOT (by element) FEAT_I8MM
0 11 0000 UNALLOCATED -

Top-level encodings for A64

Page 2683

Decode fields
U size opcode Instruction Details Feature

0 11 0100 UNALLOCATED -
0 11 1111 BFMLALB, BFMLALT (by element) FEAT_BF16
1 0000 MLA (by element) -
1 0010 UMLAL, UMLAL2 (by element) -
1 0100 MLS (by element) -
1 0110 UMLSL, UMLSL2 (by element) -
1 1010 UMULL, UMULL2 (by element) -
1 1011 UNALLOCATED -
1 1101 SQRDMLAH (by element) FEAT_RDM
1 1110 UDOT (by element) FEAT_DotProd
1 1111 SQRDMLSH (by element) FEAT_RDM
1 0x 1000 UNALLOCATED -
1 0x 1100 UNALLOCATED -
1 00 0001 UNALLOCATED -
1 00 0011 UNALLOCATED -
1 00 0101 UNALLOCATED -
1 00 0111 UNALLOCATED -
1 00 1001 FMULX (by element) — half-precision FEAT_FP16
1 01 0xx1 FCMLA (by element) FEAT_FCMA
1 1x 1001 FMULX (by element) — single-precision and double-precision -
1 10 0xx1 FCMLA (by element) FEAT_FCMA
1 10 1000 FMLAL, FMLAL2 (by element) — FMLAL2 FEAT_FHM
1 10 1100 FMLSL, FMLSL2 (by element) — FMLSL2 FEAT_FHM
1 11 0001 UNALLOCATED -
1 11 0011 UNALLOCATED -
1 11 0101 UNALLOCATED -
1 11 0111 UNALLOCATED -
1 11 1000 UNALLOCATED -
1 11 1100 UNALLOCATED -

Cryptographic three-register, imm2

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 opcode Rn Rd

Decode fields
opcode Instruction Details Feature

00 SM3TT1A FEAT_SM3
01 SM3TT1B FEAT_SM3
10 SM3TT2A FEAT_SM3
11 SM3TT2B FEAT_SM3

Cryptographic three-register SHA 512

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 1 1 Rm 1 O 0 0 opcode Rn Rd

Top-level encodings for A64

Page 2684

Decode fields
O opcode Instruction Details Feature

0 00 SHA512H FEAT_SHA512
0 01 SHA512H2 FEAT_SHA512
0 10 SHA512SU1 FEAT_SHA512
0 11 RAX1 FEAT_SHA3
1 00 SM3PARTW1 FEAT_SM3
1 01 SM3PARTW2 FEAT_SM3
1 10 SM4EKEY FEAT_SM4
1 11 UNALLOCATED -

Cryptographic four-register

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 0 Op0 Rm 0 Ra Rn Rd

Decode fields
Op0 Instruction Details Feature

00 EOR3 FEAT_SHA3
01 BCAX FEAT_SHA3
10 SM3SS1 FEAT_SM3
11 UNALLOCATED -

Cryptographic two-register SHA 512

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 opcode Rn Rd

Decode fields
opcode Instruction Details Feature

00 SHA512SU0 FEAT_SHA512
01 SM4E FEAT_SM4
1x UNALLOCATED -

Conversion between floating-point and fixed-point

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 S 1 1 1 1 0 ptype 0 rmode opcode scale Rn Rd

Decode fields
sf S ptype rmode opcode scale Instruction Details Feature

1xx UNALLOCATED -
x0 00x UNALLOCATED -
x1 01x UNALLOCATED -
0x 00x UNALLOCATED -
1x 01x UNALLOCATED -

10 UNALLOCATED -
1 UNALLOCATED -

Top-level encodings for A64

Page 2685

Decode fields
sf S ptype rmode opcode scale Instruction Details Feature

0 0xxxxx UNALLOCATED -
0 0 00 00 010 SCVTF (scalar, fixed-point) — 32-bit to

single-precision
-

0 0 00 00 011 UCVTF (scalar, fixed-point) — 32-bit to
single-precision

-

0 0 00 11 000 FCVTZS (scalar, fixed-point) — single-
precision to 32-bit

-

0 0 00 11 001 FCVTZU (scalar, fixed-point) — single-
precision to 32-bit

-

0 0 01 00 010 SCVTF (scalar, fixed-point) — 32-bit to
double-precision

-

0 0 01 00 011 UCVTF (scalar, fixed-point) — 32-bit to
double-precision

-

0 0 01 11 000 FCVTZS (scalar, fixed-point) — double-
precision to 32-bit

-

0 0 01 11 001 FCVTZU (scalar, fixed-point) — double-
precision to 32-bit

-

0 0 11 00 010 SCVTF (scalar, fixed-point) — 32-bit to half-
precision

FEAT_FP16

0 0 11 00 011 UCVTF (scalar, fixed-point) — 32-bit to half-
precision

FEAT_FP16

0 0 11 11 000 FCVTZS (scalar, fixed-point) — half-precision
to 32-bit

FEAT_FP16

0 0 11 11 001 FCVTZU (scalar, fixed-point) — half-precision
to 32-bit

FEAT_FP16

1 0 00 00 010 SCVTF (scalar, fixed-point) — 64-bit to
single-precision

-

1 0 00 00 011 UCVTF (scalar, fixed-point) — 64-bit to
single-precision

-

1 0 00 11 000 FCVTZS (scalar, fixed-point) — single-
precision to 64-bit

-

1 0 00 11 001 FCVTZU (scalar, fixed-point) — single-
precision to 64-bit

-

1 0 01 00 010 SCVTF (scalar, fixed-point) — 64-bit to
double-precision

-

1 0 01 00 011 UCVTF (scalar, fixed-point) — 64-bit to
double-precision

-

1 0 01 11 000 FCVTZS (scalar, fixed-point) — double-
precision to 64-bit

-

1 0 01 11 001 FCVTZU (scalar, fixed-point) — double-
precision to 64-bit

-

1 0 11 00 010 SCVTF (scalar, fixed-point) — 64-bit to half-
precision

FEAT_FP16

1 0 11 00 011 UCVTF (scalar, fixed-point) — 64-bit to half-
precision

FEAT_FP16

1 0 11 11 000 FCVTZS (scalar, fixed-point) — half-precision
to 64-bit

FEAT_FP16

1 0 11 11 001 FCVTZU (scalar, fixed-point) — half-precision
to 64-bit

FEAT_FP16

Conversion between floating-point and integer

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
sf 0 S 1 1 1 1 0 ptype 1 rmode opcode 0 0 0 0 0 0 Rn Rd

Top-level encodings for A64

Page 2686

Decode fields
sf S ptype rmode opcode Instruction Details Feature

x1 01x UNALLOCATED -
x1 10x UNALLOCATED -
1x 01x UNALLOCATED -
1x 10x UNALLOCATED -

0 10 0xx UNALLOCATED -
0 10 10x UNALLOCATED -
1 UNALLOCATED -

0 0 00 x1 11x UNALLOCATED -
0 0 00 00 000 FCVTNS (scalar) — single-precision to 32-bit -
0 0 00 00 001 FCVTNU (scalar) — single-precision to 32-bit -
0 0 00 00 010 SCVTF (scalar, integer) — 32-bit to single-precision -
0 0 00 00 011 UCVTF (scalar, integer) — 32-bit to single-precision -
0 0 00 00 100 FCVTAS (scalar) — single-precision to 32-bit -
0 0 00 00 101 FCVTAU (scalar) — single-precision to 32-bit -
0 0 00 00 110 FMOV (general) — single-precision to 32-bit -
0 0 00 00 111 FMOV (general) — 32-bit to single-precision -
0 0 00 01 000 FCVTPS (scalar) — single-precision to 32-bit -
0 0 00 01 001 FCVTPU (scalar) — single-precision to 32-bit -
0 0 00 1x 11x UNALLOCATED -
0 0 00 10 000 FCVTMS (scalar) — single-precision to 32-bit -
0 0 00 10 001 FCVTMU (scalar) — single-precision to 32-bit -
0 0 00 11 000 FCVTZS (scalar, integer) — single-precision to 32-bit -
0 0 00 11 001 FCVTZU (scalar, integer) — single-precision to 32-bit -
0 0 01 0x 11x UNALLOCATED -
0 0 01 00 000 FCVTNS (scalar) — double-precision to 32-bit -
0 0 01 00 001 FCVTNU (scalar) — double-precision to 32-bit -
0 0 01 00 010 SCVTF (scalar, integer) — 32-bit to double-precision -
0 0 01 00 011 UCVTF (scalar, integer) — 32-bit to double-precision -
0 0 01 00 100 FCVTAS (scalar) — double-precision to 32-bit -
0 0 01 00 101 FCVTAU (scalar) — double-precision to 32-bit -
0 0 01 01 000 FCVTPS (scalar) — double-precision to 32-bit -
0 0 01 01 001 FCVTPU (scalar) — double-precision to 32-bit -
0 0 01 10 000 FCVTMS (scalar) — double-precision to 32-bit -
0 0 01 10 001 FCVTMU (scalar) — double-precision to 32-bit -
0 0 01 10 11x UNALLOCATED -
0 0 01 11 000 FCVTZS (scalar, integer) — double-precision to 32-bit -
0 0 01 11 001 FCVTZU (scalar, integer) — double-precision to 32-bit -
0 0 01 11 110 FJCVTZS FEAT_JSCVT
0 0 01 11 111 UNALLOCATED -
0 0 10 11x UNALLOCATED -
0 0 11 00 000 FCVTNS (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 00 001 FCVTNU (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 00 010 SCVTF (scalar, integer) — 32-bit to half-precision FEAT_FP16
0 0 11 00 011 UCVTF (scalar, integer) — 32-bit to half-precision FEAT_FP16
0 0 11 00 100 FCVTAS (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 00 101 FCVTAU (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 00 110 FMOV (general) — half-precision to 32-bit FEAT_FP16

Top-level encodings for A64

Page 2687

Decode fields
sf S ptype rmode opcode Instruction Details Feature

0 0 11 00 111 FMOV (general) — 32-bit to half-precision FEAT_FP16
0 0 11 01 000 FCVTPS (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 01 001 FCVTPU (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 10 000 FCVTMS (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 10 001 FCVTMU (scalar) — half-precision to 32-bit FEAT_FP16
0 0 11 11 000 FCVTZS (scalar, integer) — half-precision to 32-bit FEAT_FP16
0 0 11 11 001 FCVTZU (scalar, integer) — half-precision to 32-bit FEAT_FP16
1 0 00 11x UNALLOCATED -
1 0 00 00 000 FCVTNS (scalar) — single-precision to 64-bit -
1 0 00 00 001 FCVTNU (scalar) — single-precision to 64-bit -
1 0 00 00 010 SCVTF (scalar, integer) — 64-bit to single-precision -
1 0 00 00 011 UCVTF (scalar, integer) — 64-bit to single-precision -
1 0 00 00 100 FCVTAS (scalar) — single-precision to 64-bit -
1 0 00 00 101 FCVTAU (scalar) — single-precision to 64-bit -
1 0 00 01 000 FCVTPS (scalar) — single-precision to 64-bit -
1 0 00 01 001 FCVTPU (scalar) — single-precision to 64-bit -
1 0 00 10 000 FCVTMS (scalar) — single-precision to 64-bit -
1 0 00 10 001 FCVTMU (scalar) — single-precision to 64-bit -
1 0 00 11 000 FCVTZS (scalar, integer) — single-precision to 64-bit -
1 0 00 11 001 FCVTZU (scalar, integer) — single-precision to 64-bit -
1 0 01 x1 11x UNALLOCATED -
1 0 01 00 000 FCVTNS (scalar) — double-precision to 64-bit -
1 0 01 00 001 FCVTNU (scalar) — double-precision to 64-bit -
1 0 01 00 010 SCVTF (scalar, integer) — 64-bit to double-precision -
1 0 01 00 011 UCVTF (scalar, integer) — 64-bit to double-precision -
1 0 01 00 100 FCVTAS (scalar) — double-precision to 64-bit -
1 0 01 00 101 FCVTAU (scalar) — double-precision to 64-bit -
1 0 01 00 110 FMOV (general) — double-precision to 64-bit -
1 0 01 00 111 FMOV (general) — 64-bit to double-precision -
1 0 01 01 000 FCVTPS (scalar) — double-precision to 64-bit -
1 0 01 01 001 FCVTPU (scalar) — double-precision to 64-bit -
1 0 01 1x 11x UNALLOCATED -
1 0 01 10 000 FCVTMS (scalar) — double-precision to 64-bit -
1 0 01 10 001 FCVTMU (scalar) — double-precision to 64-bit -
1 0 01 11 000 FCVTZS (scalar, integer) — double-precision to 64-bit -
1 0 01 11 001 FCVTZU (scalar, integer) — double-precision to 64-bit -
1 0 10 x0 11x UNALLOCATED -
1 0 10 01 110 FMOV (general) — top half of 128-bit to 64-bit -
1 0 10 01 111 FMOV (general) — 64-bit to top half of 128-bit -
1 0 10 1x 11x UNALLOCATED -
1 0 11 00 000 FCVTNS (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 00 001 FCVTNU (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 00 010 SCVTF (scalar, integer) — 64-bit to half-precision FEAT_FP16
1 0 11 00 011 UCVTF (scalar, integer) — 64-bit to half-precision FEAT_FP16
1 0 11 00 100 FCVTAS (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 00 101 FCVTAU (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 00 110 FMOV (general) — half-precision to 64-bit FEAT_FP16

Top-level encodings for A64

Page 2688

Decode fields
sf S ptype rmode opcode Instruction Details Feature

1 0 11 00 111 FMOV (general) — 64-bit to half-precision FEAT_FP16
1 0 11 01 000 FCVTPS (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 01 001 FCVTPU (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 10 000 FCVTMS (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 10 001 FCVTMU (scalar) — half-precision to 64-bit FEAT_FP16
1 0 11 11 000 FCVTZS (scalar, integer) — half-precision to 64-bit FEAT_FP16
1 0 11 11 001 FCVTZU (scalar, integer) — half-precision to 64-bit FEAT_FP16

Floating-point data-processing (1 source)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 S 1 1 1 1 0 ptype 1 opcode 1 0 0 0 0 Rn Rd

Decode fields
M S ptype opcode Instruction Details Feature

1xxxxx UNALLOCATED -
1 UNALLOCATED -

0 0 00 000000 FMOV (register) — single-precision -
0 0 00 000001 FABS (scalar) — single-precision -
0 0 00 000010 FNEG (scalar) — single-precision -
0 0 00 000011 FSQRT (scalar) — single-precision -
0 0 00 000100 UNALLOCATED -
0 0 00 000101 FCVT — single-precision to double-precision -
0 0 00 000110 UNALLOCATED -
0 0 00 000111 FCVT — single-precision to half-precision -
0 0 00 001000 FRINTN (scalar) — single-precision -
0 0 00 001001 FRINTP (scalar) — single-precision -
0 0 00 001010 FRINTM (scalar) — single-precision -
0 0 00 001011 FRINTZ (scalar) — single-precision -
0 0 00 001100 FRINTA (scalar) — single-precision -
0 0 00 001101 UNALLOCATED -
0 0 00 001110 FRINTX (scalar) — single-precision -
0 0 00 001111 FRINTI (scalar) — single-precision -
0 0 00 010000 FRINT32Z (scalar) — single-precision FEAT_FRINTTS
0 0 00 010001 FRINT32X (scalar) — single-precision FEAT_FRINTTS
0 0 00 010010 FRINT64Z (scalar) — single-precision FEAT_FRINTTS
0 0 00 010011 FRINT64X (scalar) — single-precision FEAT_FRINTTS
0 0 00 0101xx UNALLOCATED -
0 0 00 011xxx UNALLOCATED -
0 0 01 000000 FMOV (register) — double-precision -
0 0 01 000001 FABS (scalar) — double-precision -
0 0 01 000010 FNEG (scalar) — double-precision -
0 0 01 000011 FSQRT (scalar) — double-precision -
0 0 01 000100 FCVT — double-precision to single-precision -
0 0 01 000101 UNALLOCATED -
0 0 01 000110 BFCVT FEAT_BF16
0 0 01 000111 FCVT — double-precision to half-precision -

Top-level encodings for A64

Page 2689

Decode fields
M S ptype opcode Instruction Details Feature

0 0 01 001000 FRINTN (scalar) — double-precision -
0 0 01 001001 FRINTP (scalar) — double-precision -
0 0 01 001010 FRINTM (scalar) — double-precision -
0 0 01 001011 FRINTZ (scalar) — double-precision -
0 0 01 001100 FRINTA (scalar) — double-precision -
0 0 01 001101 UNALLOCATED -
0 0 01 001110 FRINTX (scalar) — double-precision -
0 0 01 001111 FRINTI (scalar) — double-precision -
0 0 01 010000 FRINT32Z (scalar) — double-precision FEAT_FRINTTS
0 0 01 010001 FRINT32X (scalar) — double-precision FEAT_FRINTTS
0 0 01 010010 FRINT64Z (scalar) — double-precision FEAT_FRINTTS
0 0 01 010011 FRINT64X (scalar) — double-precision FEAT_FRINTTS
0 0 01 0101xx UNALLOCATED -
0 0 01 011xxx UNALLOCATED -
0 0 10 0xxxxx UNALLOCATED -
0 0 11 000000 FMOV (register) — half-precision FEAT_FP16
0 0 11 000001 FABS (scalar) — half-precision FEAT_FP16
0 0 11 000010 FNEG (scalar) — half-precision FEAT_FP16
0 0 11 000011 FSQRT (scalar) — half-precision FEAT_FP16
0 0 11 000100 FCVT — half-precision to single-precision -
0 0 11 000101 FCVT — half-precision to double-precision -
0 0 11 00011x UNALLOCATED -
0 0 11 001000 FRINTN (scalar) — half-precision FEAT_FP16
0 0 11 001001 FRINTP (scalar) — half-precision FEAT_FP16
0 0 11 001010 FRINTM (scalar) — half-precision FEAT_FP16
0 0 11 001011 FRINTZ (scalar) — half-precision FEAT_FP16
0 0 11 001100 FRINTA (scalar) — half-precision FEAT_FP16
0 0 11 001101 UNALLOCATED -
0 0 11 001110 FRINTX (scalar) — half-precision FEAT_FP16
0 0 11 001111 FRINTI (scalar) — half-precision FEAT_FP16
0 0 11 01xxxx UNALLOCATED -
1 UNALLOCATED -

Floating-point compare

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 S 1 1 1 1 0 ptype 1 Rm op 1 0 0 0 Rn opcode2

Decode fields
M S ptype op opcode2 Instruction Details Feature

xxxx1 UNALLOCATED -
xxx1x UNALLOCATED -
xx1xx UNALLOCATED -

x1 UNALLOCATED -
1x UNALLOCATED -

10 UNALLOCATED -
1 UNALLOCATED -

Top-level encodings for A64

Page 2690

Decode fields
M S ptype op opcode2 Instruction Details Feature

0 0 00 00 00000 FCMP -
0 0 00 00 01000 FCMP -
0 0 00 00 10000 FCMPE -
0 0 00 00 11000 FCMPE -
0 0 01 00 00000 FCMP -
0 0 01 00 01000 FCMP -
0 0 01 00 10000 FCMPE -
0 0 01 00 11000 FCMPE -
0 0 11 00 00000 FCMP FEAT_FP16
0 0 11 00 01000 FCMP FEAT_FP16
0 0 11 00 10000 FCMPE FEAT_FP16
0 0 11 00 11000 FCMPE FEAT_FP16
1 UNALLOCATED -

Floating-point immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 S 1 1 1 1 0 ptype 1 imm8 1 0 0 imm5 Rd

Decode fields
M S ptype imm5 Instruction Details Feature

xxxx1 UNALLOCATED -
xxx1x UNALLOCATED -
xx1xx UNALLOCATED -
x1xxx UNALLOCATED -
1xxxx UNALLOCATED -

10 UNALLOCATED -
1 UNALLOCATED -

0 0 00 00000 FMOV (scalar, immediate) — single-precision -
0 0 01 00000 FMOV (scalar, immediate) — double-precision -
0 0 11 00000 FMOV (scalar, immediate) — half-precision FEAT_FP16
1 UNALLOCATED -

Floating-point conditional compare

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 S 1 1 1 1 0 ptype 1 Rm cond 0 1 Rn op nzcv

Decode fields
M S ptype op Instruction Details Feature

10 UNALLOCATED -
1 UNALLOCATED -

0 0 00 0 FCCMP — single-precision -
0 0 00 1 FCCMPE — single-precision -
0 0 01 0 FCCMP — double-precision -
0 0 01 1 FCCMPE — double-precision -

Top-level encodings for A64

Page 2691

Decode fields
M S ptype op Instruction Details Feature

0 0 11 0 FCCMP — half-precision FEAT_FP16
0 0 11 1 FCCMPE — half-precision FEAT_FP16
1 UNALLOCATED -

Floating-point data-processing (2 source)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 S 1 1 1 1 0 ptype 1 Rm opcode 1 0 Rn Rd

Decode fields
M S ptype opcode Instruction Details Feature

1xx1 UNALLOCATED -
1x1x UNALLOCATED -
11xx UNALLOCATED -

10 UNALLOCATED -
1 UNALLOCATED -

0 0 00 0000 FMUL (scalar) — single-precision -
0 0 00 0001 FDIV (scalar) — single-precision -
0 0 00 0010 FADD (scalar) — single-precision -
0 0 00 0011 FSUB (scalar) — single-precision -
0 0 00 0100 FMAX (scalar) — single-precision -
0 0 00 0101 FMIN (scalar) — single-precision -
0 0 00 0110 FMAXNM (scalar) — single-precision -
0 0 00 0111 FMINNM (scalar) — single-precision -
0 0 00 1000 FNMUL (scalar) — single-precision -
0 0 01 0000 FMUL (scalar) — double-precision -
0 0 01 0001 FDIV (scalar) — double-precision -
0 0 01 0010 FADD (scalar) — double-precision -
0 0 01 0011 FSUB (scalar) — double-precision -
0 0 01 0100 FMAX (scalar) — double-precision -
0 0 01 0101 FMIN (scalar) — double-precision -
0 0 01 0110 FMAXNM (scalar) — double-precision -
0 0 01 0111 FMINNM (scalar) — double-precision -
0 0 01 1000 FNMUL (scalar) — double-precision -
0 0 11 0000 FMUL (scalar) — half-precision FEAT_FP16
0 0 11 0001 FDIV (scalar) — half-precision FEAT_FP16
0 0 11 0010 FADD (scalar) — half-precision FEAT_FP16
0 0 11 0011 FSUB (scalar) — half-precision FEAT_FP16
0 0 11 0100 FMAX (scalar) — half-precision FEAT_FP16
0 0 11 0101 FMIN (scalar) — half-precision FEAT_FP16
0 0 11 0110 FMAXNM (scalar) — half-precision FEAT_FP16
0 0 11 0111 FMINNM (scalar) — half-precision FEAT_FP16
0 0 11 1000 FNMUL (scalar) — half-precision FEAT_FP16
1 UNALLOCATED -

Top-level encodings for A64

Page 2692

Floating-point conditional select

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 S 1 1 1 1 0 ptype 1 Rm cond 1 1 Rn Rd

Decode fields
M S ptype Instruction Details Feature

10 UNALLOCATED -
1 UNALLOCATED -

0 0 00 FCSEL — single-precision -
0 0 01 FCSEL — double-precision -
0 0 11 FCSEL — half-precision FEAT_FP16
1 UNALLOCATED -

Floating-point data-processing (3 source)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M 0 S 1 1 1 1 1 ptype o1 Rm o0 Ra Rn Rd

Decode fields
M S ptype o1 o0 Instruction Details Feature

10 UNALLOCATED -
1 UNALLOCATED -

0 0 00 0 0 FMADD — single-precision -
0 0 00 0 1 FMSUB — single-precision -
0 0 00 1 0 FNMADD — single-precision -
0 0 00 1 1 FNMSUB — single-precision -
0 0 01 0 0 FMADD — double-precision -
0 0 01 0 1 FMSUB — double-precision -
0 0 01 1 0 FNMADD — double-precision -
0 0 01 1 1 FNMSUB — double-precision -
0 0 11 0 0 FMADD — half-precision FEAT_FP16
0 0 11 0 1 FMSUB — half-precision FEAT_FP16
0 0 11 1 0 FNMADD — half-precision FEAT_FP16
0 0 11 1 1 FNMSUB — half-precision FEAT_FP16
1 UNALLOCATED -

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Top-level encodings for A64

Page 2693

Shared Pseudocode Functions

This page displays common pseudocode functions shared by many pages

Shared Pseudocode Functions Page 2694

Pseudocodes

Library pseudocode for aarch32/dc/AArch32.DC

// AArch32.DC()
// ============
// Perform Data Cache Operation.

AArch32.DC(bits(32) regval, CacheOp cacheop, CacheOpScope opscope)
AccType acctype = AccType_DC;
CacheRecord cache;

cache.acctype = acctype;
cache.cacheop = cacheop;
cache.opscope = opscope;
cache.cachetype = CacheType_Data;

if opscope == CacheOpScope_SetWay then
cache.shareability = Shareability_NSH;
(cache.set, cache.way, cache.level) = DecodeSW(ZeroExtend(regval), CacheType_Data);

if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&
((!ELUsingAArch32(EL2) && HCR_EL2.SWIO == '1') || (ELUsingAArch32(EL2) && HCR.SWIO == '1') ||
(!ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00') || (ELUsingAArch32(EL2) && HCR.<DC,VM> != '00'))) then

cache.cacheop = CacheOp_CleanInvalidate;
CACHE_OP(cache);
return;

need_translate = DCInstNeedsTranslation(opscope);
iswrite = cacheop == CacheOp_Invalidate;
vaddress = regval;

size = 0; // by default no watchpoint address
if iswrite then

size = integer IMPLEMENTATION_DEFINED "Data Cache Invalidate Watchpoint Size";
assert size >= 4*(2^(UInt(CTR_EL0.DminLine))) && size <= 2048;
assert (size<32:0> AND (size-1)<32:0>) == 0; // size is power of 2
vaddress = Align(regval, size);

cache.translated = need_translate;
cache.vaddress = ZeroExtend(vaddress);

if need_translate then
wasaligned = TRUE;
memaddrdesc = AArch32.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);
if IsFault(memaddrdesc) then

AArch32.Abort(regval, memaddrdesc.fault);

memattrs = memaddrdesc.memattrs;
cache.paddress = memaddrdesc.paddress;
if opscope == CacheOpScope_PoC then

cache.shareability = memattrs.shareability;
else

cache.shareability = Shareability_NSH;
else

cache.shareability = Shareability UNKNOWN;
cache.paddress = FullAddress UNKNOWN;

if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled()
&& ((!ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00') || (ELUsingAArch32(EL2) && HCR.<DC,VM> != '00'))) then

cache.cacheop = CacheOp_CleanInvalidate;

CACHE_OP(cache);
return;

Shared Pseudocode Functions Page 2695

Library pseudocode for aarch32/debug/VCRMatch/AArch32.VCRMatch

// AArch32.VCRMatch()
// ==================

boolean AArch32.VCRMatch(bits(32) vaddress)

if UsingAArch32() && ELUsingAArch32(EL1) && PSTATE.EL != EL2 then
// Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
match_word = Zeros(32);

if vaddress<31:5> == ExcVectorBase()<31:5> then
if HaveEL(EL3) && !IsSecure() then

match_word<UInt(vaddress<4:2>) + 24> = '1'; // Non-secure vectors
else

match_word<UInt(vaddress<4:2>) + 0> = '1'; // Secure vectors (or no EL3)

if HaveEL(EL3) && ELUsingAArch32(EL3) && IsSecure() && vaddress<31:5> == MVBAR<31:5> then
match_word<UInt(vaddress<4:2>) + 8> = '1'; // Monitor vectors

// Mask out bits not corresponding to vectors.
if !HaveEL(EL3) then

mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0
elsif !ELUsingAArch32(EL3) then

mask = '11011110':'00000000':'00000000':'11011110'; // DBGVCR[15:8] are RES0
else

mask = '11011110':'00000000':'11011100':'11011110';

match_word = match_word AND DBGVCR AND mask;
match = !IsZero(match_word);

// Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
if !IsZero(match_word<28:27,12:11,4:3>) && DebugTarget() == PSTATE.EL then

match = ConstrainUnpredictableBool(Unpredictable_VCMATCHDAPA);

if !IsZero(vaddress<1:0>) && match then
match = ConstrainUnpredictableBool(Unpredictable_VCMATCHHALF);

else
match = FALSE;

return match;

Library pseudocode for aarch32/debug/authentication/
AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled

// AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// ==

boolean AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled returns
// the state of the (DBGEN AND SPIDEN) signal.
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return DBGEN == HIGH && SPIDEN == HIGH;

Shared Pseudocode Functions Page 2696

Library pseudocode for aarch32/debug/breakpoint/AArch32.BreakpointMatch

// AArch32.BreakpointMatch()
// =========================
// Breakpoint matching in an AArch32 translation regime.

(boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());
assert n < NumBreakpointsImplemented();

enabled = DBGBCR[n].E == '1';
ispriv = PSTATE.EL != EL0;
linked = DBGBCR[n].BT == '0x01';
isbreakpnt = TRUE;
linked_to = FALSE;

state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
linked, DBGBCR[n].LBN, isbreakpnt, ispriv);

(value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

if size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
(match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);
if !value_match && match_i then

value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);
if value_mismatch && !mismatch_i then

value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);
if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then

// The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
// UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
// at the address DBGBVR[n]+2.
if value_match then value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);
if !value_mismatch then value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);

match = value_match && state_match && enabled;
mismatch = value_mismatch && state_match && enabled;

return (match, mismatch);

Shared Pseudocode Functions Page 2697

Library pseudocode for aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

Shared Pseudocode Functions Page 2698

// AArch32.BreakpointValueMatch()
// ==============================
// The first result is whether an Address Match or Context breakpoint is programmed on the
// instruction at "address". The second result is whether an Address Mismatch breakpoint is
// programmed on the instruction, that is, whether the instruction should be stepped.

(boolean,boolean) AArch32.BreakpointValueMatch(integer n, bits(32) vaddress, boolean linked_to)

// "n" is the identity of the breakpoint unit to match against.
// "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
// matching breakpoints.
// "linked_to" is TRUE if this is a call from StateMatch for linking.

// If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
// no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n >= NumBreakpointsImplemented() then

(c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1, Unpredictable_BPNOTIMPL);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return (FALSE,FALSE);

// If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
// call from StateMatch for linking).
if DBGBCR[n].E == '0' then return (FALSE,FALSE);

context_aware = (n >= (NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented()));

// If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
dbgtype = DBGBCR[n].BT;

if ((dbgtype IN {'011x','11xx'} && !HaveVirtHostExt() && !HaveV82Debug()) || // Context matching
(dbgtype == '010x' && HaltOnBreakpointOrWatchpoint()) || // Address mismatch
(dbgtype != '0x0x' && !context_aware) || // Context matching
(dbgtype == '1xxx' && !HaveEL(EL2))) then // EL2 extension

(c, dbgtype) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return (FALSE,FALSE);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

// Determine what to compare against.
match_addr = (dbgtype == '0x0x');
mismatch = (dbgtype == '010x');
match_vmid = (dbgtype == '10xx');
match_cid1 = (dbgtype == 'xx1x');
match_cid2 = (dbgtype == '11xx');
linked = (dbgtype == 'xxx1');

// If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
// VMID and/or context ID match, of if not context-aware. The above assertions mean that the
// code can just test for match_addr == TRUE to confirm all these things.
if linked_to && (!linked || match_addr) then return (FALSE,FALSE);

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !linked_to && linked && !match_addr then return (FALSE,FALSE);

// Do the comparison.
if match_addr then

byte = UInt(vaddress<1:0>);
assert byte IN {0,2}; // "vaddress" is halfword aligned
byte_select_match = (DBGBCR[n].BAS<byte> == '1');
integer top = 31;
BVR_match = (vaddress<top:2> == DBGBVR[n]<top:2>) && byte_select_match;

elsif match_cid1 then
BVR_match = (PSTATE.EL != EL2 && CONTEXTIDR == DBGBVR[n]<31:0>);

if match_vmid then
if ELUsingAArch32(EL2) then

vmid = ZeroExtend(VTTBR.VMID, 16);
bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);

elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);

Shared Pseudocode Functions Page 2699

bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);
else

vmid = VTTBR_EL2.VMID;
bvr_vmid = DBGBXVR[n]<15:0>;

BXVR_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
vmid == bvr_vmid);

elsif match_cid2 then
BXVR_match = (PSTATE.EL != EL3 && (HaveVirtHostExt() || HaveV82Debug()) &&

EL2Enabled() &&
!ELUsingAArch32(EL2) &&
DBGBXVR[n]<31:0> == CONTEXTIDR_EL2<31:0>);

bvr_match_valid = (match_addr || match_cid1);
bxvr_match_valid = (match_vmid || match_cid2);

match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

return (match && !mismatch, !match && mismatch);

Shared Pseudocode Functions Page 2700

Library pseudocode for aarch32/debug/breakpoint/AArch32.StateMatch

// AArch32.StateMatch()
// ====================
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch32.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
boolean isbreakpnt, boolean ispriv)

// "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
// "linked" is TRUE if this is a linked breakpoint/watchpoint type.
// "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

// If parameters are set to a reserved type, behaves as either disabled or a defined type
(c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
if c == Constraint_DISABLED then return FALSE;
// Otherwise the HMC,SSC,PxC values are either valid or the values returned by
// CheckValidStateMatch are valid.

PL2_match = HaveEL(EL2) && ((HMC == '1' && (SSC:PxC != '1000')) || SSC == '11');
PL1_match = PxC<0> == '1';
PL0_match = PxC<1> == '1';
SSU_match = isbreakpnt && HMC == '0' && PxC == '00' && SSC != '11';

if !ispriv && !isbreakpnt then
priv_match = PL0_match;

elsif SSU_match then
priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};

else
case PSTATE.EL of

when EL3 priv_match = PL1_match; // EL3 and EL1 are both PL1
when EL2 priv_match = PL2_match;
when EL1 priv_match = PL1_match;
when EL0 priv_match = PL0_match;

case SSC of
when '00' security_state_match = TRUE; // Both
when '01' security_state_match = !IsSecure(); // Non-secure only
when '10' security_state_match = IsSecure(); // Secure only
when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure only

if linked then
// "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
// it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
// UNKNOWN breakpoint that is context-aware.
lbn = UInt(LBN);
first_ctx_cmp = NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented();
last_ctx_cmp = NumBreakpointsImplemented() - 1;
if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then

(c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp, Unpredictable_BPNOTCTXCMP);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE linked = FALSE; // No linking
// Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

if linked then
vaddress = bits(32) UNKNOWN;
linked_to = TRUE;
(linked_match,-) = AArch32.BreakpointValueMatch(lbn, vaddress, linked_to);

return priv_match && security_state_match && (!linked || linked_match);

Shared Pseudocode Functions Page 2701

Library pseudocode for aarch32/debug/enables/AArch32.GenerateDebugExceptions

// AArch32.GenerateDebugExceptions()
// =================================

boolean AArch32.GenerateDebugExceptions()
return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure());

Library pseudocode for aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

// AArch32.GenerateDebugExceptionsFrom()
// =====================================

boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from, boolean secure)

if !ELUsingAArch32(DebugTargetFrom(secure)) then
mask = '0'; // No PSTATE.D in AArch32 state
return AArch64.GenerateDebugExceptionsFrom(from, secure, mask);

if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
return FALSE;

if HaveEL(EL3) && secure then
assert from != EL2; // Secure EL2 always uses AArch64
if IsSecureEL2Enabled() then

// Implies that EL3 and EL2 both using AArch64
enabled = MDCR_EL3.SDD == '0';

else
spd = if ELUsingAArch32(EL3) then SDCR.SPD else MDCR_EL3.SPD32;
if spd<1> == '1' then

enabled = spd<0> == '1';
else

// SPD == 0b01 is reserved, but behaves the same as 0b00.
enabled = AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled();

if from == EL0 then enabled = enabled || SDER.SUIDEN == '1';
else

enabled = from != EL2;

return enabled;

Library pseudocode for aarch32/debug/pmu/AArch32.CheckForPMUOverflow

// AArch32.CheckForPMUOverflow()
// =============================
// Signal Performance Monitors overflow IRQ and CTI overflow events

boolean AArch32.CheckForPMUOverflow()

if !ELUsingAArch32(EL1) then return AArch64.CheckForPMUOverflow();
pmuirq = PMCR.E == '1' && PMINTENSET<31> == '1' && PMOVSSET<31> == '1';
for n = 0 to NumEventCountersImplemented() - 1

if HaveEL(EL2) then
hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
E = (if n < UInt(hpmn) then PMCR.E else hpme);

else
E = PMCR.E;

if E == '1' && PMINTENSET<n> == '1' && PMOVSSET<n> == '1' then pmuirq = TRUE;

SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

// The request remains set until the condition is cleared. (For example, an interrupt handler
// or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

return pmuirq;

Shared Pseudocode Functions Page 2702

Library pseudocode for aarch32/debug/pmu/AArch32.CountEvents

Shared Pseudocode Functions Page 2703

// AArch32.CountEvents()
// =====================
// Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

boolean AArch32.CountEvents(integer n)
assert n == 31 || n < NumEventCountersImplemented();

if !ELUsingAArch32(EL1) then return AArch64.CountEvents(n);

// Event counting is disabled in Debug state
debug = Halted();

// In Non-secure state, some counters are reserved for EL2
if HaveEL(EL2) then

hpmn = if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN;
hpme = if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME;
resvd_for_el2 = n >= UInt(hpmn) && n != 31;

else
resvd_for_el2 = FALSE;

// Main enable controls
if resvd_for_el2 then

E = if ELUsingAArch32(EL2) then HDCR.HPME else MDCR_EL2.HPME;
else

E = PMCR.E;
enabled = E == '1' && PMCNTENSET<n> == '1';

// Event counting is allowed unless it is prohibited by any rule below
prohibited = FALSE;
// Event counting in Secure state is prohibited if all of:
// * EL3 is implemented
// * One of the following is true:
// - EL3 is using AArch64, MDCR_EL3.SPME == 0, and either:
// - FEAT_PMUv3p7 is not implemented
// - MDCR_EL3.MPMX == 0
// - EL3 is using AArch32 and SDCR.SPME == 0
// * Not executing at EL0, or SDER.SUNIDEN == 0
if HaveEL(EL3) && IsSecure() then

spme = if ELUsingAArch32(EL3) then SDCR.SPME else MDCR_EL3.SPME;
if !ELUsingAArch32(EL3) && HavePMUv3p7() then

prohibited = spme == '0' && MDCR_EL3.MPMX == '0';
else

prohibited = spme == '0';
if prohibited && PSTATE.EL == EL0 then

prohibited = SDER.SUNIDEN == '0';

// Event counting at EL2 is prohibited if all of:
// * The HPMD Extension is implemented
// * PMNx is not reserved for EL2
// * HDCR.HPMD == 1
if !prohibited && PSTATE.EL == EL2 && HaveHPMDExt() && !resvd_for_el2 then

prohibited = HDCR.HPMD == '1';

// The IMPLEMENTATION DEFINED authentication interface might override software
if prohibited && !HaveNoSecurePMUDisableOverride() then

prohibited = !ExternalSecureNoninvasiveDebugEnabled();

// PMCR.DP disables the cycle counter when event counting is prohibited
if enabled && prohibited && n == 31 then

enabled = PMCR.DP == '0';

// If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
// This is not overridden by PMCR.DP.
if Havev85PMU() && n == 31 then

if HaveEL(EL3) && IsSecure() then
sccd = if ELUsingAArch32(EL3) then SDCR.SCCD else MDCR_EL3.SCCD;
if sccd == '1' then prohibited = TRUE;

if PSTATE.EL == EL2 && HDCR.HCCD == '1' then
prohibited = TRUE;

Shared Pseudocode Functions Page 2704

// Event counting might be frozen
frozen = FALSE;

// If FEAT_PMUv3p7 is implemented, event counting can be frozen
if HavePMUv3p7() && n != 31 then

ovflw = PMOVSR<NumEventCountersImplemented()-1:0>;
if resvd_for_el2 then

FZ = if ELUsingAArch32(EL2) then HDCR.HPMFZO else MDCR_EL2.HPMFZO;
ovflw<UInt(hpmn)-1:0> = Zeros();

else
FZ = PMCR.FZO;
if HaveEL(EL2) then

ovflw<NumEventCountersImplemented()-1:UInt(hpmn)> = Zeros();
frozen = FZ == '1' && !IsZero(ovflw);

// Event counting can be filtered by the {P, U, NSK, NSU, NSH} bits
filter = if n == 31 then PMCCFILTR else PMEVTYPER[n];

P = filter<31>;
U = filter<30>;
NSK = if HaveEL(EL3) then filter<29> else '0';
NSU = if HaveEL(EL3) then filter<28> else '0';
NSH = if HaveEL(EL2) then filter<27> else '0';

case PSTATE.EL of
when EL0 filtered = if IsSecure() then U == '1' else U != NSU;
when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
when EL2 filtered = NSH == '0';
when EL3 filtered = P == '1';

return !debug && enabled && !prohibited && !filtered && !frozen;

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

// AArch32.EnterHypModeInDebugState()
// ==================================
// Take an exception in Debug state to Hyp mode.

AArch32.EnterHypModeInDebugState(ExceptionRecord exception)
SynchronizeContext();
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

AArch32.ReportHypEntry(exception);
AArch32.WriteMode(M32_Hyp);
SPSR[] = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
PSTATE.E = HSCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields();

EndOfInstruction();

Shared Pseudocode Functions Page 2705

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

// AArch32.EnterModeInDebugState()
// ===============================
// Take an exception in Debug state to a mode other than Monitor and Hyp mode.

AArch32.EnterModeInDebugState(bits(5) target_mode)
SynchronizeContext();
assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(target_mode);
SPSR[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

EndOfInstruction();

Library pseudocode for aarch32/debug/takeexceptiondbg/
AArch32.EnterMonitorModeInDebugState

// AArch32.EnterMonitorModeInDebugState()
// ======================================
// Take an exception in Debug state to Monitor mode.

AArch32.EnterMonitorModeInDebugState()
SynchronizeContext();
assert HaveEL(EL3) && ELUsingAArch32(EL3);
from_secure = IsSecure();
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
SPSR[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

EndOfInstruction();

Shared Pseudocode Functions Page 2706

Library pseudocode for aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

// AArch32.WatchpointByteMatch()
// =============================

boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)

integer top = 31;
bottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR[n].MASK);

// If DBGWCR[n].MASK is non-zero value and DBGWCR[n].BAS is not set to '11111111', or
// DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR[n].BAS) then

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
else

LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then

(c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

if mask > bottom then
// If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
// of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
// included in the match.
if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then

if ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS) then
top = 63;

WVR_match = (vaddress<top:mask> == DBGWVR[n]<top:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR[n]<mask-1:bottom>) then

WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);
else

WVR_match = vaddress<top:bottom> == DBGWVR[n]<top:bottom>;

return WVR_match && byte_select_match;

Shared Pseudocode Functions Page 2707

Library pseudocode for aarch32/debug/watchpoint/AArch32.WatchpointMatch

// AArch32.WatchpointMatch()
// =========================
// Watchpoint matching in an AArch32 translation regime.

boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size, boolean ispriv,
AccType acctype, boolean iswrite)

assert ELUsingAArch32(S1TranslationRegime());
assert n < NumWatchpointsImplemented();

// "ispriv" is:
// * FALSE for all loads, stores, and atomic operations executed at EL0.
// * FALSE if the access is unprivileged.
// * TRUE for all other loads, stores, and atomic operations.

enabled = DBGWCR[n].E == '1';
linked = DBGWCR[n].WT == '1';
isbreakpnt = FALSE;

state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC,
linked, DBGWCR[n].LBN, isbreakpnt, ispriv);

ls_match = FALSE;
ls_match = (DBGWCR[n].LSC<(if iswrite then 1 else 0)> == '1');

value_match = FALSE;
for byte = 0 to size - 1

value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);

return value_match && state_match && ls_match && enabled;

Library pseudocode for aarch32/exceptions/aborts/AArch32.Abort

// AArch32.Abort()
// ===============
// Abort and Debug exception handling in an AArch32 translation regime.

AArch32.Abort(bits(32) vaddress, FaultRecord fault)

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||

(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && MDCR_EL2.TDE == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_EL3.EA == '1' && IsExternalAbort(fault);

if route_to_aarch64 then
AArch64.Abort(ZeroExtend(vaddress), fault);

elsif fault.acctype == AccType_IFETCH then
AArch32.TakePrefetchAbortException(vaddress, fault);

else
AArch32.TakeDataAbortException(vaddress, fault);

Shared Pseudocode Functions Page 2708

Library pseudocode for aarch32/exceptions/aborts/AArch32.AbortSyndrome

// AArch32.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort exceptions taken to Hyp mode
// from an AArch32 translation regime.

ExceptionRecord AArch32.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(32) vaddress)
exception = ExceptionSyndrome(exceptype);

d_side = exceptype == Exception_DataAbort;

exception.syndrome = AArch32.FaultSyndrome(d_side, fault);
exception.vaddress = ZeroExtend(vaddress);
if IPAValid(fault) then

exception.ipavalid = TRUE;
exception.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
exception.ipaddress = ZeroExtend(fault.ipaddress.address);

else
exception.ipavalid = FALSE;

return exception;

Library pseudocode for aarch32/exceptions/aborts/AArch32.CheckPCAlignment

// AArch32.CheckPCAlignment()
// ==========================

AArch32.CheckPCAlignment()

bits(32) pc = ThisInstrAddr();
if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then

if AArch32.GeneralExceptionsToAArch64() then AArch64.PCAlignmentFault();

// Generate an Alignment fault Prefetch Abort exception
vaddress = pc;
acctype = AccType_IFETCH;
iswrite = FALSE;
secondstage = FALSE;
AArch32.Abort(vaddress, AlignmentFault(acctype, iswrite, secondstage));

Shared Pseudocode Functions Page 2709

Library pseudocode for aarch32/exceptions/aborts/AArch32.ReportDataAbort

// AArch32.ReportDataAbort()
// =========================
// Report syndrome information for aborts taken to modes other than Hyp mode.

AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
long_format = FALSE;
if route_to_monitor && !IsSecure() then

long_format = ((TTBCR_S.EAE == '1') ||
(IsExternalSyncAbort(fault) && ((PSTATE.EL == EL2 || TTBCR.EAE == '1') ||
(fault.secondstage && boolean IMPLEMENTATION_DEFINED "Stage 2 synchronous external abort reports using Long-descriptor format when TTBCR_S.EAE is 0b0"))));

else
long_format = TTBCR.EAE == '1';

d_side = TRUE;
if long_format then

syndrome = AArch32.FaultStatusLD(d_side, fault);
else

syndrome = AArch32.FaultStatusSD(d_side, fault);

if fault.acctype == AccType_IC then
if (!long_format &&

boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
i_syndrome = syndrome;
syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);

else
i_syndrome = bits(32) UNKNOWN;

if route_to_monitor then
IFSR_S = i_syndrome;

else
IFSR = i_syndrome;

if route_to_monitor then
DFSR_S = syndrome;
DFAR_S = vaddress;

else
DFSR = syndrome;
DFAR = vaddress;

return;

Shared Pseudocode Functions Page 2710

Library pseudocode for aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

// AArch32.ReportPrefetchAbort()
// =============================
// Report syndrome information for aborts taken to modes other than Hyp mode.

AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
// The encoding used in the IFSR can be Long-descriptor format or Short-descriptor format.
// Normally, the current translation table format determines the format. For an abort from
// Non-secure state to Monitor mode, the IFSR uses the Long-descriptor format if any of the
// following applies:
// * The Secure TTBCR.EAE is set to 1.
// * It is taken from Hyp mode.
// * It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
long_format = FALSE;
if route_to_monitor && !IsSecure() then

long_format = TTBCR_S.EAE == '1' || PSTATE.EL == EL2 || TTBCR.EAE == '1';
else

long_format = TTBCR.EAE == '1';

d_side = FALSE;
if long_format then

fsr = AArch32.FaultStatusLD(d_side, fault);
else

fsr = AArch32.FaultStatusSD(d_side, fault);

if route_to_monitor then
IFSR_S = fsr;
IFAR_S = vaddress;

else
IFSR = fsr;
IFAR = vaddress;

return;

Library pseudocode for aarch32/exceptions/aborts/AArch32.TakeDataAbortException

// AArch32.TakeDataAbortException()
// ================================

AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&

(HCR.TGE == '1' ||
(HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && HDCR.TDE == '1') ||
IsSecondStage(fault)));

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;

if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
if route_to_monitor then

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

elsif PSTATE.EL == EL2 || route_to_hyp then
exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 2711

Library pseudocode for aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

// AArch32.TakePrefetchAbortException()
// ====================================

AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&

(HCR.TGE == '1' ||
(HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && HDCR.TDE == '1') ||
IsSecondStage(fault)));

bits(32) preferred_exception_return = ThisInstrAddr();

vect_offset = 0x0C;

lr_offset = 4;

if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
if route_to_monitor then

AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

elsif PSTATE.EL == EL2 || route_to_hyp then
if fault.statuscode == Fault_Alignment then // PC Alignment fault

exception = ExceptionSyndrome(Exception_PCAlignment);
exception.vaddress = ThisInstrAddr();

else
exception = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

else
AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/async/AArch32.TakePhysicalFIQException

// AArch32.TakePhysicalFIQException()
// ==================================

AArch32.TakePhysicalFIQException()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.FMO == '1' && !IsInHost());

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_EL3.FIQ == '1';

if route_to_aarch64 then AArch64.TakePhysicalFIQException();
route_to_monitor = HaveEL(EL3) && SCR.FIQ == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR.TGE == '1' || HCR.FMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x1C;
lr_offset = 4;
if route_to_monitor then

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then

exception = ExceptionSyndrome(Exception_FIQ);
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 2712

Library pseudocode for aarch32/exceptions/async/AArch32.TakePhysicalIRQException

// AArch32.TakePhysicalIRQException()
// ==================================
// Take an enabled physical IRQ exception.

AArch32.TakePhysicalIRQException()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.IMO == '1' && !IsInHost());
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then

route_to_aarch64 = SCR_EL3.IRQ == '1';

if route_to_aarch64 then AArch64.TakePhysicalIRQException();

route_to_monitor = HaveEL(EL3) && SCR.IRQ == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR.TGE == '1' || HCR.IMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x18;
lr_offset = 4;
if route_to_monitor then

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then

exception = ExceptionSyndrome(Exception_IRQ);
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 2713

Library pseudocode for aarch32/exceptions/async/AArch32.TakePhysicalSErrorException

// AArch32.TakePhysicalSErrorException()
// =====================================

AArch32.TakePhysicalSErrorException(boolean parity, bit extflag, bits(2) pe_error_state,
bits(25) full_syndrome)

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
route_to_aarch64 = (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_EL3.EA == '1';

if route_to_aarch64 then
AArch64.TakePhysicalSErrorException(full_syndrome);

route_to_monitor = HaveEL(EL3) && SCR.EA == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR.TGE == '1' || HCR.AMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;

bits(2) target_el;
if route_to_monitor then

target_el = EL3;
elsif PSTATE.EL == EL2 || route_to_hyp then

target_el = EL2;
else

target_el = EL1;

if IsSErrorEdgeTriggered(target_el, full_syndrome) then
ClearPendingPhysicalSError();

fault = AsyncExternalAbort(parity, pe_error_state, extflag);
vaddress = bits(32) UNKNOWN;

case target_el of
when EL3

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

when EL2
exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
when EL1

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

otherwise
Unreachable();

Shared Pseudocode Functions Page 2714

Library pseudocode for aarch32/exceptions/async/AArch32.TakeVirtualFIQException

// AArch32.TakeVirtualFIQException()
// =================================

AArch32.TakeVirtualFIQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
if ELUsingAArch32(EL2) then // Virtual IRQ enabled if TGE==0 and FMO==1

assert HCR.TGE == '0' && HCR.FMO == '1';
else

assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1';
// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualFIQException();

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x1C;
lr_offset = 4;

AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/async/AArch32.TakeVirtualIRQException

// AArch32.TakeVirtualIRQException()
// =================================

AArch32.TakeVirtualIRQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

if ELUsingAArch32(EL2) then // Virtual IRQs enabled if TGE==0 and IMO==1
assert HCR.TGE == '0' && HCR.IMO == '1';

else
assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1';

// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualIRQException();

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x18;
lr_offset = 4;

AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 2715

Library pseudocode for aarch32/exceptions/async/AArch32.TakeVirtualSErrorException

// AArch32.TakeVirtualSErrorException()
// ====================================

AArch32.TakeVirtualSErrorException(bit extflag, bits(2) pe_error_state, bits(25) full_syndrome)

assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
if ELUsingAArch32(EL2) then // Virtual SError enabled if TGE==0 and AMO==1

assert HCR.TGE == '0' && HCR.AMO == '1';
else

assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualSErrorException(full_syndrome);

route_to_monitor = FALSE;

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;

vaddress = bits(32) UNKNOWN;
parity = FALSE;
if HaveRASExt() then

if ELUsingAArch32(EL2) then
fault = AsyncExternalAbort(FALSE, VDFSR.AET, VDFSR.ExT);

else
fault = AsyncExternalAbort(FALSE, VSESR_EL2.AET, VSESR_EL2.ExT);

else
fault = AsyncExternalAbort(parity, pe_error_state, extflag);

ClearPendingVirtualSError();
AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

// AArch32.SoftwareBreakpoint()
// ============================

AArch32.SoftwareBreakpoint(bits(16) immediate)

if (EL2Enabled() && !ELUsingAArch32(EL2) &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1')) || !ELUsingAArch32(EL1) then
AArch64.SoftwareBreakpoint(immediate);

vaddress = bits(32) UNKNOWN;
acctype = AccType_IFETCH; // Take as a Prefetch Abort
iswrite = FALSE;
entry = DebugException_BKPT;

fault = AArch32.DebugFault(acctype, iswrite, entry);
AArch32.Abort(vaddress, fault);

Library pseudocode for aarch32/exceptions/debug/DebugException

constant bits(4) DebugException_Breakpoint = '0001';
constant bits(4) DebugException_BKPT = '0011';
constant bits(4) DebugException_VectorCatch = '0101';
constant bits(4) DebugException_Watchpoint = '1010';

Shared Pseudocode Functions Page 2716

Library pseudocode for aarch32/exceptions/exceptions/
AArch32.CheckAdvSIMDOrFPRegisterTraps

// AArch32.CheckAdvSIMDOrFPRegisterTraps()
// =======================================
// Check if an instruction that accesses an Advanced SIMD and
// floating-point System register is trapped by an appropriate HCR.TIDx
// ID group trap control.

AArch32.CheckAdvSIMDOrFPRegisterTraps(bits(4) reg)

if PSTATE.EL == EL1 && EL2Enabled() then
tid0 = if ELUsingAArch32(EL2) then HCR.TID0 else HCR_EL2.TID0;
tid3 = if ELUsingAArch32(EL2) then HCR.TID3 else HCR_EL2.TID3;

if (tid0 == '1' && reg == '0000') // FPSID
|| (tid3 == '1' && reg IN {'0101', '0110', '0111'}) then // MVFRx

if ELUsingAArch32(EL2) then
AArch32.SystemAccessTrap(M32_Hyp, 0x8); // Exception_AdvSIMDFPAccessTrap

else
AArch64.AArch32SystemAccessTrap(EL2, 0x8); // Exception_AdvSIMDFPAccessTrap

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ExceptionClass

// AArch32.ExceptionClass()
// ========================
// Returns the Exception Class and Instruction Length fields to be reported in HSR

(integer,bit) AArch32.ExceptionClass(Exception exceptype)

il_is_valid = TRUE;

case exceptype of
when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
when Exception_WFxTrap ec = 0x01;
when Exception_CP15RTTrap ec = 0x03;
when Exception_CP15RRTTrap ec = 0x04;
when Exception_CP14RTTrap ec = 0x05;
when Exception_CP14DTTrap ec = 0x06;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;
when Exception_FPIDTrap ec = 0x08;
when Exception_PACTrap ec = 0x09;
when Exception_LDST64BTrap ec = 0x0A;
when Exception_CP14RRTTrap ec = 0x0C;
when Exception_BranchTarget ec = 0x0D;
when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
when Exception_SupervisorCall ec = 0x11;
when Exception_HypervisorCall ec = 0x12;
when Exception_MonitorCall ec = 0x13;
when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
when Exception_DataAbort ec = 0x24;
when Exception_NV2DataAbort ec = 0x25;
when Exception_FPTrappedException ec = 0x28;
otherwise Unreachable();

if ec IN {0x20,0x24} && PSTATE.EL == EL2 then
ec = ec + 1;

if il_is_valid then
il = if ThisInstrLength() == 32 then '1' else '0';

else
il = '1';

return (ec,il);

Shared Pseudocode Functions Page 2717

Library pseudocode for aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64

// AArch32.GeneralExceptionsToAArch64()
// ====================================
// Returns TRUE if exceptions normally routed to EL1 are being handled at an Exception
// level using AArch64, because either EL1 is using AArch64 or TGE is in force and EL2
// is using AArch64.

boolean AArch32.GeneralExceptionsToAArch64()
return ((PSTATE.EL == EL0 && !ELUsingAArch32(EL1)) ||

(EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1'));

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ReportHypEntry

// AArch32.ReportHypEntry()
// ========================
// Report syndrome information to Hyp mode registers.

AArch32.ReportHypEntry(ExceptionRecord exception)

Exception exceptype = exception.exceptype;

(ec,il) = AArch32.ExceptionClass(exceptype);
iss = exception.syndrome;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then

il = '1';

HSR = ec<5:0>:il:iss;

if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment} then
HIFAR = exception.vaddress<31:0>;
HDFAR = bits(32) UNKNOWN;

elsif exceptype == Exception_DataAbort then
HIFAR = bits(32) UNKNOWN;
HDFAR = exception.vaddress<31:0>;

if exception.ipavalid then
HPFAR<31:4> = exception.ipaddress<39:12>;

else
HPFAR<31:4> = bits(28) UNKNOWN;

return;

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.
AArch32.ResetControlRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 2718

Library pseudocode for aarch32/exceptions/exceptions/AArch32.TakeReset

// AArch32.TakeReset()
// ===================
// Reset into AArch32 state

AArch32.TakeReset(boolean cold_reset)
assert !HaveAArch64();

// Enter the highest implemented Exception level in AArch32 state
if HaveEL(EL3) then

AArch32.WriteMode(M32_Svc);
SCR.NS = '0'; // Secure state

elsif HaveEL(EL2) then
AArch32.WriteMode(M32_Hyp);

else
AArch32.WriteMode(M32_Svc);

// Reset System registers in the coproc=0b111x encoding space and other system components
AArch32.ResetControlRegisters(cold_reset);
FPEXC.EN = '0';

// Reset all other PSTATE fields, including instruction set and endianness according to the
// SCTLR values produced by the above call to ResetControlRegisters()
PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
PSTATE.IT = '00000000'; // IT block state reset
PSTATE.T = SCTLR.TE; // Instruction set: TE=0: A32, TE=1: T32. PSTATE.J is RES0.
PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian
PSTATE.IL = '0'; // Clear Illegal Execution state bit

// All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
// below are UNKNOWN bitstrings after reset. In particular, the return information registers
// R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
// is impossible to return from a reset in an architecturally defined way.
AArch32.ResetGeneralRegisters();
AArch32.ResetSIMDFPRegisters();
AArch32.ResetSpecialRegisters();
ResetExternalDebugRegisters(cold_reset);

bits(32) rv; // IMPLEMENTATION DEFINED reset vector

if HaveEL(EL3) then
if MVBAR<0> == '1' then // Reset vector in MVBAR

rv = MVBAR<31:1>:'0';
else

rv = bits(32) IMPLEMENTATION_DEFINED "reset vector address";
else

rv = RVBAR<31:1>:'0';

// The reset vector must be correctly aligned
assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');

boolean branch_conditional = FALSE;
BranchTo(rv, BranchType_RESET, branch_conditional);

Library pseudocode for aarch32/exceptions/exceptions/ExcVectorBase

// ExcVectorBase()
// ===============

bits(32) ExcVectorBase()
if SCTLR.V == '1' then // Hivecs selected, base = 0xFFFF0000

return Ones(16):Zeros(16);
else

return VBAR<31:5>:Zeros(5);

Shared Pseudocode Functions Page 2719

Library pseudocode for aarch32/exceptions/ieeefp/AArch32.FPTrappedException

// AArch32.FPTrappedException()
// ============================

AArch32.FPTrappedException(bits(8) accumulated_exceptions)
if AArch32.GeneralExceptionsToAArch64() then

is_ase = FALSE;
element = 0;
AArch64.FPTrappedException(is_ase, accumulated_exceptions);

FPEXC.DEX = '1';
FPEXC.TFV = '1';
FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
FPEXC<10:8> = '111'; // VECITR is RES1

AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/exceptions/syscalls/AArch32.CallHypervisor

// AArch32.CallHypervisor()
// ========================
// Performs a HVC call

AArch32.CallHypervisor(bits(16) immediate)
assert HaveEL(EL2);

if !ELUsingAArch32(EL2) then
AArch64.CallHypervisor(immediate);

else
AArch32.TakeHVCException(immediate);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.CallSupervisor

// AArch32.CallSupervisor()
// ========================
// Calls the Supervisor

AArch32.CallSupervisor(bits(16) immediate)

if AArch32.CurrentCond() != '1110' then
immediate = bits(16) UNKNOWN;

if AArch32.GeneralExceptionsToAArch64() then
AArch64.CallSupervisor(immediate);

else
AArch32.TakeSVCException(immediate);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeHVCException

// AArch32.TakeHVCException()
// ==========================

AArch32.TakeHVCException(bits(16) immediate)
assert HaveEL(EL2) && ELUsingAArch32(EL2);

AArch32.ITAdvance();
SSAdvance();
bits(32) preferred_exception_return = NextInstrAddr();
vect_offset = 0x08;

exception = ExceptionSyndrome(Exception_HypervisorCall);
exception.syndrome<15:0> = immediate;

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

Shared Pseudocode Functions Page 2720

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeSMCException

// AArch32.TakeSMCException()
// ==========================

AArch32.TakeSMCException()
assert HaveEL(EL3) && ELUsingAArch32(EL3);
AArch32.ITAdvance();
SSAdvance();
bits(32) preferred_exception_return = NextInstrAddr();
vect_offset = 0x08;
lr_offset = 0;

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeSVCException

// AArch32.TakeSVCException()
// ==========================

AArch32.TakeSVCException(bits(16) immediate)

AArch32.ITAdvance();
SSAdvance();
route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

bits(32) preferred_exception_return = NextInstrAddr();
vect_offset = 0x08;
lr_offset = 0;

if PSTATE.EL == EL2 || route_to_hyp then
exception = ExceptionSyndrome(Exception_SupervisorCall);
exception.syndrome<15:0> = immediate;
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else

AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 2721

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterHypMode

// AArch32.EnterHypMode()
// ======================
// Take an exception to Hyp mode.

AArch32.EnterHypMode(ExceptionRecord exception, bits(32) preferred_exception_return,
integer vect_offset)

SynchronizeContext();
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState);
if !(exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then

AArch32.ReportHypEntry(exception);
AArch32.WriteMode(M32_Hyp);
SPSR[] = spsr;
ELR_hyp = preferred_exception_return;
PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
if !HaveEL(EL3) || SCR_GEN[].EA == '0' then PSTATE.A = '1';
if !HaveEL(EL3) || SCR_GEN[].IRQ == '0' then PSTATE.I = '1';
if !HaveEL(EL3) || SCR_GEN[].FIQ == '0' then PSTATE.F = '1';
PSTATE.E = HSCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HaveSSBSExt() then PSTATE.SSBS = HSCTLR.DSSBS;
boolean branch_conditional = FALSE;
BranchTo(HVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

EndOfInstruction();

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterMode

// AArch32.EnterMode()
// ===================
// Take an exception to a mode other than Monitor and Hyp mode.

AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
integer vect_offset)

SynchronizeContext();
assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState);
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(target_mode);
SPSR[] = spsr;
R[14] = preferred_exception_return + lr_offset;
PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
if target_mode == M32_FIQ then

PSTATE.<A,I,F> = '111';
elsif target_mode IN {M32_Abort, M32_IRQ} then

PSTATE.<A,I> = '11';
else

PSTATE.I = '1';
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
boolean branch_conditional = FALSE;
BranchTo(ExcVectorBase()<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

EndOfInstruction();

Shared Pseudocode Functions Page 2722

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterMonitorMode

// AArch32.EnterMonitorMode()
// ==========================
// Take an exception to Monitor mode.

AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
integer vect_offset)

SynchronizeContext();
assert HaveEL(EL3) && ELUsingAArch32(EL3);
from_secure = IsSecure();
bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState);
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
SPSR[] = spsr;
R[14] = preferred_exception_return + lr_offset;
PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
PSTATE.<A,I,F> = '111';
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
boolean branch_conditional = FALSE;
BranchTo(MVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

EndOfInstruction();

Shared Pseudocode Functions Page 2723

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

// AArch32.CheckAdvSIMDOrFPEnabled()
// =================================
// Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check, boolean advsimd)
if PSTATE.EL == EL0 && (!EL2Enabled() || (!ELUsingAArch32(EL2) && HCR_EL2.TGE == '0')) && !ELUsingAArch32(EL1) then

// The PE behaves as if FPEXC.EN is 1
AArch64.CheckFPEnabled();
AArch64.CheckFPAdvSIMDEnabled();

elsif PSTATE.EL == EL0 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' && !ELUsingAArch32(EL1) then
if fpexc_check && HCR_EL2.RW == '0' then

fpexc_en = bits(1) IMPLEMENTATION_DEFINED "FPEXC.EN value when TGE==1 and RW==0";
if fpexc_en == '0' then UNDEFINED;

AArch64.CheckFPEnabled();
else

cpacr_asedis = CPACR.ASEDIS;
cpacr_cp10 = CPACR.cp10;

if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
// Check if access disabled in NSACR
if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
if NSACR.cp10 == '0' then cpacr_cp10 = '00';

if PSTATE.EL != EL2 then
// Check if Advanced SIMD disabled in CPACR
if advsimd && cpacr_asedis == '1' then UNDEFINED;

// Check if access disabled in CPACR
case cpacr_cp10 of

when '00' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '10' disabled = ConstrainUnpredictableBool(Unpredictable_RESCPACR);
when '11' disabled = FALSE;

if disabled then UNDEFINED;

// If required, check FPEXC enabled bit.
if fpexc_check && FPEXC.EN == '0' then UNDEFINED;

AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3

Shared Pseudocode Functions Page 2724

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap

// AArch32.CheckFPAdvSIMDTrap()
// ============================
// Check against CPTR_EL2 and CPTR_EL3.

AArch32.CheckFPAdvSIMDTrap(boolean advsimd)
if EL2Enabled() && !ELUsingAArch32(EL2) then

AArch64.CheckFPAdvSIMDTrap();
else

if HaveEL(EL2) && !IsSecure() then
hcptr_tase = HCPTR.TASE;
hcptr_cp10 = HCPTR.TCP10;

if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
// Check if access disabled in NSACR
if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
if NSACR.cp10 == '0' then hcptr_cp10 = '1';

// Check if access disabled in HCPTR
if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then

exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
exception.syndrome<24:20> = ConditionSyndrome();

if advsimd then
exception.syndrome<5> = '1';

else
exception.syndrome<5> = '0';
exception.syndrome<3:0> = '1010'; // coproc field, always 0xA

if PSTATE.EL == EL2 then
AArch32.TakeUndefInstrException(exception);

else
AArch32.TakeHypTrapException(exception);

if HaveEL(EL3) && !ELUsingAArch32(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

return;

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap

// AArch32.CheckForSMCUndefOrTrap()
// ================================
// Check for UNDEFINED or trap on SMC instruction

AArch32.CheckForSMCUndefOrTrap()
if !HaveEL(EL3) || PSTATE.EL == EL0 then

UNDEFINED;

if EL2Enabled() && !ELUsingAArch32(EL2) then
AArch64.CheckForSMCUndefOrTrap(Zeros(16));

else
route_to_hyp = EL2Enabled() && PSTATE.EL == EL1 && HCR.TSC == '1';
if route_to_hyp then

exception = ExceptionSyndrome(Exception_MonitorCall);
AArch32.TakeHypTrapException(exception);

Shared Pseudocode Functions Page 2725

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForSVCTrap

// AArch32.CheckForSVCTrap()
// =========================
// Check for trap on SVC instruction

AArch32.CheckForSVCTrap(bits(16) immediate)
if HaveFGTExt() then

route_to_el2 = FALSE;
if PSTATE.EL == EL0 then

route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
(HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

if route_to_el2 then
exception = ExceptionSyndrome(Exception_SupervisorCall);
exception.syndrome<15:0> = immediate;
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForWFxTrap

// AArch32.CheckForWFxTrap()
// =========================
// Check for trap on WFE or WFI instruction

AArch32.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
assert HaveEL(target_el);

// Check for routing to AArch64
if !ELUsingAArch32(target_el) then

AArch64.CheckForWFxTrap(target_el, wfxtype);
return;

boolean is_wfe = wfxtype IN {WFxType_WFE, WFxType_WFET};
case target_el of

when EL1
trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';

when EL2
trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';

when EL3
trap = (if is_wfe then SCR.TWE else SCR.TWI) == '1';

if trap then
if target_el == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.WFxTrap(wfxtype, target_el);

if target_el == EL3 then
AArch32.TakeMonitorTrapException();

elsif target_el == EL2 then
exception = ExceptionSyndrome(Exception_WFxTrap);
exception.syndrome<24:20> = ConditionSyndrome();

case wfxtype of
when WFxType_WFI

exception.syndrome<0> = '0';
when WFxType_WFE

exception.syndrome<0> = '1';

AArch32.TakeHypTrapException(exception);
else

AArch32.TakeUndefInstrException();

Shared Pseudocode Functions Page 2726

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckITEnabled

// AArch32.CheckITEnabled()
// ========================
// Check whether the T32 IT instruction is disabled.

AArch32.CheckITEnabled(bits(4) mask)
if PSTATE.EL == EL2 then

it_disabled = HSCTLR.ITD;
else

it_disabled = (if ELUsingAArch32(EL1) then SCTLR.ITD else SCTLR[].ITD);
if it_disabled == '1' then

if mask != '1000' then UNDEFINED;

// Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
next_instr = AArch32.MemSingle[NextInstrAddr(), 2, AccType_IFETCH, TRUE];

if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
'01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx111'} then

// It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
// taken on the IT instruction or the next instruction. This is not reflected in
// the pseudocode, which always takes the exception on the IT instruction. This
// also does not take into account cases where the next instruction is UNPREDICTABLE.
UNDEFINED;

return;

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckIllegalState

// AArch32.CheckIllegalState()
// ===========================
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

AArch32.CheckIllegalState()
if AArch32.GeneralExceptionsToAArch64() then

AArch64.CheckIllegalState();
elsif PSTATE.IL == '1' then

route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x04;

if PSTATE.EL == EL2 || route_to_hyp then
exception = ExceptionSyndrome(Exception_IllegalState);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else

AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

// AArch32.CheckSETENDEnabled()
// ============================
// Check whether the AArch32 SETEND instruction is disabled.

AArch32.CheckSETENDEnabled()
if PSTATE.EL == EL2 then

setend_disabled = HSCTLR.SED;
else

setend_disabled = (if ELUsingAArch32(EL1) then SCTLR.SED else SCTLR[].SED);
if setend_disabled == '1' then

UNDEFINED;

return;

Shared Pseudocode Functions Page 2727

Library pseudocode for aarch32/exceptions/traps/AArch32.SystemAccessTrap

// AArch32.SystemAccessTrap()
// ==========================
// Trapped system register access.

AArch32.SystemAccessTrap(bits(5) mode, integer ec)
(valid, target_el) = ELFromM32(mode);
assert valid && HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

if target_el == EL2 then
exception = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch32.TakeHypTrapException(exception);

else
AArch32.TakeUndefInstrException();

Shared Pseudocode Functions Page 2728

Library pseudocode for aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome

// AArch32.SystemAccessTrapSyndrome()
// ==================================
// Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS, VMSR instructions,
// other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch32.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
ExceptionRecord exception;

case ec of
when 0x0 exception = ExceptionSyndrome(Exception_Uncategorized);
when 0x3 exception = ExceptionSyndrome(Exception_CP15RTTrap);
when 0x4 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
when 0x5 exception = ExceptionSyndrome(Exception_CP14RTTrap);
when 0x6 exception = ExceptionSyndrome(Exception_CP14DTTrap);
when 0x7 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
when 0x8 exception = ExceptionSyndrome(Exception_FPIDTrap);
when 0xC exception = ExceptionSyndrome(Exception_CP14RRTTrap);
otherwise Unreachable();

bits(20) iss = Zeros();

if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Exception_CP15RTTrap} then
// Trapped MRC/MCR, VMRS on FPSID
iss<13:10> = instr<19:16>; // CRn, Reg in case of VMRS
iss<8:5> = instr<15:12>; // Rt
iss<9> = '0'; // RES0

if exception.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
iss<19:17> = instr<7:5>; // opc2
iss<16:14> = instr<23:21>; // opc1
iss<4:1> = instr<3:0>; //CRm

else //VMRS Access
iss<19:17> = '000'; //opc2 - Hardcoded for VMRS
iss<16:14> = '111'; //opc1 - Hardcoded for VMRS
iss<4:1> = '0000'; //CRm - Hardcoded for VMRS

elsif exception.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap, Exception_CP15RRTTrap} then
// Trapped MRRC/MCRR, VMRS/VMSR
iss<19:16> = instr<7:4>; // opc1
iss<13:10> = instr<19:16>; // Rt2
iss<8:5> = instr<15:12>; // Rt
iss<4:1> = instr<3:0>; // CRm

elsif exception.exceptype == Exception_CP14DTTrap then
// Trapped LDC/STC
iss<19:12> = instr<7:0>; // imm8
iss<4> = instr<23>; // U
iss<2:1> = instr<24,21>; // P,W
if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC

iss<8:5> = bits(4) UNKNOWN;
iss<3> = '1';

elsif exception.exceptype == Exception_Uncategorized then
// Trapped for unknown reason
iss<8:5> = instr<19:16>; // Rn
iss<3> = '0';

iss<0> = instr<20>; // Direction

exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<19:0> = iss;

return exception;

Shared Pseudocode Functions Page 2729

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeHypTrapException

// AArch32.TakeHypTrapException()
// ==============================
// Exceptions routed to Hyp mode as a Hyp Trap exception.

AArch32.TakeHypTrapException(integer ec)
exception = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch32.TakeHypTrapException(exception);

// AArch32.TakeHypTrapException()
// ==============================
// Exceptions routed to Hyp mode as a Hyp Trap exception.

AArch32.TakeHypTrapException(ExceptionRecord exception)
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x14;

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeMonitorTrapException

// AArch32.TakeMonitorTrapException()
// ==================================
// Exceptions routed to Monitor mode as a Monitor Trap exception.

AArch32.TakeMonitorTrapException()
assert HaveEL(EL3) && ELUsingAArch32(EL3);

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x04;
lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeUndefInstrException

// AArch32.TakeUndefInstrException()
// =================================

AArch32.TakeUndefInstrException()
exception = ExceptionSyndrome(Exception_Uncategorized);
AArch32.TakeUndefInstrException(exception);

// AArch32.TakeUndefInstrException()
// =================================

AArch32.TakeUndefInstrException(ExceptionRecord exception)

route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x04;
lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

elsif route_to_hyp then
AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

else
AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 2730

Library pseudocode for aarch32/exceptions/traps/AArch32.UndefinedFault

// AArch32.UndefinedFault()
// ========================

AArch32.UndefinedFault()

if AArch32.GeneralExceptionsToAArch64() then AArch64.UndefinedFault();
AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/functions/aborts/AArch32.DomainValid

// AArch32.DomainValid()
// =====================
// Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.

boolean AArch32.DomainValid(Fault statuscode, integer level)
assert statuscode != Fault_None;

case statuscode of
when Fault_Domain

return TRUE;
when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk

return level == 2;
otherwise

return FALSE;

Library pseudocode for aarch32/functions/aborts/AArch32.FaultStatusLD

// AArch32.FaultStatusLD()
// =======================
// Creates an exception fault status value for Abort and Watchpoint exceptions taken
// to Abort mode using AArch32 and Long-descriptor format.

bits(32) AArch32.FaultStatusLD(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(32) fsr = Zeros();
if HaveRASExt() && IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
if d_side then

if fault.acctype IN {AccType_DC, AccType_IC,
AccType_AT, AccType_ATPAN} then
fsr<13> = '1'; fsr<11> = '1';

else
fsr<11> = if fault.write then '1' else '0';

if IsExternalAbort(fault) then fsr<12> = fault.extflag;
fsr<9> = '1';
fsr<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

return fsr;

Shared Pseudocode Functions Page 2731

Library pseudocode for aarch32/functions/aborts/AArch32.FaultStatusSD

// AArch32.FaultStatusSD()
// =======================
// Creates an exception fault status value for Abort and Watchpoint exceptions taken
// to Abort mode using AArch32 and Short-descriptor format.

bits(32) AArch32.FaultStatusSD(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(32) fsr = Zeros();
if HaveRASExt() && IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
if d_side then

if fault.acctype IN {AccType_DC, AccType_IC,
AccType_AT, AccType_ATPAN} then
fsr<13> = '1'; fsr<11> = '1';

else
fsr<11> = if fault.write then '1' else '0';

if IsExternalAbort(fault) then fsr<12> = fault.extflag;
fsr<9> = '0';
fsr<10,3:0> = EncodeSDFSC(fault.statuscode, fault.level);
if d_side then

fsr<7:4> = fault.domain; // Domain field (data fault only)

return fsr;

Library pseudocode for aarch32/functions/aborts/AArch32.FaultSyndrome

// AArch32.FaultSyndrome()
// =======================
// Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
// AArch32 Hyp mode.

bits(25) AArch32.FaultSyndrome(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(25) iss = Zeros();

if HaveRASExt() && IsAsyncAbort(fault) then
iss<11:10> = fault.errortype; // AET

if d_side then
if (IsSecondStage(fault) && !fault.s2fs1walk &&

(!IsExternalSyncAbort(fault) ||
(!HaveRASExt() && fault.acctype == AccType_TTW &&
boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
iss<24:14> = LSInstructionSyndrome();

if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT, AccType_ATPAN} then
iss<8> = '1'; iss<6> = '1';

else
iss<6> = if fault.write then '1' else '0';

if IsExternalAbort(fault) then iss<9> = fault.extflag;
iss<7> = if fault.s2fs1walk then '1' else '0';
iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

return iss;

Shared Pseudocode Functions Page 2732

Library pseudocode for aarch32/functions/aborts/EncodeSDFSC

// EncodeSDFSC()
// =============
// Function that gives the Short-descriptor FSR code for different types of Fault

bits(5) EncodeSDFSC(Fault statuscode, integer level)

bits(5) result;
case statuscode of

when Fault_AccessFlag
assert level IN {1,2};
result = if level == 1 then '00011' else '00110';

when Fault_Alignment
result = '00001';

when Fault_Permission
assert level IN {1,2};
result = if level == 1 then '01101' else '01111';

when Fault_Domain
assert level IN {1,2};
result = if level == 1 then '01001' else '01011';

when Fault_Translation
assert level IN {1,2};
result = if level == 1 then '00101' else '00111';

when Fault_SyncExternal
result = '01000';

when Fault_SyncExternalOnWalk
assert level IN {1,2};
result = if level == 1 then '01100' else '01110';

when Fault_SyncParity
result = '11001';

when Fault_SyncParityOnWalk
assert level IN {1,2};
result = if level == 1 then '11100' else '11110';

when Fault_AsyncParity
result = '11000';

when Fault_AsyncExternal
result = '10110';

when Fault_Debug
result = '00010';

when Fault_TLBConflict
result = '10000';

when Fault_Lockdown
result = '10100'; // IMPLEMENTATION DEFINED

when Fault_Exclusive
result = '10101'; // IMPLEMENTATION DEFINED

when Fault_ICacheMaint
result = '00100';

otherwise
Unreachable();

return result;

Library pseudocode for aarch32/functions/common/A32ExpandImm

// A32ExpandImm()
// ==============

bits(32) A32ExpandImm(bits(12) imm12)

// PSTATE.C argument to following function call does not affect the imm32 result.
(imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);

return imm32;

Shared Pseudocode Functions Page 2733

Library pseudocode for aarch32/functions/common/A32ExpandImm_C

// A32ExpandImm_C()
// ================

(bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

unrotated_value = ZeroExtend(imm12<7:0>, 32);
(imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

return (imm32, carry_out);

Library pseudocode for aarch32/functions/common/DecodeImmShift

// DecodeImmShift()
// ================

(SRType, integer) DecodeImmShift(bits(2) srtype, bits(5) imm5)

case srtype of
when '00'

shift_t = SRType_LSL; shift_n = UInt(imm5);
when '01'

shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
when '10'

shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
when '11'

if imm5 == '00000' then
shift_t = SRType_RRX; shift_n = 1;

else
shift_t = SRType_ROR; shift_n = UInt(imm5);

return (shift_t, shift_n);

Library pseudocode for aarch32/functions/common/DecodeRegShift

// DecodeRegShift()
// ================

SRType DecodeRegShift(bits(2) srtype)
case srtype of

when '00' shift_t = SRType_LSL;
when '01' shift_t = SRType_LSR;
when '10' shift_t = SRType_ASR;
when '11' shift_t = SRType_ROR;

return shift_t;

Library pseudocode for aarch32/functions/common/RRX

// RRX()
// =====

bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;

Library pseudocode for aarch32/functions/common/RRX_C

// RRX_C()
// =======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);

Shared Pseudocode Functions Page 2734

Library pseudocode for aarch32/functions/common/SRType

enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

Library pseudocode for aarch32/functions/common/Shift

// Shift()
// =======

bits(N) Shift(bits(N) value, SRType srtype, integer amount, bit carry_in)
(result, -) = Shift_C(value, srtype, amount, carry_in);
return result;

Library pseudocode for aarch32/functions/common/Shift_C

// Shift_C()
// =========

(bits(N), bit) Shift_C(bits(N) value, SRType srtype, integer amount, bit carry_in)
assert !(srtype == SRType_RRX && amount != 1);

if amount == 0 then
(result, carry_out) = (value, carry_in);

else
case srtype of

when SRType_LSL
(result, carry_out) = LSL_C(value, amount);

when SRType_LSR
(result, carry_out) = LSR_C(value, amount);

when SRType_ASR
(result, carry_out) = ASR_C(value, amount);

when SRType_ROR
(result, carry_out) = ROR_C(value, amount);

when SRType_RRX
(result, carry_out) = RRX_C(value, carry_in);

return (result, carry_out);

Library pseudocode for aarch32/functions/common/T32ExpandImm

// T32ExpandImm()
// ==============

bits(32) T32ExpandImm(bits(12) imm12)

// PSTATE.C argument to following function call does not affect the imm32 result.
(imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);

return imm32;

Shared Pseudocode Functions Page 2735

Library pseudocode for aarch32/functions/common/T32ExpandImm_C

// T32ExpandImm_C()
// ================

(bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)

if imm12<11:10> == '00' then
case imm12<9:8> of

when '00'
imm32 = ZeroExtend(imm12<7:0>, 32);

when '01'
imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;

when '10'
imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';

when '11'
imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;

carry_out = carry_in;
else

unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
(imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

return (imm32, carry_out);

Library pseudocode for aarch32/functions/common/VCGEType

enumeration VCGEType {VCGEType_signed, VCGEType_unsigned, VCGEType_fp};

Library pseudocode for aarch32/functions/common/VFPNegMul

enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

Library pseudocode for aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

// AArch32.CheckCP15InstrCoarseTraps()
// ===================================
// Check for coarse-grained traps to System registers in the
// coproc=0b1111 encoding space by HSTR and HCR.

boolean AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

// Check for coarse-grained Hyp traps
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then

if PSTATE.EL == EL0 && !ELUsingAArch32(EL2) then
return AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm);

// Check for MCR, MRC, MCRR and MRRC disabled by HSTR<CRn/CRm>
major = if nreg == 1 then CRn else CRm;
if !(major IN {4,14}) && HSTR<major> == '1' then

return TRUE;

// Check for MRC and MCR disabled by HCR.TIDCP
if (HCR.TIDCP == '1' && nreg == 1 &&

((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
(CRn == 10 && CRm IN {0,1, 4, 8 }) ||
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then

return TRUE;

return FALSE;

Shared Pseudocode Functions Page 2736

Library pseudocode for aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

// AArch32.ExclusiveMonitorsPass()
// ===============================
// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
// before or after the check on the local Exclusives monitor. As a result a failure
// of the local monitor can occur on some implementations even if the memory
// access would give an memory abort.

acctype = AccType_ATOMIC;
iswrite = TRUE;

aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

passed = AArch32.IsExclusiveVA(address, ProcessorID(), size);
if !passed then

return FALSE;

memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
ClearExclusiveLocal(ProcessorID());

if passed then
if memaddrdesc.memattrs.shareability != Shareability_NSH then

passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

return passed;

Library pseudocode for aarch32/functions/exclusive/AArch32.IsExclusiveVA

// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
//
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
//
// It is always safe to return TRUE which will check the physical address only.
boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);

Library pseudocode for aarch32/functions/exclusive/AArch32.MarkExclusiveVA

// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.
AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

Shared Pseudocode Functions Page 2737

Library pseudocode for aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

// AArch32.SetExclusiveMonitors()
// ==============================
// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.

AArch32.SetExclusiveMonitors(bits(32) address, integer size)
acctype = AccType_ATOMIC;
iswrite = FALSE;

aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return;

if memaddrdesc.memattrs.shareability != Shareability_NSH then
MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

AArch32.MarkExclusiveVA(address, ProcessorID(), size);

Library pseudocode for aarch32/functions/float/CheckAdvSIMDEnabled

// CheckAdvSIMDEnabled()
// =====================

CheckAdvSIMDEnabled()

fpexc_check = TRUE;
advsimd = TRUE;

AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted

// Make temporary copy of D registers
// _Dclone[] is used as input data for instruction pseudocode
for i = 0 to 31

_Dclone[i] = D[i];

return;

Library pseudocode for aarch32/functions/float/CheckAdvSIMDOrVFPEnabled

// CheckAdvSIMDOrVFPEnabled()
// ==========================

CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
return;

Library pseudocode for aarch32/functions/float/CheckCryptoEnabled32

// CheckCryptoEnabled32()
// ======================

CheckCryptoEnabled32()
CheckAdvSIMDEnabled();
// Return from CheckAdvSIMDEnabled() occurs only if access is permitted
return;

Shared Pseudocode Functions Page 2738

Library pseudocode for aarch32/functions/float/CheckVFPEnabled

// CheckVFPEnabled()
// =================

CheckVFPEnabled(boolean include_fpexc_check)
advsimd = FALSE;
AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
return;

Library pseudocode for aarch32/functions/float/FPHalvedSub

// FPHalvedSub()
// =============

bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == sign2 then

result = FPDefaultNaN(fpcr);
FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0');

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1');

elsif zero1 && zero2 && sign1 != sign2 then
result = FPZero(sign1);

else
result_value = (value1 - value2) / 2.0;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr);

return result;

Library pseudocode for aarch32/functions/float/FPRSqrtStep

// FPRSqrtStep()
// =============

bits(N) FPRSqrtStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then

product = FPZero('0');
else

product = FPMul(op1, op2, fpcr);
bits(N) three = FPThree('0');
result = FPHalvedSub(three, product, fpcr);

return result;

Shared Pseudocode Functions Page 2739

Library pseudocode for aarch32/functions/float/FPRecipStep

// FPRecipStep()
// =============

bits(N) FPRecipStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then

product = FPZero('0');
else

product = FPMul(op1, op2, fpcr);
bits(N) two = FPTwo('0');
result = FPSub(two, product, fpcr);

return result;

Library pseudocode for aarch32/functions/float/StandardFPSCRValue

// StandardFPSCRValue()
// ====================

FPCRType StandardFPSCRValue()
bits(32) upper = '00000000000000000000000000000000';
bits(32) lower = '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '0000000000000000000';
return upper : lower;

Library pseudocode for aarch32/functions/memory/AArch32.CheckAlignment

// AArch32.CheckAlignment()
// ========================

boolean AArch32.CheckAlignment(bits(32) address, integer alignment, AccType acctype,
boolean iswrite)

if PSTATE.EL == EL0 && !ELUsingAArch32(S1TranslationRegime()) then
A = SCTLR[].A; //use AArch64 register, when higher Exception level is using AArch64

elsif PSTATE.EL == EL2 then
A = HSCTLR.A;

else
A = SCTLR.A;

aligned = (address == Align(address, alignment));
atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,

AccType_ORDEREDATOMICRW, AccType_ATOMICLS64, AccType_A32LSMD};
ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
vector = acctype == AccType_VEC;

// AccType_VEC is used for SIMD element alignment checks only
check = (atomic || ordered || vector || A == '1');

if check && !aligned then
secondstage = FALSE;
AArch32.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

return aligned;

Shared Pseudocode Functions Page 2740

Library pseudocode for aarch32/functions/memory/AArch32.MemSingle

// AArch32.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned]
boolean ispair = FALSE;
return AArch32.MemSingle[address, size, acctype, aligned, ispair];

// AArch32.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned, boolean ispair]
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
bits(size*8) value;
iswrite = FALSE;

memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);

(memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
return value;

// AArch32.MemSingle[] - assignment (write) form
// ===

AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned] = bits(size*8) value
boolean ispair = FALSE;
AArch32.MemSingle[address, size, acctype, aligned, ispair] = value;
return;

// AArch32.MemSingle[] - assignment (write) form
// ===
// Perform an atomic, little-endian write of 'size' bytes.

AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean aligned, boolean ispair] = bits(size*8) value
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
iswrite = TRUE;

memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);

memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
return;

Shared Pseudocode Functions Page 2741

Library pseudocode for aarch32/functions/memory/Hint_PreloadData

Hint_PreloadData(bits(32) address);

Library pseudocode for aarch32/functions/memory/Hint_PreloadDataForWrite

Hint_PreloadDataForWrite(bits(32) address);

Library pseudocode for aarch32/functions/memory/Hint_PreloadInstr

Hint_PreloadInstr(bits(32) address);

Library pseudocode for aarch32/functions/memory/MemA

// MemA[] - non-assignment form
// ============================

bits(8*size) MemA[bits(32) address, integer size]
acctype = AccType_ATOMIC;
return Mem_with_type[address, size, acctype];

// MemA[] - assignment form
// ========================

MemA[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_ATOMIC;
Mem_with_type[address, size, acctype] = value;
return;

Library pseudocode for aarch32/functions/memory/MemO

// MemO[] - non-assignment form
// ============================

bits(8*size) MemO[bits(32) address, integer size]
acctype = AccType_ORDERED;
return Mem_with_type[address, size, acctype];

// MemO[] - assignment form
// ========================

MemO[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_ORDERED;
Mem_with_type[address, size, acctype] = value;
return;

Library pseudocode for aarch32/functions/memory/MemS

// MemS[] - non-assignment form
// ============================
// Memory accessor for streaming load multiple instructions

bits(8*size) MemS[bits(32) address, integer size]
acctype = AccType_A32LSMD;
return Mem_with_type[address, size, acctype];

// MemS[] - assignment form
// ========================
// Memory accessor for streaming store multiple instructions

MemS[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_A32LSMD;
Mem_with_type[address, size, acctype] = value;
return;

Shared Pseudocode Functions Page 2742

Library pseudocode for aarch32/functions/memory/MemU

// MemU[] - non-assignment form
// ============================

bits(8*size) MemU[bits(32) address, integer size]
acctype = AccType_NORMAL;
return Mem_with_type[address, size, acctype];

// MemU[] - assignment form
// ========================

MemU[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_NORMAL;
Mem_with_type[address, size, acctype] = value;
return;

Library pseudocode for aarch32/functions/memory/MemU_unpriv

// MemU_unpriv[] - non-assignment form
// ===================================

bits(8*size) MemU_unpriv[bits(32) address, integer size]
acctype = AccType_UNPRIV;
return Mem_with_type[address, size, acctype];

// MemU_unpriv[] - assignment form
// ===============================

MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_UNPRIV;
Mem_with_type[address, size, acctype] = value;
return;

Shared Pseudocode Functions Page 2743

Library pseudocode for aarch32/functions/memory/Mem_with_type

Shared Pseudocode Functions Page 2744

// Mem_with_type[] - non-assignment (read) form
// ==
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch32.MemSingle directly.

bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype]
boolean ispair = FALSE;
return Mem_with_type[address, size, acctype, ispair];

bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype, boolean ispair]
assert size IN {1, 2, 4, 8, 16};
bits(size*8) value;
boolean iswrite = FALSE;
integer halfsize = size DIV 2;

if ispair then
// check alignment on size of element accessed, not overall access size
aligned = AArch32.CheckAlignment(address, halfsize, acctype, iswrite);

else
aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

if !aligned then

assert size > 1;
value<7:0> = AArch32.MemSingle[address, 1, acctype, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, acctype, aligned];

else
value = AArch32.MemSingle[address, size, acctype, aligned, ispair];

if BigEndian(acctype) then
value = BigEndianReverse(value);

return value;

// Mem_with_type[] - assignment (write) form
// ===
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem_with_type[bits(32) address, integer size, AccType acctype] = bits(size*8) value
boolean ispair = FALSE;
Mem_with_type[address, size, acctype, ispair] = value;

Mem_with_type[bits(32) address, integer size, AccType acctype, boolean ispair] = bits(size*8) value
boolean iswrite = TRUE;
integer halfsize = size DIV 2;

if BigEndian(acctype) then
value = BigEndianReverse(value);

if ispair then
// check alignment on size of element accessed, not overall access size
aligned = AArch32.CheckAlignment(address, halfsize, acctype, iswrite);

else
aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

if !aligned then
assert size > 1;
AArch32.MemSingle[address, 1, acctype, aligned] = value<7:0>;

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did

Shared Pseudocode Functions Page 2745

// not, so we must be changing to a new translation page.
c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
AArch32.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;

else
AArch32.MemSingle[address, size, acctype, aligned, ispair] = value;

return;

Library pseudocode for aarch32/functions/ras/AArch32.ESBOperation

// AArch32.ESBOperation()
// ======================
// Perform the AArch32 ESB operation for ESB executed in AArch32 state

AArch32.ESBOperation()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1';
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then

route_to_aarch64 = SCR_EL3.EA == '1';

if route_to_aarch64 then
AArch64.ESBOperation();
return;

route_to_monitor = HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.EA == '1';
route_to_hyp = PSTATE.EL IN {EL0, EL1} && EL2Enabled() && (HCR.TGE == '1' || HCR.AMO == '1');

if route_to_monitor then
target = M32_Monitor;

elsif route_to_hyp || PSTATE.M == M32_Hyp then
target = M32_Hyp;

else
target = M32_Abort;

if IsSecure() then
mask_active = TRUE;

elsif target == M32_Monitor then
mask_active = SCR.AW == '1' && (!HaveEL(EL2) || (HCR.TGE == '0' && HCR.AMO == '0'));

else
mask_active = target == M32_Abort || PSTATE.M == M32_Hyp;

mask_set = PSTATE.A == '1';
(-, el) = ELFromM32(target);
intdis = Halted() || ExternalDebugInterruptsDisabled(el);
masked = intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending that can be synchronized
// by an Error synchronization event.
if masked && IsSynchronizablePhysicalSErrorPending() then

syndrome32 = AArch32.PhysicalSErrorSyndrome();
DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);
ClearPendingPhysicalSError();

return;

Library pseudocode for aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome

// Return the SError syndrome
AArch32.SErrorSyndrome AArch32.PhysicalSErrorSyndrome();

Shared Pseudocode Functions Page 2746

Library pseudocode for aarch32/functions/ras/AArch32.ReportDeferredSError

// AArch32.ReportDeferredSError()
// ==============================
// Return deferred SError syndrome

bits(32) AArch32.ReportDeferredSError(bits(2) AET, bit ExT)
bits(32) target;
target<31> = '1'; // A
syndrome = Zeros(16);
if PSTATE.EL == EL2 then

syndrome<11:10> = AET; // AET
syndrome<9> = ExT; // EA
syndrome<5:0> = '010001'; // DFSC

else
syndrome<15:14> = AET; // AET
syndrome<12> = ExT; // ExT
syndrome<9> = TTBCR.EAE; // LPAE
if TTBCR.EAE == '1' then // Long-descriptor format

syndrome<5:0> = '010001'; // STATUS
else // Short-descriptor format

syndrome<10,3:0> = '10110'; // FS
if HaveAArch64() then

target<24:0> = ZeroExtend(syndrome);// Any RES0 fields must be set to zero
else

target<15:0> = syndrome;
return target;

Library pseudocode for aarch32/functions/ras/AArch32.SErrorSyndrome

type AArch32.SErrorSyndrome is (
bits(2) AET,
bit ExT

)

Library pseudocode for aarch32/functions/ras/AArch32.vESBOperation

// AArch32.vESBOperation()
// =======================
// Perform the ESB operation for virtual SError interrupts executed in AArch32 state

AArch32.vESBOperation()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

// Check for EL2 using AArch64 state
if !ELUsingAArch32(EL2) then

AArch64.vESBOperation();
return;

// If physical SError interrupts are routed to Hyp mode, and TGE is not set, then a
// virtual SError interrupt might be pending
vSEI_enabled = HCR.TGE == '0' && HCR.AMO == '1';
vSEI_pending = vSEI_enabled && HCR.VA == '1';
vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
vmasked = vintdis || PSTATE.A == '1';

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then

VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
HCR.VA = '0'; // Clear pending virtual SError

return;

Shared Pseudocode Functions Page 2747

Library pseudocode for aarch32/functions/registers/AArch32.ResetGeneralRegisters

// AArch32.ResetGeneralRegisters()
// ===============================

AArch32.ResetGeneralRegisters()

for i = 0 to 7
R[i] = bits(32) UNKNOWN;

for i = 8 to 12
Rmode[i, M32_User] = bits(32) UNKNOWN;
Rmode[i, M32_FIQ] = bits(32) UNKNOWN;

if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
for i = 13 to 14

Rmode[i, M32_User] = bits(32) UNKNOWN;
Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
Rmode[i, M32_Svc] = bits(32) UNKNOWN;
Rmode[i, M32_Abort] = bits(32) UNKNOWN;
Rmode[i, M32_Undef] = bits(32) UNKNOWN;
if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSIMDFPRegisters

// AArch32.ResetSIMDFPRegisters()
// ==============================

AArch32.ResetSIMDFPRegisters()

for i = 0 to 15
Q[i] = bits(128) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSpecialRegisters

// AArch32.ResetSpecialRegisters()
// ===============================

AArch32.ResetSpecialRegisters()

// AArch32 special registers
SPSR_fiq<31:0> = bits(32) UNKNOWN;
SPSR_irq<31:0> = bits(32) UNKNOWN;
SPSR_svc<31:0> = bits(32) UNKNOWN;
SPSR_abt<31:0> = bits(32) UNKNOWN;
SPSR_und<31:0> = bits(32) UNKNOWN;
if HaveEL(EL2) then

SPSR_hyp = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;

if HaveEL(EL3) then
SPSR_mon = bits(32) UNKNOWN;

// External debug special registers
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSystemRegisters

AArch32.ResetSystemRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 2748

Library pseudocode for aarch32/functions/registers/ALUExceptionReturn

// ALUExceptionReturn()
// ====================

ALUExceptionReturn(bits(32) address)
if PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.M IN {M32_User,M32_System} then

Constraint c = ConstrainUnpredictable(Unpredictable_ALUEXCEPTIONRETURN);
assert c IN {Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNDEF
UNDEFINED;

when Constraint_NOP
EndOfInstruction();

else
AArch32.ExceptionReturn(address, SPSR[]);

Library pseudocode for aarch32/functions/registers/ALUWritePC

// ALUWritePC()
// ============

ALUWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_A32 then

BXWritePC(address, BranchType_INDIR);
else

BranchWritePC(address, BranchType_INDIR);

Library pseudocode for aarch32/functions/registers/BXWritePC

// BXWritePC()
// ===========

BXWritePC(bits(32) address, BranchType branch_type)
if address<0> == '1' then

SelectInstrSet(InstrSet_T32);
address<0> = '0';

else
SelectInstrSet(InstrSet_A32);
// For branches to an unaligned PC counter in A32 state, the processor takes the branch
// and does one of:
// * Forces the address to be aligned
// * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
if address<1> == '1' && ConstrainUnpredictableBool(Unpredictable_A32FORCEALIGNPC) then

address<1> = '0';
boolean branch_conditional = AArch32.CurrentCond() != '111x';
BranchTo(address, branch_type, branch_conditional);

Library pseudocode for aarch32/functions/registers/BranchWritePC

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address, BranchType branch_type)
if CurrentInstrSet() == InstrSet_A32 then

address<1:0> = '00';
else

address<0> = '0';
boolean branch_conditional = AArch32.CurrentCond() != '111x';
BranchTo(address, branch_type, branch_conditional);

Shared Pseudocode Functions Page 2749

Library pseudocode for aarch32/functions/registers/CBWritePC

// CBWritePC()
// ===========
// Takes a branch from a CBNZ/CBZ instruction.

CBWritePC(bits(32) address)
assert CurrentInstrSet() == InstrSet_T32;
address<0> = '0';
boolean branch_conditional = TRUE;
BranchTo(address, BranchType_DIR, branch_conditional);

Library pseudocode for aarch32/functions/registers/D

// D[] - non-assignment form
// =========================

bits(64) D[integer n]
assert n >= 0 && n <= 31;
base = (n MOD 2) * 64;
bits(128) vreg = V[n DIV 2];
return vreg<base+63:base>;

// D[] - assignment form
// =====================

D[integer n] = bits(64) value
assert n >= 0 && n <= 31;
base = (n MOD 2) * 64;
bits(128) vreg = V[n DIV 2];
vreg<base+63:base> = value;
V[n DIV 2] = vreg;
return;

Library pseudocode for aarch32/functions/registers/Din

// Din[] - non-assignment form
// ===========================

bits(64) Din[integer n]
assert n >= 0 && n <= 31;
return _Dclone[n];

Library pseudocode for aarch32/functions/registers/LR

// LR - assignment form
// ====================

LR = bits(32) value
R[14] = value;
return;

// LR - non-assignment form
// ========================

bits(32) LR
return R[14];

Library pseudocode for aarch32/functions/registers/LoadWritePC

// LoadWritePC()
// =============

LoadWritePC(bits(32) address)
BXWritePC(address, BranchType_INDIR);

Shared Pseudocode Functions Page 2750

Library pseudocode for aarch32/functions/registers/LookUpRIndex

// LookUpRIndex()
// ==============

integer LookUpRIndex(integer n, bits(5) mode)
assert n >= 0 && n <= 14;

case n of // Select index by mode: usr fiq irq svc abt und hyp
when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
otherwise result = n;

return result;

Library pseudocode for aarch32/functions/registers/Monitor_mode_registers

bits(32) SP_mon;
bits(32) LR_mon;

Library pseudocode for aarch32/functions/registers/PC

// PC - non-assignment form
// ========================

bits(32) PC
return R[15]; // This includes the offset from AArch32 state

Library pseudocode for aarch32/functions/registers/PCStoreValue

// PCStoreValue()
// ==============

bits(32) PCStoreValue()
// This function returns the PC value. On architecture versions before Armv7, it
// is permitted to instead return PC+4, provided it does so consistently. It is
// used only to describe A32 instructions, so it returns the address of the current
// instruction plus 8 (normally) or 12 (when the alternative is permitted).
return PC;

Library pseudocode for aarch32/functions/registers/Q

// Q[] - non-assignment form
// =========================

bits(128) Q[integer n]
assert n >= 0 && n <= 15;
return V[n];

// Q[] - assignment form
// =====================

Q[integer n] = bits(128) value
assert n >= 0 && n <= 15;
V[n] = value;
return;

Shared Pseudocode Functions Page 2751

Library pseudocode for aarch32/functions/registers/Qin

// Qin[] - non-assignment form
// ===========================

bits(128) Qin[integer n]
assert n >= 0 && n <= 15;
return Din[2*n+1]:Din[2*n];

Library pseudocode for aarch32/functions/registers/R

// R[] - assignment form
// =====================

R[integer n] = bits(32) value
Rmode[n, PSTATE.M] = value;
return;

// R[] - non-assignment form
// =========================

bits(32) R[integer n]
if n == 15 then

offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
return _PC<31:0> + offset;

else
return Rmode[n, PSTATE.M];

Library pseudocode for aarch32/functions/registers/RBankSelect

// RBankSelect()
// =============

integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
integer svc, integer abt, integer und, integer hyp)

case mode of
when M32_User result = usr; // User mode
when M32_FIQ result = fiq; // FIQ mode
when M32_IRQ result = irq; // IRQ mode
when M32_Svc result = svc; // Supervisor mode
when M32_Abort result = abt; // Abort mode
when M32_Hyp result = hyp; // Hyp mode
when M32_Undef result = und; // Undefined mode
when M32_System result = usr; // System mode uses User mode registers
otherwise Unreachable(); // Monitor mode

return result;

Shared Pseudocode Functions Page 2752

Library pseudocode for aarch32/functions/registers/Rmode

// Rmode[] - non-assignment form
// =============================

bits(32) Rmode[integer n, bits(5) mode]
assert n >= 0 && n <= 14;

// Check for attempted use of Monitor mode in Non-secure state.
if !IsSecure() then assert mode != M32_Monitor;
assert !BadMode(mode);

if mode == M32_Monitor then
if n == 13 then return SP_mon;
elsif n == 14 then return LR_mon;
else return _R[n]<31:0>;

else
return _R[LookUpRIndex(n, mode)]<31:0>;

// Rmode[] - assignment form
// =========================

Rmode[integer n, bits(5) mode] = bits(32) value
assert n >= 0 && n <= 14;

// Check for attempted use of Monitor mode in Non-secure state.
if !IsSecure() then assert mode != M32_Monitor;
assert !BadMode(mode);

if mode == M32_Monitor then
if n == 13 then SP_mon = value;
elsif n == 14 then LR_mon = value;
else _R[n]<31:0> = value;

else
// It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
// register are unchanged or set to zero. This is also tested for on
// exception entry, as this applies to all AArch32 registers.
if HaveAArch64() && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then

_R[LookUpRIndex(n, mode)] = ZeroExtend(value);
else

_R[LookUpRIndex(n, mode)]<31:0> = value;

return;

Library pseudocode for aarch32/functions/registers/S

// S[] - non-assignment form
// =========================

bits(32) S[integer n]
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
bits(128) vreg = V[n DIV 4];
return vreg<base+31:base>;

// S[] - assignment form
// =====================

S[integer n] = bits(32) value
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
bits(128) vreg = V[n DIV 4];
vreg<base+31:base> = value;
V[n DIV 4] = vreg;
return;

Shared Pseudocode Functions Page 2753

Library pseudocode for aarch32/functions/registers/SP

// SP - assignment form
// ====================

SP = bits(32) value
R[13] = value;
return;

// SP - non-assignment form
// ========================

bits(32) SP
return R[13];

Library pseudocode for aarch32/functions/registers/_Dclone

array bits(64) _Dclone[0..31];

Library pseudocode for aarch32/functions/system/AArch32.ExceptionReturn

// AArch32.ExceptionReturn()
// =========================

AArch32.ExceptionReturn(bits(32) new_pc, bits(32) spsr)

SynchronizeContext();
// Attempts to change to an illegal mode or state will invoke the Illegal Execution state
// mechanism
SetPSTATEFromPSR(spsr);
ClearExclusiveLocal(ProcessorID());
SendEventLocal();

if PSTATE.IL == '1' then
// If the exception return is illegal, PC[1:0] are UNKNOWN
new_pc<1:0> = bits(2) UNKNOWN;

else
// LR[1:0] or LR[0] are treated as being 0, depending on the target instruction set state
if PSTATE.T == '1' then

new_pc<0> = '0'; // T32
else

new_pc<1:0> = '00'; // A32

boolean branch_conditional = AArch32.CurrentCond() != '111x';
BranchTo(new_pc, BranchType_ERET, branch_conditional);

CheckExceptionCatch(FALSE); // Check for debug event on exception return

Library pseudocode for aarch32/functions/system/AArch32.ExecutingCP10or11Instr

// AArch32.ExecutingCP10or11Instr()
// ================================

boolean AArch32.ExecutingCP10or11Instr()
instr = ThisInstr();
instr_set = CurrentInstrSet();
assert instr_set IN {InstrSet_A32, InstrSet_T32};

if instr_set == InstrSet_A32 then
return ((instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> == '101x');

else // InstrSet_T32
return (instr<31:28> == '111x' && (instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> == '101x');

Shared Pseudocode Functions Page 2754

Library pseudocode for aarch32/functions/system/AArch32.ITAdvance

// AArch32.ITAdvance()
// ===================

AArch32.ITAdvance()
if PSTATE.IT<2:0> == '000' then

PSTATE.IT = '00000000';
else

PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
return;

Library pseudocode for aarch32/functions/system/AArch32.SysRegRead

// Read from a 32-bit AArch32 System register and return the register's contents.
bits(32) AArch32.SysRegRead(integer cp_num, bits(32) instr);

Library pseudocode for aarch32/functions/system/AArch32.SysRegRead64

// Read from a 64-bit AArch32 System register and return the register's contents.
bits(64) AArch32.SysRegRead64(integer cp_num, bits(32) instr);

Library pseudocode for aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

// AArch32.SysRegReadCanWriteAPSR()
// ================================
// Determines whether the AArch32 System register read instruction can write to APSR flags.

boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
assert UsingAArch32();
assert (cp_num IN {14,15});
assert cp_num == UInt(instr<11:8>);

opc1 = UInt(instr<23:21>);
opc2 = UInt(instr<7:5>);
CRn = UInt(instr<19:16>);
CRm = UInt(instr<3:0>);

if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGDSCRint
return TRUE;

return FALSE;

Library pseudocode for aarch32/functions/system/AArch32.SysRegWrite

// Write to a 32-bit AArch32 System register.
AArch32.SysRegWrite(integer cp_num, bits(32) instr, bits(32) val);

Library pseudocode for aarch32/functions/system/AArch32.SysRegWrite64

// Write to a 64-bit AArch32 System register.
AArch32.SysRegWrite64(integer cp_num, bits(32) instr, bits(64) val);

Library pseudocode for aarch32/functions/system/AArch32.SysRegWriteM

// Read a value from a virtual address and write it to an AArch32 System register.
AArch32.SysRegWriteM(integer cp_num, bits(32) instr, bits(32) address);

Shared Pseudocode Functions Page 2755

Library pseudocode for aarch32/functions/system/AArch32.WriteMode

// AArch32.WriteMode()
// ===================
// Function for dealing with writes to PSTATE.M from AArch32 state only.
// This ensures that PSTATE.EL and PSTATE.SP are always valid.

AArch32.WriteMode(bits(5) mode)
(valid,el) = ELFromM32(mode);
assert valid;
PSTATE.M = mode;
PSTATE.EL = el;
PSTATE.nRW = '1';
PSTATE.SP = (if mode IN {M32_User,M32_System} then '0' else '1');
return;

Library pseudocode for aarch32/functions/system/AArch32.WriteModeByInstr

// AArch32.WriteModeByInstr()
// ==========================
// Function for dealing with writes to PSTATE.M from an AArch32 instruction, and ensuring that
// illegal state changes are correctly flagged in PSTATE.IL.

AArch32.WriteModeByInstr(bits(5) mode)
(valid,el) = ELFromM32(mode);

// 'valid' is set to FALSE if' mode' is invalid for this implementation or the current value
// of SCR.NS/SCR_EL3.NS. Additionally, it is illegal for an instruction to write 'mode' to
// PSTATE.EL if it would result in any of:
// * A change to a mode that would cause entry to a higher Exception level.
if UInt(el) > UInt(PSTATE.EL) then

valid = FALSE;

// * A change to or from Hyp mode.
if (PSTATE.M == M32_Hyp || mode == M32_Hyp) && PSTATE.M != mode then

valid = FALSE;

// * When EL2 is implemented, the value of HCR.TGE is '1', a change to a Non-secure EL1 mode.
if PSTATE.M == M32_Monitor && HaveEL(EL2) && el == EL1 && SCR.NS == '1' && HCR.TGE == '1' then

valid = FALSE;

if !valid then
PSTATE.IL = '1';

else
AArch32.WriteMode(mode);

Shared Pseudocode Functions Page 2756

Library pseudocode for aarch32/functions/system/BadMode

// BadMode()
// =========

boolean BadMode(bits(5) mode)
// Return TRUE if 'mode' encodes a mode that is not valid for this implementation
case mode of

when M32_Monitor
valid = HaveAArch32EL(EL3);

when M32_Hyp
valid = HaveAArch32EL(EL2);

when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
// If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
// state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
// AArch64, then these modes are EL1 modes.
// Therefore it is sufficient to test this implementation supports EL1 using AArch32.
valid = HaveAArch32EL(EL1);

when M32_User
valid = HaveAArch32EL(EL0);

otherwise
valid = FALSE; // Passed an illegal mode value

return !valid;

Library pseudocode for aarch32/functions/system/BankedRegisterAccessValid

// BankedRegisterAccessValid()
// ===========================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
// other than the SPSRs that are invalid. This includes ELR_hyp accesses.

BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)

case SYSm of
when '000xx', '00100' // R8_usr to R12_usr

if mode != M32_FIQ then UNPREDICTABLE;
when '00101' // SP_usr

if mode == M32_System then UNPREDICTABLE;
when '00110' // LR_usr

if mode IN {M32_Hyp,M32_System} then UNPREDICTABLE;
when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq

if mode == M32_FIQ then UNPREDICTABLE;
when '1000x' // LR_irq, SP_irq

if mode == M32_IRQ then UNPREDICTABLE;
when '1001x' // LR_svc, SP_svc

if mode == M32_Svc then UNPREDICTABLE;
when '1010x' // LR_abt, SP_abt

if mode == M32_Abort then UNPREDICTABLE;
when '1011x' // LR_und, SP_und

if mode == M32_Undef then UNPREDICTABLE;
when '1110x' // LR_mon, SP_mon

if !HaveEL(EL3) || !IsSecure() || mode == M32_Monitor then UNPREDICTABLE;
when '11110' // ELR_hyp, only from Monitor or Hyp mode

if !HaveEL(EL2) || !(mode IN {M32_Monitor,M32_Hyp}) then UNPREDICTABLE;
when '11111' // SP_hyp, only from Monitor mode

if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
otherwise

UNPREDICTABLE;

return;

Shared Pseudocode Functions Page 2757

Library pseudocode for aarch32/functions/system/CPSRWriteByInstr

// CPSRWriteByInstr()
// ==================
// Update PSTATE.<N,Z,C,V,Q,GE,E,A,I,F,M> from a CPSR value written by an MSR instruction.

CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
privileged = PSTATE.EL != EL0; // PSTATE.<A,I,F,M> are not writable at EL0

// Write PSTATE from 'value', ignoring bytes masked by 'bytemask'
if bytemask<3> == '1' then

PSTATE.<N,Z,C,V,Q> = value<31:27>;
// Bits <26:24> are ignored

if bytemask<2> == '1' then
if HaveSSBSExt() then

PSTATE.SSBS = value<23>;
if privileged then

PSTATE.PAN = value<22>;
if HaveDITExt() then

PSTATE.DIT = value<21>;
// Bit <20> is RES0
PSTATE.GE = value<19:16>;

if bytemask<1> == '1' then
// Bits <15:10> are RES0
PSTATE.E = value<9>; // PSTATE.E is writable at EL0
if privileged then

PSTATE.A = value<8>;

if bytemask<0> == '1' then
if privileged then

PSTATE.<I,F> = value<7:6>;
// Bit <5> is RES0
// AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr(value<4:0>);

return;

Library pseudocode for aarch32/functions/system/ConditionPassed

// ConditionPassed()
// =================

boolean ConditionPassed()
return ConditionHolds(AArch32.CurrentCond());

Library pseudocode for aarch32/functions/system/CurrentCond

bits(4) AArch32.CurrentCond();

Library pseudocode for aarch32/functions/system/InITBlock

// InITBlock()
// ===========

boolean InITBlock()
if CurrentInstrSet() == InstrSet_T32 then

return PSTATE.IT<3:0> != '0000';
else

return FALSE;

Shared Pseudocode Functions Page 2758

Library pseudocode for aarch32/functions/system/LastInITBlock

// LastInITBlock()
// ===============

boolean LastInITBlock()
return (PSTATE.IT<3:0> == '1000');

Library pseudocode for aarch32/functions/system/SPSRWriteByInstr

// SPSRWriteByInstr()
// ==================

SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

bits(32) new_spsr = SPSR[];

if bytemask<3> == '1' then
new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

if bytemask<2> == '1' then
new_spsr<23:16> = value<23:16>; // IL bit, GE[3:0] flags

if bytemask<1> == '1' then
new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

if bytemask<0> == '1' then
new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

SPSR[] = new_spsr; // UNPREDICTABLE if User or System mode

return;

Library pseudocode for aarch32/functions/system/SPSRaccessValid

// SPSRaccessValid()
// =================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
// that are UNPREDICTABLE

SPSRaccessValid(bits(5) SYSm, bits(5) mode)
case SYSm of

when '01110' // SPSR_fiq
if mode == M32_FIQ then UNPREDICTABLE;

when '10000' // SPSR_irq
if mode == M32_IRQ then UNPREDICTABLE;

when '10010' // SPSR_svc
if mode == M32_Svc then UNPREDICTABLE;

when '10100' // SPSR_abt
if mode == M32_Abort then UNPREDICTABLE;

when '10110' // SPSR_und
if mode == M32_Undef then UNPREDICTABLE;

when '11100' // SPSR_mon
if !HaveEL(EL3) || mode == M32_Monitor || !IsSecure() then UNPREDICTABLE;

when '11110' // SPSR_hyp
if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;

otherwise
UNPREDICTABLE;

return;

Shared Pseudocode Functions Page 2759

Library pseudocode for aarch32/functions/system/SelectInstrSet

// SelectInstrSet()
// ================

SelectInstrSet(InstrSet iset)
assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
assert iset IN {InstrSet_A32, InstrSet_T32};

PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

return;

Library pseudocode for aarch32/functions/v6simd/Sat

// Sat()
// =====

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

Library pseudocode for aarch32/functions/v6simd/SignedSat

// SignedSat()
// ===========

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

Library pseudocode for aarch32/functions/v6simd/UnsignedSat

// UnsignedSat()
// =============

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

Shared Pseudocode Functions Page 2760

Library pseudocode for aarch32/ic/AArch32.IC

// AArch32.IC()
// ============
// Perform Instruction Cache Operation.

AArch32.IC(CacheOpScope opscope)
regval = bits(32) UNKNOWN;
AArch32.IC(regval, opscope);

// AArch32.IC()
// ============
// Perform Instruction Cache Operation.

AArch32.IC(bits(32) regval, CacheOpScope opscope)
CacheRecord cache;
AccType acctype = AccType_IC;

cache.acctype = acctype;
cache.cachetype = CacheType_Instruction;
cache.cacheop = CacheOp_Invalidate;
cache.opscope = opscope;

if opscope IN {CacheOpScope_ALLU, CacheOpScope_ALLUIS} then
if opscope == CacheOpScope_ALLUIS || (opscope == CacheOpScope_ALLU && PSTATE.EL == EL1

&& EL2Enabled() && HCR.FB == '1') then
cache.shareability = Shareability_ISH;

else
cache.shareability = Shareability_NSH;

cache.regval = ZeroExtend(regval);
CACHE_OP(cache);

else
assert opscope == CacheOpScope_PoU;
need_translate = ICInstNeedsTranslation(opscope);

cache.shareability = Shareability_NSH;
cache.vaddress = ZeroExtend(regval);
cache.translated = need_translate;

if !need_translate then
cache.paddress = FullAddress UNKNOWN;
CACHE_OP(cache);
return;

wasaligned = TRUE;
iswrite = FALSE;
size = 0;
memaddrdesc = AArch32.TranslateAddress(regval, acctype, iswrite, wasaligned, size);
if IsFault(memaddrdesc) then

AArch32.Abort(regval, memaddrdesc.fault);

cache.paddress = memaddrdesc.paddress;
CACHE_OP(cache);

return;

Shared Pseudocode Functions Page 2761

Library pseudocode for aarch32/translation/attrs/AArch32.DefaultTEXDecode

Shared Pseudocode Functions Page 2762

// AArch32.DefaultTEXDecode()
// ==========================
// Apply short-descriptor format memory region attributes, without TEX remap

MemoryAttributes AArch32.DefaultTEXDecode(bits(3) TEX, bit C, bit B, bit S)
MemoryAttributes memattrs;

// Reserved values map to allocated values
if (TEX == '001' && C:B == '01') || (TEX == '010' && C:B != '00') || TEX == '011' then

bits(5) texcb;
(-, texcb) = ConstrainUnpredictableBits(Unpredictable_RESTEXCB);
TEX = texcb<4:2>; C = texcb<1>; B = texcb<0>;

// Distinction between Inner Shareable and Outer Shareable is not supported in this format
// A memory region is either Non-shareable or Outer Shareable
case TEX:C:B of

when '00000'
// Device-nGnRnE
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;

when '00001', '01000'
// Device-nGnRE
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRE;
memattrs.shareability = Shareability_OSH;

when '00010'
// Write-through Read allocate
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WT;
memattrs.inner.hints = MemHint_RA;
memattrs.outer.attrs = MemAttr_WT;
memattrs.outer.hints = MemHint_RA;
memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;

when '00011'
// Write-back Read allocate
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RA;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RA;
memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;

when '00100'
// Non-cacheable
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_NC;
memattrs.outer.attrs = MemAttr_NC;
memattrs.shareability = Shareability_OSH;

when '00110'
memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

when '00111'
// Write-back Read and Write allocate
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RWA;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RWA;
memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;

when '1xxxx'
// Cacheable, TEX<1:0> = Outer attrs, {C,B} = Inner attrs
memattrs.memtype = MemType_Normal;
memattrs.inner = DecodeSDFAttr(C:B);
memattrs.outer = DecodeSDFAttr(TEX<1:0>);

if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
memattrs.shareability = Shareability_OSH;

else
memattrs.shareability = if S == '1' then Shareability_OSH else Shareability_NSH;

otherwise
// Reserved, handled above

Shared Pseudocode Functions Page 2763

Unreachable();

// The Transient hint is not supported in this format
memattrs.inner.transient = FALSE;
memattrs.outer.transient = FALSE;
memattrs.tagged = FALSE;

if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
memattrs.xs = '0';

else
memattrs.xs = '1';

return memattrs;

Shared Pseudocode Functions Page 2764

Library pseudocode for aarch32/translation/attrs/AArch32.RemappedTEXDecode

// AArch32.RemappedTEXDecode()
// ===========================
// Apply short-descriptor format memory region attributes, with TEX remap

MemoryAttributes AArch32.RemappedTEXDecode(bits(3) TEX, bit C, bit B, bit S)

MemoryAttributes memattrs;

region = UInt(TEX<0>:C:B); // TEX<2:1> are ignored in this mapping scheme
if region == 6 then

return MemoryAttributes IMPLEMENTATION_DEFINED;

base = 2 * region;
attrfield = PRRR<base+1:base>;

if attrfield == '11' then // Reserved, maps to allocated value
(-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESPRRR);

case attrfield of
when '00' // Device-nGnRnE

memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;

when '01' // Device-nGnRE
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRE;
memattrs.shareability = Shareability_OSH;

when '10'
NSn = if S == '0' then PRRR.NS0 else PRRR.NS1;
NOSm = PRRR<region+24> AND NSn;
IRn = NMRR<base+1:base>;
ORn = NMRR<base+17:base+16>;

memattrs.memtype = MemType_Normal;
memattrs.inner = DecodeSDFAttr(IRn);
memattrs.outer = DecodeSDFAttr(ORn);
if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then

memattrs.shareability = Shareability_OSH;
else

bits(2) sh = NSn:NOSm;
memattrs.shareability = DecodeShareability(sh);

when '11'
Unreachable();

// The Transient hint is not supported in this format
memattrs.inner.transient = FALSE;
memattrs.outer.transient = FALSE;
memattrs.tagged = FALSE;

if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
memattrs.xs = '0';

else
memattrs.xs = '1';

return memattrs;

Shared Pseudocode Functions Page 2765

Library pseudocode for aarch32/translation/debug/AArch32.CheckBreakpoint

// AArch32.CheckBreakpoint()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
// translation regime, when either debug exceptions are enabled, or halting debug is enabled
// and halting is allowed.

FaultRecord AArch32.CheckBreakpoint(bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());
assert size IN {2,4};

match = FALSE;
mismatch = FALSE;

for i = 0 to UInt(DBGDIDR.BRPs)
(match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, size);
match = match || match_i;
mismatch = mismatch || mismatch_i;

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Breakpoint;
Halt(reason);

elsif (match || mismatch) then
acctype = AccType_IFETCH;
iswrite = FALSE;
debugmoe = DebugException_Breakpoint;
return AArch32.DebugFault(acctype, iswrite, debugmoe);

else
return NoFault();

Library pseudocode for aarch32/translation/debug/AArch32.CheckDebug

// AArch32.CheckDebug()
// ====================
// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccType acctype, boolean iswrite, integer size)

FaultRecord fault = NoFault();

d_side = (acctype != AccType_IFETCH);
generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
halt = HaltOnBreakpointOrWatchpoint();
// Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
vector_catch_first = ConstrainUnpredictableBool(Unpredictable_BPVECTORCATCHPRI);

if !d_side && vector_catch_first && generate_exception then
fault = AArch32.CheckVectorCatch(vaddress, size);

if fault.statuscode == Fault_None && (generate_exception || halt) then
if d_side then

fault = AArch32.CheckWatchpoint(vaddress, acctype, iswrite, size);
else

fault = AArch32.CheckBreakpoint(vaddress, size);

if fault.statuscode == Fault_None && !d_side && !vector_catch_first && generate_exception then
return AArch32.CheckVectorCatch(vaddress, size);

return fault;

Shared Pseudocode Functions Page 2766

Library pseudocode for aarch32/translation/debug/AArch32.CheckVectorCatch

// AArch32.CheckVectorCatch()
// ==========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
// translation regime, when debug exceptions are enabled.

FaultRecord AArch32.CheckVectorCatch(bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());

match = AArch32.VCRMatch(vaddress);
if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then

match = ConstrainUnpredictableBool(Unpredictable_VCMATCHHALF);

if match then
acctype = AccType_IFETCH;
iswrite = FALSE;
debugmoe = DebugException_VectorCatch;
return AArch32.DebugFault(acctype, iswrite, debugmoe);

else
return NoFault();

Library pseudocode for aarch32/translation/debug/AArch32.CheckWatchpoint

// AArch32.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "address",
// when either debug exceptions are enabled for the access, or halting debug
// is enabled and halting is allowed.

FaultRecord AArch32.CheckWatchpoint(bits(32) vaddress, AccType acctype,
boolean iswrite, integer size)

assert ELUsingAArch32(S1TranslationRegime());

if acctype IN {AccType_TTW, AccType_IC, AccType_AT, AccType_ATPAN} then
return NoFault();

if acctype == AccType_DC then
if !iswrite then

return NoFault();
elsif !(boolean IMPLEMENTATION_DEFINED "DCIMVAC generates watchpoint") then

return NoFault();

match = FALSE;
ispriv = AArch32.AccessUsesEL(acctype) != EL0;

for i = 0 to UInt(DBGDIDR.WRPs)
if AArch32.WatchpointMatch(i, vaddress, size, ispriv, acctype, iswrite) then

match = TRUE;

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Watchpoint;
EDWAR = ZeroExtend(vaddress);
Halt(reason);

elsif match then
debugmoe = DebugException_Watchpoint;
return AArch32.DebugFault(acctype, iswrite, debugmoe);

else
return NoFault();

Shared Pseudocode Functions Page 2767

Library pseudocode for aarch32/translation/faults/AArch32.DebugFault

// AArch32.DebugFault()
// ====================
// Return a fault record indicating a hardware watchpoint/breakpoint

FaultRecord AArch32.DebugFault(AccType acctype, boolean iswrite, bits(4) debugmoe)
FaultRecord fault;

fault.statuscode = Fault_Debug;
fault.acctype = acctype;
fault.write = iswrite;
fault.debugmoe = debugmoe;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

return fault;

Library pseudocode for aarch32/translation/faults/AArch32.IPAIsOutOfRange

// AArch32.IPAIsOutOfRange()
// =========================
// Check intermediate physical address bits not resolved by translation are ZERO

boolean AArch32.IPAIsOutOfRange(S2TTWParams walkparams, bits(40) ipa)
// Input Address size
iasize = AArch32.S2IASize(walkparams.t0sz);

return iasize < 40 && !IsZero(ipa<39:iasize>);

Library pseudocode for aarch32/translation/faults/AArch32.S1HasAlignmentFault

// AArch32.S1HasAlignmentFault()
// =============================
// Returns whether stage 1 output fails alignment requirement on data accesses
// to Device memory

boolean AArch32.S1HasAlignmentFault(AccType acctype, boolean aligned,
bit ntlsmd, MemoryAttributes memattrs)

if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
return FALSE;

if acctype == AccType_A32LSMD && ntlsmd == '0' && memattrs.device != DeviceType_GRE then
return TRUE;

return !aligned || acctype == AccType_DCZVA;

Shared Pseudocode Functions Page 2768

Library pseudocode for aarch32/translation/faults/AArch32.S1LDHasPermissionsFault

Shared Pseudocode Functions Page 2769

// AArch32.S1LDHasPermissionsFault()
// =================================
// Returns whether an access using stage 1 long-descriptor translation
// violates permissions of target memory

boolean AArch32.S1LDHasPermissionsFault(Regime regime, S1TTWParams walkparams,
Permissions perms, MemType memtype,
PASpace paspace, boolean ispriv,
AccType acctype, boolean iswrite)

if HasUnprivileged(regime) then
// Apply leaf permissions
case perms.ap<2:1> of

when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

// Apply hierarchical permissions
case perms.ap_table of

when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

wxn = walkparams.wxn;
uwxn = walkparams.uwxn;
xn = perms.xn OR perms.xn_table;
pxn = perms.pxn OR perms.pxn_table;

ux = ur AND NOT(xn OR (uw AND wxn));
px = pr AND NOT(xn OR pxn OR (pw AND wxn) OR (uw AND uwxn));

pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT});
if HavePANExt() && pan_access then

pan = PSTATE.PAN AND (ur OR uw);
pr = pr AND NOT(pan);
pw = pw AND NOT(pan);

(r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);

// Prevent execution from Non-secure space by PE in Secure state if SIF is set
if IsSecure() && paspace == PAS_NonSecure then

x = x AND NOT(walkparams.sif);
else

// Apply leaf permissions
case perms.ap<2> of

when '0' (r,w) = ('1','1'); // No effect
when '1' (r,w) = ('1','0'); // Read-only

// Apply hierarchical permissions
case perms.ap_table<1> of

when '0' (r,w) = (r , w); // No effect
when '1' (r,w) = (r ,'0'); // Read-only

xn = perms.xn OR perms.xn_table;
x = NOT(xn OR (w AND walkparams.wxn));

if acctype == AccType_IFETCH then
constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
if constraint == Constraint_FAULT && memtype == MemType_Device then

return TRUE;
else

return x == '0';
elsif acctype IN {AccType_IC, AccType_DC} then

return FALSE;
elsif iswrite then

return w == '0';
else

return r == '0';

Shared Pseudocode Functions Page 2770

Library pseudocode for aarch32/translation/faults/AArch32.S1SDHasPermissionsFault

// AArch32.S1SDHasPermissionsFault()
// =================================
// Returns whether an access using stage 1 short-descriptor translation
// violates permissions of target memory

boolean AArch32.S1SDHasPermissionsFault(Permissions perms, MemType memtype,
PASpace paspace, boolean ispriv,
AccType acctype, boolean iswrite)

wxn = SCTLR.WXN;
uwxn = SCTLR.UWXN;
if SCTLR.AFE == '0' then

// Map Reserved encoding '100'
if perms.ap == '100' then

perms.ap = bits(3) IMPLEMENTATION_DEFINED "Reserved short descriptor AP encoding";

case perms.ap of
when '000' (pr,pw,ur,uw) = ('0','0','0','0'); // No access
when '001' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
when '010' (pr,pw,ur,uw) = ('1','1','1','0'); // R/W at PL1, RO at PL0
when '011' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
// '100' is reserved
when '101' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
when '110' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL (deprecated)
when '111' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

else // Simplified access permissions model
case perms.ap<2:1> of

when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

ux = ur AND NOT(perms.xn OR (uw AND wxn));
px = pr AND NOT(perms.xn OR perms.pxn OR (pw AND wxn) OR (uw AND uwxn));

pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT});
if HavePANExt() && pan_access then

pan = PSTATE.PAN AND (ur OR uw);
pr = pr AND NOT(pan);
pw = pw AND NOT(pan);

(r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);

// Prevent execution from Non-secure space by PE in Secure state if SIF is set
if IsSecure() && paspace == PAS_NonSecure then

x = x AND NOT(if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF);

if acctype == AccType_IFETCH then
constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
if constraint == Constraint_FAULT && memtype == MemType_Device then

return TRUE;
else

return x == '0';
elsif acctype IN {AccType_IC, AccType_DC} then

return FALSE;
elsif iswrite then

return w == '0';
else

return r == '0';

Shared Pseudocode Functions Page 2771

Library pseudocode for aarch32/translation/faults/AArch32.S2HasAlignmentFault

// AArch32.S2HasAlignmentFault()
// =============================
// Returns whether stage 2 output fails alignment requirement on data accesses
// to Device memory

boolean AArch32.S2HasAlignmentFault(AccType acctype, boolean aligned,
MemoryAttributes memattrs)

if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
return FALSE;

return !aligned || acctype == AccType_DCZVA;

Library pseudocode for aarch32/translation/faults/AArch32.S2HasPermissionsFault

// AArch32.S2HasPermissionsFault()
// ===============================
// Returns whether stage 2 access violates permissions of target memory

boolean AArch32.S2HasPermissionsFault(boolean s2fs1walk, S2TTWParams walkparams,
Permissions perms, MemType memtype,
boolean ispriv, AccType acctype,
boolean iswrite)

r = perms.s2ap<0>;
w = perms.s2ap<1>;
if HaveExtendedExecuteNeverExt() then

case perms.s2xn:perms.s2xnx of
when '00' (px, ux) = (r , r);
when '01' (px, ux) = ('0', r);
when '10' (px, ux) = ('0','0');
when '11' (px, ux) = (r ,'0');

x = if ispriv then px else ux;
else

x = r AND NOT(perms.s2xn);

if s2fs1walk && walkparams.ptw == '1' && memtype == MemType_Device then
return TRUE;

elsif acctype == AccType_IFETCH then
constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
if constraint == Constraint_FAULT && memtype == MemType_Device then

return TRUE;
else

return x == '0';
elsif acctype IN {AccType_IC, AccType_DC} then

return FALSE;
elsif iswrite then

return w == '0';
else

return r == '0';

Shared Pseudocode Functions Page 2772

Library pseudocode for aarch32/translation/faults/AArch32.S2InconsistentSL

// AArch32.S2InconsistentSL()
// ==========================
// Detect inconsistent configuration of stage 2 T0SZ and SL fields

boolean AArch32.S2InconsistentSL(S2TTWParams walkparams)
startlevel = AArch32.S2StartLevel(walkparams.sl0);
levels = FINAL_LEVEL - startlevel;
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;

// Input address size must at least be large enough to be resolved from the start level
sl_min_iasize = (

levels * stride // Bits resolved by table walk, except initial level
+ granulebits // Bits directly mapped to output address
+ 1); // At least 1 more bit to be decoded by initial level

// Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
sl_max_iasize = sl_min_iasize + (stride-1) + 4;
// Configured Input Address size
iasize = AArch32.S2IASize(walkparams.t0sz);

return iasize < sl_min_iasize || iasize > sl_max_iasize;

Library pseudocode for aarch32/translation/faults/AArch32.VAIsOutOfRange

// AArch32.VAIsOutOfRange()
// ========================
// Check virtual address bits not resolved by translation are identical
// and of accepted value

boolean AArch32.VAIsOutOfRange(Regime regime, S1TTWParams walkparams, bits(32) va)
if regime == Regime_EL2 then

// Input Address size
iasize = AArch32.S1IASize(walkparams.t0sz);
return walkparams.t0sz != '000' && !IsZero(va<31:iasize>);

elsif walkparams.t1sz != '000' && walkparams.t0sz != '000' then
// Lower range Input Address size
lo_iasize = AArch32.S1IASize(walkparams.t0sz);
// Upper range Input Address size
up_iasize = AArch32.S1IASize(walkparams.t1sz);
return !IsZero(va<31:lo_iasize>) && !IsOnes(va<31:up_iasize>);

else
return FALSE;

Library pseudocode for aarch32/translation/translation/AArch32.AccessUsesEL

// AArch32.AccessUsesEL()
// ======================
// Determine the privilege associated with the access

bits(2) AArch32.AccessUsesEL(AccType acctype)
if acctype == AccType_UNPRIV then

return EL0;
else

return PSTATE.EL;

Shared Pseudocode Functions Page 2773

Library pseudocode for aarch32/translation/translation/AArch32.FullTranslate

// AArch32.FullTranslate()
// =======================
// Perform address translation as specified by VMSA-A32

AddressDescriptor AArch32.FullTranslate(bits(32) va, AccType acctype,
boolean iswrite, boolean aligned)

// Prepare fault fields in case a fault is detected
fault = NoFault();
fault.acctype = acctype;
fault.write = iswrite;

regime = TranslationRegime(PSTATE.EL, acctype);

// First Stage Translation

if regime == Regime_EL2 || TTBCR.EAE == '1' then
(fault, ipa) = AArch32.S1TranslateLD(fault, regime, va, acctype,

aligned, iswrite);
else

(fault, ipa, -) = AArch32.S1TranslateSD(fault, regime, va, acctype,
aligned, iswrite);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(ZeroExtend(va), fault);

if regime == Regime_EL10 && EL2Enabled() then
ipa.vaddress = ZeroExtend(va);
s2fs1walk = FALSE;
(fault, pa) = AArch32.S2Translate(fault, ipa, s2fs1walk, acctype,

aligned, iswrite);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(ZeroExtend(va), fault);

else
return pa;

else
return ipa;

Library pseudocode for aarch32/translation/translation/AArch32.OutputDomain

// AArch32.OutputDomain()
// ======================
// Determine the domain the translated output address

bits(2) AArch32.OutputDomain(bits(4) domain)
index = 2 * UInt(domain);
Dn = DACR<index+1:index>;

if Dn == '10' then
// Reserved value maps to an allocated value
(-, Dn) = ConstrainUnpredictableBits(Unpredictable_RESDACR);

return Dn;

Shared Pseudocode Functions Page 2774

Library pseudocode for aarch32/translation/translation/AArch32.S1DisabledOutput

// AArch32.S1DisabledOutput()
// ==========================
// Flat map the VA to IPA/PA, depending on the regime, assigning default memory attributes

(FaultRecord, AddressDescriptor) AArch32.S1DisabledOutput(FaultRecord fault,
Regime regime, bits(32) va, AccType acctype, boolean aligned)

// No memory page is guarded when stage 1 address translation is disabled
SetInGuardedPage(FALSE);

MemoryAttributes memattrs;
if regime == Regime_EL10 && EL2Enabled() then

default_cacheable = if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC;
else

default_cacheable = '0';

if default_cacheable == '1' then
// Use default cacheable settings
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RWA;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RWA;
memattrs.shareability = Shareability_NSH;
if !ELUsingAArch32(EL2) && HaveMTE2Ext() then

memattrs.tagged = HCR_EL2.DCT == '1';
else

memattrs.tagged = FALSE;
elsif acctype == AccType_IFETCH then

// Instruction cacheability controlled by SCTLR/HSCTLR.I
icache_en = if regime == Regime_EL2 then HSCTLR.I else SCTLR.I;

memattrs.memtype = MemType_Normal;
memattrs.shareability = Shareability_OSH;
memattrs.tagged = FALSE;
if icache_en == '1' then

memattrs.inner.attrs = MemAttr_WT;
memattrs.inner.hints = MemHint_RA;
memattrs.outer.attrs = MemAttr_WT;
memattrs.outer.hints = MemHint_RA;

else
memattrs.inner.attrs = MemAttr_NC;
memattrs.outer.attrs = MemAttr_NC;

else
// Treat memory region as Device
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;
memattrs.tagged = FALSE;

if HaveTrapLoadStoreMultipleDeviceExt() then
ntlsmd = if regime == Regime_EL2 then HSCTLR.nTLSMD else SCTLR.nTLSMD;

else
ntlsmd = '1';

if AArch32.S1HasAlignmentFault(acctype, aligned, ntlsmd, memattrs) then
fault.statuscode = Fault_Alignment;
return (fault, AddressDescriptor UNKNOWN);

FullAddress oa;
oa.address = ZeroExtend(va);
oa.paspace = if IsSecure() then PAS_Secure else PAS_NonSecure;
ipa = CreateAddressDescriptor(ZeroExtend(va), oa, memattrs);

return (fault, ipa);

Shared Pseudocode Functions Page 2775

Library pseudocode for aarch32/translation/translation/AArch32.S1Enabled

// AArch32.S1Enabled()
// ===================
// Returns whether stage 1 translation is enabled for the active translation regime

boolean AArch32.S1Enabled(Regime regime)
if regime == Regime_EL2 then

return HSCTLR.M == '1';
elsif regime == Regime_EL30 || !EL2Enabled() then

return SCTLR.M == '1';
elsif ELUsingAArch32(EL2) then

return HCR.<TGE,DC> == '00' && SCTLR.M == '1';
else

return HCR_EL2.<TGE,DC> == '00' && SCTLR.M == '1';

Shared Pseudocode Functions Page 2776

Library pseudocode for aarch32/translation/translation/AArch32.S1TranslateLD

Shared Pseudocode Functions Page 2777

// AArch32.S1TranslateLD()
// =======================
// Perform a stage 1 translation using long-descriptor format mapping VA to IPA/PA
// depending on the regime

(FaultRecord, AddressDescriptor) AArch32.S1TranslateLD(FaultRecord fault,
Regime regime, bits(32) va, AccType acctype, boolean aligned, boolean iswrite)

fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

if !AArch32.S1Enabled(regime) then
return AArch32.S1DisabledOutput(fault, regime, va, acctype, aligned);

walkparams = AArch32.GetS1TTWParams(regime, va);

if AArch32.VAIsOutOfRange(regime, walkparams, va) then
fault.level = 1;
fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN);

(fault, walkstate) = AArch32.S1WalkLD(fault, regime, walkparams, va);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

ispriv = AArch32.AccessUsesEL(acctype) != EL0;
SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

if AArch32.S1HasAlignmentFault(acctype, aligned, walkparams.ntlsmd,
walkstate.memattrs) then

fault.statuscode = Fault_Alignment;
elsif IsAtomicRW(acctype) then

if AArch32.S1LDHasPermissionsFault(regime, walkparams,
walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
ispriv, acctype, FALSE) then

// The permission fault was not caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = FALSE;

elsif AArch32.S1LDHasPermissionsFault(regime, walkparams,
walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
ispriv, acctype, TRUE) then

// The permission fault _was_ caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = TRUE;

elsif AArch32.S1LDHasPermissionsFault(regime, walkparams,
walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
ispriv, acctype, iswrite) then

fault.statuscode = Fault_Permission;

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

icache_en = if regime == Regime_EL2 then HSCTLR.I else SCTLR.I;
dcache_en = if regime == Regime_EL2 then HSCTLR.C else SCTLR.C;

if ((acctype == AccType_IFETCH &&
(walkstate.memattrs.memtype == MemType_Device || icache_en == '0')) ||

(acctype != AccType_IFETCH &&
walkstate.memattrs.memtype == MemType_Normal && dcache_en == '0')) then

// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();
memattrs.xs = walkstate.memattrs.xs;

else

Shared Pseudocode Functions Page 2778

memattrs = walkstate.memattrs;

if (regime == Regime_EL10 && EL2Enabled() &&
(if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then

// Shareability of target memory subject to stage 2 translation
// is maintained as input to stage 2
memattrs.shareability = walkstate.memattrs.shareability;

else
memattrs.shareability = NormaliseShareability(memattrs);

// Output Address
oa = StageOA(walkstate.baseaddress, ZeroExtend(va), walkparams.tgx, walkstate.level);
ipa = CreateAddressDescriptor(ZeroExtend(va), oa, memattrs);

return (fault, ipa);

Shared Pseudocode Functions Page 2779

Library pseudocode for aarch32/translation/translation/AArch32.S1TranslateSD

Shared Pseudocode Functions Page 2780

// AArch32.S1TranslateSD()
// =======================
// Perform a stage 1 translation using short-descriptor format mapping VA to IPA/PA
// depending on the regime

(FaultRecord, AddressDescriptor, SDFType) AArch32.S1TranslateSD(FaultRecord fault,
Regime regime, bits(32) va, AccType acctype, boolean aligned, boolean iswrite)

fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

if !AArch32.S1Enabled(regime) then
(fault, ipa) = AArch32.S1DisabledOutput(fault, regime, va, acctype, aligned);
return (fault, ipa, SDFType UNKNOWN);

(fault, walkstate) = AArch32.S1WalkSD(fault, regime, va);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, SDFType UNKNOWN);

ispriv = AArch32.AccessUsesEL(acctype) != EL0;
domain = AArch32.OutputDomain(walkstate.domain);
SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

ntlsmd = if HaveTrapLoadStoreMultipleDeviceExt() then SCTLR.nTLSMD else '1';

if AArch32.S1HasAlignmentFault(acctype, aligned, ntlsmd, walkstate.memattrs) then
fault.statuscode = Fault_Alignment;

elsif !(acctype IN {AccType_IC, AccType_DC}) && domain == Domain_NoAccess then
fault.statuscode = Fault_Domain;

elsif domain == Domain_Client then
if IsAtomicRW(acctype) then

if AArch32.S1SDHasPermissionsFault(walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
ispriv, acctype, FALSE) then

// The permission fault was not caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = FALSE;

elsif AArch32.S1SDHasPermissionsFault(walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
ispriv, acctype, TRUE) then

// The permission fault _was_ caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = TRUE;

elsif AArch32.S1SDHasPermissionsFault(walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
ispriv, acctype, iswrite) then

fault.statuscode = Fault_Permission;

if fault.statuscode != Fault_None then
fault.domain = walkstate.domain;
return (fault, AddressDescriptor UNKNOWN, walkstate.sdftype);

if ((acctype == AccType_IFETCH &&
(walkstate.memattrs.memtype == MemType_Device || SCTLR.I == '0')) ||

(acctype != AccType_IFETCH &&
walkstate.memattrs.memtype == MemType_Normal && SCTLR.C == '0')) then

// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();
memattrs.xs = walkstate.memattrs.xs;

else
memattrs = walkstate.memattrs;

if (regime == Regime_EL10 && EL2Enabled() &&
(if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then

// Shareability of target memory subject to stage 2 translation
// is maintained as input to stage 2

Shared Pseudocode Functions Page 2781

memattrs.shareability = walkstate.memattrs.shareability;
else

memattrs.shareability = NormaliseShareability(memattrs);

// Output Address
oa = AArch32.SDStageOA(walkstate.baseaddress, va, walkstate.sdftype);
ipa = CreateAddressDescriptor(ZeroExtend(va), oa, memattrs);

return (fault, ipa, walkstate.sdftype);

Shared Pseudocode Functions Page 2782

Library pseudocode for aarch32/translation/translation/AArch32.S2Translate

Shared Pseudocode Functions Page 2783

// AArch32.S2Translate()
// =====================
// Perform a stage 2 translation mapping an IPA to a PA

(FaultRecord, AddressDescriptor) AArch32.S2Translate(FaultRecord fault,
AddressDescriptor ipa, boolean s2fs1walk, AccType acctype,
boolean aligned, boolean iswrite)

assert IsZero(ipa.paddress.address<51:40>);

if !ELUsingAArch32(EL2) then
s1aarch64 = FALSE;
return AArch64.S2Translate(fault, ipa, s1aarch64, s2fs1walk, acctype,

aligned, iswrite);

// Prepare fault fields in case a fault is detected
fault.statuscode = Fault_None;
fault.secondstage = TRUE;
fault.s2fs1walk = s2fs1walk;
fault.ipaddress = ipa.paddress;

walkparams = AArch32.GetS2TTWParams();

if walkparams.vm == '0' then
// Stage 2 is disabled
return (fault, ipa);

if AArch32.IPAIsOutOfRange(walkparams, ipa.paddress.address<39:0>) then
fault.statuscode = Fault_Translation;
fault.level = 1;
return (fault, AddressDescriptor UNKNOWN);

(fault, walkstate) = AArch32.S2Walk(fault, walkparams, ipa);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

ispriv = AArch32.AccessUsesEL(acctype) != EL0;

if AArch32.S2HasAlignmentFault(acctype, aligned, walkstate.memattrs) then
fault.statuscode = Fault_Alignment;

elsif IsAtomicRW(acctype) then
assert !s2fs1walk; // AArch32 does not support HW update of TT
if AArch32.S2HasPermissionsFault(s2fs1walk, walkparams,

walkstate.permissions,
walkstate.memattrs.memtype,
ispriv, acctype, FALSE) then

// The permission fault was not caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = FALSE;

elsif AArch32.S2HasPermissionsFault(s2fs1walk, walkparams,
walkstate.permissions,
walkstate.memattrs.memtype,
ispriv, acctype, TRUE) then

// The permission fault _was_ caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = TRUE;

elsif AArch32.S2HasPermissionsFault(s2fs1walk, walkparams,
walkstate.permissions,
walkstate.memattrs.memtype,
ispriv, acctype, iswrite) then

fault.statuscode = Fault_Permission;

if ((s2fs1walk &&
walkstate.memattrs.memtype == MemType_Device) ||

(acctype == AccType_IFETCH &&
(walkstate.memattrs.memtype == MemType_Device || HCR2.ID == '1')) ||

(acctype != AccType_IFETCH &&
walkstate.memattrs.memtype == MemType_Normal && HCR2.CD == '1')) then

// Treat memory attributes as Normal Non-Cacheable

Shared Pseudocode Functions Page 2784

s2_memattrs = NormalNCMemAttr();
s2_memattrs.xs = walkstate.memattrs.xs;

else
s2_memattrs = walkstate.memattrs;

memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs);
ipa_64 = ZeroExtend(ipa.paddress.address<39:0>, 64);
// Output Address
oa = StageOA(walkstate.baseaddress, ipa_64, walkparams.tgx, walkstate.level);
pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);

return (fault, pa);

Library pseudocode for aarch32/translation/translation/AArch32.SDStageOA

// AArch32.SDStageOA()
// ===================
// Given the final walk state of a short-descriptor translation walk,
// map the untranslated input address bits to the base output address

FullAddress AArch32.SDStageOA(FullAddress baseaddress, bits(32) va, SDFType sdftype)
case sdftype of

when SDFType_SmallPage tsize = 12;
when SDFType_LargePage tsize = 16;
when SDFType_Section tsize = 20;
when SDFType_Supersection tsize = 24;

// Output Address
FullAddress oa;
oa.address = baseaddress.address<51:tsize>:va<tsize-1:0>;
oa.paspace = baseaddress.paspace;
return oa;

Library pseudocode for aarch32/translation/translation/AArch32.TranslateAddress

// AArch32.TranslateAddress()
// ==========================
// Main entry point for translating an address

AddressDescriptor AArch32.TranslateAddress(bits(32) va, AccType acctype,
boolean iswrite, boolean aligned,
integer size)

regime = TranslationRegime(PSTATE.EL, acctype);
if !RegimeUsingAArch32(regime) then

return AArch64.TranslateAddress(ZeroExtend(va, 64), acctype, iswrite,
aligned, size);

result = AArch32.FullTranslate(va, acctype, iswrite, aligned);
if !IsFault(result) then

result.fault = AArch32.CheckDebug(va, acctype, iswrite, size);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(va);

return result;

Shared Pseudocode Functions Page 2785

Library pseudocode for aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD

// AArch32.DecodeDescriptorTypeLD()
// ================================
// Determine whether the long-descriptor is a page, block or table

DescriptorType AArch32.DecodeDescriptorTypeLD(bits(64) descriptor, integer level)
if descriptor<1:0> == '11' && level == FINAL_LEVEL then

return DescriptorType_Page;
elsif descriptor<1:0> == '11' then

return DescriptorType_Table;
elsif descriptor<1:0> == '01' && level != FINAL_LEVEL then

return DescriptorType_Block;
else

return DescriptorType_Invalid;

Library pseudocode for aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD

// AArch32.DecodeDescriptorTypeSD()
// ================================
// Determine the type of the short-descriptor

SDFType AArch32.DecodeDescriptorTypeSD(bits(32) descriptor, integer level)
if level == 1 && descriptor<1:0> == '01' then

return SDFType_Table;
elsif level == 1 && descriptor<18,1> == '01' then

return SDFType_Section;
elsif level == 1 && descriptor<18,1> == '11' then

return SDFType_Supersection;
elsif level == 2 && descriptor<1:0> == '01' then

return SDFType_LargePage;
elsif level == 2 && descriptor<1:0> == '1x' then

return SDFType_SmallPage;
else

return SDFType_Invalid;

Library pseudocode for aarch32/translation/walk/AArch32.S1IASize

// AArch32.S1IASize()
// ==================
// Retrieve the number of bits containing the input address for stage 1 translation

integer AArch32.S1IASize(bits(3) txsz)
return 32 - UInt(txsz);

Shared Pseudocode Functions Page 2786

Library pseudocode for aarch32/translation/walk/AArch32.S1WalkLD

Shared Pseudocode Functions Page 2787

// AArch32.S1WalkLD()
// ==================
// Traverse stage 1 translation tables in long format to obtain the final descriptor

(FaultRecord, TTWState) AArch32.S1WalkLD(FaultRecord fault, Regime regime,
S1TTWParams walkparams, bits(32) va)

if regime == Regime_EL2 then
ttbr = HTTBR;
txsz = walkparams.t0sz;

else
assert TTBCR.EAE == '1';
varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
if varange == VARange_LOWER then

ttbr = TTBR0;
epd = TTBCR.EPD0;
txsz = walkparams.t0sz;

else
ttbr = TTBR1;
epd = TTBCR.EPD1;
txsz = walkparams.t1sz;

if regime != Regime_EL2 && epd == '1' then
fault.level = 1;
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

// Input Address size
iasize = AArch32.S1IASize(txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;
startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
levels = FINAL_LEVEL - startlevel;

if !IsZero(ttbr<47:40>) then
fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, TTWState UNKNOWN);

FullAddress baseaddress;
baselsb = iasize - (levels*stride + granulebits) + 3;
baseaddress.paspace = if IsSecure() then PAS_Secure else PAS_NonSecure;
baseaddress.address = ZeroExtend(ttbr<39:baselsb>:Zeros(baselsb));

TTWState walkstate;
walkstate.baseaddress = baseaddress;
walkstate.level = startlevel;
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);
walkstate.permissions.ap_table = '00';
walkstate.permissions.xn_table = '0';
walkstate.permissions.pxn_table = '0';

indexmsb = iasize - 1;
bits(64) descriptor;
AddressDescriptor walkaddress;
repeat

fault.level = walkstate.level;
indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
bits(40) index = ZeroExtend(va<indexmsb:indexlsb>:'000');

// VA is needed in the case of reporting an external abort
walkaddress.vaddress = ZeroExtend(va);
walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index);
walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

disablecache = (if regime == Regime_EL2 then HSCTLR.C else SCTLR.C) == '0';
if disablecache then

walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else

Shared Pseudocode Functions Page 2788

walkaddress.memattrs = walkstate.memattrs;

// Shareability of target memory subject to stage 2 translation
// is maintained as input to stage 2.
if (regime == Regime_EL10 && EL2Enabled() &&

(if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then
walkaddress.memattrs.shareability = walkstate.memattrs.shareability;

else
walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);

// If there are two stages of translation, then the first stage table walk addresses
// are themselves subject to translation
if regime == Regime_EL10 && EL2Enabled() then

s2fs1walk = TRUE;
s2acctype = AccType_TTW;
s2aligned = TRUE;
s2write = FALSE;
(s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2fs1walk,

s2acctype, s2aligned, s2write);
// Check for a fault on the stage 2 walk
if s2fault.statuscode != Fault_None then

return (s2fault, TTWState UNKNOWN);

(fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, fault);
else

(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);

if fault.statuscode != Fault_None then
return (fault, TTWState UNKNOWN);

desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

case desctype of
when DescriptorType_Table

if !IsZero(descriptor<47:40>) then
fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12));
if walkstate.baseaddress.paspace == PAS_Secure && descriptor<63> == '1' then

walkstate.baseaddress.paspace = PAS_NonSecure;

if walkparams.hpd == '0' then
walkstate.permissions.xn_table = (walkstate.permissions.xn_table OR

descriptor<60>);
walkstate.permissions.ap_table = (walkstate.permissions.ap_table OR

descriptor<62:61>);
walkstate.permissions.pxn_table = (walkstate.permissions.pxn_table OR

descriptor<59>);

walkstate.level = walkstate.level + 1;
indexmsb = indexlsb - 1;

when DescriptorType_Invalid
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

when DescriptorType_Page, DescriptorType_Block
walkstate.istable = FALSE;

until desctype IN {DescriptorType_Page, DescriptorType_Block};

// Check the output address is inside the supported range
if !IsZero(descriptor<47:40>) then

fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

// Check the access flag
if descriptor<10> == '0' then

fault.statuscode = Fault_AccessFlag;

Shared Pseudocode Functions Page 2789

return (fault, TTWState UNKNOWN);

walkstate.permissions.xn = descriptor<54>;
walkstate.permissions.pxn = descriptor<53>;
walkstate.permissions.ap = descriptor<7:6>:'1';
walkstate.contiguous = descriptor<52>;

walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb));
if walkstate.baseaddress.paspace == PAS_Secure && descriptor<5> == '1' then

walkstate.baseaddress.paspace = PAS_NonSecure;

memattr = descriptor<4:2>;
sh = descriptor<9:8>;
attr = MAIRAttr(UInt(memattr), walkparams.mair);
s1aarch64 = FALSE;
walkstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64);

return (fault, walkstate);

Shared Pseudocode Functions Page 2790

Library pseudocode for aarch32/translation/walk/AArch32.S1WalkSD

Shared Pseudocode Functions Page 2791

// AArch32.S1WalkSD()
// ==================
// Traverse stage 1 translation tables in short format to obtain the final descriptor

(FaultRecord, TTWState) AArch32.S1WalkSD(FaultRecord fault, Regime regime, bits(32) va)
assert TTBCR.EAE == '0';

// Determine correct Translation Table Base Register to use.
n = UInt(TTBCR.N);
if n == 0 || IsZero(va<31:(32-n)>) then

ttb = TTBR0.TTB0:Zeros(7);
pd = TTBCR.PD0;
irgn = TTBR0.IRGN;
rgn = TTBR0.RGN;
s = TTBR0.S;
nos = TTBR0.NOS;

else
n = 0; // TTBR1 translation always treats N as 0
ttb = TTBR1.TTB1:Zeros(7);
pd = TTBCR.PD1;
irgn = TTBR1.IRGN;
rgn = TTBR1.RGN;
s = TTBR1.S;
nos = TTBR1.NOS;

// Check if Translation table walk disabled for translations with this Base register.
if pd == '1' then

fault.level = 1;
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

FullAddress baseaddress;
baseaddress.paspace = if IsSecure() then PAS_Secure else PAS_NonSecure;
baseaddress.address = ZeroExtend(ttb<31:14-n>:Zeros(14-n));

TTWState walkstate;
walkstate.baseaddress = baseaddress;
walkstate.memattrs = WalkMemAttrs(s:nos, irgn, rgn);
walkstate.level = 1;
walkstate.istable = TRUE;

bits(4) domain;
bits(32) descriptor;
AddressDescriptor walkaddress;
repeat

fault.level = walkstate.level;

bits(32) index;
if walkstate.level == 1 then

index = ZeroExtend(va<31-n:20>:'00');
else

index = ZeroExtend(va<19:12>:'00');

walkaddress.vaddress = ZeroExtend(va);
walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index);
walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

if SCTLR.C == '0' then
walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else
walkaddress.memattrs = walkstate.memattrs;

// Shareability of target memory subject to stage 2 translation
// is maintained as input to stage 2.
if (regime == Regime_EL10 && EL2Enabled() &&

(if ELUsingAArch32(EL2) then HCR.VM else HCR_EL2.VM) == '1') then
walkaddress.memattrs.shareability = walkstate.memattrs.shareability;

else
walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);

Shared Pseudocode Functions Page 2792

if regime == Regime_EL10 && EL2Enabled() then
s2fs1walk = TRUE;
s2acctype = AccType_TTW;
s2aligned = TRUE;
s2write = FALSE;
(s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2fs1walk,

s2acctype, s2aligned, s2write);

if s2fault.statuscode != Fault_None then
return (s2fault, TTWState UNKNOWN);

(fault, descriptor) = FetchDescriptor(SCTLR.EE, s2walkaddress, fault);
else

(fault, descriptor) = FetchDescriptor(SCTLR.EE, walkaddress, fault);

if fault.statuscode != Fault_None then
return (fault, TTWState UNKNOWN);

walkstate.sdftype = AArch32.DecodeDescriptorTypeSD(descriptor, walkstate.level);

case walkstate.sdftype of
when SDFType_Invalid

fault.domain = domain;
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

when SDFType_Table
domain = descriptor<8:5>;
ns = descriptor<3>;
pxn = descriptor<2>;

walkstate.baseaddress.address = ZeroExtend(descriptor<31:10>:Zeros(10));
walkstate.level = 2;

when SDFType_SmallPage
nG = descriptor<11>;
s = descriptor<10>;
ap = descriptor<9,5:4>;
tex = descriptor<8:6>;
c = descriptor<3>;
b = descriptor<2>;
xn = descriptor<0>;

walkstate.baseaddress.address = ZeroExtend(descriptor<31:12>:Zeros(12));
walkstate.istable = FALSE;

when SDFType_LargePage
xn = descriptor<15>;
tex = descriptor<14:12>;
nG = descriptor<11>;
s = descriptor<10>;
ap = descriptor<9,5:4>;
c = descriptor<3>;
b = descriptor<2>;

walkstate.baseaddress.address = ZeroExtend(descriptor<31:16>:Zeros(16));
walkstate.istable = FALSE;

when SDFType_Section
ns = descriptor<19>;
nG = descriptor<17>;
s = descriptor<16>;
ap = descriptor<15,11:10>;
tex = descriptor<14:12>;
domain = descriptor<8:5>;
xn = descriptor<4>;
c = descriptor<3>;
b = descriptor<2>;
pxn = descriptor<0>;

Shared Pseudocode Functions Page 2793

walkstate.baseaddress.address = ZeroExtend(descriptor<31:20>:Zeros(20));
walkstate.istable = FALSE;

when SDFType_Supersection
ns = descriptor<19>;
nG = descriptor<17>;
s = descriptor<16>;
ap = descriptor<15,11:10>;
tex = descriptor<14:12>;
xn = descriptor<4>;
c = descriptor<3>;
b = descriptor<2>;
pxn = descriptor<0>;
domain = '0000';

walkstate.baseaddress.address = ZeroExtend(descriptor<8:5,23:20,31:24>:Zeros(24));
walkstate.istable = FALSE;

until walkstate.sdftype != SDFType_Table;

if SCTLR.AFE == '1' && ap<0> == '0' then
fault.domain = domain;
fault.statuscode = Fault_AccessFlag;
return (fault, TTWState UNKNOWN);

// Decode the TEX, C, B and S bits to produce target memory attributes
if SCTLR.TRE == '1' then

walkstate.memattrs = AArch32.RemappedTEXDecode(tex, c, b, s);
elsif RemapRegsHaveResetValues() then

walkstate.memattrs = AArch32.DefaultTEXDecode(tex, c, b, s);
else

walkstate.memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

walkstate.permissions.ap = ap;
walkstate.permissions.xn = xn;
walkstate.permissions.pxn = pxn;
walkstate.domain = domain;

if IsSecure() && ns == '0' then
walkstate.baseaddress.paspace = PAS_Secure;

else
walkstate.baseaddress.paspace = PAS_NonSecure;

return (fault, walkstate);

Library pseudocode for aarch32/translation/walk/AArch32.S2IASize

// AArch32.S2IASize()
// ==================
// Retrieve the number of bits containing the input address for stage 2 translation

integer AArch32.S2IASize(bits(4) t0sz)
return 32 - SInt(t0sz);

Library pseudocode for aarch32/translation/walk/AArch32.S2StartLevel

// AArch32.S2StartLevel()
// ======================
// Determine the initial lookup level when performing a stage 2 translation
// table walk

integer AArch32.S2StartLevel(bits(2) sl0)
return 2 - UInt(sl0);

Shared Pseudocode Functions Page 2794

Library pseudocode for aarch32/translation/walk/AArch32.S2Walk

Shared Pseudocode Functions Page 2795

// AArch32.S2Walk()
// ================
// Traverse stage 2 translation tables in long format to obtain the final descriptor

(FaultRecord, TTWState) AArch32.S2Walk(FaultRecord fault, S2TTWParams walkparams,
AddressDescriptor ipa)

if walkparams.sl0 == '1x' || AArch32.S2InconsistentSL(walkparams) then
fault.statuscode = Fault_Translation;
fault.level = 1;
return (fault, TTWState UNKNOWN);

// Input Address size
iasize = AArch32.S2IASize(walkparams.t0sz);
startlevel = AArch32.S2StartLevel(walkparams.sl0);
levels = FINAL_LEVEL - startlevel;
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;

if !IsZero(VTTBR<47:40>) then
fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, TTWState UNKNOWN);

FullAddress baseaddress;
baselsb = iasize - (levels*stride + granulebits) + 3;
baseaddress.paspace = PAS_NonSecure;
baseaddress.address = ZeroExtend(VTTBR<39:baselsb>:Zeros(baselsb));

TTWState walkstate;
walkstate.baseaddress = baseaddress;
walkstate.level = startlevel;
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,

walkparams.orgn);

indexmsb = iasize - 1;
bits(64) descriptor;
AddressDescriptor walkaddress;
repeat

fault.level = walkstate.level;

indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
bits(40) index = ZeroExtend(ipa.paddress.address<indexmsb:indexlsb>:'000');

// Update virtual address for abort functions
walkaddress.vaddress = ipa.vaddress;
walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index);
walkaddress.paddress.paspace = walkstate.baseaddress.paspace;
if HCR2.CD == '1' then

walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else
walkaddress.memattrs = walkstate.memattrs;

walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);

(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);

if fault.statuscode != Fault_None then
return (fault, TTWState UNKNOWN);

desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

case desctype of
when DescriptorType_Table

if !IsZero(descriptor<47:40>) then
fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

Shared Pseudocode Functions Page 2796

walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12));
walkstate.level = walkstate.level + 1;
indexmsb = indexlsb - 1;

when DescriptorType_Invalid
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

when DescriptorType_Page, DescriptorType_Block
walkstate.istable = FALSE;

until desctype IN {DescriptorType_Page, DescriptorType_Block};

// Check the output address is inside the supported range
if !IsZero(descriptor<47:40>) then

fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

// Check the access flag
if descriptor<10> == '0' then

fault.statuscode = Fault_AccessFlag;
return (fault, TTWState UNKNOWN);

// Unpack the descriptor into address and upper and lower block attributes
walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb));

walkstate.permissions.s2ap = descriptor<7:6>;
walkstate.permissions.s2xn = descriptor<54>;
if HaveExtendedExecuteNeverExt() then

walkstate.permissions.s2xnx = descriptor<53>;
else

walkstate.permissions.s2xnx = '0';

memattr = descriptor<5:2>;
sh = descriptor<9:8>;
walkstate.memattrs = S2DecodeMemAttrs(memattr, sh);
walkstate.contiguous = descriptor<52>;

return (fault, walkstate);

Library pseudocode for aarch32/translation/walk/AArch32.TranslationSizeSD

// AArch32.TranslationSizeSD()
// ===========================
// Determine the size of the translation

integer AArch32.TranslationSizeSD(SDFType sdftype)
case sdftype of

when SDFType_SmallPage tsize = 12;
when SDFType_LargePage tsize = 16;
when SDFType_Section tsize = 20;
when SDFType_Supersection tsize = 24;

return tsize;

Library pseudocode for aarch32/translation/walk/RemapRegsHaveResetValues

boolean RemapRegsHaveResetValues();

Shared Pseudocode Functions Page 2797

Library pseudocode for aarch32/translation/walkparams/AArch32.GetS1TTWParams

// AArch32.GetS1TTWParams()
// ========================
// Returns stage 1 translation table walk parameters from respective controlling
// system registers.

S1TTWParams AArch32.GetS1TTWParams(Regime regime, bits(32) va)
S1TTWParams walkparams;

case regime of
when Regime_EL2 walkparams = AArch32.S1TTWParamsPL2();
when Regime_EL10 walkparams = AArch32.S1TTWParamsPL10(va);
when Regime_EL30 walkparams = AArch32.S1TTWParamsPL10(va);

return walkparams;

Library pseudocode for aarch32/translation/walkparams/AArch32.GetS2TTWParams

// AArch32.GetS2TTWParams()
// ========================
// Gather walk parameters for stage 2 translation

S2TTWParams AArch32.GetS2TTWParams()
S2TTWParams walkparams;

walkparams.tgx = TGx_4KB;
walkparams.s = VTCR.S;
walkparams.t0sz = VTCR.T0SZ;
walkparams.sl0 = VTCR.SL0;
walkparams.irgn = VTCR.IRGN0;
walkparams.orgn = VTCR.ORGN0;
walkparams.sh = VTCR.SH0;
walkparams.ee = HSCTLR.EE;
walkparams.ptw = HCR.PTW;
walkparams.vm = HCR.VM OR HCR.DC;

// VTCR.S must match VTCR.T0SZ[3]
if walkparams.s != walkparams.t0sz<3> then

(-, walkparams.t0sz) = ConstrainUnpredictableBits(Unpredictable_RESVTCRS);

return walkparams;

Library pseudocode for aarch32/translation/walkparams/AArch32.GetVARange

// AArch32.GetVARange()
// ====================
// Select the translation base address for stage 1 long-descriptor walks

VARange AArch32.GetVARange(bits(32) va, bits(3) t0sz, bits(3) t1sz)
// Lower range Input Address size
lo_iasize = AArch32.S1IASize(t0sz);
// Upper range Input Address size
up_iasize = AArch32.S1IASize(t1sz);

if t1sz == '000' && t0sz == '000' then
return VARange_LOWER;

elsif t1sz == '000' then
return if IsZero(va<31:lo_iasize>) then VARange_LOWER else VARange_UPPER;

elsif t0sz == '000' then
return if IsOnes(va<31:up_iasize>) then VARange_UPPER else VARange_LOWER;

elsif IsZero(va<31:lo_iasize>) then
return VARange_LOWER;

elsif IsOnes(va<31:up_iasize>) then
return VARange_UPPER;

else
// Will be reported as a Translation Fault
return VARange UNKNOWN;

Shared Pseudocode Functions Page 2798

Library pseudocode for aarch32/translation/walkparams/AArch32.S1TTWParamsEL2

// AArch32.S1TTWParamsEL2()
// ========================
// Gather stage 1 translation table walk parameters for EL2 regime

S1TTWParams AArch32.S1TTWParamsPL2()
S1TTWParams walkparams;

walkparams.tgx = TGx_4KB;
walkparams.t0sz = HTCR.T0SZ;
walkparams.irgn = HTCR.SH0;
walkparams.orgn = HTCR.IRGN0;
walkparams.sh = HTCR.ORGN0;
walkparams.hpd = if AArch32.HaveHPDExt() then HTCR.HPD else '0';
walkparams.ee = HSCTLR.EE;
walkparams.wxn = HSCTLR.WXN;
if HaveTrapLoadStoreMultipleDeviceExt() then

walkparams.ntlsmd = HSCTLR.nTLSMD;
else

walkparams.ntlsmd = '1';

walkparams.mair = HMAIR1:HMAIR0;

return walkparams;

Library pseudocode for aarch32/translation/walkparams/AArch32.S1TTWParamsPL10

// AArch32.S1TTWParamsPL10()
// =========================
// Gather stage 1 translation table walk parameters for EL3&0 regime as well as
// EL1&0 regime (with EL2 enabled or disabled)

S1TTWParams AArch32.S1TTWParamsPL10(bits(32) va)
assert TTBCR.EAE == '1';
S1TTWParams walkparams;

walkparams.t0sz = TTBCR.T0SZ;
walkparams.t1sz = TTBCR.T1SZ;
walkparams.ee = SCTLR.EE;
walkparams.wxn = SCTLR.WXN;
walkparams.uwxn = SCTLR.UWXN;
if HaveTrapLoadStoreMultipleDeviceExt() then

walkparams.ntlsmd = SCTLR.nTLSMD;
else

walkparams.ntlsmd = '1';

walkparams.mair = MAIR1:MAIR0;
walkparams.sif = if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF;

varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
if varange == VARange_LOWER then

walkparams.sh = TTBCR.SH0;
walkparams.irgn = TTBCR.IRGN0;
walkparams.orgn = TTBCR.ORGN0;
if AArch32.HaveHPDExt() then

walkparams.hpd = TTBCR.T2E AND TTBCR2.HPD0;
else

walkparams.hpd = '0';
else

walkparams.sh = TTBCR.SH1;
walkparams.irgn = TTBCR.IRGN1;
walkparams.orgn = TTBCR.ORGN1;
if AArch32.HaveHPDExt() then

walkparams.hpd = TTBCR.T2E AND TTBCR2.HPD1;
else

walkparams.hpd = '0';

return walkparams;

Shared Pseudocode Functions Page 2799

Library pseudocode for aarch64/debug/breakpoint/AArch64.BreakpointMatch

// AArch64.BreakpointMatch()
// =========================
// Breakpoint matching in an AArch64 translation regime.

boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress, AccType acctype, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert n < NumBreakpointsImplemented();

enabled = DBGBCR_EL1[n].E == '1';
ispriv = PSTATE.EL != EL0;
linked = DBGBCR_EL1[n].BT == '0x01';
isbreakpnt = TRUE;
linked_to = FALSE;

state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
linked, DBGBCR_EL1[n].LBN, isbreakpnt, acctype, ispriv);

value_match = AArch64.BreakpointValueMatch(n, vaddress, linked_to);

if HaveAArch32() && size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to);
if !value_match && match_i then

value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);
if vaddress<1> == '1' && DBGBCR_EL1[n].BAS == '1111' then

// The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
// UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
// at the address DBGBVR_EL1[n]+2.
if value_match then value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

match = value_match && state_match && enabled;

return match;

Shared Pseudocode Functions Page 2800

Library pseudocode for aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

Shared Pseudocode Functions Page 2801

// AArch64.BreakpointValueMatch()
// ==============================

boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean linked_to)

// "n" is the identity of the breakpoint unit to match against.
// "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
// matching breakpoints.
// "linked_to" is TRUE if this is a call from StateMatch for linking.

// If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
// no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n >= NumBreakpointsImplemented() then

(c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1, Unpredictable_BPNOTIMPL);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return FALSE;

// If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
// call from StateMatch for linking).
if DBGBCR_EL1[n].E == '0' then return FALSE;

context_aware = (n >= (NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented()));

// If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
dbgtype = DBGBCR_EL1[n].BT;

if ((dbgtype IN {'011x','11xx'} && !HaveVirtHostExt() && !HaveV82Debug()) || // Context matching
dbgtype == '010x' || // Reserved
(dbgtype != '0x0x' && !context_aware) || // Context matching
(dbgtype == '1xxx' && !HaveEL(EL2))) then // EL2 extension

(c, dbgtype) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return FALSE;
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

// Determine what to compare against.
match_addr = (dbgtype == '0x0x');
match_vmid = (dbgtype == '10xx');
match_cid = (dbgtype == '001x');
match_cid1 = (dbgtype IN { '101x', 'x11x'});
match_cid2 = (dbgtype == '11xx');
linked = (dbgtype == 'xxx1');

// If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
// VMID and/or context ID match, of if not context-aware. The above assertions mean that the
// code can just test for match_addr == TRUE to confirm all these things.
if linked_to && (!linked || match_addr) then return FALSE;

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !linked_to && linked && !match_addr then return FALSE;

// Do the comparison.
if match_addr then

byte = UInt(vaddress<1:0>);
if HaveAArch32() then

// T32 instructions can be executed at EL0 in an AArch64 translation regime.
assert byte IN {0,2}; // "vaddress" is halfword aligned
byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');

else
assert byte == 0; // "vaddress" is word aligned
byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1

// If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
// of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
// included in the match.
// If 'vaddress' is outside of the current virtual address space, then the access
// generates a Translation fault.
integer top = AArch64.VAMax();
if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then

if ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS) then
top = 63;

Shared Pseudocode Functions Page 2802

BVR_match = (vaddress<top:2> == DBGBVR_EL1[n]<top:2>) && byte_select_match;

elsif match_cid then
if IsInHost() then

BVR_match = (CONTEXTIDR_EL2<31:0> == DBGBVR_EL1[n]<31:0>);
else

BVR_match = (PSTATE.EL IN {EL0, EL1} && CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);
elsif match_cid1 then

BVR_match = (PSTATE.EL IN {EL0, EL1} && !IsInHost() && CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);
if match_vmid then

if !Have16bitVMID() || VTCR_EL2.VS == '0' then
vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);

else
vmid = VTTBR_EL2.VMID;
bvr_vmid = DBGBVR_EL1[n]<47:32>;

BXVR_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
!IsInHost() &&
vmid == bvr_vmid);

elsif match_cid2 then
BXVR_match = (PSTATE.EL != EL3 && (HaveVirtHostExt() || HaveV82Debug()) &&

EL2Enabled() &&
DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2<31:0>);

bvr_match_valid = (match_addr || match_cid || match_cid1);
bxvr_match_valid = (match_vmid || match_cid2);

match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

return match;

Shared Pseudocode Functions Page 2803

Library pseudocode for aarch64/debug/breakpoint/AArch64.StateMatch

// AArch64.StateMatch()
// ====================
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
boolean isbreakpnt, AccType acctype, boolean ispriv)

// "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
// "linked" is TRUE if this is a linked breakpoint/watchpoint type.
// "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

// If parameters are set to a reserved type, behaves as either disabled or a defined type
(c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
if c == Constraint_DISABLED then return FALSE;
// Otherwise the HMC,SSC,PxC values are either valid or the values returned by
// CheckValidStateMatch are valid.

EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';
EL2_match = HaveEL(EL2) && ((HMC == '1' && (SSC:PxC != '1000')) || SSC == '11');
EL1_match = PxC<0> == '1';
EL0_match = PxC<1> == '1';

if HaveNV2Ext() && acctype == AccType_NV2REGISTER && !isbreakpnt then
priv_match = EL2_match;

elsif !ispriv && !isbreakpnt then
priv_match = EL0_match;

else
case PSTATE.EL of

when EL3 priv_match = EL3_match;
when EL2 priv_match = EL2_match;
when EL1 priv_match = EL1_match;
when EL0 priv_match = EL0_match;

case SSC of
when '00' security_state_match = TRUE; // Both
when '01' security_state_match = !IsSecure(); // Non-secure only
when '10' security_state_match = IsSecure(); // Secure only
when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure only

if linked then
// "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
// it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
// UNKNOWN breakpoint that is context-aware.
lbn = UInt(LBN);
first_ctx_cmp = NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented();
last_ctx_cmp = NumBreakpointsImplemented() - 1;
if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then

(c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp, Unpredictable_BPNOTCTXCMP);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE linked = FALSE; // No linking
// Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

if linked then
vaddress = bits(64) UNKNOWN;
linked_to = TRUE;
linked_match = AArch64.BreakpointValueMatch(lbn, vaddress, linked_to);

return priv_match && security_state_match && (!linked || linked_match);

Shared Pseudocode Functions Page 2804

Library pseudocode for aarch64/debug/enables/AArch64.GenerateDebugExceptions

// AArch64.GenerateDebugExceptions()
// =================================

boolean AArch64.GenerateDebugExceptions()
return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

Library pseudocode for aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

// AArch64.GenerateDebugExceptionsFrom()
// =====================================

boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)

if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
return FALSE;

route_to_el2 = HaveEL(EL2) && (!secure || IsSecureEL2Enabled()) && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');
target = (if route_to_el2 then EL2 else EL1);
if HaveEL(EL3) && secure then

enabled = MDCR_EL3.SDD == '0';
if from == EL0 && ELUsingAArch32(EL1) then

enabled = enabled || SDER32_EL3.SUIDEN == '1';
else

enabled = TRUE;

if from == target then
enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';

else
enabled = enabled && UInt(target) > UInt(from);

return enabled;

Library pseudocode for aarch64/debug/pmu/AArch64.CheckForPMUOverflow

// AArch64.CheckForPMUOverflow()
// =============================
// Signal Performance Monitors overflow IRQ and CTI overflow events

boolean AArch64.CheckForPMUOverflow()

pmuirq = PMCR_EL0.E == '1' && PMINTENSET_EL1<31> == '1' && PMOVSSET_EL0<31> == '1';
for n = 0 to NumEventCountersImplemented() - 1

if HaveEL(EL2) then
E = (if n < UInt(MDCR_EL2.HPMN) then PMCR_EL0.E else MDCR_EL2.HPME);

else
E = PMCR_EL0.E;

if E == '1' && PMINTENSET_EL1<n> == '1' && PMOVSSET_EL0<n> == '1' then pmuirq = TRUE;

SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

// The request remains set until the condition is cleared. (For example, an interrupt handler
// or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

return pmuirq;

Shared Pseudocode Functions Page 2805

Library pseudocode for aarch64/debug/pmu/AArch64.CountEvents

Shared Pseudocode Functions Page 2806

// AArch64.CountEvents()
// =====================
// Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

boolean AArch64.CountEvents(integer n)
assert n == 31 || n < NumEventCountersImplemented();

// Event counting is disabled in Debug state
debug = Halted();

// In Non-secure state, some counters are reserved for EL2
if HaveEL(EL2) then

resvd_for_el2 = n >= UInt(MDCR_EL2.HPMN) && n != 31;
else

resvd_for_el2 = FALSE;

// Main enable controls
E = if resvd_for_el2 then MDCR_EL2.HPME else PMCR_EL0.E;
enabled = E == '1' && PMCNTENSET_EL0<n> == '1';

// Event counting is allowed unless it is prohibited by any rule below
prohibited = FALSE;
// Event counting in Secure state is prohibited if all of:
// * EL3 is implemented
// * MDCR_EL3.SPME == 0, and either:
// - FEAT_PMUv3p7 is not implemented
// - MDCR_EL3.MPMX == 0
if HaveEL(EL3) && IsSecure() then

if HavePMUv3p7() then
prohibited = MDCR_EL3.<SPME,MPMX> == '00';

else
prohibited = MDCR_EL3.SPME == '0';

// Event counting at EL3 is prohibited if all of:
// * FEAT_PMUv3p7 is implemented
// * One of the following is true:
// - MDCR_EL3.SPME == 0
// - PMNx is not reserved for EL2
// * MDCR_EL3.MPMX == 1
if !prohibited && PSTATE.EL == EL3 && HavePMUv3p7() then

prohibited = MDCR_EL3.MPMX == '1' && (MDCR_EL3.SPME == '0' || !resvd_for_el2);

// Event counting at EL2 is prohibited if all of:
// * The HPMD Extension is implemented
// * PMNx is not reserved for EL2
// * MDCR_EL2.HPMD == 1
if !prohibited && PSTATE.EL == EL2 && HaveHPMDExt() && !resvd_for_el2 then

prohibited = MDCR_EL2.HPMD == '1';

// The IMPLEMENTATION DEFINED authentication interface might override software
if prohibited && !HaveNoSecurePMUDisableOverride() then

prohibited = !ExternalSecureNoninvasiveDebugEnabled();

// PMCR_EL0.DP disables the cycle counter when event counting is prohibited
if enabled && prohibited && n == 31 then

enabled = PMCR_EL0.DP == '0';

// If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
// This is not overridden by PMCR_EL0.DP.
if Havev85PMU() && n == 31 then

if HaveEL(EL3) && IsSecure() && MDCR_EL3.SCCD == '1' then
prohibited = TRUE;

if PSTATE.EL == EL2 && MDCR_EL2.HCCD == '1' then
prohibited = TRUE;

// If FEAT_PMUv3p7 is implemented, cycle counting an be prohibited at EL3.
// This is not overriden by PMCR_EL0.DP.
if HavePMUv3p7() && n == 31 then

if PSTATE.EL == EL3 && MDCR_EL3.MCCD == '1' then
prohibited = TRUE;

Shared Pseudocode Functions Page 2807

// Event counting might be frozen
frozen = FALSE;

// If FEAT_PMUv3p7 is implemented, event counting can be frozen
if HavePMUv3p7() && n != 31 then

ovflw = PMOVSCLR_EL0<NumEventCountersImplemented()-1:0>;
if resvd_for_el2 then

FZ = MDCR_EL2.HPMFZO;
ovflw<UInt(MDCR_EL2.HPMN)-1:0> = Zeros();

else
FZ = PMCR_EL0.FZO;
if HaveEL(EL2) then

ovflw<NumEventCountersImplemented()-1:UInt(MDCR_EL2.HPMN)> = Zeros();
frozen = FZ == '1' && !IsZero(ovflw);

// Event counting can be filtered by the {P, U, NSK, NSU, NSH, M, SH} bits
filter = if n == 31 then PMCCFILTR_EL0<31:0> else PMEVTYPER_EL0[n]<31:0>;

P = filter<31>;
U = filter<30>;
NSK = if HaveEL(EL3) then filter<29> else '0';
NSU = if HaveEL(EL3) then filter<28> else '0';
NSH = if HaveEL(EL2) then filter<27> else '0';
M = if HaveEL(EL3) then filter<26> else '0';
SH = if HaveEL(EL3) && HaveSecureEL2Ext() then filter<24> else '0';

case PSTATE.EL of
when EL0 filtered = if IsSecure() then U == '1' else U != NSU;
when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
when EL2 filtered = if IsSecure() then NSH == SH else NSH == '0';
when EL3 filtered = M != P;

return !debug && enabled && !prohibited && !filtered && !frozen;

Library pseudocode for aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess

// CheckProfilingBufferAccess()
// ============================

SysRegAccess CheckProfilingBufferAccess()
if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then

return SysRegAccess_UNDEFINED;

if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.E2PB<0> != '1' then
return SysRegAccess_TrapToEL2;

if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
return SysRegAccess_TrapToEL3;

return SysRegAccess_OK;

Library pseudocode for aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess

// CheckStatisticalProfilingAccess()
// =================================

SysRegAccess CheckStatisticalProfilingAccess()
if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then

return SysRegAccess_UNDEFINED;

if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.TPMS == '1' then
return SysRegAccess_TrapToEL2;

if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
return SysRegAccess_TrapToEL3;

return SysRegAccess_OK;

Shared Pseudocode Functions Page 2808

Library pseudocode for aarch64/debug/statisticalprofiling/CollectContextIDR1

// CollectContextIDR1()
// ====================

boolean CollectContextIDR1()
if !StatisticalProfilingEnabled() then return FALSE;
if PSTATE.EL == EL2 then return FALSE;
if EL2Enabled() && HCR_EL2.TGE == '1' then return FALSE;
return PMSCR_EL1.CX == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/CollectContextIDR2

// CollectContextIDR2()
// ====================

boolean CollectContextIDR2()
if !StatisticalProfilingEnabled() then return FALSE;
if !EL2Enabled() then return FALSE;
return PMSCR_EL2.CX == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/CollectPhysicalAddress

// CollectPhysicalAddress()
// ========================

boolean CollectPhysicalAddress()
if !StatisticalProfilingEnabled() then return FALSE;
(secure, el) = ProfilingBufferOwner();
if ((!secure && HaveEL(EL2)) || IsSecureEL2Enabled()) then

return PMSCR_EL2.PA == '1' && (el == EL2 || PMSCR_EL1.PA == '1');
else

return PMSCR_EL1.PA == '1';

Shared Pseudocode Functions Page 2809

Library pseudocode for aarch64/debug/statisticalprofiling/CollectTimeStamp

// CollectTimeStamp()
// ==================

TimeStamp CollectTimeStamp()

if !StatisticalProfilingEnabled() then return TimeStamp_None;
(-, el) = ProfilingBufferOwner();

if el == EL2 then
if PMSCR_EL2.TS == '0' then return TimeStamp_None;

else
if PMSCR_EL1.TS == '0' then return TimeStamp_None;

if !HaveECVExt() then
PCT_el1 = '0':PMSCR_EL1.PCT<0>; // PCT<1> is RES0

else
PCT_el1 = PMSCR_EL1.PCT;
if PCT_el1 == '10' then

// Reserved value
(-, PCT_el1) = ConstrainUnpredictableBits(Unpredictable_PMSCR_PCT);

if EL2Enabled() then
if !HaveECVExt() then

PCT_el2 = '0':PMSCR_EL2.PCT<0>; // PCT<1> is RES0
else

PCT_el2 = PMSCR_EL2.PCT;
if PCT_el2 == '10' then

// Reserved value
(-, PCT_el2) = ConstrainUnpredictableBits(Unpredictable_PMSCR_PCT);

case PCT_el2 of
when '00'

return TimeStamp_Virtual;
when '01'

if el == EL2 then return TimeStamp_Physical;
when '11'

assert HaveECVExt(); // FEAT_ECV must be implemented
if el == EL1 && PCT_el1 == '00' then

return TimeStamp_Virtual;
else

return TimeStamp_OffsetPhysical;
otherwise

Unreachable();

case PCT_el1 of
when '00' return TimeStamp_Virtual;
when '01' return TimeStamp_Physical;
when '11'

assert HaveECVExt(); // FEAT_ECV must be implemented
return TimeStamp_OffsetPhysical;

otherwise Unreachable();

Library pseudocode for aarch64/debug/statisticalprofiling/OpType

enumeration OpType {
OpType_Load, // Any memory-read operation other than atomics, compare-and-swap, and swap
OpType_Store, // Any memory-write operation, including atomics without return
OpType_LoadAtomic, // Atomics with return, compare-and-swap and swap
OpType_Branch, // Software write to the PC
OpType_Other // Any other class of operation
};

Shared Pseudocode Functions Page 2810

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

// ProfilingBufferEnabled()
// ========================

boolean ProfilingBufferEnabled()
if !HaveStatisticalProfiling() then return FALSE;
(secure, el) = ProfilingBufferOwner();
non_secure_bit = if secure then '0' else '1';
return (!ELUsingAArch32(el) && non_secure_bit == SCR_EL3.NS &&

PMBLIMITR_EL1.E == '1' && PMBSR_EL1.S == '0');

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingBufferOwner

// ProfilingBufferOwner()
// ======================

(boolean, bits(2)) ProfilingBufferOwner()
secure = if HaveEL(EL3) then (MDCR_EL3.NSPB<1> == '0') else IsSecure();
el = if HaveEL(EL2) && (!secure || IsSecureEL2Enabled()) && MDCR_EL2.E2PB == '00' then EL2 else EL1;
return (secure, el);

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier

// Barrier to ensure that all existing profiling data has been formatted, and profiling buffer
// addresses have been translated such that writes to the profiling buffer have been initiated.
// A following DSB completes when writes to the profiling buffer have completed.
ProfilingSynchronizationBarrier();

Shared Pseudocode Functions Page 2811

Library pseudocode for aarch64/debug/statisticalprofiling/SPECollectRecord

// SPECollectRecord()
// ==================
// Returns TRUE if the sampled class of instructions or operations, as
// determined by PMSFCR_EL1, are recorded and FALSE otherwise.

boolean SPECollectRecord(bits(64) events, integer total_latency, OpType optype)
assert StatisticalProfilingEnabled();

bits(64) mask = 0xAA<63:0>; // Bits [7,5,3,1]
if HaveSVE() then mask<18:17> = Ones(); // Predicate flags
if HaveStatisticalProfilingv1p1() then mask<11> = '1'; // Alignment Flag
if HaveStatisticalProfilingv1p2() then mask<6> = '1'; // Not taken flag
mask<63:48> = bits(16) IMPLEMENTATION_DEFINED;
mask<31:24> = bits(8) IMPLEMENTATION_DEFINED;
mask<15:12> = bits(4) IMPLEMENTATION_DEFINED;

// Check for UNPREDICTABLE case
if (HaveStatisticalProfilingv1p2() && PMSFCR_EL1.<FnE,FE> == '11' &&

!IsZero(PMSEVFR_EL1 AND PMSNEVFR_EL1 AND mask)) then
if ConstrainUnpredictableBool(Unpredictable_BADPMSFCR) then

return FALSE;
else

// Filtering by event
if PMSFCR_EL1.FE == '1' && !IsZero(PMSEVFR_EL1) then

e = events AND mask;
m = PMSEVFR_EL1 AND mask;
if !IsZero(NOT(e) AND m) then return FALSE;

// Filtering by inverse event
if (HaveStatisticalProfilingv1p2() && PMSFCR_EL1.FnE == '1' &&

!IsZero(PMSNEVFR_EL1)) then
e = events AND mask;
m = PMSNEVFR_EL1 AND mask;
if !IsZero(e AND m) then return FALSE;

// Filtering by type
if PMSFCR_EL1.FT == '1' && !IsZero(PMSFCR_EL1.<B,LD,ST>) then

case optype of
when OpType_Branch

if PMSFCR_EL1.B == '0' then return FALSE;
when OpType_Load

if PMSFCR_EL1.LD == '0' then return FALSE;
when OpType_Store

if PMSFCR_EL1.ST == '0' then return FALSE;
when OpType_LoadAtomic

if PMSFCR_EL1.<LD,ST> == '00' then return FALSE;
otherwise

return FALSE;

// Filtering by latency
if PMSFCR_EL1.FL == '1' && !IsZero(PMSLATFR_EL1.MINLAT) then

if total_latency < UInt(PMSLATFR_EL1.MINLAT) then
return FALSE;

// Check for UNPREDICTABLE cases
if ((PMSFCR_EL1.FE == '1' && IsZero(PMSEVFR_EL1 AND mask)) ||

(PMSFCR_EL1.FT == '1' && IsZero(PMSFCR_EL1.<B,LD,ST>)) ||
(PMSFCR_EL1.FL == '1' && IsZero(PMSLATFR_EL1.MINLAT))) then
return ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

if (HaveStatisticalProfilingv1p2() &&
((PMSFCR_EL1.FnE == '1' && IsZero(PMSNEVFR_EL1 AND mask)) ||
(PMSFCR_EL1.<FnE,FE> == '11' &&

!IsZero(PMSEVFR_EL1 AND PMSNEVFR_EL1 AND mask)))) then
return ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

return TRUE;

Shared Pseudocode Functions Page 2812

Library pseudocode for aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled

// StatisticalProfilingEnabled()
// =============================

boolean StatisticalProfilingEnabled()
if !HaveStatisticalProfiling() || UsingAArch32() || !ProfilingBufferEnabled() then

return FALSE;

in_host = EL2Enabled() && HCR_EL2.TGE == '1';
(secure, el) = ProfilingBufferOwner();
if UInt(el) < UInt(PSTATE.EL) || secure != IsSecure() || (in_host && el == EL1) then

return FALSE;

case PSTATE.EL of
when EL3 Unreachable();
when EL2 spe_bit = PMSCR_EL2.E2SPE;
when EL1 spe_bit = PMSCR_EL1.E1SPE;
when EL0 spe_bit = (if in_host then PMSCR_EL2.E0HSPE else PMSCR_EL1.E0SPE);

return spe_bit == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/SysRegAccess

enumeration SysRegAccess { SysRegAccess_OK,
SysRegAccess_UNDEFINED,
SysRegAccess_TrapToEL1,
SysRegAccess_TrapToEL2,
SysRegAccess_TrapToEL3 };

Library pseudocode for aarch64/debug/statisticalprofiling/TimeStamp

enumeration TimeStamp {
TimeStamp_None, // No timestamp
TimeStamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
TimeStamp_Physical, // Physical counter value with no offset
TimeStamp_OffsetPhysical, // Physical counter value minus CNTPOFF_EL2
TimeStamp_Virtual }; // Physical counter value minus CNTVOFF_EL2

Shared Pseudocode Functions Page 2813

Library pseudocode for aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

// AArch64.TakeExceptionInDebugState()
// ===================================
// Take an exception in Debug state to an Exception level using AArch64.

AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

if HaveIESB() then
sync_errors = SCTLR[target_el].IESB == '1';
if HaveDoubleFaultExt() then

sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
// SCTLR[].IESB and/or SCR_EL3.NMEA (if applicable) might be ignored in Debug state.
if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

sync_errors = FALSE;
else

sync_errors = FALSE;

SynchronizeContext();

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero
from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(target_el);

AArch64.ReportException(exception, target_el);

PSTATE.EL = target_el;
PSTATE.nRW = '0';
PSTATE.SP = '1';

SPSR[] = bits(64) UNKNOWN;
ELR[] = bits(64) UNKNOWN;

// PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
PSTATE.IL = '0';
if from_32 then // Coming from AArch32

PSTATE.IT = '00000000';
PSTATE.T = '0'; // PSTATE.J is RES0

if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
SCTLR[].SPAN == '0') then
PSTATE.PAN = '1';

if HaveUAOExt() then PSTATE.UAO = '0';
if HaveBTIExt() then PSTATE.BTYPE = '00';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
if HaveMTEExt() then PSTATE.TCO = '1';

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(64) UNKNOWN;

EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

if sync_errors then
SynchronizeErrors();

EndOfInstruction();

Shared Pseudocode Functions Page 2814

Library pseudocode for aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

// AArch64.WatchpointByteMatch()
// =============================

boolean AArch64.WatchpointByteMatch(integer n, AccType acctype, bits(64) vaddress)

integer top = AArch64.VAMax();
bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR_EL1[n].MASK);

// If DBGWCR_EL1[n].MASK is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
// DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
else

LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then

(c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

if mask > bottom then
// If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
// of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
// included in the match.
if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then

if ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS) then
top = 63;

WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then

WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);
else

WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

return WVR_match && byte_select_match;

Shared Pseudocode Functions Page 2815

Library pseudocode for aarch64/debug/watchpoint/AArch64.WatchpointMatch

// AArch64.WatchpointMatch()
// =========================
// Watchpoint matching in an AArch64 translation regime.

boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
AccType acctype, boolean iswrite)

assert !ELUsingAArch32(S1TranslationRegime());
assert n < NumWatchpointsImplemented();

// "ispriv" is:
// * FALSE for all loads, stores, and atomic operations executed at EL0.
// * FALSE if the access is unprivileged.
// * TRUE for all other loads, stores, and atomic operations.

enabled = DBGWCR_EL1[n].E == '1';
linked = DBGWCR_EL1[n].WT == '1';
isbreakpnt = FALSE;

state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
linked, DBGWCR_EL1[n].LBN, isbreakpnt, acctype, ispriv);

ls_match = FALSE;
if acctype == AccType_ATOMICRW then

ls_match = (DBGWCR_EL1[n].LSC != '00');
else

ls_match = (DBGWCR_EL1[n].LSC<(if iswrite then 1 else 0)> == '1');

value_match = FALSE;
for byte = 0 to size - 1

value_match = value_match || AArch64.WatchpointByteMatch(n, acctype, vaddress + byte);

return value_match && state_match && ls_match && enabled;

Library pseudocode for aarch64/exceptions/aborts/AArch64.Abort

// AArch64.Abort()
// ===============
// Abort and Debug exception handling in an AArch64 translation regime.

AArch64.Abort(bits(64) vaddress, FaultRecord fault)

if IsDebugException(fault) then
if fault.acctype == AccType_IFETCH then

if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
AArch64.VectorCatchException(fault);

else
AArch64.BreakpointException(fault);

else
AArch64.WatchpointException(vaddress, fault);

elsif fault.acctype == AccType_IFETCH then
AArch64.InstructionAbort(vaddress, fault);

else
AArch64.DataAbort(vaddress, fault);

Shared Pseudocode Functions Page 2816

Library pseudocode for aarch64/exceptions/aborts/AArch64.AbortSyndrome

// AArch64.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort and Watchpoint exceptions
// from an AArch64 translation regime.

ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(64) vaddress)
exception = ExceptionSyndrome(exceptype);

d_side = exceptype IN {Exception_DataAbort, Exception_NV2DataAbort, Exception_Watchpoint, Exception_NV2Watchpoint};

(exception.syndrome, exception.syndrome2) = AArch64.FaultSyndrome(d_side, fault);
exception.vaddress = ZeroExtend(vaddress);
if IPAValid(fault) then

exception.ipavalid = TRUE;
exception.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
exception.ipaddress = fault.ipaddress.address;

else
exception.ipavalid = FALSE;

return exception;

Library pseudocode for aarch64/exceptions/aborts/AArch64.CheckPCAlignment

// AArch64.CheckPCAlignment()
// ==========================

AArch64.CheckPCAlignment()

bits(64) pc = ThisInstrAddr();
if pc<1:0> != '00' then

AArch64.PCAlignmentFault();

Library pseudocode for aarch64/exceptions/aborts/AArch64.DataAbort

// AArch64.DataAbort()
// ===================

AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&

(HCR_EL2.TGE == '1' ||
(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
(HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER) ||
IsSecondStage(fault)));

bits(64) preferred_exception_return = ThisInstrAddr();
if (HaveDoubleFaultExt() && (PSTATE.EL == EL3 || route_to_el3) &&

IsExternalAbort(fault) && SCR_EL3.EASE == '1') then
vect_offset = 0x180;

else
vect_offset = 0x0;

if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
exception = AArch64.AbortSyndrome(Exception_NV2DataAbort, fault, vaddress);

else
exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);

bits(2) target_el = EL1;
if PSTATE.EL == EL3 || route_to_el3 then

target_el = EL3;
elsif PSTATE.EL == EL2 || route_to_el2 then

target_el = EL2;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2817

Library pseudocode for aarch64/exceptions/aborts/AArch64.EffectiveTCF

// AArch64.EffectiveTCF()
// ======================
// Returns the TCF field applied to tag check faults in the given Exception level.

bits(2) AArch64.EffectiveTCF(AccType acctype)
bits(2) tcf, el;
el = S1TranslationRegime();

if el == EL3 then
tcf = SCTLR_EL3.TCF;

elsif el == EL2 then
if AArch64.AccessUsesEL(acctype) == EL0 then

tcf = SCTLR_EL2.TCF0;
else

tcf = SCTLR_EL2.TCF;
elsif el == EL1 then

if AArch64.AccessUsesEL(acctype) == EL0 then
tcf = SCTLR_EL1.TCF0;

else
tcf = SCTLR_EL1.TCF;

if tcf == '11' then //reserved value
if !HaveMTE3Ext() then

(-,tcf) = ConstrainUnpredictableBits(Unpredictable_RESTCF);

return tcf;

Library pseudocode for aarch64/exceptions/aborts/AArch64.InstructionAbort

// AArch64.InstructionAbort()
// ==========================

AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
// External aborts on instruction fetch must be taken synchronously
if HaveDoubleFaultExt() then assert fault.statuscode != Fault_AsyncExternal;
route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&

(HCR_EL2.TGE == '1' ||
(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
IsSecondStage(fault)));

bits(64) preferred_exception_return = ThisInstrAddr();

if (HaveDoubleFaultExt() && (PSTATE.EL == EL3 || route_to_el3) &&
IsExternalAbort(fault) && SCR_EL3.EASE == '1') then
vect_offset = 0x180;

else
vect_offset = 0x0;

exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);

bits(2) target_el = EL1;
if PSTATE.EL == EL3 || route_to_el3 then

target_el = EL3;
elsif PSTATE.EL == EL2 || route_to_el2 then

target_el = EL2;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2818

Library pseudocode for aarch64/exceptions/aborts/AArch64.PCAlignmentFault

// AArch64.PCAlignmentFault()
// ==========================
// Called on unaligned program counter in AArch64 state.

AArch64.PCAlignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_PCAlignment);
exception.vaddress = ThisInstrAddr();

bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault

// AArch64.RaiseTagCheckFault()
// ============================
// Raise a tag check fault exception.

AArch64.RaiseTagCheckFault(bits(64) va, boolean write)
bits(64) preferred_exception_return = ThisInstrAddr();
integer vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_DataAbort);
exception.syndrome<5:0> = '010001';
if write then

exception.syndrome<6> = '1';
exception.vaddress = bits(4) UNKNOWN : va<59:0>;

bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2819

Library pseudocode for aarch64/exceptions/aborts/AArch64.ReportTagCheckFault

// AArch64.ReportTagCheckFault()
// =============================
// Records a tag check fault exception into the appropriate TCFR_ELx.

AArch64.ReportTagCheckFault(bits(2) el, bit ttbr)
if el == EL3 then

assert ttbr == '0';
TFSR_EL3.TF0 = '1';

elsif el == EL2 then
if ttbr == '0' then

TFSR_EL2.TF0 = '1';
else

TFSR_EL2.TF1 = '1';
elsif el == EL1 then

if ttbr == '0' then
TFSR_EL1.TF0 = '1';

else
TFSR_EL1.TF1 = '1';

elsif el == EL0 then
if ttbr == '0' then

TFSRE0_EL1.TF0 = '1';
else

TFSRE0_EL1.TF1 = '1';

Library pseudocode for aarch64/exceptions/aborts/AArch64.SPAlignmentFault

// AArch64.SPAlignmentFault()
// ==========================
// Called on an unaligned stack pointer in AArch64 state.

AArch64.SPAlignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SPAlignment);

bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2820

Library pseudocode for aarch64/exceptions/aborts/AArch64.TagCheckFault

// AArch64.TagCheckFault()
// =======================
// Handle a tag check fault condition.

AArch64.TagCheckFault(bits(64) vaddress, AccType acctype, boolean iswrite)
bits(2) tcf, el;
el = AArch64.AccessUsesEL(acctype);
tcf = AArch64.EffectiveTCF(acctype);
case tcf of

when '00' // Tag Check Faults have no effect on the PE
return;

when '01' // Tag Check Faults cause a synchronous exception
AArch64.RaiseTagCheckFault(vaddress, iswrite);

when '10' // Tag Check Faults are asynchronously accumulated
AArch64.ReportTagCheckFault(el, vaddress<55>);

when '11' // Tag Check Faults cause a synchronous exception on reads or on
// a read-write access, and are asynchronously accumulated on writes

// Check for access performing both a read and a write.
readwrite = acctype IN {AccType_ATOMICRW,

AccType_ORDEREDATOMICRW,
AccType_ORDEREDRW};

if !iswrite || readwrite then
AArch64.RaiseTagCheckFault(vaddress, iswrite);

else
AArch64.ReportTagCheckFault(PSTATE.EL, vaddress<55>);

Library pseudocode for aarch64/exceptions/aborts/BranchTargetException

// BranchTargetException()
// =======================
// Raise branch target exception.

AArch64.BranchTargetException(bits(52) vaddress)
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_BranchTarget);
exception.syndrome<1:0> = PSTATE.BTYPE;
exception.syndrome<24:2> = Zeros(); // RES0

bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2821

Library pseudocode for aarch64/exceptions/async/AArch64.TakePhysicalFIQException

// AArch64.TakePhysicalFIQException()
// ==================================

AArch64.TakePhysicalFIQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x100;
exception = ExceptionSyndrome(Exception_FIQ);

if route_to_el3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
assert PSTATE.EL IN {EL0, EL1};
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/async/AArch64.TakePhysicalIRQException

// AArch64.TakePhysicalIRQException()
// ==================================
// Take an enabled physical IRQ exception.

AArch64.TakePhysicalIRQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x80;

exception = ExceptionSyndrome(Exception_IRQ);

if route_to_el3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
assert PSTATE.EL IN {EL0, EL1};
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2822

Library pseudocode for aarch64/exceptions/async/AArch64.TakePhysicalSErrorException

// AArch64.TakePhysicalSErrorException()
// =====================================

AArch64.TakePhysicalSErrorException(bits(25) syndrome)

route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1')));
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x180;

bits(2) target_el;
if PSTATE.EL == EL3 || route_to_el3 then

target_el = EL3;
elsif PSTATE.EL == EL2 || route_to_el2 then

target_el = EL2;
else

target_el = EL1;

if IsSErrorEdgeTriggered(target_el, syndrome) then
ClearPendingPhysicalSError();

exception = ExceptionSyndrome(Exception_SError);
exception.syndrome = syndrome;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/async/AArch64.TakeVirtualFIQException

// AArch64.TakeVirtualFIQException()
// =================================

AArch64.TakeVirtualFIQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x100;

exception = ExceptionSyndrome(Exception_FIQ);

AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/async/AArch64.TakeVirtualIRQException

// AArch64.TakeVirtualIRQException()
// =================================

AArch64.TakeVirtualIRQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x80;

exception = ExceptionSyndrome(Exception_IRQ);

AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2823

Library pseudocode for aarch64/exceptions/async/AArch64.TakeVirtualSErrorException

// AArch64.TakeVirtualSErrorException()
// ====================================

AArch64.TakeVirtualSErrorException(bits(25) syndrome)

assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x180;
exception = ExceptionSyndrome(Exception_SError);

if HaveRASExt() then
exception.syndrome<24> = VSESR_EL2.IDS;
exception.syndrome<23:0> = VSESR_EL2.ISS;

else
impdef_syndrome = syndrome<24> == '1';
if impdef_syndrome then exception.syndrome = syndrome;

ClearPendingVirtualSError();
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.BreakpointException

// AArch64.BreakpointException()
// =============================

AArch64.BreakpointException(FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

vaddress = bits(64) UNKNOWN;
exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);

if PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

// AArch64.SoftwareBreakpoint()
// ============================

AArch64.SoftwareBreakpoint(bits(16) immediate)

route_to_el2 = (PSTATE.EL IN {EL0, EL1} &&
EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);
exception.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2824

Library pseudocode for aarch64/exceptions/debug/AArch64.SoftwareStepException

// AArch64.SoftwareStepException()
// ===============================

AArch64.SoftwareStepException()
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SoftwareStep);
if SoftwareStep_DidNotStep() then

exception.syndrome<24> = '0';
else

exception.syndrome<24> = '1';
exception.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';

exception.syndrome<5:0> = '100010'; // IFSC = Debug Exception

if PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.VectorCatchException

// AArch64.VectorCatchException()
// ==============================
// Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
// being routed to EL2, as Vector Catch is a legacy debug event.

AArch64.VectorCatchException(FaultRecord fault)
assert PSTATE.EL != EL2;
assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

vaddress = bits(64) UNKNOWN;
exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2825

Library pseudocode for aarch64/exceptions/debug/AArch64.WatchpointException

// AArch64.WatchpointException()
// =============================

AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
exception = AArch64.AbortSyndrome(Exception_NV2Watchpoint, fault, vaddress);

else
exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);

if PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2826

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ExceptionClass

// AArch64.ExceptionClass()
// ========================
// Returns the Exception Class and Instruction Length fields to be reported in ESR

(integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)

il_is_valid = TRUE;
from_32 = UsingAArch32();

case exceptype of
when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
when Exception_WFxTrap ec = 0x01;
when Exception_CP15RTTrap ec = 0x03; assert from_32;
when Exception_CP15RRTTrap ec = 0x04; assert from_32;
when Exception_CP14RTTrap ec = 0x05; assert from_32;
when Exception_CP14DTTrap ec = 0x06; assert from_32;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;
when Exception_FPIDTrap ec = 0x08;
when Exception_PACTrap ec = 0x09;
when Exception_LDST64BTrap ec = 0x0A;
when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
when Exception_BranchTarget ec = 0x0D;
when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
when Exception_SupervisorCall ec = 0x11;
when Exception_HypervisorCall ec = 0x12;
when Exception_MonitorCall ec = 0x13;
when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
when Exception_SVEAccessTrap ec = 0x19; assert !from_32;
when Exception_ERetTrap ec = 0x1A; assert !from_32;
when Exception_PACFail ec = 0x1C; assert !from_32;
when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
when Exception_DataAbort ec = 0x24;
when Exception_NV2DataAbort ec = 0x25;
when Exception_SPAlignment ec = 0x26; il_is_valid = FALSE; assert !from_32;
when Exception_FPTrappedException ec = 0x28;
when Exception_SError ec = 0x2F; il_is_valid = FALSE;
when Exception_Breakpoint ec = 0x30; il_is_valid = FALSE;
when Exception_SoftwareStep ec = 0x32; il_is_valid = FALSE;
when Exception_Watchpoint ec = 0x34; il_is_valid = FALSE;
when Exception_NV2Watchpoint ec = 0x35; il_is_valid = FALSE;
when Exception_SoftwareBreakpoint ec = 0x38;
when Exception_VectorCatch ec = 0x3A; il_is_valid = FALSE; assert from_32;
otherwise Unreachable();

if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
ec = ec + 1;

if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
ec = ec + 4;

if il_is_valid then
il = if ThisInstrLength() == 32 then '1' else '0';

else
il = '1';

assert from_32 || il == '1'; // AArch64 instructions always 32-bit

return (ec,il);

Shared Pseudocode Functions Page 2827

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ReportException

// AArch64.ReportException()
// =========================
// Report syndrome information for exception taken to AArch64 state.

AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)

Exception exceptype = exception.exceptype;

(ec,il) = AArch64.ExceptionClass(exceptype, target_el);
iss = exception.syndrome;
iss2 = exception.syndrome2;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then

il = '1';

ESR[target_el] = (Zeros(27) : // <63:37>
iss2 : // <36:32>
ec<5:0> : // <31:26>
il : // <25>
iss); // <24:0>

if exceptype IN {
Exception_InstructionAbort,
Exception_PCAlignment,
Exception_DataAbort,
Exception_NV2DataAbort,
Exception_NV2Watchpoint,
Exception_Watchpoint

} then
FAR[target_el] = exception.vaddress;

else
FAR[target_el] = bits(64) UNKNOWN;

if exception.ipavalid then
HPFAR_EL2<43:4> = exception.ipaddress<51:12>;
if IsSecureEL2Enabled() && IsSecure() then

HPFAR_EL2.NS = exception.NS;
else

HPFAR_EL2.NS = '0';
elsif target_el == EL2 then

HPFAR_EL2<43:4> = bits(40) UNKNOWN;

return;

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.
AArch64.ResetControlRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 2828

Library pseudocode for aarch64/exceptions/exceptions/AArch64.TakeReset

// AArch64.TakeReset()
// ===================
// Reset into AArch64 state

AArch64.TakeReset(boolean cold_reset)
assert HaveAArch64();

// Enter the highest implemented Exception level in AArch64 state
PSTATE.nRW = '0';
if HaveEL(EL3) then

PSTATE.EL = EL3;
elsif HaveEL(EL2) then

PSTATE.EL = EL2;
else

PSTATE.EL = EL1;

// Reset System registers and other system components
AArch64.ResetControlRegisters(cold_reset);

// Reset all other PSTATE fields
PSTATE.SP = '1'; // Select stack pointer
PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
PSTATE.SS = '0'; // Clear software step bit
PSTATE.DIT = '0'; // PSTATE.DIT is reset to 0 when resetting into AArch64
PSTATE.IL = '0'; // Clear Illegal Execution state bit

// All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
// below are UNKNOWN bitstrings after reset. In particular, the return information registers
// ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
// is impossible to return from a reset in an architecturally defined way.
AArch64.ResetGeneralRegisters();
AArch64.ResetSIMDFPRegisters();
AArch64.ResetSpecialRegisters();
ResetExternalDebugRegisters(cold_reset);

bits(64) rv; // IMPLEMENTATION DEFINED reset vector

if HaveEL(EL3) then
rv = RVBAR_EL3;

elsif HaveEL(EL2) then
rv = RVBAR_EL2;

else
rv = RVBAR_EL1;

// The reset vector must be correctly aligned
assert IsZero(rv<63:AArch64.PAMax()>) && IsZero(rv<1:0>);

boolean branch_conditional = FALSE;
BranchTo(rv, BranchType_RESET, branch_conditional);

Shared Pseudocode Functions Page 2829

Library pseudocode for aarch64/exceptions/ieeefp/AArch64.FPTrappedException

// AArch64.FPTrappedException()
// ============================

AArch64.FPTrappedException(boolean is_ase, bits(8) accumulated_exceptions)
exception = ExceptionSyndrome(Exception_FPTrappedException);
if is_ase then

if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then
exception.syndrome<23> = '1'; // TFV

else
exception.syndrome<23> = '0'; // TFV

else
exception.syndrome<23> = '1'; // TFV

exception.syndrome<10:8> = bits(3) UNKNOWN; // VECITR
if exception.syndrome<23> == '1' then

exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
else

exception.syndrome<7,4:0> = bits(6) UNKNOWN;

route_to_el2 = EL2Enabled() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallHypervisor

// AArch64.CallHypervisor()
// ========================
// Performs a HVC call

AArch64.CallHypervisor(bits(16) immediate)
assert HaveEL(EL2);

if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();
bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_HypervisorCall);
exception.syndrome<15:0> = immediate;

if PSTATE.EL == EL3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2830

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

// AArch64.CallSecureMonitor()
// ===========================

AArch64.CallSecureMonitor(bits(16) immediate)
assert HaveEL(EL3) && !ELUsingAArch32(EL3);
if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();
bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_MonitorCall);
exception.syndrome<15:0> = immediate;

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallSupervisor

// AArch64.CallSupervisor()
// ========================
// Calls the Supervisor

AArch64.CallSupervisor(bits(16) immediate)

if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();
route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SupervisorCall);
exception.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2831

Library pseudocode for aarch64/exceptions/takeexception/AArch64.TakeException

Shared Pseudocode Functions Page 2832

// AArch64.TakeException()
// =======================
// Take an exception to an Exception level using AArch64.

AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,
bits(64) preferred_exception_return, integer vect_offset)

assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

if HaveIESB() then
sync_errors = SCTLR[target_el].IESB == '1';
if HaveDoubleFaultExt() then

sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
if sync_errors && InsertIESBBeforeException(target_el) then

SynchronizeErrors();
iesb_req = FALSE;
sync_errors = FALSE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

else
sync_errors = FALSE;

SynchronizeContext();

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero
from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(target_el);

if UInt(target_el) > UInt(PSTATE.EL) then
boolean lower_32;
if target_el == EL3 then

if EL2Enabled() then
lower_32 = ELUsingAArch32(EL2);

else
lower_32 = ELUsingAArch32(EL1);

elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
lower_32 = ELUsingAArch32(EL0);

else
lower_32 = ELUsingAArch32(target_el - 1);

vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

elsif PSTATE.SP == '1' then
vect_offset = vect_offset + 0x200;

bits(64) spsr = GetPSRFromPSTATE(AArch64_NonDebugState);

if PSTATE.EL == EL1 && target_el == EL1 && EL2Enabled() then
if HaveNV2Ext() && (HCR_EL2.<NV,NV1,NV2> == '100' || HCR_EL2.<NV,NV1,NV2> == '111') then

spsr<3:2> = '10';
else

if HaveNVExt() && HCR_EL2.<NV,NV1> == '10' then
spsr<3:2> = '10';

if HaveBTIExt() && !UsingAArch32() then
// SPSR[].BTYPE is only guaranteed valid for these exception types
if exception.exceptype IN {Exception_SError, Exception_IRQ, Exception_FIQ,

Exception_SoftwareStep, Exception_PCAlignment,
Exception_InstructionAbort, Exception_Breakpoint,
Exception_VectorCatch, Exception_SoftwareBreakpoint,
Exception_IllegalState, Exception_BranchTarget} then

zero_btype = FALSE;
else

zero_btype = ConstrainUnpredictableBool(Unpredictable_ZEROBTYPE);
if zero_btype then spsr<11:10> = '00';

if HaveNV2Ext() && exception.exceptype == Exception_NV2DataAbort && target_el == EL3 then
// External aborts are configured to be taken to EL3
exception.exceptype = Exception_DataAbort;

if !(exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
AArch64.ReportException(exception, target_el);

Shared Pseudocode Functions Page 2833

PSTATE.EL = target_el;
PSTATE.nRW = '0';
PSTATE.SP = '1';

SPSR[] = spsr;
ELR[] = preferred_exception_return;

PSTATE.SS = '0';
PSTATE.<D,A,I,F> = '1111';
PSTATE.IL = '0';
if from_32 then // Coming from AArch32

PSTATE.IT = '00000000';
PSTATE.T = '0'; // PSTATE.J is RES0

if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
SCTLR[].SPAN == '0') then
PSTATE.PAN = '1';

if HaveUAOExt() then PSTATE.UAO = '0';
if HaveBTIExt() then PSTATE.BTYPE = '00';
if HaveSSBSExt() then PSTATE.SSBS = SCTLR[].DSSBS;
if HaveMTEExt() then PSTATE.TCO = '1';

boolean branch_conditional = FALSE;
BranchTo(VBAR[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION, branch_conditional);

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

if sync_errors then
SynchronizeErrors();
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

EndOfInstruction();

Library pseudocode for aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

// AArch64.AArch32SystemAccessTrap()
// =================================
// Trapped AARCH32 system register access.

AArch64.AArch32SystemAccessTrap(bits(2) target_el, integer ec)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.AArch32SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2834

Library pseudocode for aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

Shared Pseudocode Functions Page 2835

// AArch64.AArch32SystemAccessTrapSyndrome()
// ===
// Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS, VMSR instructions,
// other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr, integer ec)
ExceptionRecord exception;

case ec of
when 0x0 exception = ExceptionSyndrome(Exception_Uncategorized);
when 0x3 exception = ExceptionSyndrome(Exception_CP15RTTrap);
when 0x4 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
when 0x5 exception = ExceptionSyndrome(Exception_CP14RTTrap);
when 0x6 exception = ExceptionSyndrome(Exception_CP14DTTrap);
when 0x7 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
when 0x8 exception = ExceptionSyndrome(Exception_FPIDTrap);
when 0xC exception = ExceptionSyndrome(Exception_CP14RRTTrap);
otherwise Unreachable();

bits(20) iss = Zeros();

if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Exception_CP15RTTrap} then
// Trapped MRC/MCR, VMRS on FPSID
if exception.exceptype != Exception_FPIDTrap then // When trap is not for VMRS

iss<19:17> = instr<7:5>; // opc2
iss<16:14> = instr<23:21>; // opc1
iss<13:10> = instr<19:16>; // CRn
iss<4:1> = instr<3:0>; // CRm

else
iss<19:17> = '000';
iss<16:14> = '111';
iss<13:10> = instr<19:16>; // reg
iss<4:1> = '0000';

if instr<20> == '1' && instr<15:12> == '1111' then // MRC, Rt==15
iss<9:5> = '11111';

elsif instr<20> == '0' && instr<15:12> == '1111' then // MCR, Rt==15
iss<9:5> = bits(5) UNKNOWN;

else
iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;

elsif exception.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap, Exception_CP15RRTTrap} then
// Trapped MRRC/MCRR, VMRS/VMSR
iss<19:16> = instr<7:4>; // opc1
if instr<19:16> == '1111' then // Rt2==15

iss<14:10> = bits(5) UNKNOWN;
else

iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>;

if instr<15:12> == '1111' then // Rt==15
iss<9:5> = bits(5) UNKNOWN;

else
iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;

iss<4:1> = instr<3:0>; // CRm
elsif exception.exceptype == Exception_CP14DTTrap then

// Trapped LDC/STC
iss<19:12> = instr<7:0>; // imm8
iss<4> = instr<23>; // U
iss<2:1> = instr<24,21>; // P,W
if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC

iss<9:5> = bits(5) UNKNOWN;
iss<3> = '1';

elsif exception.exceptype == Exception_Uncategorized then
// Trapped for unknown reason
iss<9:5> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rn
iss<3> = '0';

iss<0> = instr<20>; // Direction

exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<19:0> = iss;

Shared Pseudocode Functions Page 2836

return exception;

Library pseudocode for aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

// AArch64.AdvSIMDFPAccessTrap()
// =============================
// Trapped access to Advanced SIMD or FP registers due to CPACR[].

AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');

if route_to_el2 then
exception = ExceptionSyndrome(Exception_Uncategorized);
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
exception.syndrome<24:20> = ConditionSyndrome();
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

return;

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

// AArch64.CheckCP15InstrCoarseTraps()
// ===================================
// Check for coarse-grained AArch32 traps to System registers in the
// coproc=0b1111 encoding space by HSTR_EL2 and HCR_EL2.

boolean AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

// Check for coarse-grained Hyp traps
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then

// Check for MCR, MRC, MCRR and MRRC disabled by HSTR_EL2<CRn/CRm>
major = if nreg == 1 then CRn else CRm;
if !IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1' then

return TRUE;

// Check for MRC and MCR disabled by HCR_EL2.TIDCP
if (HCR_EL2.TIDCP == '1' && nreg == 1 &&

((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
(CRn == 10 && CRm IN {0,1, 4, 8 }) ||
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then

return TRUE;

return FALSE;

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

// AArch64.CheckFPAdvSIMDEnabled()
// ===============================

AArch64.CheckFPAdvSIMDEnabled()
AArch64.CheckFPEnabled();

Shared Pseudocode Functions Page 2837

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

// AArch64.CheckFPAdvSIMDTrap()
// ============================
// Check against CPTR_EL2 and CPTR_EL3.

AArch64.CheckFPAdvSIMDTrap()
if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then

// Check if access disabled in CPTR_EL2
if HaveVirtHostExt() && HCR_EL2.E2H == '1' then

case CPTR_EL2.FPEN of
when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
else

if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

if HaveEL(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

return;

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPEnabled

// AArch64.CheckFPEnabled()
// ========================
// Check against CPACR[]

AArch64.CheckFPEnabled()
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

// Check if access disabled in CPACR_EL1
case CPACR_EL1.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3

Shared Pseudocode Functions Page 2838

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForERetTrap

// AArch64.CheckForERetTrap()
// ==========================
// Check for trap on ERET, ERETAA, ERETAB instruction

AArch64.CheckForERetTrap(boolean eret_with_pac, boolean pac_uses_key_a)

route_to_el2 = FALSE;
// Non-secure EL1 execution of ERET, ERETAA, ERETAB when either HCR_EL2.NV or HFGITR_EL2.ERET is set,
// is trapped to EL2
route_to_el2 = (PSTATE.EL == EL1 && EL2Enabled() &&

((HaveNVExt() && HCR_EL2.NV == '1') ||
(HaveFGTExt() && HCR_EL2.<E2H, TGE> != '11' &&
(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.ERET == '1')));

if route_to_el2 then
ExceptionRecord exception;
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = ExceptionSyndrome(Exception_ERetTrap);
if !eret_with_pac then // ERET

exception.syndrome<1> = '0';
exception.syndrome<0> = '0'; // RES0

else
exception.syndrome<1> = '1';
if pac_uses_key_a then // ERETAA

exception.syndrome<0> = '0';
else // ERETAB

exception.syndrome<0> = '1';
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

// AArch64.CheckForSMCUndefOrTrap()
// ================================
// Check for UNDEFINED or trap on SMC instruction

AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
if PSTATE.EL == EL0 then UNDEFINED;
if (!(PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1') &&

HaveEL(EL3) && SCR_EL3.SMD == '1') then
UNDEFINED;

route_to_el2 = FALSE;
if !HaveEL(EL3) then

if PSTATE.EL == EL1 && EL2Enabled() then
if HaveNVExt() && HCR_EL2.NV == '1' && HCR_EL2.TSC == '1' then

route_to_el2 = TRUE;
else

UNDEFINED;
else

UNDEFINED;
else

route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
if route_to_el2 then

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = ExceptionSyndrome(Exception_MonitorCall);
exception.syndrome<15:0> = imm;
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2839

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForSVCTrap

// AArch64.CheckForSVCTrap()
// =========================
// Check for trap on SVC instruction

AArch64.CheckForSVCTrap(bits(16) immediate)
if HaveFGTExt() then

route_to_el2 = FALSE;
if PSTATE.EL == EL0 then

route_to_el2 = (!ELUsingAArch32(EL0) && !ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
(HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

elsif PSTATE.EL == EL1 then
route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL1 == '1' &&

(HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

if route_to_el2 then
exception = ExceptionSyndrome(Exception_SupervisorCall);
exception.syndrome<15:0> = immediate;
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForWFxTrap

// AArch64.CheckForWFxTrap()
// =========================
// Check for trap on WFE or WFI instruction

AArch64.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
assert HaveEL(target_el);

boolean is_wfe = wfxtype IN {WFxType_WFE, WFxType_WFET};
case target_el of

when EL1
trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';

when EL2
trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';

when EL3
trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';

if trap then
AArch64.WFxTrap(wfxtype, target_el);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckIllegalState

// AArch64.CheckIllegalState()
// ===========================
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

AArch64.CheckIllegalState()
if PSTATE.IL == '1' then

route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_IllegalState);

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2840

Library pseudocode for aarch64/exceptions/traps/AArch64.MonitorModeTrap

// AArch64.MonitorModeTrap()
// =========================
// Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

AArch64.MonitorModeTrap()
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_Uncategorized);

if IsSecureEL2Enabled() then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.SystemAccessTrap

// AArch64.SystemAccessTrap()
// ==========================
// Trapped access to AArch64 system register or system instruction.

AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

// AArch64.SystemAccessTrapSyndrome()
// ==================================
// Returns the syndrome information for traps on AArch64 MSR/MRS instructions.

ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
ExceptionRecord exception;
case ec of

when 0x0 // Trapped access due to unknown reason.
exception = ExceptionSyndrome(Exception_Uncategorized);

when 0x7 // Trapped access to SVE, Advance SIMD&FP system register.
exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
exception.syndrome<24:20> = ConditionSyndrome();

when 0x18 // Trapped access to system register or system instruction.
exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
instr = ThisInstr();
exception.syndrome<21:20> = instr<20:19>; // Op0
exception.syndrome<19:17> = instr<7:5>; // Op2
exception.syndrome<16:14> = instr<18:16>; // Op1
exception.syndrome<13:10> = instr<15:12>; // CRn
exception.syndrome<9:5> = instr<4:0>; // Rt
exception.syndrome<4:1> = instr<11:8>; // CRm
exception.syndrome<0> = instr<21>; // Direction

when 0x19 // Trapped access to SVE System register
exception = ExceptionSyndrome(Exception_SVEAccessTrap);

otherwise
Unreachable();

return exception;

Shared Pseudocode Functions Page 2841

Library pseudocode for aarch64/exceptions/traps/AArch64.UndefinedFault

// AArch64.UndefinedFault()
// ========================

AArch64.UndefinedFault()

route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_Uncategorized);

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.WFxTrap

// AArch64.WFxTrap()
// =================

AArch64.WFxTrap(WFxType wfxtype, bits(2) target_el)
assert UInt(target_el) > UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_WFxTrap);
exception.syndrome<24:20> = ConditionSyndrome();

case wfxtype of
when WFxType_WFI

exception.syndrome<1:0> = '00';
when WFxType_WFE

exception.syndrome<1:0> = '01';
when WFxType_WFIT

exception.syndrome<1:0> = '10';
if HaveFeatWFxT2() then

exception.syndrome<2> = '1'; // Register field is valid
exception.syndrome<9:5> = ThisInstr()<4:0>;

else
exception.syndrome<2> = '0'; // Register field is invalid

when WFxType_WFET
exception.syndrome<1:0> = '11';
if HaveFeatWFxT2() then

exception.syndrome<2> = '1'; // Register field is valid
exception.syndrome<9:5> = ThisInstr()<4:0>;

else
exception.syndrome<2> = '0'; // Register field is invalid

if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

// CheckFPAdvSIMDEnabled64()
// =========================
// AArch64 instruction wrapper

CheckFPAdvSIMDEnabled64()
AArch64.CheckFPAdvSIMDEnabled();

Shared Pseudocode Functions Page 2842

Library pseudocode for aarch64/exceptions/traps/CheckFPEnabled64

// CheckFPEnabled64()
// ==================
// AArch64 instruction wrapper

CheckFPEnabled64()
AArch64.CheckFPEnabled();

Library pseudocode for aarch64/exceptions/traps/CheckLDST64BEnabled

// CheckLDST64BEnabled()
// =====================
// Checks for trap on ST64B and LD64B instructions

CheckLDST64BEnabled()
boolean trap = FALSE;
bits(25) iss = ZeroExtend('10'); // 0x2

if PSTATE.EL == EL0 then
if !IsInHost() then

trap = SCTLR_EL1.EnALS == '0';
target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

else
trap = SCTLR_EL2.EnALS == '0';
target_el = EL2;

else
target_el = EL1;

if (!trap && EL2Enabled() && HaveFeatHCX() &&
((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnALS == '0';
target_el = EL2;

if trap then LDST64BTrap(target_el, iss);

Library pseudocode for aarch64/exceptions/traps/CheckST64BV0Enabled

// CheckST64BV0Enabled()
// =====================
// Checks for trap on ST64BV0 instruction

CheckST64BV0Enabled()
boolean trap = FALSE;
bits(25) iss = ZeroExtend('1'); // 0x1

if PSTATE.EL == EL0 then
if !IsInHost() then

trap = SCTLR_EL1.EnAS0 == '0';
target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

else
trap = SCTLR_EL2.EnAS0 == '0';
target_el = EL2;

if (!trap && EL2Enabled() && HaveFeatHCX() &&
((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnAS0 == '0';
target_el = EL2;

if !trap && PSTATE.EL != EL3 then
trap = HaveEL(EL3) && SCR_EL3.EnAS0 == '0';
target_el = EL3;

if trap then LDST64BTrap(target_el, iss);

Shared Pseudocode Functions Page 2843

Library pseudocode for aarch64/exceptions/traps/CheckST64BVEnabled

// CheckST64BVEnabled()
// ====================
// Checks for trap on ST64BV instruction

CheckST64BVEnabled()
boolean trap = FALSE;
bits(25) iss = Zeros();

if PSTATE.EL == EL0 then
if !IsInHost() then

trap = SCTLR_EL1.EnASR == '0';
target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

else
trap = SCTLR_EL2.EnASR == '0';
target_el = EL2;

if (!trap && EL2Enabled() && HaveFeatHCX() &&
((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnASR == '0';
target_el = EL2;

if trap then LDST64BTrap(target_el, iss);

Library pseudocode for aarch64/exceptions/traps/LDST64BTrap

// LDST64BTrap()
// =============
// Trapped access to LD64B, ST64B, ST64BV and ST64BV0 instructions

LDST64BTrap(bits(2) target_el, bits(25) iss)
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_LDST64BTrap);
exception.syndrome = iss;
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

return;

Library pseudocode for aarch64/exceptions/traps/WFETrapDelay

// WFETrapDelay()
// ==============
// Returns TRUE when delay in trap to WFE is enabled with value to amount of delay,
// FALSE otherwise.

(boolean, integer) WFETrapDelay(bits(2) target_el)
case target_el of

when EL1
if !IsInHost() then

delay_enabled = SCTLR_EL1.TWEDEn == '1';
delay = 1 << (UInt(SCTLR_EL1.TWEDEL) + 8);

else
delay_enabled = SCTLR_EL2.TWEDEn == '1';
delay = 1 << (UInt(SCTLR_EL2.TWEDEL) + 8);

when EL2
assert EL2Enabled();
delay_enabled = HCR_EL2.TWEDEn == '1';
delay = 1 << (UInt(HCR_EL2.TWEDEL) + 8);

when EL3
delay_enabled = SCR_EL3.TWEDEn == '1';
delay = 1 << (UInt(SCR_EL3.TWEDEL) + 8);

return (delay_enabled, delay);

Shared Pseudocode Functions Page 2844

Library pseudocode for aarch64/exceptions/traps/WaitForEventUntilDelay

// Returns TRUE if WaitForEvent() returns before WFE trap delay expires,
// FALSE otherwise.
boolean WaitForEventUntilDelay(boolean delay_enabled, integer delay);

Library pseudocode for aarch64/functions/aborts/AArch64.FaultSyndrome

// AArch64.FaultSyndrome()
// =======================
// Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
// an Exception level using AArch64.

(bits(25), bits(5)) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(25) iss = Zeros();
bits(5) iss2 = Zeros();

if !HaveFeatLS64() && HaveRASExt() && IsAsyncAbort(fault) then
iss<12:11> = fault.errortype; // SET

if d_side then
if HaveFeatLS64() && fault.acctype == AccType_ATOMICLS64 then

if (fault.statuscode IN {Fault_AccessFlag,
Fault_Translation, Fault_Permission}) then
(iss2, iss<24:14>, iss<12:11>) = LS64InstructionSyndrome();

else
if (IsSecondStage(fault) && !fault.s2fs1walk &&

(!IsExternalSyncAbort(fault) ||
(!HaveRASExt() && fault.acctype == AccType_TTW &&
boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
iss<24:14> = LSInstructionSyndrome();

if HaveNV2Ext() && fault.acctype == AccType_NV2REGISTER then
iss<13> = '1'; // Fault is generated by use of VNCR_EL2

if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT, AccType_ATPAN} then
iss<8> = '1'; iss<6> = '1';

else
iss<6> = if fault.write then '1' else '0';

if IsExternalAbort(fault) then iss<9> = fault.extflag;
iss<7> = if fault.s2fs1walk then '1' else '0';
iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

return (iss, iss2);

Library pseudocode for aarch64/functions/aborts/LS64InstructionSyndrome

// Returns the syndrome information and LST for a Data Abort by a
// ST64B, ST64BV, ST64BV0, or LD64B instruction. The syndrome information
// includes the ISS2, extended syndrome field, and LST.
(bits(5), bits(11), bits(2)) LS64InstructionSyndrome();

Shared Pseudocode Functions Page 2845

Library pseudocode for aarch64/functions/cache/AArch64.DataMemZero

// AArch64.DataMemZero()
// =====================
// Write Zero to data memory

AArch64.DataMemZero(bits(64) regval, bits(64) vaddress, AddressDescriptor memaddrdesc, integer size)
iswrite = TRUE;
for i = 0 to size-1

accdesc = CreateAccessDescriptor(AccType_DCZVA);
if HaveMTEExt() then

if AArch64.AccessIsTagChecked(vaddress, AccType_DCZVA) then
bits(4) ptag = AArch64.PhysicalTag(vaddress);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then

if boolean IMPLEMENTATION_DEFINED "DC_ZVA tag fault reported with lowest faulting address" then
AArch64.TagCheckFault(vaddress, AccType_DCZVA, iswrite);

else
AArch64.TagCheckFault(regval, AccType_DCZVA, iswrite);

memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, Zeros());
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;

return;

Library pseudocode for aarch64/functions/cache/AArch64.TagMemZero

// AArch64.TagMemZero()
// ====================
// Write Zero to tag memory

AArch64.TagMemZero(bits(64) vaddress, integer size)
integer count = size >> LOG2_TAG_GRANULE;
bits(4) tag = AArch64.AllocationTagFromAddress(vaddress);
for i = 0 to count-1

AArch64.MemTag[vaddress, AccType_NORMAL] = tag;
vaddress = vaddress + TAG_GRANULE;

return;

Shared Pseudocode Functions Page 2846

Library pseudocode for aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

// AArch64.ExclusiveMonitorsPass()
// ===============================
// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
// before or after the check on the local Exclusives monitor. As a result a failure
// of the local monitor can occur on some implementations even if the memory
// access would give an memory abort.

acctype = AccType_ATOMIC;
iswrite = TRUE;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);
if !passed then

return FALSE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
ClearExclusiveLocal(ProcessorID());

if passed then
if memaddrdesc.memattrs.shareability != Shareability_NSH then

passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

return passed;

Library pseudocode for aarch64/functions/exclusive/AArch64.IsExclusiveVA

// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
//
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
//
// It is always safe to return TRUE which will check the physical address only.
boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

Library pseudocode for aarch64/functions/exclusive/AArch64.MarkExclusiveVA

// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.
AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);

Shared Pseudocode Functions Page 2847

Library pseudocode for aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

// AArch64.SetExclusiveMonitors()
// ==============================
// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.

AArch64.SetExclusiveMonitors(bits(64) address, integer size)
acctype = AccType_ATOMIC;
iswrite = FALSE;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return;

if memaddrdesc.memattrs.shareability != Shareability_NSH then
MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

AArch64.MarkExclusiveVA(address, ProcessorID(), size);

Library pseudocode for aarch64/functions/fusedrstep/FPRSqrtStepFused

// FPRSqrtStepFused()
// ==================

bits(N) FPRSqrtStepFused(bits(N) op1, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
FPCRType fpcr = FPCR[];
op1 = FPNeg(op1);
boolean altfp = HaveAltFP() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, FALSE, fpexc);
FPRounding rounding = FPRoundingMode(fpcr);

if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPOnePointFive('0');

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2);

else
// Fully fused multiply-add and halve
result_value = (3.0 + (value1 * value2)) / 2.0;
if result_value == 0.0 then

// Sign of exact zero result depends on rounding mode
sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign);

else
result = FPRound(result_value, fpcr, rounding, fpexc);

return result;

Shared Pseudocode Functions Page 2848

Library pseudocode for aarch64/functions/fusedrstep/FPRecipStepFused

// FPRecipStepFused()
// ==================

bits(N) FPRecipStepFused(bits(N) op1, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
FPCRType fpcr = FPCR[];
op1 = FPNeg(op1);

boolean altfp = HaveAltFP() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, FALSE, fpexc);
FPRounding rounding = FPRoundingMode(fpcr);

if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPTwo('0');

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2);

else
// Fully fused multiply-add
result_value = 2.0 + (value1 * value2);
if result_value == 0.0 then

// Sign of exact zero result depends on rounding mode
sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign);

else
result = FPRound(result_value, fpcr, rounding, fpexc);

return result;

Shared Pseudocode Functions Page 2849

Library pseudocode for aarch64/functions/memory/AArch64.AccessIsTagChecked

// AArch64.AccessIsTagChecked()
// ============================
// TRUE if a given access is tag-checked, FALSE otherwise.

boolean AArch64.AccessIsTagChecked(bits(64) vaddr, AccType acctype)
if PSTATE.M<4> == '1' then return FALSE;

if EffectiveTBI(vaddr, FALSE, PSTATE.EL) == '0' then
return FALSE;

if EffectiveTCMA(vaddr, PSTATE.EL) == '1' && (vaddr<59:55> == '00000' || vaddr<59:55> == '11111') then
return FALSE;

if !AArch64.AllocationTagAccessIsEnabled(acctype) then
return FALSE;

if acctype IN {AccType_IFETCH, AccType_TTW, AccType_DC, AccType_IC} then
return FALSE;

if acctype == AccType_NV2REGISTER then
return FALSE;

if PSTATE.TCO=='1' then
return FALSE;

if !IsTagCheckedInstruction() then
return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/memory/AArch64.AddressWithAllocationTag

// AArch64.AddressWithAllocationTag()
// ==================================
// Generate a 64-bit value containing a Logical Address Tag from a 64-bit
// virtual address and an Allocation Tag.
// If the extension is disabled, treats the Allocation Tag as '0000'.

bits(64) AArch64.AddressWithAllocationTag(bits(64) address, AccType acctype, bits(4) allocation_tag)
bits(64) result = address;
bits(4) tag;
if AArch64.AllocationTagAccessIsEnabled(acctype) then

tag = allocation_tag;
else

tag = '0000';
result<59:56> = tag;
return result;

Library pseudocode for aarch64/functions/memory/AArch64.AllocationTagFromAddress

// AArch64.AllocationTagFromAddress()
// ==================================
// Generate an Allocation Tag from a 64-bit value containing a Logical Address Tag.

bits(4) AArch64.AllocationTagFromAddress(bits(64) tagged_address)
return tagged_address<59:56>;

Shared Pseudocode Functions Page 2850

Library pseudocode for aarch64/functions/memory/AArch64.CheckAlignment

// AArch64.CheckAlignment()
// ========================

boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype,
boolean iswrite)

aligned = (address == Align(address, alignment));
atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,

AccType_ORDEREDATOMICRW, AccType_ATOMICLS64, AccType_A32LSMD};
ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
vector = acctype == AccType_VEC;
if SCTLR[].A == '1' then check = TRUE;
elsif HaveLSE2Ext() then

check = (UInt(address<0+:4>) + alignment > 16) && ((ordered && SCTLR[].nAA == '0') || atomic);
else check = atomic || ordered;

if check && !aligned then
secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

return aligned;

Library pseudocode for aarch64/functions/memory/AArch64.CheckTag

// AArch64.CheckTag()
// ==================
// Performs a Tag Check operation for a memory access and returns
// whether the check passed

boolean AArch64.CheckTag(AddressDescriptor memaddrdesc, AccessDescriptor accdesc, bits(4) ptag, boolean write)
if memaddrdesc.memattrs.tagged then

(memstatus, readtag) = PhysMemTagRead(memaddrdesc, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
return ptag == readtag;

else
return TRUE;

Shared Pseudocode Functions Page 2851

Library pseudocode for aarch64/functions/memory/AArch64.MemSingle

Shared Pseudocode Functions Page 2852

// AArch64.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned]
boolean ispair = FALSE;
return AArch64.MemSingle[address, size, acctype, aligned, ispair];

// AArch64.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned, boolean ispair]
assert size IN {1, 2, 4, 8, 16};
if HaveLSE2Ext() then

assert CheckAllInAlignedQuantity(address, size, 16);
else

assert address == Align(address, size);

AddressDescriptor memaddrdesc;
bits(size*8) value;
iswrite = FALSE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTE2Ext() then

if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then

AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);

integer halfsize = size DIV 2;
(atomic, splitpair) = CheckSingleAccessAttributes(address, memaddrdesc.memattrs, size, acctype, iswrite, aligned, ispair);
if atomic then

(memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
elsif splitpair then

assert ispair;
(memstatus, value1) = PhysMemRead(memaddrdesc, halfsize, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize<52-1:0>;
(memstatus, value2) = PhysMemRead(memaddrdesc, halfsize, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);

value = value2<8*(size DIV 2)-1:0>:value1<8*(size DIV 2)-1:0>;
else

for i = 0 to size-1
(memstatus, value<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1<52-1:0>;

return value;

// AArch64.MemSingle[] - assignment (write) form
// ===

AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned] = bits(size*8) value
boolean ispair = FALSE;
AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
return;

// AArch64.MemSingle[] - assignment (write) form

Shared Pseudocode Functions Page 2853

// ===
// Perform an atomic, little-endian write of 'size' bytes.

AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned, boolean ispair] = bits(size*8) value
assert size IN {1, 2, 4, 8, 16};
if HaveLSE2Ext() then

assert CheckAllInAlignedQuantity(address, size, 16);
else

assert address == Align(address, size);

AddressDescriptor memaddrdesc;
iswrite = TRUE;

memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTE2Ext() then

if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then

AArch64.TagCheckFault(ZeroExtend(address, 64), acctype, iswrite);

(atomic, splitpair) = CheckSingleAccessAttributes(address, memaddrdesc.memattrs, size, acctype, iswrite, aligned, ispair);
if atomic then

memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
elsif splitpair then

assert ispair;
integer halfsize = size DIV 2;
bits(halfsize*8) val1 = value<(8*halfsize)-1:0>;
bits(halfsize*8) val2 = value<(16*halfsize)-1:(8*halfsize)>;
memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, val1);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize<52-1:0>;
memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, val2);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
else

for i = 0 to size-1
memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1<52-1:0>;

return;

Shared Pseudocode Functions Page 2854

Library pseudocode for aarch64/functions/memory/AArch64.MemTag

// AArch64.MemTag[] - non-assignment (read) form
// ===
// Load an Allocation Tag from memory.

bits(4) AArch64.MemTag[bits(64) address, AccType acctype]
assert acctype == AccType_NORMAL;
AddressDescriptor memaddrdesc;
bits(4) value;

iswrite = FALSE;
aligned = TRUE;
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned,

TAG_GRANULE);
accdesc = CreateAccessDescriptor(acctype);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Return the granule tag if tagging is enabled...
if AArch64.AllocationTagAccessIsEnabled(acctype) && memaddrdesc.memattrs.tagged then

(memstatus, tag) = PhysMemTagRead(memaddrdesc, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
return tag;

else
// ...otherwise read tag as zero.
return '0000';

// AArch64.MemTag[] - assignment (write) form
// ==
// Store an Allocation Tag to memory.

AArch64.MemTag[bits(64) address, AccType acctype] = bits(4) value
assert acctype == AccType_NORMAL;
AddressDescriptor memaddrdesc;
iswrite = TRUE;

// Stores of allocation tags must be aligned
if address != Align(address, TAG_GRANULE) then

boolean secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

aligned = TRUE;
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned,

TAG_GRANULE);
accdesc = CreateAccessDescriptor(acctype);

// It is CONSTRAINED UNPREDICTABLE if tags stored to memory locations marked as Device
// generate an Alignment Fault or store the data to locations.
if memaddrdesc.memattrs.memtype == MemType_Device then

c = ConstrainUnpredictable(Unpredictable_DEVICETAGSTORE);
assert c IN {Constraint_NONE, Constraint_FAULT};
if c == Constraint_FAULT then

boolean secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Memory array access
if AArch64.AllocationTagAccessIsEnabled(acctype) && memaddrdesc.memattrs.tagged then

memstatus = PhysMemTagWrite(memaddrdesc, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

Shared Pseudocode Functions Page 2855

Library pseudocode for aarch64/functions/memory/AArch64.PhysicalTag

// AArch64.PhysicalTag()
// =====================
// Generate a Physical Tag from a Logical Tag in an address

bits(4) AArch64.PhysicalTag(bits(64) vaddr)
return vaddr<59:56>;

Library pseudocode for aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess

// AArch64.TranslateAddressForAtomicAccess()
// ===
// Performs an alignment check for atomic memory operations.
// Also translates 64-bit Virtual Address into Physical Address.

AddressDescriptor AArch64.TranslateAddressForAtomicAccess(bits(64) address, integer sizeinbits)
boolean iswrite = FALSE;
size = sizeinbits DIV 8;

assert size IN {1, 2, 4, 8, 16};

aligned = AArch64.CheckAlignment(address, size, AccType_ATOMICRW, iswrite);

// MMU or MPU lookup
memaddrdesc = AArch64.TranslateAddress(address, AccType_ATOMICRW, iswrite,

aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

if HaveMTE2Ext() && AArch64.AccessIsTagChecked(address, AccType_ATOMICRW) then
bits(4) ptag = AArch64.PhysicalTag(address);
accdesc = CreateAccessDescriptor(AccType_ATOMICRW);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then

AArch64.TagCheckFault(address, AccType_ATOMICRW, iswrite);

return memaddrdesc;

Library pseudocode for aarch64/functions/memory/AddressSupportsLS64

// Returns TRUE if the 64-byte block following the given address supports the
// LD64B and ST64B instructions, and FALSE otherwise.
boolean AddressSupportsLS64(bits(64) address);

Library pseudocode for aarch64/functions/memory/CheckAllInAlignedQuantity

// CheckAllInAlignedQuantity()
// ===========================
// Returns TRUE if all accessed bytes are within one aligned quantity, FALSE otherwise.

boolean CheckAllInAlignedQuantity(bits(64) address, integer size, integer alignment)
assert(size <= alignment);
return Align(address+size-1, alignment) == Align(address, alignment);

Shared Pseudocode Functions Page 2856

Library pseudocode for aarch64/functions/memory/CheckSPAlignment

// CheckSPAlignment()
// ==================
// Check correct stack pointer alignment for AArch64 state.

CheckSPAlignment()
bits(64) sp = SP[];
if PSTATE.EL == EL0 then

stack_align_check = (SCTLR[].SA0 != '0');
else

stack_align_check = (SCTLR[].SA != '0');

if stack_align_check && sp != Align(sp, 16) then
AArch64.SPAlignmentFault();

return;

Shared Pseudocode Functions Page 2857

Library pseudocode for aarch64/functions/memory/CheckSingleAccessAttributes

// CheckSingleAccessAttributes()
// =============================
//
// When FEAT_LSE2 is implemented, a MemSingle[] access needs to be further assessed once the memory
// attributes are determined.
// If it was aligned to access size or targets Normal Inner Write-Back, Outer Write-Back Cacheable
// memory then it is single copy atomic and there is no alignment fault.
// If not, for exclusives, atomics and non atomic acquire release instructions - it is CONSTRAINED UNPREDICTABLE
// if they generate an alignment fault. If they do not generate an alignement fault - they are
// single copy atomic.
// Otherwise it is IMPLEMENTATION DEFINED - if they are single copy atomic.
//
// The function returns (atomic, splitpair), where
// atomic indicates if the access is single copy atomic.
// splitpair indicates that a load/store pair is split into 2 single copy atomic accesses.
// when atomic and splitpair are both FALSE - the access is not single copy atomic and may be treated
// as byte accesses.

(boolean, boolean) CheckSingleAccessAttributes(bits(64) address, MemoryAttributes memattrs, integer size,
AccType acctype, boolean iswrite, boolean aligned, boolean ispair)

isnormalwb = (memattrs.memtype == MemType_Normal &&
memattrs.inner.attrs == MemAttr_WB &&
memattrs.outer.attrs == MemAttr_WB);

atomic = TRUE;
splitpair = FALSE;
if isnormalwb then return (atomic, splitpair);

accatomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,
AccType_ORDEREDATOMICRW, AccType_ATOMICLS64, AccType_A32LSMD};

ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED, AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };

if !aligned && (accatomic || ordered) then
atomic = ConstrainUnpredictableBool(Unpredictable_MISALIGNEDATOMIC);
if !atomic then

secondstage = FALSE;
AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

else
return (atomic, splitpair);

if ispair && aligned then
// load / store pair requests that are aligned to each register access are split into 2 single copy atomic accesses
atomic = FALSE;
splitpair = TRUE;
return (atomic, splitpair);

if aligned then
return (atomic, splitpair);

atomic = boolean IMPLEMENTATION_DEFINED "Misaligned accesses within 16 byte aligned memory but not Normal Cacheable Writeback are Atomic";

return (atomic, splitpair);

Library pseudocode for aarch64/functions/memory/IsTagCheckedInstruction

// Returns True if the current instruction uses tag-checked memory access,
// False otherwise.
boolean IsTagCheckedInstruction();

Shared Pseudocode Functions Page 2858

Library pseudocode for aarch64/functions/memory/Mem

Shared Pseudocode Functions Page 2859

// Mem[] - non-assignment (read) form
// ==================================
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch64.MemSingle directly.

bits(size*8) Mem[bits(64) address, integer size, AccType acctype]
boolean ispair = FALSE;
return Mem[address, size, acctype, ispair];

bits(size*8) Mem[bits(64) address, integer size, AccType acctype, boolean ispair]
assert size IN {1, 2, 4, 8, 16};
bits(size*8) value;
boolean iswrite = FALSE;
integer halfsize = size DIV 2;

if ispair then
// check alignment on size of element accessed, not overall access size
aligned = AArch64.CheckAlignment(address, halfsize, acctype, iswrite);

else
aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
if !HaveLSE2Ext() then

atomic = aligned;
else

atomic = CheckAllInAlignedQuantity(address, size, 16);
elsif acctype IN {AccType_VEC, AccType_VECSTREAM} then

// 128-bit SIMD&FP loads are treated as a pair of 64-bit single-copy atomic accesses
// 64-bit aligned.
atomic = address == Align(address, 8);

else
// 16-byte integer access
atomic = address == Align(address, 16);

if !atomic && ispair && address == Align(address, halfsize) then
single_is_pair = FALSE;
single_is_aligned = TRUE;
value1 = AArch64.MemSingle[address, halfsize, acctype, single_is_aligned, single_is_pair];
value2 = AArch64.MemSingle[address + halfsize, halfsize, acctype, single_is_aligned, single_is_pair];
value = value2<8*(size DIV 2)-1:0>:value1<8*(size DIV 2)-1:0>;

elsif atomic && ispair then
value = AArch64.MemSingle[address, size, acctype, aligned, ispair];

elsif !atomic then

assert size > 1;
value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if !aligned then

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, acctype, aligned];

elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
value<63:0> = AArch64.MemSingle[address, 8, acctype, aligned, ispair];
value<127:64> = AArch64.MemSingle[address+8, 8, acctype, aligned, ispair];

else
value = AArch64.MemSingle[address, size, acctype, aligned, ispair];

if BigEndian(acctype) then
value = BigEndianReverse(value);

return value;

// Mem[] - assignment (write) form
// ===============================
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Shared Pseudocode Functions Page 2860

Mem[bits(64) address, integer size, AccType acctype] = bits(size*8) value
boolean ispair = FALSE;
Mem[address, size, acctype, ispair] = value;

Mem[bits(64) address, integer size, AccType acctype, boolean ispair] = bits(size*8) value
boolean iswrite = TRUE;
integer halfsize = size DIV 2;

if BigEndian(acctype) then
value = BigEndianReverse(value);

if ispair then
// check alignment on size of element accessed, not overall access size
aligned = AArch64.CheckAlignment(address, halfsize, acctype, iswrite);

else
aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

if ispair then
atomic = CheckAllInAlignedQuantity(address, size, 16);

elsif size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
if !HaveLSE2Ext() then

atomic = aligned;
else

atomic = CheckAllInAlignedQuantity(address, size, 16);
elsif (acctype IN {AccType_VEC, AccType_VECSTREAM}) then

// 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
// 64-bit aligned.
atomic = address == Align(address, 8);

else
// 16-byte integer access
atomic = address == Align(address, 16);

if !atomic && ispair && address == Align(address, halfsize) then
single_is_aligned = TRUE;
bits(halfsize*8) val1 = value<(8*halfsize)-1:0>;
bits(halfsize*8) val2 = value<(16*halfsize)-1:(8*halfsize)>;
AArch64.MemSingle[address, halfsize, acctype, single_is_aligned, ispair] = val1;
AArch64.MemSingle[address + halfsize, halfsize, acctype, single_is_aligned, ispair] = val2;

elsif atomic && ispair then
AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;

elsif !atomic then
assert size > 1;
AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if !aligned then

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;

elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
AArch64.MemSingle[address, 8, acctype, aligned, ispair] = value<63:0>;
AArch64.MemSingle[address+8, 8, acctype, aligned, ispair] = value<127:64>;

else
AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;

return;

Shared Pseudocode Functions Page 2861

Library pseudocode for aarch64/functions/memory/MemAtomic

// MemAtomic()
// ===========
// Performs load and store memory operations for a given virtual address.

bits(size) MemAtomic(bits(64) address, MemAtomicOp op, bits(size) value, AccType ldacctype, AccType stacctype)
bits(size) newvalue;
memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
ldaccdesc = CreateAccessDescriptor(ldacctype);
staccdesc = CreateAccessDescriptor(stacctype);

// All observers in the shareability domain observe the
// following load and store atomically.
(memstatus, oldvalue) = PhysMemRead(memaddrdesc, size DIV 8, ldaccdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size DIV 8, ldaccdesc);
if BigEndian(ldacctype) then

oldvalue = BigEndianReverse(oldvalue);

case op of
when MemAtomicOp_ADD newvalue = oldvalue + value;
when MemAtomicOp_BIC newvalue = oldvalue AND NOT(value);
when MemAtomicOp_EOR newvalue = oldvalue EOR value;
when MemAtomicOp_ORR newvalue = oldvalue OR value;
when MemAtomicOp_SMAX newvalue = if SInt(oldvalue) > SInt(value) then oldvalue else value;
when MemAtomicOp_SMIN newvalue = if SInt(oldvalue) > SInt(value) then value else oldvalue;
when MemAtomicOp_UMAX newvalue = if UInt(oldvalue) > UInt(value) then oldvalue else value;
when MemAtomicOp_UMIN newvalue = if UInt(oldvalue) > UInt(value) then value else oldvalue;
when MemAtomicOp_SWP newvalue = value;

if BigEndian(stacctype) then
newvalue = BigEndianReverse(newvalue);

memstatus = PhysMemWrite(memaddrdesc, size DIV 8, staccdesc, newvalue);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size DIV 8, staccdesc);

// Load operations return the old (pre-operation) value
return oldvalue;

Library pseudocode for aarch64/functions/memory/MemAtomicCompareAndSwap

// MemAtomicCompareAndSwap()
// =========================
// Compares the value stored at the passed-in memory address against the passed-in expected
// value. If the comparison is successful, the value at the passed-in memory address is swapped
// with the passed-in new_value.

bits(size) MemAtomicCompareAndSwap(bits(64) address, bits(size) expectedvalue,
bits(size) newvalue, AccType ldacctype, AccType stacctype)

memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
ldaccdesc = CreateAccessDescriptor(ldacctype);
staccdesc = CreateAccessDescriptor(stacctype);

// All observers in the shareability domain observe the
// following load and store atomically.
(memstatus, oldvalue) = PhysMemRead(memaddrdesc, size DIV 8, ldaccdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size DIV 8, ldaccdesc);
if BigEndian(ldacctype) then

oldvalue = BigEndianReverse(oldvalue);

if oldvalue == expectedvalue then
if BigEndian(stacctype) then

newvalue = BigEndianReverse(newvalue);
memstatus = PhysMemWrite(memaddrdesc, size DIV 8, staccdesc, newvalue);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size DIV 8, staccdesc);
return oldvalue;

Shared Pseudocode Functions Page 2862

Library pseudocode for aarch64/functions/memory/MemLoad64B

// MemLoad64B()
// ============
// Performs an atomic 64-byte read from a given virtual address.

bits(512) MemLoad64B(bits(64) address, AccType acctype)
bits(512) data;
boolean iswrite = FALSE;
constant integer size = 64;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

if !AddressSupportsLS64(address) then
c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

if c == Constraint_FAULT then
// Generate a stage 1 Data Abort reported using the DFSC code of 110101.
boolean secondstage = FALSE;
boolean s2fs1walk = FALSE;
fault = AArch64.ExclusiveFault(acctype, iswrite, secondstage, s2fs1walk);
AArch64.Abort(address, fault);

else
// Accesses are not single-copy atomic above the byte level
for i = 0 to 63

data<7+8*i : 8*i> = AArch64.MemSingle[address+8*i, 1, acctype, aligned];
return data;

AddressDescriptor memaddrdesc;
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTE2Ext() then

if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then
bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then

AArch64.TagCheckFault(address, acctype, iswrite);

(memstatus, data) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
return data;

Shared Pseudocode Functions Page 2863

Library pseudocode for aarch64/functions/memory/MemStore64B

// MemStore64B()
// =============
// Performs an atomic 64-byte store to a given virtual address. Function does
// not return the status of the store.

MemStore64B(bits(64) address, bits(512) value, AccType acctype)
boolean iswrite = TRUE;
constant integer size = 64;
aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

if !AddressSupportsLS64(address) then
c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

if c == Constraint_FAULT then
// Generate a Data Abort reported using the DFSC code of 110101.
boolean secondstage = FALSE;
boolean s2fs1walk = FALSE;
fault = AArch64.ExclusiveFault(acctype, iswrite, secondstage, s2fs1walk);
AArch64.Abort(address, fault);

else
// Accesses are not single-copy atomic above the byte level.
for i = 0 to 63

AArch64.MemSingle[address+8*i, 1, acctype, aligned] = value<7+8*i : 8*i>;
else

-= MemStore64BWithRet(address, value, acctype); // Return status is ignored by ST64B
return;

Library pseudocode for aarch64/functions/memory/MemStore64BWithRet

// MemStore64BWithRet()
// ====================
// Performs an atomic 64-byte store to a given virtual address returning
// the status value of the operation.

bits(64) MemStore64BWithRet(bits(64) address, bits(512) value, AccType acctype)
AddressDescriptor memaddrdesc;
boolean iswrite = TRUE;
constant integer size = 64;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);
return ZeroExtend('1');

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), 64);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);

if HaveMTE2Ext() then
if AArch64.AccessIsTagChecked(ZeroExtend(address, 64), acctype) then

bits(4) ptag = AArch64.PhysicalTag(ZeroExtend(address, 64));
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then

AArch64.TagCheckFault(address, acctype, iswrite);
return ZeroExtend('1');

memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
return memstatus.store64bstatus;

Shared Pseudocode Functions Page 2864

Library pseudocode for aarch64/functions/memory/MemStore64BWithRetStatus

// Generates the return status of memory write with ST64BV or ST64BV0
// instructions. The status indicates if the operation succeeded, failed,
// or was not supported at this memory location.
bits(64) MemStore64BWithRetStatus();

Library pseudocode for aarch64/functions/memory/NVMem

// NVMem[] - non-assignment form
// =============================
// This function is the load memory access for the transformed System register read access
// when Enhanced Nested Virtualisation is enabled with HCR_EL2.NV2 = 1.
// The address for the load memory access is calculated using
// the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
// * VNCR_EL2.BADDR holds the base address of the memory location, and
// * Offset is the unique offset value defined architecturally for each System register that
// supports transformation of register access to memory access.

bits(64) NVMem[integer offset]
assert offset > 0;
bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
return Mem[address, 8, AccType_NV2REGISTER];

// NVMem[] - assignment form
// =========================
// This function is the store memory access for the transformed System register write access
// when Enhanced Nested Virtualisation is enabled with HCR_EL2.NV2 = 1.
// The address for the store memory access is calculated using
// the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
// * VNCR_EL2.BADDR holds the base address of the memory location, and
// * Offset is the unique offset value defined architecturally for each System register that
// supports transformation of register access to memory access.

NVMem[integer offset] = bits(64) value
assert offset > 0;
bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
Mem[address, 8, AccType_NV2REGISTER] = value;
return;

Library pseudocode for aarch64/functions/memory/PhysMemTagRead

// This is the hardware operation which perform a single-copy atomic,
// Allocation Tag granule aligned, memory access from the tag in PA space.
//
// The function address the array using desc.paddress which supplies:
// * A 52-bit physical address
// * A single NS bit to select between Secure and Non-secure parts of the array.
//
// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// register in the event of an External abort.
(PhysMemRetStatus, bits(4)) PhysMemTagRead(AddressDescriptor desc, AccessDescriptor accdesc);

Library pseudocode for aarch64/functions/memory/PhysMemTagWrite

// This is the hardware operation which perform a single-copy atomic,
// Allocation Tag granule aligned, memory access to the tag in PA space.
//
// The function address the array using desc.paddress which supplies:
// * A 52-bit physical address
// * A single NS bit to select between Secure and Non-secure parts of the array.
//
// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// register in the event of an External abort.
PhysMemRetStatus PhysMemTagWrite(AddressDescriptor desc, AccessDescriptor accdesc, bits (4) value);

Shared Pseudocode Functions Page 2865

Library pseudocode for aarch64/functions/memory/SetTagCheckedInstruction

// Flag the current instruction as using/not using memory tag checking.
SetTagCheckedInstruction(boolean checked);

Shared Pseudocode Functions Page 2866

Library pseudocode for aarch64/functions/pac/addpac/AddPAC

Shared Pseudocode Functions Page 2867

// AddPAC()
// ========
// Calculates the pointer authentication code for a 64-bit quantity and then
// inserts that into pointer authentication code field of that 64-bit quantity.

bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
bits(64) PAC;
bits(64) result;
bits(64) ext_ptr;
bits(64) extfield;
bit selbit;
boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
integer top_bit = if tbi then 55 else 63;

// If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
// the pointer to select between upper and lower ranges, and preserve this.
// This handles the awkward case where there is apparently no correct choice between
// the upper and lower address range - ie an addr of 1xxxxxxx0... with TBI0=0 and TBI1=1
// and 0xxxxxxx1 with TBI1=0 and TBI0=1:
if PtrHasUpperAndLowerAddRanges() then

assert S1TranslationRegime() IN {EL1, EL2};
if S1TranslationRegime() == EL1 then

// EL1 translation regime registers
if data then

if TCR_EL1.TBI1 == '1' || TCR_EL1.TBI0 == '1' then
selbit = ptr<55>;

else
selbit = ptr<63>;

else
if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||

(TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then
selbit = ptr<55>;

else
selbit = ptr<63>;

else
// EL2 translation regime registers
if data then

if TCR_EL2.TBI1 == '1' || TCR_EL2.TBI0 == '1' then
selbit = ptr<55>;

else
selbit = ptr<63>;

else
if ((TCR_EL2.TBI1 == '1' && TCR_EL2.TBID1 == '0') ||

(TCR_EL2.TBI0 == '1' && TCR_EL2.TBID0 == '0')) then
selbit = ptr<55>;

else
selbit = ptr<63>;

else selbit = if tbi then ptr<55> else ptr<63>;

integer bottom_PAC_bit = CalculateBottomPACBit(selbit);

// The pointer authentication code field takes all the available bits in between
extfield = Replicate(selbit, 64);

// Compute the pointer authentication code for a ptr with good extension bits
if tbi then

ext_ptr = ptr<63:56>:extfield<(56-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;
else

ext_ptr = extfield<(64-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;

PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>);

// Check if the ptr has good extension bits and corrupt the pointer authentication code if not
if !IsZero(ptr<top_bit:bottom_PAC_bit>) && !IsOnes(ptr<top_bit:bottom_PAC_bit>) then

if HaveEnhancedPAC() then
PAC = 0x0000000000000000<63:0>;

elsif !HaveEnhancedPAC2() then
PAC<top_bit-1> = NOT(PAC<top_bit-1>);

// preserve the determination between upper and lower address at bit<55> and insert PAC

Shared Pseudocode Functions Page 2868

if !HaveEnhancedPAC2() then
if tbi then

result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
else

result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
else

if tbi then
result = ptr<63:56>:selbit:(ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;

else
result = (ptr<63:56> EOR PAC<63:56>):selbit:(ptr<54:bottom_PAC_bit> EOR

PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
return result;

Library pseudocode for aarch64/functions/pac/addpacda/AddPACDA

// AddPACDA()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDAKey_EL1.

bits(64) AddPACDA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APDAKey_EL1, TRUE);

Shared Pseudocode Functions Page 2869

Library pseudocode for aarch64/functions/pac/addpacdb/AddPACDB

// AddPACDB()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDBKey_EL1.

bits(64) AddPACDB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APDBKey_EL1, TRUE);

Shared Pseudocode Functions Page 2870

Library pseudocode for aarch64/functions/pac/addpacga/AddPACGA

// AddPACGA()
// ==========
// Returns a 64-bit value where the lower 32 bits are 0, and the upper 32 bits contain
// a 32-bit pointer authentication code which is derived using a cryptographic
// algorithm as a combination of X, Y and the APGAKey_EL1.

bits(64) AddPACGA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(128) APGAKey_EL1;

APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return ComputePAC(X, Y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>)<63:32>:Zeros(32);

Shared Pseudocode Functions Page 2871

Library pseudocode for aarch64/functions/pac/addpacia/AddPACIA

// AddPACIA()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y, and the
// APIAKey_EL1.

bits(64) AddPACIA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APIAKey_EL1, FALSE);

Shared Pseudocode Functions Page 2872

Library pseudocode for aarch64/functions/pac/addpacib/AddPACIB

// AddPACIB()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APIBKey_EL1.

bits(64) AddPACIB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APIBKey_EL1, FALSE);

Library pseudocode for aarch64/functions/pac/auth/AArch64.PACFailException

// AArch64.PACFailException()
// ==========================
// Generates a PAC Fail Exception

AArch64.PACFailException(bits(2) syndrome)
route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_PACFail);
exception.syndrome<1:0> = syndrome;
exception.syndrome<24:2> = Zeros(); // RES0

if UInt(PSTATE.EL) > UInt(EL0) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2873

Library pseudocode for aarch64/functions/pac/auth/Auth

// Auth()
// ======
// Restores the upper bits of the address to be all zeros or all ones (based on the
// value of bit[55]) and computes and checks the pointer authentication code. If the
// check passes, then the restored address is returned. If the check fails, the
// second-top and third-top bits of the extension bits in the pointer authentication code
// field are corrupted to ensure that accessing the address will give a translation fault.

bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit key_number, boolean is_combined)
bits(64) PAC;
bits(64) result;
bits(64) original_ptr;
bits(2) error_code;
bits(64) extfield;

// Reconstruct the extension field used of adding the PAC to the pointer
boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
integer bottom_PAC_bit = CalculateBottomPACBit(ptr<55>);
extfield = Replicate(ptr<55>, 64);

if tbi then
original_ptr = ptr<63:56>:extfield<56-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

else
original_ptr = extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>);
// Check pointer authentication code
if tbi then

if !HaveEnhancedPAC2() then
if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then

result = original_ptr;
else

error_code = key_number:NOT(key_number);
result = original_ptr<63:55>:error_code:original_ptr<52:0>;

else
result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
if HaveFPACCombined() || (HaveFPAC() && !is_combined) then

if result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit)) then
error_code = (if data then '1' else '0'):key_number;
AArch64.PACFailException(error_code);

else
if !HaveEnhancedPAC2() then

if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> && PAC<63:56> == ptr<63:56> then
result = original_ptr;

else
error_code = key_number:NOT(key_number);
result = original_ptr<63>:error_code:original_ptr<60:0>;

else
result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
result<63:56> = result<63:56> EOR PAC<63:56>;
if HaveFPACCombined() || (HaveFPAC() && !is_combined) then

if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
error_code = (if data then '1' else '0'):key_number;
AArch64.PACFailException(error_code);

return result;

Shared Pseudocode Functions Page 2874

Library pseudocode for aarch64/functions/pac/authda/AuthDA

// AuthDA()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACDA().

bits(64) AuthDA(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APDAKey_EL1, TRUE, '0', is_combined);

Shared Pseudocode Functions Page 2875

Library pseudocode for aarch64/functions/pac/authdb/AuthDB

// AuthDB()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a
// pointer authentication code in the pointer authentication code field bits of X, using
// the same algorithm and key as AddPACDB().

bits(64) AuthDB(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APDBKey_EL1, TRUE, '1', is_combined);

Shared Pseudocode Functions Page 2876

Library pseudocode for aarch64/functions/pac/authia/AuthIA

// AuthIA()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACIA().

bits(64) AuthIA(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APIAKey_EL1, FALSE, '0', is_combined);

Shared Pseudocode Functions Page 2877

Library pseudocode for aarch64/functions/pac/authib/AuthIB

// AuthIB()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACIB().

bits(64) AuthIB(bits(64) X, bits(64) Y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APIBKey_EL1, FALSE, '1', is_combined);

Shared Pseudocode Functions Page 2878

Library pseudocode for aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit

// CalculateBottomPACBit()
// =======================

integer CalculateBottomPACBit(bit top_bit)
integer tsz_field;

if PtrHasUpperAndLowerAddRanges() then
assert S1TranslationRegime() IN {EL1, EL2};
if S1TranslationRegime() == EL1 then

// EL1 translation regime registers
tsz_field = if top_bit == '1' then UInt(TCR_EL1.T1SZ) else UInt(TCR_EL1.T0SZ);
using64k = if top_bit == '1' then TCR_EL1.TG1 == '11' else TCR_EL1.TG0 == '01';

else
// EL2 translation regime registers
assert HaveEL(EL2);
tsz_field = if top_bit == '1' then UInt(TCR_EL2.T1SZ) else UInt(TCR_EL2.T0SZ);
using64k = if top_bit == '1' then TCR_EL2.TG1 == '11' else TCR_EL2.TG0 == '01';

else
tsz_field = if PSTATE.EL == EL2 then UInt(TCR_EL2.T0SZ) else UInt(TCR_EL3.T0SZ);
using64k = if PSTATE.EL == EL2 then TCR_EL2.TG0 == '01' else TCR_EL3.TG0 == '01';

max_limit_tsz_field = (if !HaveSmallTranslationTableExt() then 39 else if using64k then 47 else 48);
if tsz_field > max_limit_tsz_field then

// TCR_ELx.TySZ is out of range
c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_NONE};
if c == Constraint_FORCE then tsz_field = max_limit_tsz_field;

tszmin = if using64k && AArch64.VAMax() == 52 then 12 else 16;
if tsz_field < tszmin then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_NONE};
if c == Constraint_FORCE then tsz_field = tszmin;

return (64-tsz_field);

Shared Pseudocode Functions Page 2879

Library pseudocode for aarch64/functions/pac/computepac/ComputePAC

// ComputePAC()
// ============

bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1)
bits(64) workingval;
bits(64) runningmod;
bits(64) roundkey;
bits(64) modk0;
constant bits(64) Alpha = 0xC0AC29B7C97C50DD<63:0>;

RC[0] = 0x0000000000000000<63:0>;
RC[1] = 0x13198A2E03707344<63:0>;
RC[2] = 0xA4093822299F31D0<63:0>;
RC[3] = 0x082EFA98EC4E6C89<63:0>;
RC[4] = 0x452821E638D01377<63:0>;

modk0 = key0<0>:key0<63:2>:(key0<63> EOR key0<1>);
runningmod = modifier;
workingval = data EOR key0;
for i = 0 to 4

roundkey = key1 EOR runningmod;
workingval = workingval EOR roundkey;
workingval = workingval EOR RC[i];
if i > 0 then

workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);

workingval = PACSub(workingval);
runningmod = TweakShuffle(runningmod<63:0>);

roundkey = modk0 EOR runningmod;
workingval = workingval EOR roundkey;
workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);
workingval = PACSub(workingval);
workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);
workingval = key1 EOR workingval;
workingval = PACCellInvShuffle(workingval);
workingval = PACInvSub(workingval);
workingval = PACMult(workingval);
workingval = PACCellInvShuffle(workingval);
workingval = workingval EOR key0;
workingval = workingval EOR runningmod;
for i = 0 to 4

workingval = PACInvSub(workingval);
if i < 4 then

workingval = PACMult(workingval);
workingval = PACCellInvShuffle(workingval);

runningmod = TweakInvShuffle(runningmod<63:0>);
roundkey = key1 EOR runningmod;
workingval = workingval EOR RC[4-i];
workingval = workingval EOR roundkey;
workingval = workingval EOR Alpha;

workingval = workingval EOR modk0;

return workingval;

Shared Pseudocode Functions Page 2880

Library pseudocode for aarch64/functions/pac/computepac/PACCellInvShuffle

// PACCellInvShuffle()
// ===================

bits(64) PACCellInvShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<15:12>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<51:48>;
outdata<15:12> = indata<39:36>;
outdata<19:16> = indata<59:56>;
outdata<23:20> = indata<47:44>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<19:16>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<31:28>;
outdata<47:44> = indata<11:8>;
outdata<51:48> = indata<23:20>;
outdata<55:52> = indata<3:0>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = indata<63:60>;
return outdata;

Library pseudocode for aarch64/functions/pac/computepac/PACCellShuffle

// PACCellShuffle()
// ================

bits(64) PACCellShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<55:52>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<47:44>;
outdata<15:12> = indata<3:0>;
outdata<19:16> = indata<31:28>;
outdata<23:20> = indata<51:48>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<43:40>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<15:12>;
outdata<43:40> = indata<59:56>;
outdata<47:44> = indata<23:20>;
outdata<51:48> = indata<11:8>;
outdata<55:52> = indata<39:36>;
outdata<59:56> = indata<19:16>;
outdata<63:60> = indata<63:60>;
return outdata;

Shared Pseudocode Functions Page 2881

Library pseudocode for aarch64/functions/pac/computepac/PACInvSub

// PACInvSub()
// ===========

bits(64) PACInvSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher
bits(64) Toutput;
for i = 0 to 15

case Tinput<4*i+3:4*i> of
when '0000' Toutput<4*i+3:4*i> = '0101';
when '0001' Toutput<4*i+3:4*i> = '1110';
when '0010' Toutput<4*i+3:4*i> = '1101';
when '0011' Toutput<4*i+3:4*i> = '1000';
when '0100' Toutput<4*i+3:4*i> = '1010';
when '0101' Toutput<4*i+3:4*i> = '1011';
when '0110' Toutput<4*i+3:4*i> = '0001';
when '0111' Toutput<4*i+3:4*i> = '1001';
when '1000' Toutput<4*i+3:4*i> = '0010';
when '1001' Toutput<4*i+3:4*i> = '0110';
when '1010' Toutput<4*i+3:4*i> = '1111';
when '1011' Toutput<4*i+3:4*i> = '0000';
when '1100' Toutput<4*i+3:4*i> = '0100';
when '1101' Toutput<4*i+3:4*i> = '1100';
when '1110' Toutput<4*i+3:4*i> = '0111';
when '1111' Toutput<4*i+3:4*i> = '0011';

return Toutput;

Library pseudocode for aarch64/functions/pac/computepac/PACMult

// PACMult()
// =========

bits(64) PACMult(bits(64) Sinput)
bits(4) t0;
bits(4) t1;
bits(4) t2;
bits(4) t3;
bits(64) Soutput;

for i = 0 to 3
t0<3:0> = RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 2);
t0<3:0> = t0<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
t1<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
t1<3:0> = t1<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
t2<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 2) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1);
t2<3:0> = t2<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
t3<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 2);
t3<3:0> = t3<3:0> EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
Soutput<4*i+3:4*i> = t3<3:0>;
Soutput<4*(i+4)+3:4*(i+4)> = t2<3:0>;
Soutput<4*(i+8)+3:4*(i+8)> = t1<3:0>;
Soutput<4*(i+12)+3:4*(i+12)> = t0<3:0>;

return Soutput;

Shared Pseudocode Functions Page 2882

Library pseudocode for aarch64/functions/pac/computepac/PACSub

// PACSub()
// ========

bits(64) PACSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher
bits(64) Toutput;
for i = 0 to 15

case Tinput<4*i+3:4*i> of
when '0000' Toutput<4*i+3:4*i> = '1011';
when '0001' Toutput<4*i+3:4*i> = '0110';
when '0010' Toutput<4*i+3:4*i> = '1000';
when '0011' Toutput<4*i+3:4*i> = '1111';
when '0100' Toutput<4*i+3:4*i> = '1100';
when '0101' Toutput<4*i+3:4*i> = '0000';
when '0110' Toutput<4*i+3:4*i> = '1001';
when '0111' Toutput<4*i+3:4*i> = '1110';
when '1000' Toutput<4*i+3:4*i> = '0011';
when '1001' Toutput<4*i+3:4*i> = '0111';
when '1010' Toutput<4*i+3:4*i> = '0100';
when '1011' Toutput<4*i+3:4*i> = '0101';
when '1100' Toutput<4*i+3:4*i> = '1101';
when '1101' Toutput<4*i+3:4*i> = '0010';
when '1110' Toutput<4*i+3:4*i> = '0001';
when '1111' Toutput<4*i+3:4*i> = '1010';

return Toutput;

Library pseudocode for aarch64/functions/pac/computepac/RC

array bits(64) RC[0..4];

Library pseudocode for aarch64/functions/pac/computepac/RotCell

// RotCell()
// =========

bits(4) RotCell(bits(4) incell, integer amount)
bits(8) tmp;
bits(4) outcell;

// assert amount>3 || amount<1;
tmp<7:0> = incell<3:0>:incell<3:0>;
outcell = tmp<7-amount:4-amount>;
return outcell;

Library pseudocode for aarch64/functions/pac/computepac/TweakCellInvRot

// TweakCellInvRot()
// =================

bits(4) TweakCellInvRot(bits(4) incell)
bits(4) outcell;
outcell<3> = incell<2>;
outcell<2> = incell<1>;
outcell<1> = incell<0>;
outcell<0> = incell<0> EOR incell<3>;
return outcell;

Shared Pseudocode Functions Page 2883

Library pseudocode for aarch64/functions/pac/computepac/TweakCellRot

// TweakCellRot()
// ==============

bits(4) TweakCellRot(bits(4) incell)
bits(4) outcell;
outcell<3> = incell<0> EOR incell<1>;
outcell<2> = incell<3>;
outcell<1> = incell<2>;
outcell<0> = incell<1>;
return outcell;

Library pseudocode for aarch64/functions/pac/computepac/TweakInvShuffle

// TweakInvShuffle()
// =================

bits(64) TweakInvShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = TweakCellInvRot(indata<51:48>);
outdata<7:4> = indata<55:52>;
outdata<11:8> = indata<23:20>;
outdata<15:12> = indata<27:24>;
outdata<19:16> = indata<3:0>;
outdata<23:20> = indata<7:4>;
outdata<27:24> = TweakCellInvRot(indata<11:8>);
outdata<31:28> = indata<15:12>;
outdata<35:32> = TweakCellInvRot(indata<31:28>);
outdata<39:36> = TweakCellInvRot(indata<63:60>);
outdata<43:40> = TweakCellInvRot(indata<59:56>);
outdata<47:44> = TweakCellInvRot(indata<19:16>);
outdata<51:48> = indata<35:32>;
outdata<55:52> = indata<39:36>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = TweakCellInvRot(indata<47:44>);
return outdata;

Library pseudocode for aarch64/functions/pac/computepac/TweakShuffle

// TweakShuffle()
// ==============

bits(64) TweakShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<19:16>;
outdata<7:4> = indata<23:20>;
outdata<11:8> = TweakCellRot(indata<27:24>);
outdata<15:12> = indata<31:28>;
outdata<19:16> = TweakCellRot(indata<47:44>);
outdata<23:20> = indata<11:8>;
outdata<27:24> = indata<15:12>;
outdata<31:28> = TweakCellRot(indata<35:32>);
outdata<35:32> = indata<51:48>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<59:56>;
outdata<47:44> = TweakCellRot(indata<63:60>);
outdata<51:48> = TweakCellRot(indata<3:0>);
outdata<55:52> = indata<7:4>;
outdata<59:56> = TweakCellRot(indata<43:40>);
outdata<63:60> = TweakCellRot(indata<39:36>);
return outdata;

Shared Pseudocode Functions Page 2884

Library pseudocode for aarch64/functions/pac/pac/HaveEnhancedPAC

// HaveEnhancedPAC()
// =================
// Returns TRUE if support for EnhancedPAC is implemented, FALSE otherwise.

boolean HaveEnhancedPAC()
return (HavePACExt()

&& boolean IMPLEMENTATION_DEFINED "Has enhanced PAC functionality");

Library pseudocode for aarch64/functions/pac/pac/HaveEnhancedPAC2

// HaveEnhancedPAC2()
// ==================
// Returns TRUE if support for EnhancedPAC2 is implemented, FALSE otherwise.

boolean HaveEnhancedPAC2()
return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has enhanced PAC 2 functionality");

Library pseudocode for aarch64/functions/pac/pac/HaveFPAC

// HaveFPAC()
// ==========
// Returns TRUE if support for FPAC is implemented, FALSE otherwise.

boolean HaveFPAC()
return HaveEnhancedPAC2() && boolean IMPLEMENTATION_DEFINED "Has FPAC functionality";

Library pseudocode for aarch64/functions/pac/pac/HaveFPACCombined

// HaveFPACCombined()
// ==================
// Returns TRUE if support for FPACCombined is implemented, FALSE otherwise.

boolean HaveFPACCombined()
return HaveFPAC() && boolean IMPLEMENTATION_DEFINED "Has FPAC Combined functionality";

Library pseudocode for aarch64/functions/pac/pac/HavePACExt

// HavePACExt()
// ============
// Returns TRUE if support for the PAC extension is implemented, FALSE otherwise.

boolean HavePACExt()
return HasArchVersion(ARMv8p3);

Library pseudocode for aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

// PtrHasUpperAndLowerAddRanges()
// ==============================
// Returns TRUE if the pointer has upper and lower address ranges, FALSE otherwise.

boolean PtrHasUpperAndLowerAddRanges()
regime = TranslationRegime(PSTATE.EL, AccType_NORMAL);
return HasUnprivileged(regime);

Shared Pseudocode Functions Page 2885

Library pseudocode for aarch64/functions/pac/strip/Strip

// Strip()
// =======
// Strip() returns a 64-bit value containing A, but replacing the pointer authentication
// code field bits with the extension of the address bits. This can apply to either
// instructions or data, where, as the use of tagged pointers is distinct, it might be
// handled differently.

bits(64) Strip(bits(64) A, boolean data)
bits(64) original_ptr;
bits(64) extfield;
boolean tbi = EffectiveTBI(A, !data, PSTATE.EL) == '1';
integer bottom_PAC_bit = CalculateBottomPACBit(A<55>);
extfield = Replicate(A<55>, 64);

if tbi then
original_ptr = A<63:56>:extfield< 56-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;

else
original_ptr = extfield< 64-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;

return original_ptr;

Library pseudocode for aarch64/functions/pac/trappacuse/TrapPACUse

// TrapPACUse()
// ============
// Used for the trapping of the pointer authentication functions by higher exception
// levels.

TrapPACUse(bits(2) target_el)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
ExceptionRecord exception;
vect_offset = 0;
exception = ExceptionSyndrome(Exception_PACTrap);
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 2886

Library pseudocode for aarch64/functions/ras/AArch64.ESBOperation

// AArch64.ESBOperation()
// ======================
// Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
// ESB in AArch32 state when SError interrupts are routed to an Exception level using
// AArch64

AArch64.ESBOperation()

route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
route_to_el2 = (EL2Enabled() &&

(HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1'));

target = if route_to_el3 then EL3 elsif route_to_el2 then EL2 else EL1;

if target == EL1 then
mask_active = PSTATE.EL IN {EL0, EL1};

elsif HaveVirtHostExt() && target == EL2 && HCR_EL2.<E2H,TGE> == '11' then
mask_active = PSTATE.EL IN {EL0, EL2};

else
mask_active = PSTATE.EL == target;

mask_set = (PSTATE.A == '1' && (!HaveDoubleFaultExt() || SCR_EL3.EA == '0' ||
PSTATE.EL != EL3 || SCR_EL3.NMEA == '0'));

intdis = Halted() || ExternalDebugInterruptsDisabled(target);
masked = (UInt(target) < UInt(PSTATE.EL)) || intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending that can be synchronized
// by an Error synchronization event.
if masked && IsSynchronizablePhysicalSErrorPending() then

// This function might be called for an interworking case, and INTdis is masking
// the SError interrupt.
if ELUsingAArch32(S1TranslationRegime()) then

syndrome32 = AArch32.PhysicalSErrorSyndrome();
DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);

else
implicit_esb = FALSE;
syndrome64 = AArch64.PhysicalSErrorSyndrome(implicit_esb);
DISR_EL1 = AArch64.ReportDeferredSError(syndrome64);

ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

return;

Library pseudocode for aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

// Return the SError syndrome
bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb);

Library pseudocode for aarch64/functions/ras/AArch64.ReportDeferredSError

// AArch64.ReportDeferredSError()
// ==============================
// Generate deferred SError syndrome

bits(64) AArch64.ReportDeferredSError(bits(25) syndrome)
bits(64) target;
target<31> = '1'; // A
target<24> = syndrome<24>; // IDS
target<23:0> = syndrome<23:0>; // ISS
return target;

Shared Pseudocode Functions Page 2887

Library pseudocode for aarch64/functions/ras/AArch64.vESBOperation

// AArch64.vESBOperation()
// =======================
// Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
// executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

AArch64.vESBOperation()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

// If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
// SError interrupt might be pending
vSEI_enabled = HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
vSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';
vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
vmasked = vintdis || PSTATE.A == '1';

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then

// This function might be called for the interworking case, and INTdis is masking
// the virtual SError interrupt.
if ELUsingAArch32(EL1) then

VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
else

VDISR_EL2 = AArch64.ReportDeferredSError(VSESR_EL2<24:0>);
HCR_EL2.VSE = '0'; // Clear pending virtual SError

return;

Library pseudocode for aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

// AArch64.MaybeZeroRegisterUppers()
// =================================
// On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
// 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

AArch64.MaybeZeroRegisterUppers()
assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
first = 0; last = 14; include_R15 = FALSE;

elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then
first = 0; last = 30; include_R15 = FALSE;

else
first = 0; last = 30; include_R15 = TRUE;

for n = first to last
if (n != 15 || include_R15) && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then

_R[n]<63:32> = Zeros();

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetGeneralRegisters

// AArch64.ResetGeneralRegisters()
// ===============================

AArch64.ResetGeneralRegisters()

for i = 0 to 30
X[i] = bits(64) UNKNOWN;

return;

Shared Pseudocode Functions Page 2888

Library pseudocode for aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

// AArch64.ResetSIMDFPRegisters()
// ==============================

AArch64.ResetSIMDFPRegisters()

for i = 0 to 31
V[i] = bits(128) UNKNOWN;

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetSpecialRegisters

// AArch64.ResetSpecialRegisters()
// ===============================

AArch64.ResetSpecialRegisters()

// AArch64 special registers
SP_EL0 = bits(64) UNKNOWN;
SP_EL1 = bits(64) UNKNOWN;
SPSR_EL1 = bits(64) UNKNOWN;
ELR_EL1 = bits(64) UNKNOWN;
if HaveEL(EL2) then

SP_EL2 = bits(64) UNKNOWN;
SPSR_EL2 = bits(64) UNKNOWN;
ELR_EL2 = bits(64) UNKNOWN;

if HaveEL(EL3) then
SP_EL3 = bits(64) UNKNOWN;
SPSR_EL3 = bits(64) UNKNOWN;
ELR_EL3 = bits(64) UNKNOWN;

// AArch32 special registers that are not architecturally mapped to AArch64 registers
if HaveAArch32EL(EL1) then

SPSR_fiq<31:0> = bits(32) UNKNOWN;
SPSR_irq<31:0> = bits(32) UNKNOWN;
SPSR_abt<31:0> = bits(32) UNKNOWN;
SPSR_und<31:0> = bits(32) UNKNOWN;

// External debug special registers
DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(64) UNKNOWN;

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetSystemRegisters

AArch64.ResetSystemRegisters(boolean cold_reset);

Library pseudocode for aarch64/functions/registers/PC

// PC - non-assignment form
// ========================
// Read program counter.

bits(64) PC[]
return _PC;

Shared Pseudocode Functions Page 2889

Library pseudocode for aarch64/functions/registers/SP

// SP[] - assignment form
// ======================
// Write to stack pointer from either a 32-bit or a 64-bit value.

SP[] = bits(width) value
assert width IN {32,64};
if PSTATE.SP == '0' then

SP_EL0 = ZeroExtend(value);
else

case PSTATE.EL of
when EL0 SP_EL0 = ZeroExtend(value);
when EL1 SP_EL1 = ZeroExtend(value);
when EL2 SP_EL2 = ZeroExtend(value);
when EL3 SP_EL3 = ZeroExtend(value);

return;

// SP[] - non-assignment form
// ==========================
// Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.

bits(width) SP[]
assert width IN {8,16,32,64};
if PSTATE.SP == '0' then

return SP_EL0<width-1:0>;
else

case PSTATE.EL of
when EL0 return SP_EL0<width-1:0>;
when EL1 return SP_EL1<width-1:0>;
when EL2 return SP_EL2<width-1:0>;
when EL3 return SP_EL3<width-1:0>;

Library pseudocode for aarch64/functions/registers/V

// V[] - assignment form
// =====================
// Write to SIMD&FP register with implicit extension from
// 8, 16, 32, 64 or 128 bits.

V[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
integer vlen = if IsSVEEnabled(PSTATE.EL) then VL else 128;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_Z[n] = ZeroExtend(value);
else

_Z[n]<vlen-1:0> = ZeroExtend(value);

// V[] - non-assignment form
// =========================
// Read from SIMD&FP register with implicit slice of 8, 16
// 32, 64 or 128 bits.

bits(width) V[integer n]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
return _Z[n]<width-1:0>;

Shared Pseudocode Functions Page 2890

Library pseudocode for aarch64/functions/registers/Vpart

// Vpart[] - non-assignment form
// =============================
// Reads a 128-bit SIMD&FP register in up to two parts:
// part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
// part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
// value held in the register.

bits(width) Vpart[integer n, integer part]
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then

assert width < 128;
return V[n];

else
assert width IN {32,64};
bits(128) vreg = V[n];
return vreg<(width * 2)-1:width>;

// Vpart[] - assignment form
// =========================
// Writes a 128-bit SIMD&FP register in up to two parts:
// part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
// part 1 inserts a 64-bit value into the top half of the register.

Vpart[integer n, integer part] = bits(width) value
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then

assert width < 128;
V[n] = value;

else
assert width == 64;
bits(64) vreg = V[n];
V[n] = value<63:0> : vreg;

Library pseudocode for aarch64/functions/registers/X

// X[] - assignment form
// =====================
// Write to general-purpose register from either a 32-bit or a 64-bit value.

X[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {32,64};
if n != 31 then

_R[n] = ZeroExtend(value);
return;

// X[] - non-assignment form
// =========================
// Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

bits(width) X[integer n]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64};
if n != 31 then

return _R[n]<width-1:0>;
else

return Zeros(width);

Shared Pseudocode Functions Page 2891

Library pseudocode for aarch64/functions/sve/AArch32.IsFPEnabled

// AArch32.IsFPEnabled()
// =====================
// Returns TRUE if access to the SIMD&FP instructions or System registers are
// enabled at the target exception level in AArch32 state and FALSE otherwise.

boolean AArch32.IsFPEnabled(bits(2) el)
if el == EL0 && !ELUsingAArch32(EL1) then

return AArch64.IsFPEnabled(el);

if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
// Check if access disabled in NSACR
if NSACR.cp10 == '0' then return FALSE;

if el IN {EL0, EL1} then
// Check if access disabled in CPACR
case CPACR.cp10 of

when '00' disabled = TRUE;
when '01' disabled = el == EL0;
when '10' disabled = ConstrainUnpredictableBool(Unpredictable_RESCPACR);
when '11' disabled = FALSE;

if disabled then return FALSE;

if el IN {EL0, EL1, EL2} && EL2Enabled() then
if !ELUsingAArch32(EL2) then

return AArch64.IsFPEnabled(EL2);
if HCPTR.TCP10 == '1' then return FALSE;

if HaveEL(EL3) && !ELUsingAArch32(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/AArch64.IsFPEnabled

// AArch64.IsFPEnabled()
// =====================
// Returns TRUE if access to the SIMD&FP instructions or System registers are
// enabled at the target exception level in AArch64 state and FALSE otherwise.

boolean AArch64.IsFPEnabled(bits(2) el)
// Check if access disabled in CPACR_EL1
if el IN {EL0, EL1} && !IsInHost() then

// Check FP&SIMD at EL0/EL1
case CPACR_EL1.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0;
when '11' disabled = FALSE;

if disabled then return FALSE;

// Check if access disabled in CPTR_EL2
if el IN {EL0, EL1, EL2} && EL2Enabled() then

if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
case CPTR_EL2.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then return FALSE;
else

if CPTR_EL2.TFP == '1' then return FALSE;

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.TFP == '1' then return FALSE;

return TRUE;

Shared Pseudocode Functions Page 2892

Library pseudocode for aarch64/functions/sve/AnyActiveElement

// AnyActiveElement()
// ==================
// Return TRUE if there is at least one active element in mask. Otherwise,
// return FALSE.

boolean AnyActiveElement(bits(N) mask, integer esize)
return LastActiveElement(mask, esize) >= 0;

Library pseudocode for aarch64/functions/sve/CeilPow2

// CeilPow2()
// ==========

// For a positive integer X, return the smallest power of 2 >= X

integer CeilPow2(integer x)
if x == 0 then return 0;
if x == 1 then return 2;
return FloorPow2(x - 1) * 2;

Shared Pseudocode Functions Page 2893

Library pseudocode for aarch64/functions/sve/CheckSVEEnabled

// CheckSVEEnabled()
// =================
// Checks for traps on SVE instructions and instructions that
// access SVE System registers.

CheckSVEEnabled()
// Check if access disabled in CPACR_EL1
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

// Check SVE at EL0/EL1
case CPACR_EL1.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then SVEAccessTrap(EL1);

// Check SIMD&FP at EL0/EL1
case CPACR_EL1.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

// Check if access disabled in CPTR_EL2
if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then

if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
// Check SVE at EL2
case CPTR_EL2.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then SVEAccessTrap(EL2);

// Check SIMD&FP at EL2
case CPTR_EL2.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
else

if CPTR_EL2.TZ == '1' then SVEAccessTrap(EL2);
if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.EZ == '0' then SVEAccessTrap(EL3);
if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

Shared Pseudocode Functions Page 2894

Library pseudocode for aarch64/functions/sve/DecodePredCount

// DecodePredCount()
// =================

integer DecodePredCount(bits(5) pattern, integer esize)
integer elements = VL DIV esize;
integer numElem;
case pattern of

when '00000' numElem = FloorPow2(elements);
when '00001' numElem = if elements >= 1 then 1 else 0;
when '00010' numElem = if elements >= 2 then 2 else 0;
when '00011' numElem = if elements >= 3 then 3 else 0;
when '00100' numElem = if elements >= 4 then 4 else 0;
when '00101' numElem = if elements >= 5 then 5 else 0;
when '00110' numElem = if elements >= 6 then 6 else 0;
when '00111' numElem = if elements >= 7 then 7 else 0;
when '01000' numElem = if elements >= 8 then 8 else 0;
when '01001' numElem = if elements >= 16 then 16 else 0;
when '01010' numElem = if elements >= 32 then 32 else 0;
when '01011' numElem = if elements >= 64 then 64 else 0;
when '01100' numElem = if elements >= 128 then 128 else 0;
when '01101' numElem = if elements >= 256 then 256 else 0;
when '11101' numElem = elements - (elements MOD 4);
when '11110' numElem = elements - (elements MOD 3);
when '11111' numElem = elements;
otherwise numElem = 0;

return numElem;

Library pseudocode for aarch64/functions/sve/ElemFFR

// ElemFFR[] - non-assignment form
// ===============================

bit ElemFFR[integer e, integer esize]
return ElemP[_FFR, e, esize];

// ElemFFR[] - assignment form
// ===========================

ElemFFR[integer e, integer esize] = bit value
integer psize = esize DIV 8;
integer n = e * psize;
assert n >= 0 && (n + psize) <= PL;
_FFR<n+psize-1:n> = ZeroExtend(value, psize);
return;

Library pseudocode for aarch64/functions/sve/ElemP

// ElemP[] - non-assignment form
// =============================

bit ElemP[bits(N) pred, integer e, integer esize]
integer n = e * (esize DIV 8);
assert n >= 0 && n < N;
return pred<n>;

// ElemP[] - assignment form
// =========================

ElemP[bits(N) &pred, integer e, integer esize] = bit value
integer psize = esize DIV 8;
integer n = e * psize;
assert n >= 0 && (n + psize) <= N;
pred<n+psize-1:n> = ZeroExtend(value, psize);
return;

Shared Pseudocode Functions Page 2895

Library pseudocode for aarch64/functions/sve/FFR

// FFR[] - non-assignment form
// ===========================

bits(width) FFR[]
assert width == PL;
return _FFR<width-1:0>;

// FFR[] - assignment form
// =======================

FFR[] = bits(width) value
assert width == PL;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_FFR = ZeroExtend(value);
else

_FFR<width-1:0> = value;

Library pseudocode for aarch64/functions/sve/FPCompareNE

// FPCompareNE()
// =============

boolean FPCompareNE(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if op1_nan || op2_nan then
result = TRUE;
if type1 == FPType_SNaN || type2 == FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
else // All non-NaN cases can be evaluated on the values produced by FPUnpack()

result = (value1 != value2);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for aarch64/functions/sve/FPCompareUN

// FPCompareUN()
// =============

boolean FPCompareUN(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if type1 == FPType_SNaN || type2 == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpcr);

result = type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN};

if !result then
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 2896

Library pseudocode for aarch64/functions/sve/FPConvertSVE

// FPConvertSVE()
// ==============

bits(M) FPConvertSVE(bits(N) op, FPCRType fpcr, FPRounding rounding)
fpcr.AHP = '0';
return FPConvert(op, fpcr, rounding);

// FPConvertSVE()
// ==============

bits(M) FPConvertSVE(bits(N) op, FPCRType fpcr)
fpcr.AHP = '0';
return FPConvert(op, fpcr, FPRoundingMode(fpcr));

Library pseudocode for aarch64/functions/sve/FPExpA

// FPExpA()
// ========

bits(N) FPExpA(bits(N) op)
assert N IN {16,32,64};
bits(N) result;
bits(N) coeff;
integer idx = if N == 16 then UInt(op<4:0>) else UInt(op<5:0>);
coeff = FPExpCoefficient[idx];
if N == 16 then

result<15:0> = '0':op<9:5>:coeff<9:0>;
elsif N == 32 then

result<31:0> = '0':op<13:6>:coeff<22:0>;
else // N == 64

result<63:0> = '0':op<16:6>:coeff<51:0>;

return result;

Shared Pseudocode Functions Page 2897

Library pseudocode for aarch64/functions/sve/FPExpCoefficient

Shared Pseudocode Functions Page 2898

// FPExpCoefficient()
// ==================

bits(N) FPExpCoefficient[integer index]
assert N IN {16,32,64};
integer result;

if N == 16 then
case index of

when 0 result = 0x0000;
when 1 result = 0x0016;
when 2 result = 0x002d;
when 3 result = 0x0045;
when 4 result = 0x005d;
when 5 result = 0x0075;
when 6 result = 0x008e;
when 7 result = 0x00a8;
when 8 result = 0x00c2;
when 9 result = 0x00dc;
when 10 result = 0x00f8;
when 11 result = 0x0114;
when 12 result = 0x0130;
when 13 result = 0x014d;
when 14 result = 0x016b;
when 15 result = 0x0189;
when 16 result = 0x01a8;
when 17 result = 0x01c8;
when 18 result = 0x01e8;
when 19 result = 0x0209;
when 20 result = 0x022b;
when 21 result = 0x024e;
when 22 result = 0x0271;
when 23 result = 0x0295;
when 24 result = 0x02ba;
when 25 result = 0x02e0;
when 26 result = 0x0306;
when 27 result = 0x032e;
when 28 result = 0x0356;
when 29 result = 0x037f;
when 30 result = 0x03a9;
when 31 result = 0x03d4;

elsif N == 32 then
case index of

when 0 result = 0x000000;
when 1 result = 0x0164d2;
when 2 result = 0x02cd87;
when 3 result = 0x043a29;
when 4 result = 0x05aac3;
when 5 result = 0x071f62;
when 6 result = 0x08980f;
when 7 result = 0x0a14d5;
when 8 result = 0x0b95c2;
when 9 result = 0x0d1adf;
when 10 result = 0x0ea43a;
when 11 result = 0x1031dc;
when 12 result = 0x11c3d3;
when 13 result = 0x135a2b;
when 14 result = 0x14f4f0;
when 15 result = 0x16942d;
when 16 result = 0x1837f0;
when 17 result = 0x19e046;
when 18 result = 0x1b8d3a;
when 19 result = 0x1d3eda;
when 20 result = 0x1ef532;
when 21 result = 0x20b051;
when 22 result = 0x227043;
when 23 result = 0x243516;
when 24 result = 0x25fed7;
when 25 result = 0x27cd94;

Shared Pseudocode Functions Page 2899

when 26 result = 0x29a15b;
when 27 result = 0x2b7a3a;
when 28 result = 0x2d583f;
when 29 result = 0x2f3b79;
when 30 result = 0x3123f6;
when 31 result = 0x3311c4;
when 32 result = 0x3504f3;
when 33 result = 0x36fd92;
when 34 result = 0x38fbaf;
when 35 result = 0x3aff5b;
when 36 result = 0x3d08a4;
when 37 result = 0x3f179a;
when 38 result = 0x412c4d;
when 39 result = 0x4346cd;
when 40 result = 0x45672a;
when 41 result = 0x478d75;
when 42 result = 0x49b9be;
when 43 result = 0x4bec15;
when 44 result = 0x4e248c;
when 45 result = 0x506334;
when 46 result = 0x52a81e;
when 47 result = 0x54f35b;
when 48 result = 0x5744fd;
when 49 result = 0x599d16;
when 50 result = 0x5bfbb8;
when 51 result = 0x5e60f5;
when 52 result = 0x60ccdf;
when 53 result = 0x633f89;
when 54 result = 0x65b907;
when 55 result = 0x68396a;
when 56 result = 0x6ac0c7;
when 57 result = 0x6d4f30;
when 58 result = 0x6fe4ba;
when 59 result = 0x728177;
when 60 result = 0x75257d;
when 61 result = 0x77d0df;
when 62 result = 0x7a83b3;
when 63 result = 0x7d3e0c;

else // N == 64
case index of

when 0 result = 0x0000000000000;
when 1 result = 0x02C9A3E778061;
when 2 result = 0x059B0D3158574;
when 3 result = 0x0874518759BC8;
when 4 result = 0x0B5586CF9890F;
when 5 result = 0x0E3EC32D3D1A2;
when 6 result = 0x11301D0125B51;
when 7 result = 0x1429AAEA92DE0;
when 8 result = 0x172B83C7D517B;
when 9 result = 0x1A35BEB6FCB75;
when 10 result = 0x1D4873168B9AA;
when 11 result = 0x2063B88628CD6;
when 12 result = 0x2387A6E756238;
when 13 result = 0x26B4565E27CDD;
when 14 result = 0x29E9DF51FDEE1;
when 15 result = 0x2D285A6E4030B;
when 16 result = 0x306FE0A31B715;
when 17 result = 0x33C08B26416FF;
when 18 result = 0x371A7373AA9CB;
when 19 result = 0x3A7DB34E59FF7;
when 20 result = 0x3DEA64C123422;
when 21 result = 0x4160A21F72E2A;
when 22 result = 0x44E086061892D;
when 23 result = 0x486A2B5C13CD0;
when 24 result = 0x4BFDAD5362A27;
when 25 result = 0x4F9B2769D2CA7;
when 26 result = 0x5342B569D4F82;
when 27 result = 0x56F4736B527DA;
when 28 result = 0x5AB07DD485429;

Shared Pseudocode Functions Page 2900

when 29 result = 0x5E76F15AD2148;
when 30 result = 0x6247EB03A5585;
when 31 result = 0x6623882552225;
when 32 result = 0x6A09E667F3BCD;
when 33 result = 0x6DFB23C651A2F;
when 34 result = 0x71F75E8EC5F74;
when 35 result = 0x75FEB564267C9;
when 36 result = 0x7A11473EB0187;
when 37 result = 0x7E2F336CF4E62;
when 38 result = 0x82589994CCE13;
when 39 result = 0x868D99B4492ED;
when 40 result = 0x8ACE5422AA0DB;
when 41 result = 0x8F1AE99157736;
when 42 result = 0x93737B0CDC5E5;
when 43 result = 0x97D829FDE4E50;
when 44 result = 0x9C49182A3F090;
when 45 result = 0xA0C667B5DE565;
when 46 result = 0xA5503B23E255D;
when 47 result = 0xA9E6B5579FDBF;
when 48 result = 0xAE89F995AD3AD;
when 49 result = 0xB33A2B84F15FB;
when 50 result = 0xB7F76F2FB5E47;
when 51 result = 0xBCC1E904BC1D2;
when 52 result = 0xC199BDD85529C;
when 53 result = 0xC67F12E57D14B;
when 54 result = 0xCB720DCEF9069;
when 55 result = 0xD072D4A07897C;
when 56 result = 0xD5818DCFBA487;
when 57 result = 0xDA9E603DB3285;
when 58 result = 0xDFC97337B9B5F;
when 59 result = 0xE502EE78B3FF6;
when 60 result = 0xEA4AFA2A490DA;
when 61 result = 0xEFA1BEE615A27;
when 62 result = 0xF50765B6E4540;
when 63 result = 0xFA7C1819E90D8;

return result<N-1:0>;

Library pseudocode for aarch64/functions/sve/FPMinNormal

// FPMinNormal()
// =============

bits(N) FPMinNormal(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = Zeros(E-1):'1';
frac = Zeros(F);
return sign : exp : frac;

Library pseudocode for aarch64/functions/sve/FPOne

// FPOne()
// =======

bits(N) FPOne(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-1);
frac = Zeros(F);
return sign : exp : frac;

Shared Pseudocode Functions Page 2901

Library pseudocode for aarch64/functions/sve/FPPointFive

// FPPointFive()
// =============

bits(N) FPPointFive(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-2):'0';
frac = Zeros(F);
return sign : exp : frac;

Library pseudocode for aarch64/functions/sve/FPProcess

// FPProcess()
// ===========

bits(N) FPProcess(bits(N) input)
bits(N) result;
assert N IN {16,32,64};
FPCRType fpcr = FPCR[];
(fptype,sign,value) = FPUnpack(input, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, input, fpcr);

elsif fptype == FPType_Infinity then
result = FPInfinity(sign);

elsif fptype == FPType_Zero then
result = FPZero(sign);

else
result = FPRound(value, fpcr);

FPProcessDenorm(fptype, N, fpcr);

return result;

Library pseudocode for aarch64/functions/sve/FPScale

// FPScale()
// =========

bits(N) FPScale(bits (N) op, integer scale, FPCRType fpcr)
assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);

elsif fptype == FPType_Zero then
result = FPZero(sign);

elsif fptype == FPType_Infinity then
result = FPInfinity(sign);

else
result = FPRound(value * (2.0^scale), fpcr);

FPProcessDenorm(fptype, N, fpcr);

return result;

Shared Pseudocode Functions Page 2902

Library pseudocode for aarch64/functions/sve/FPTrigMAdd

// FPTrigMAdd()
// ============

bits(N) FPTrigMAdd(integer x, bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
assert x >= 0;
assert x < 8;
bits(N) coeff;

if op2<N-1> == '1' then
x = x + 8;

coeff = FPTrigMAddCoefficient[x];
op2 = FPAbs(op2);
result = FPMulAdd(coeff, op1, op2, fpcr);
return result;

Shared Pseudocode Functions Page 2903

Library pseudocode for aarch64/functions/sve/FPTrigMAddCoefficient

// FPTrigMAddCoefficient()
// =======================

bits(N) FPTrigMAddCoefficient[integer index]
assert N IN {16,32,64};
integer result;

if N == 16 then
case index of

when 0 result = 0x3c00;
when 1 result = 0xb155;
when 2 result = 0x2030;
when 3 result = 0x0000;
when 4 result = 0x0000;
when 5 result = 0x0000;
when 6 result = 0x0000;
when 7 result = 0x0000;
when 8 result = 0x3c00;
when 9 result = 0xb800;
when 10 result = 0x293a;
when 11 result = 0x0000;
when 12 result = 0x0000;
when 13 result = 0x0000;
when 14 result = 0x0000;
when 15 result = 0x0000;

elsif N == 32 then
case index of

when 0 result = 0x3f800000;
when 1 result = 0xbe2aaaab;
when 2 result = 0x3c088886;
when 3 result = 0xb95008b9;
when 4 result = 0x36369d6d;
when 5 result = 0x00000000;
when 6 result = 0x00000000;
when 7 result = 0x00000000;
when 8 result = 0x3f800000;
when 9 result = 0xbf000000;
when 10 result = 0x3d2aaaa6;
when 11 result = 0xbab60705;
when 12 result = 0x37cd37cc;
when 13 result = 0x00000000;
when 14 result = 0x00000000;
when 15 result = 0x00000000;

else // N == 64
case index of

when 0 result = 0x3ff0000000000000;
when 1 result = 0xbfc5555555555543;
when 2 result = 0x3f8111111110f30c;
when 3 result = 0xbf2a01a019b92fc6;
when 4 result = 0x3ec71de351f3d22b;
when 5 result = 0xbe5ae5e2b60f7b91;
when 6 result = 0x3de5d8408868552f;
when 7 result = 0x0000000000000000;
when 8 result = 0x3ff0000000000000;
when 9 result = 0xbfe0000000000000;
when 10 result = 0x3fa5555555555536;
when 11 result = 0xbf56c16c16c13a0b;
when 12 result = 0x3efa01a019b1e8d8;
when 13 result = 0xbe927e4f7282f468;
when 14 result = 0x3e21ee96d2641b13;
when 15 result = 0xbda8f76380fbb401;

return result<N-1:0>;

Shared Pseudocode Functions Page 2904

Library pseudocode for aarch64/functions/sve/FPTrigSMul

// FPTrigSMul()
// ============

bits(N) FPTrigSMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
result = FPMul(op1, op1, fpcr);
fpexc = FALSE;
(fptype, sign, value) = FPUnpack(result, fpcr, fpexc);

if !(fptype IN {FPType_QNaN, FPType_SNaN}) then
result<N-1> = op2<0>;

return result;

Library pseudocode for aarch64/functions/sve/FPTrigSSel

// FPTrigSSel()
// ============

bits(N) FPTrigSSel(bits(N) op1, bits(N) op2)
assert N IN {16,32,64};
bits(N) result;

if op2<0> == '1' then
result = FPOne(op2<1>);

elsif op2<1> == '1' then
result = FPNeg(op1);

else
result = op1;

return result;

Library pseudocode for aarch64/functions/sve/FirstActive

// FirstActive()
// =============

bit FirstActive(bits(N) mask, bits(N) x, integer esize)
integer elements = N DIV (esize DIV 8);
for e = 0 to elements-1

if ElemP[mask, e, esize] == '1' then return ElemP[x, e, esize];
return '0';

Library pseudocode for aarch64/functions/sve/FloorPow2

// FloorPow2()
// ===========
// For a positive integer X, return the largest power of 2 <= X

integer FloorPow2(integer x)
assert x >= 0;
integer n = 1;
if x == 0 then return 0;
while x >= 2^n do

n = n + 1;
return 2^(n - 1);

Library pseudocode for aarch64/functions/sve/HaveSVE

// HaveSVE()
// =========

boolean HaveSVE()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Have SVE ISA";

Shared Pseudocode Functions Page 2905

Library pseudocode for aarch64/functions/sve/HaveSVEFP32MatMulExt

// HaveSVEFP32MatMulExt()
// ======================
// Returns TRUE if single-precision floating-point matrix multiply instruction support implemented and FALSE otherwise.

boolean HaveSVEFP32MatMulExt()
return HaveSVE() && boolean IMPLEMENTATION_DEFINED "Have SVE FP32 Matrix Multiply extension";

Library pseudocode for aarch64/functions/sve/HaveSVEFP64MatMulExt

// HaveSVEFP64MatMulExt()
// ======================
// Returns TRUE if double-precision floating-point matrix multiply instruction support implemented and FALSE otherwise.

boolean HaveSVEFP64MatMulExt()
return HaveSVE() && boolean IMPLEMENTATION_DEFINED "Have SVE FP64 Matrix Multiply extension";

Library pseudocode for aarch64/functions/sve/ImplementedSVEVectorLength

// ImplementedSVEVectorLength()
// ============================
// Reduce SVE vector length to a supported value (e.g. power of two)

integer ImplementedSVEVectorLength(integer nbits)
return integer IMPLEMENTATION_DEFINED;

Library pseudocode for aarch64/functions/sve/IsEven

// IsEven()
// ========

boolean IsEven(integer val)
return val MOD 2 == 0;

Library pseudocode for aarch64/functions/sve/IsFPEnabled

// IsFPEnabled()
// =============
// Returns TRUE if accesses to the Advanced SIMD and floating-point
// registers are enabled at the target exception level in the current
// execution state and FALSE otherwise.

boolean IsFPEnabled(bits(2) el)
if ELUsingAArch32(el) then

return AArch32.IsFPEnabled(el);
else

return AArch64.IsFPEnabled(el);

Shared Pseudocode Functions Page 2906

Library pseudocode for aarch64/functions/sve/IsSVEEnabled

// IsSVEEnabled()
// ==============
// Returns TRUE if access to SVE instructions and System registers is
// enabled at the target exception level and FALSE otherwise.

boolean IsSVEEnabled(bits(2) el)
if ELUsingAArch32(el) then

return FALSE;

// Check if access disabled in CPACR_EL1
if el IN {EL0, EL1} && !IsInHost() then

// Check SVE at EL0/EL1
case CPACR_EL1.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0;
when '11' disabled = FALSE;

if disabled then return FALSE;

// Check if access disabled in CPTR_EL2
if el IN {EL0, EL1, EL2} && EL2Enabled() then

if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
case CPTR_EL2.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then return FALSE;
else

if CPTR_EL2.TZ == '1' then return FALSE;

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.EZ == '0' then return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/LastActive

// LastActive()
// ============

bit LastActive(bits(N) mask, bits(N) x, integer esize)
integer elements = N DIV (esize DIV 8);
for e = elements-1 downto 0

if ElemP[mask, e, esize] == '1' then return ElemP[x, e, esize];
return '0';

Library pseudocode for aarch64/functions/sve/LastActiveElement

// LastActiveElement()
// ===================

integer LastActiveElement(bits(N) mask, integer esize)
assert esize IN {8, 16, 32, 64, 128};
integer elements = VL DIV esize;
for e = elements-1 downto 0

if ElemP[mask, e, esize] == '1' then return e;
return -1;

Shared Pseudocode Functions Page 2907

Library pseudocode for aarch64/functions/sve/MaybeZeroSVEUppers

// MaybeZeroSVEUppers()
// ====================

MaybeZeroSVEUppers(bits(2) target_el)
boolean lower_enabled;

if UInt(target_el) <= UInt(PSTATE.EL) || !IsSVEEnabled(target_el) then
return;

if target_el == EL3 then
if EL2Enabled() then

lower_enabled = IsFPEnabled(EL2);
else

lower_enabled = IsFPEnabled(EL1);
elsif target_el == EL2 then

assert !ELUsingAArch32(EL2);
if HCR_EL2.TGE == '0' then

lower_enabled = IsFPEnabled(EL1);
else

lower_enabled = IsFPEnabled(EL0);
else

assert target_el == EL1 && !ELUsingAArch32(EL1);
lower_enabled = IsFPEnabled(EL0);

if lower_enabled then
integer vl = if IsSVEEnabled(PSTATE.EL) then VL else 128;
integer pl = vl DIV 8;
for n = 0 to 31

if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
_Z[n] = ZeroExtend(_Z[n]<vl-1:0>);

for n = 0 to 15
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_P[n] = ZeroExtend(_P[n]<pl-1:0>);
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_FFR = ZeroExtend(_FFR<pl-1:0>);

Shared Pseudocode Functions Page 2908

Library pseudocode for aarch64/functions/sve/MemNF

// MemNF[] - non-assignment form
// =============================

(bits(8*size), boolean) MemNF[bits(64) address, integer size, AccType acctype]
assert size IN {1, 2, 4, 8, 16};
bits(8*size) value;

aligned = (address == Align(address, size));
A = SCTLR[].A;

if !aligned && (A == '1') then
return (bits(8*size) UNKNOWN, TRUE);

atomic = aligned || size == 1;

if !atomic then
(value<7:0>, bad) = MemSingleNF[address, 1, acctype, aligned];

if bad then
return (bits(8*size) UNKNOWN, TRUE);

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if !aligned then

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
(value<8*i+7:8*i>, bad) = MemSingleNF[address+i, 1, acctype, aligned];

if bad then
return (bits(8*size) UNKNOWN, TRUE);

else
(value, bad) = MemSingleNF[address, size, acctype, aligned];
if bad then

return (bits(8*size) UNKNOWN, TRUE);

if BigEndian(acctype) then
value = BigEndianReverse(value);

return (value, FALSE);

Shared Pseudocode Functions Page 2909

Library pseudocode for aarch64/functions/sve/MemSingleNF

// MemSingleNF[] - non-assignment form
// ===================================

(bits(8*size), boolean) MemSingleNF[bits(64) address, integer size, AccType acctype, boolean aligned]
assert acctype IN {AccType_CNOTFIRST, AccType_NONFAULT};
bits(8*size) value;
boolean iswrite = FALSE;
AddressDescriptor memaddrdesc;

// Implementation may suppress NF load for any reason
if ConstrainUnpredictableBool(Unpredictable_NONFAULT) then

return (bits(8*size) UNKNOWN, TRUE);

// MMU or MPU
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

// Non-fault load from Device memory must not be performed externally
if memaddrdesc.memattrs.memtype == MemType_Device then

return (bits(8*size) UNKNOWN, TRUE);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return (bits(8*size) UNKNOWN, TRUE);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
if HaveMTE2Ext() then

if AArch64.AccessIsTagChecked(address, acctype) then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag, iswrite) then

return (bits(8*size) UNKNOWN, TRUE);

(memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

fault = NoFault();
fault.errortype = memstatus.errortype;
fault.acctype = memstatus.acctype;
fault.extflag = memstatus.extflag;
fault.statuscode = memstatus.statuscode;
if IsExternalAbortTakenSynchronously(memstatus, iswrite, memaddrdesc,

size, accdesc) then
return (bits(8*size) UNKNOWN, TRUE);

PendSErrorInterrupt(fault);

return (value, FALSE);

Library pseudocode for aarch64/functions/sve/NoneActive

// NoneActive()
// ============

bit NoneActive(bits(N) mask, bits(N) x, integer esize)
integer elements = N DIV (esize DIV 8);
for e = 0 to elements-1

if ElemP[mask, e, esize] == '1' && ElemP[x, e, esize] == '1' then return '0';
return '1';

Shared Pseudocode Functions Page 2910

Library pseudocode for aarch64/functions/sve/P

// P[] - non-assignment form
// =========================

bits(width) P[integer n]
assert n >= 0 && n <= 31;
assert width == PL;
return _P[n]<width-1:0>;

// P[] - assignment form
// =====================

P[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width == PL;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_P[n] = ZeroExtend(value);
else

_P[n]<width-1:0> = value;

Library pseudocode for aarch64/functions/sve/PL

// PL - non-assignment form
// ========================

integer PL
return VL DIV 8;

Library pseudocode for aarch64/functions/sve/PredTest

// PredTest()
// ==========

bits(4) PredTest(bits(N) mask, bits(N) result, integer esize)
bit n = FirstActive(mask, result, esize);
bit z = NoneActive(mask, result, esize);
bit c = NOT LastActive(mask, result, esize);
bit v = '0';
return n:z:c:v;

Library pseudocode for aarch64/functions/sve/ReducePredicated

// ReducePredicated()
// ==================

bits(esize) ReducePredicated(ReduceOp op, bits(N) input, bits(M) mask, bits(esize) identity)
assert(N == M * 8);
integer p2bits = CeilPow2(N);
bits(p2bits) operand;
integer elements = p2bits DIV esize;

for e = 0 to elements-1
if e * esize < N && ElemP[mask, e, esize] == '1' then

Elem[operand, e, esize] = Elem[input, e, esize];
else

Elem[operand, e, esize] = identity;

return Reduce(op, operand, esize);

Shared Pseudocode Functions Page 2911

Library pseudocode for aarch64/functions/sve/Reverse

// Reverse()
// =========
// Reverse subwords of M bits in an N-bit word

bits(N) Reverse(bits(N) word, integer M)
bits(N) result;
integer sw = N DIV M;
assert N == sw * M;
for s = 0 to sw-1

Elem[result, sw - 1 - s, M] = Elem[word, s, M];
return result;

Library pseudocode for aarch64/functions/sve/SVEAccessTrap

// SVEAccessTrap()
// ===============
// Trapped access to SVE registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.

SVEAccessTrap(bits(2) target_el)
assert UInt(target_el) >= UInt(PSTATE.EL) && target_el != EL0 && HaveEL(target_el);
route_to_el2 = target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';

exception = ExceptionSyndrome(Exception_SVEAccessTrap);
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

if route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/functions/sve/SVECmp

enumeration SVECmp { Cmp_EQ, Cmp_NE, Cmp_GE, Cmp_GT, Cmp_LT, Cmp_LE, Cmp_UN };

Shared Pseudocode Functions Page 2912

Library pseudocode for aarch64/functions/sve/SVEMoveMaskPreferred

// SVEMoveMaskPreferred()
// ======================
// Return FALSE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single DUP instruction.
// Used as a condition for the preferred MOV<-DUPM alias.

boolean SVEMoveMaskPreferred(bits(13) imm13)
bits(64) imm;
(imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE);

// Check for 8 bit immediates
if !IsZero(imm<7:0>) then

// Check for 'ffffffffffffffxy' or '00000000000000xy'
if IsZero(imm<63:7>) || IsOnes(imm<63:7>) then

return FALSE;

// Check for 'ffffffxyffffffxy' or '000000xy000000xy'
if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then

return FALSE;

// Check for 'ffxyffxyffxyffxy' or '00xy00xy00xy00xy'
if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> && (IsZero(imm<15:7>) || IsOnes(imm<15:7>)) then

return FALSE;

// Check for 'xyxyxyxyxyxyxyxy'
if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> && (imm<15:8> == imm<7:0>) then

return FALSE;

// Check for 16 bit immediates
else

// Check for 'ffffffffffffxy00' or '000000000000xy00'
if IsZero(imm<63:15>) || IsOnes(imm<63:15>) then

return FALSE;

// Check for 'ffffxy00ffffxy00' or '0000xy000000xy00'
if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then

return FALSE;

// Check for 'xy00xy00xy00xy00'
if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> then

return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/System

constant integer MAX_VL = 2048;
constant integer MAX_PL = 256;
array bits(MAX_VL) _Z[0..31];
array bits(MAX_PL) _P[0..15];
bits(MAX_PL) _FFR;

Shared Pseudocode Functions Page 2913

Library pseudocode for aarch64/functions/sve/VL

// VL - non-assignment form
// ========================

integer VL
integer vl;

if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
vl = UInt(ZCR_EL1.LEN);

if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
vl = UInt(ZCR_EL2.LEN);

elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
vl = Min(vl, UInt(ZCR_EL2.LEN));

if PSTATE.EL == EL3 then
vl = UInt(ZCR_EL3.LEN);

elsif HaveEL(EL3) then
vl = Min(vl, UInt(ZCR_EL3.LEN));

vl = (vl + 1) * 128;
vl = ImplementedSVEVectorLength(vl);

return vl;

Library pseudocode for aarch64/functions/sve/Z

// Z[] - non-assignment form
// =========================

bits(width) Z[integer n]
assert n >= 0 && n <= 31;
assert width == VL;
return _Z[n]<width-1:0>;

// Z[] - assignment form
// =====================

Z[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width == VL;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_Z[n] = ZeroExtend(value);
else

_Z[n]<width-1:0> = value;

Library pseudocode for aarch64/functions/sysregisters/CNTKCTL

// CNTKCTL[] - non-assignment form
// ===============================

CNTKCTLType CNTKCTL[]
bits(64) r;
if IsInHost() then

r = CNTHCTL_EL2;
return r;

r = CNTKCTL_EL1;
return r;

Library pseudocode for aarch64/functions/sysregisters/CNTKCTLType

type CNTKCTLType;

Shared Pseudocode Functions Page 2914

Library pseudocode for aarch64/functions/sysregisters/CPACR

// CPACR[] - non-assignment form
// =============================

CPACRType CPACR[]
bits(64) r;
if IsInHost() then

r = CPTR_EL2;
return r;

r = CPACR_EL1;
return r;

Library pseudocode for aarch64/functions/sysregisters/CPACRType

type CPACRType;

Library pseudocode for aarch64/functions/sysregisters/ELR

// ELR[] - non-assignment form
// ===========================

bits(64) ELR[bits(2) el]
bits(64) r;
case el of

when EL1 r = ELR_EL1;
when EL2 r = ELR_EL2;
when EL3 r = ELR_EL3;
otherwise Unreachable();

return r;

// ELR[] - non-assignment form
// ===========================

bits(64) ELR[]
assert PSTATE.EL != EL0;
return ELR[PSTATE.EL];

// ELR[] - assignment form
// =======================

ELR[bits(2) el] = bits(64) value
bits(64) r = value;
case el of

when EL1 ELR_EL1 = r;
when EL2 ELR_EL2 = r;
when EL3 ELR_EL3 = r;
otherwise Unreachable();

return;

// ELR[] - assignment form
// =======================

ELR[] = bits(64) value
assert PSTATE.EL != EL0;
ELR[PSTATE.EL] = value;
return;

Shared Pseudocode Functions Page 2915

Library pseudocode for aarch64/functions/sysregisters/ESR

// ESR[] - non-assignment form
// ===========================

ESRType ESR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = ESR_EL1;
when EL2 r = ESR_EL2;
when EL3 r = ESR_EL3;
otherwise Unreachable();

return r;

// ESR[] - non-assignment form
// ===========================

ESRType ESR[]
return ESR[S1TranslationRegime()];

// ESR[] - assignment form
// =======================

ESR[bits(2) regime] = ESRType value
bits(64) r = value;
case regime of

when EL1 ESR_EL1 = r;
when EL2 ESR_EL2 = r;
when EL3 ESR_EL3 = r;
otherwise Unreachable();

return;

// ESR[] - assignment form
// =======================

ESR[] = ESRType value
ESR[S1TranslationRegime()] = value;

Library pseudocode for aarch64/functions/sysregisters/ESRType

type ESRType;

Shared Pseudocode Functions Page 2916

Library pseudocode for aarch64/functions/sysregisters/FAR

// FAR[] - non-assignment form
// ===========================

bits(64) FAR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = FAR_EL1;
when EL2 r = FAR_EL2;
when EL3 r = FAR_EL3;
otherwise Unreachable();

return r;

// FAR[] - non-assignment form
// ===========================

bits(64) FAR[]
return FAR[S1TranslationRegime()];

// FAR[] - assignment form
// =======================

FAR[bits(2) regime] = bits(64) value
bits(64) r = value;
case regime of

when EL1 FAR_EL1 = r;
when EL2 FAR_EL2 = r;
when EL3 FAR_EL3 = r;
otherwise Unreachable();

return;

// FAR[] - assignment form
// =======================

FAR[] = bits(64) value
FAR[S1TranslationRegime()] = value;
return;

Library pseudocode for aarch64/functions/sysregisters/MAIR

// MAIR[] - non-assignment form
// ============================

MAIRType MAIR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = MAIR_EL1;
when EL2 r = MAIR_EL2;
when EL3 r = MAIR_EL3;
otherwise Unreachable();

return r;

// MAIR[] - non-assignment form
// ============================

MAIRType MAIR[]
return MAIR[S1TranslationRegime()];

Library pseudocode for aarch64/functions/sysregisters/MAIRType

type MAIRType;

Shared Pseudocode Functions Page 2917

Library pseudocode for aarch64/functions/sysregisters/SCTLR

// SCTLR[] - non-assignment form
// =============================

SCTLRType SCTLR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = SCTLR_EL1;
when EL2 r = SCTLR_EL2;
when EL3 r = SCTLR_EL3;
otherwise Unreachable();

return r;

// SCTLR[] - non-assignment form
// =============================

SCTLRType SCTLR[]
return SCTLR[S1TranslationRegime()];

Library pseudocode for aarch64/functions/sysregisters/SCTLRType

type SCTLRType;

Library pseudocode for aarch64/functions/sysregisters/VBAR

// VBAR[] - non-assignment form
// ============================

bits(64) VBAR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = VBAR_EL1;
when EL2 r = VBAR_EL2;
when EL3 r = VBAR_EL3;
otherwise Unreachable();

return r;

// VBAR[] - non-assignment form
// ============================

bits(64) VBAR[]
return VBAR[S1TranslationRegime()];

Shared Pseudocode Functions Page 2918

Library pseudocode for aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled

// AArch64.AllocationTagAccessIsEnabled()
// ======================================
// Check whether access to Allocation Tags is enabled.

boolean AArch64.AllocationTagAccessIsEnabled(AccType acctype)
bits(2) el = AArch64.AccessUsesEL(acctype);

if SCR_EL3.ATA == '0' && el IN {EL0, EL1, EL2} then
return FALSE;

elsif HCR_EL2.ATA == '0' && el IN {EL0, EL1} && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' then
return FALSE;

elsif SCTLR_EL3.ATA == '0' && el == EL3 then
return FALSE;

elsif SCTLR_EL2.ATA == '0' && el == EL2 then
return FALSE;

elsif SCTLR_EL1.ATA == '0' && el == EL1 then
return FALSE;

elsif SCTLR_EL2.ATA0 == '0' && el == EL0 && EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' then
return FALSE;

elsif SCTLR_EL1.ATA0 == '0' && el == EL0 && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') then
return FALSE;

else
return TRUE;

Library pseudocode for aarch64/functions/system/AArch64.ChooseNonExcludedTag

// AArch64.ChooseNonExcludedTag()
// ==============================
// Return a tag derived from the start and the offset values, excluding
// any tags in the given mask.

bits(4) AArch64.ChooseNonExcludedTag(bits(4) tag, bits(4) offset, bits(16) exclude)
if IsOnes(exclude) then

return '0000';

if offset == '0000' then
while exclude<UInt(tag)> == '1' do

tag = tag + '0001';

while offset != '0000' do
offset = offset - '0001';
tag = tag + '0001';
while exclude<UInt(tag)> == '1' do

tag = tag + '0001';

return tag;

Library pseudocode for aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr

// AArch64.ExecutingBROrBLROrRetInstr()
// ====================================
// Returns TRUE if current instruction is a BR, BLR, RET, B[L]RA[B][Z], or RETA[B].

boolean AArch64.ExecutingBROrBLROrRetInstr()
if !HaveBTIExt() then return FALSE;

instr = ThisInstr();
if instr<31:25> == '1101011' && instr<20:16> == '11111' then

opc = instr<24:21>;
return opc != '0101';

else
return FALSE;

Shared Pseudocode Functions Page 2919

Library pseudocode for aarch64/functions/system/AArch64.ExecutingBTIInstr

// AArch64.ExecutingBTIInstr()
// ===========================
// Returns TRUE if current instruction is a BTI.

boolean AArch64.ExecutingBTIInstr()
if !HaveBTIExt() then return FALSE;

instr = ThisInstr();
if instr<31:22> == '1101010100' && instr<21:12> == '0000110010' && instr<4:0> == '11111' then

CRm = instr<11:8>;
op2 = instr<7:5>;
return (CRm == '0100' && op2<0> == '0');

else
return FALSE;

Library pseudocode for aarch64/functions/system/AArch64.ExecutingERETInstr

// AArch64.ExecutingERETInstr()
// ============================
// Returns TRUE if current instruction is ERET.

boolean AArch64.ExecutingERETInstr()
instr = ThisInstr();
return instr<31:12> == '11010110100111110000';

Library pseudocode for aarch64/functions/system/AArch64.NextRandomTagBit

// AArch64.NextRandomTagBit()
// ==========================
// Generate a random bit suitable for generating a random Allocation Tag.

bit AArch64.NextRandomTagBit()
bits(16) lfsr = RGSR_EL1.SEED;
bit top = lfsr<5> EOR lfsr<3> EOR lfsr<2> EOR lfsr<0>;
RGSR_EL1.SEED = top:lfsr<15:1>;
return top;

Library pseudocode for aarch64/functions/system/AArch64.RandomTag

// AArch64.RandomTag()
// ===================
// Generate a random Allocation Tag.

bits(4) AArch64.RandomTag()
bits(4) tag;
for i = 0 to 3

tag<i> = AArch64.NextRandomTagBit();
return tag;

Library pseudocode for aarch64/functions/system/AArch64.SysInstr

// Execute a system instruction with write (source operand).
AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

Library pseudocode for aarch64/functions/system/AArch64.SysInstrWithResult

// Execute a system instruction with read (result operand).
// Returns the result of the instruction.
bits(64) AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2);

Shared Pseudocode Functions Page 2920

Library pseudocode for aarch64/functions/system/AArch64.SysRegRead

// Read from a system register and return the contents of the register.
bits(64) AArch64.SysRegRead(integer op0, integer op1, integer crn, integer crm, integer op2);

Library pseudocode for aarch64/functions/system/AArch64.SysRegWrite

// Write to a system register.
AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

Library pseudocode for aarch64/functions/system/BTypeCompatible

boolean BTypeCompatible;

Library pseudocode for aarch64/functions/system/BTypeCompatible_BTI

// BTypeCompatible_BTI
// ===================
// This function determines whether a given hint encoding is compatible with the current value of
// PSTATE.BTYPE. A value of TRUE here indicates a valid Branch Target Identification instruction.

boolean BTypeCompatible_BTI(bits(2) hintcode)
case hintcode of

when '00'
return FALSE;

when '01'
return PSTATE.BTYPE != '11';

when '10'
return PSTATE.BTYPE != '10';

when '11'
return TRUE;

Library pseudocode for aarch64/functions/system/BTypeCompatible_PACIXSP

// BTypeCompatible_PACIXSP()
// =========================
// Returns TRUE if PACIASP, PACIBSP instruction is implicit compatible with PSTATE.BTYPE,
// FALSE otherwise.

boolean BTypeCompatible_PACIXSP()
if PSTATE.BTYPE IN {'01', '10'} then

return TRUE;
elsif PSTATE.BTYPE == '11' then

index = if PSTATE.EL == EL0 then 35 else 36;
return SCTLR[]<index> == '0';

else
return FALSE;

Library pseudocode for aarch64/functions/system/BTypeNext

bits(2) BTypeNext;

Library pseudocode for aarch64/functions/system/ChooseRandomNonExcludedTag

// The ChooseRandomNonExcludedTag function is used when GCR_EL1.RRND == '1' to generate random
// Allocation Tags.
//
// The resulting Allocation Tag is selected from the set [0,15], excluding any Allocation Tag where
// exclude[tag_value] == 1. If 'exclude' is all Ones, the returned Allocation Tag is '0000'.
//
// This function is permitted to generate a non-deterministic selection from the set of non-excluded
// Allocation Tags. A reasonable implementation is described by the Pseudocode used when
// GCR_EL1.RRND is 0, but with a non-deterministic implementation of NextRandomTagBit(). Implementations
// may choose to behave the same as GCR_EL1.RRND=0.
bits(4) ChooseRandomNonExcludedTag(bits(16) exclude);

Shared Pseudocode Functions Page 2921

Library pseudocode for aarch64/functions/system/InGuardedPage

boolean InGuardedPage;

Library pseudocode for aarch64/functions/system/IsHCRXEL2Enabled

// IsHCRXEL2Enabled()
// ==================
// Returns TRUE if access to HCRX_EL2 register is enabled, and FALSE otherwise.
// Indirect read of HCRX_EL2 returns 0 when access is not enabled.

boolean IsHCRXEL2Enabled()
assert(HaveFeatHCX());
if HaveEL(EL3) && SCR_EL3.HXEn == '0' then

return FALSE;

return EL2Enabled();

Library pseudocode for aarch64/functions/system/SetBTypeCompatible

// SetBTypeCompatible()
// ====================
// Sets the value of BTypeCompatible global variable used by BTI

SetBTypeCompatible(boolean x)
BTypeCompatible = x;

Library pseudocode for aarch64/functions/system/SetBTypeNext

// SetBTypeNext()
// ==============
// Set the value of BTypeNext global variable used by BTI

SetBTypeNext(bits(2) x)
BTypeNext = x;

Library pseudocode for aarch64/functions/system/SetInGuardedPage

// SetInGuardedPage()
// ==================
// Global state updated to denote if memory access is from a guarded page.

SetInGuardedPage(boolean guardedpage)
InGuardedPage = guardedpage;

Shared Pseudocode Functions Page 2922

Library pseudocode for aarch64/instrs/branch/eret/AArch64.ExceptionReturn

// AArch64.ExceptionReturn()
// =========================

AArch64.ExceptionReturn(bits(64) new_pc, bits(64) spsr)

if HaveIESB() then
sync_errors = SCTLR[].IESB == '1';
if HaveDoubleFaultExt() then

sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && PSTATE.EL == EL3);
if sync_errors then

SynchronizeErrors();
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

SynchronizeContext();

// Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
bits(2) source_el = PSTATE.EL;
SetPSTATEFromPSR(spsr);
ClearExclusiveLocal(ProcessorID());
SendEventLocal();

if PSTATE.IL == '1' && spsr<4> == '1' && spsr<20> == '0' then
// If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
new_pc<63:32> = bits(32) UNKNOWN;
new_pc<1:0> = bits(2) UNKNOWN;

elsif UsingAArch32() then // Return to AArch32
// ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the target instruction set state
if PSTATE.T == '1' then

new_pc<0> = '0'; // T32
else

new_pc<1:0> = '00'; // A32
else // Return to AArch64

// ELR_ELx[63:56] might include a tag
new_pc = AArch64.BranchAddr(new_pc);

if UsingAArch32() then
// 32 most significant bits are ignored.
boolean branch_conditional = FALSE;
BranchTo(new_pc<31:0>, BranchType_ERET, branch_conditional);

else
BranchToAddr(new_pc, BranchType_ERET);

CheckExceptionCatch(FALSE); // Check for debug event on exception return

Library pseudocode for aarch64/instrs/countop/CountOp

enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

Library pseudocode for aarch64/instrs/extendreg/DecodeRegExtend

// DecodeRegExtend()
// =================
// Decode a register extension option

ExtendType DecodeRegExtend(bits(3) op)
case op of

when '000' return ExtendType_UXTB;
when '001' return ExtendType_UXTH;
when '010' return ExtendType_UXTW;
when '011' return ExtendType_UXTX;
when '100' return ExtendType_SXTB;
when '101' return ExtendType_SXTH;
when '110' return ExtendType_SXTW;
when '111' return ExtendType_SXTX;

Shared Pseudocode Functions Page 2923

Library pseudocode for aarch64/instrs/extendreg/ExtendReg

// ExtendReg()
// ===========
// Perform a register extension and shift

bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift)
assert shift >= 0 && shift <= 4;
bits(N) val = X[reg];
boolean unsigned;
integer len;

case exttype of
when ExtendType_SXTB unsigned = FALSE; len = 8;
when ExtendType_SXTH unsigned = FALSE; len = 16;
when ExtendType_SXTW unsigned = FALSE; len = 32;
when ExtendType_SXTX unsigned = FALSE; len = 64;
when ExtendType_UXTB unsigned = TRUE; len = 8;
when ExtendType_UXTH unsigned = TRUE; len = 16;
when ExtendType_UXTW unsigned = TRUE; len = 32;
when ExtendType_UXTX unsigned = TRUE; len = 64;

// Note the extended width of the intermediate value and
// that sign extension occurs from bit <len+shift-1>, not
// from bit <len-1>. This is equivalent to the instruction
// [SU]BFIZ Rtmp, Rreg, #shift, #len
// It may also be seen as a sign/zero extend followed by a shift:
// LSL(Extend(val<len-1:0>, N, unsigned), shift);

len = Min(len, N - shift);
return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

Library pseudocode for aarch64/instrs/extendreg/ExtendType

enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

Library pseudocode for aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

Library pseudocode for aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
FPUnaryOp_NEG, FPUnaryOp_SQRT};

Library pseudocode for aarch64/instrs/float/convert/fpconvop/FPConvOp

enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
, FPConvOp_CVT_FtoI_JS

};

Shared Pseudocode Functions Page 2924

Library pseudocode for aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred

// BFXPreferred()
// ==============
//
// Return TRUE if UBFX or SBFX is the preferred disassembly of a
// UBFM or SBFM bitfield instruction. Must exclude more specific
// aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)
integer S = UInt(imms);
integer R = UInt(immr);

// must not match UBFIZ/SBFIX alias
if UInt(imms) < UInt(immr) then

return FALSE;

// must not match LSR/ASR/LSL alias (imms == 31 or 63)
if imms == sf:'11111' then

return FALSE;

// must not match UXTx/SXTx alias
if immr == '000000' then

// must not match 32-bit UXT[BH] or SXT[BH]
if sf == '0' && imms IN {'000111', '001111'} then

return FALSE;
// must not match 64-bit SXT[BHW]
if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then

return FALSE;

// must be UBFX/SBFX alias
return TRUE;

Shared Pseudocode Functions Page 2925

Library pseudocode for aarch64/instrs/integer/bitmasks/DecodeBitMasks

Shared Pseudocode Functions Page 2926

// DecodeBitMasks()
// ================

// Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

(bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)
bits(64) tmask, wmask;
bits(6) tmask_and, wmask_and;
bits(6) tmask_or, wmask_or;
bits(6) levels;

// Compute log2 of element size
// 2^len must be in range [2, M]
len = HighestSetBit(immN:NOT(imms));
if len < 1 then UNDEFINED;
assert M >= (1 << len);

// Determine S, R and S - R parameters
levels = ZeroExtend(Ones(len), 6);

// For logical immediates an all-ones value of S is reserved
// since it would generate a useless all-ones result (many times)
if immediate && (imms AND levels) == levels then

UNDEFINED;

S = UInt(imms AND levels);
R = UInt(immr AND levels);
diff = S - R; // 6-bit subtract with borrow

// From a software perspective, the remaining code is equivalant to:
// esize = 1 << len;
// d = UInt(diff<len-1:0>);
// welem = ZeroExtend(Ones(S + 1), esize);
// telem = ZeroExtend(Ones(d + 1), esize);
// wmask = Replicate(ROR(welem, R));
// tmask = Replicate(telem);
// return (wmask, tmask);

// Compute "top mask"
tmask_and = diff<5:0> OR NOT(levels);
tmask_or = diff<5:0> AND levels;

tmask = Ones(64);
tmask = ((tmask

AND Replicate(Replicate(tmask_and<0>, 1) : Ones(1), 32))
OR Replicate(Zeros(1) : Replicate(tmask_or<0>, 1), 32));

// optimization of first step:
// tmask = Replicate(tmask_and<0> : '1', 32);
tmask = ((tmask

AND Replicate(Replicate(tmask_and<1>, 2) : Ones(2), 16))
OR Replicate(Zeros(2) : Replicate(tmask_or<1>, 2), 16));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<2>, 4) : Ones(4), 8))
OR Replicate(Zeros(4) : Replicate(tmask_or<2>, 4), 8));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<3>, 8) : Ones(8), 4))
OR Replicate(Zeros(8) : Replicate(tmask_or<3>, 8), 4));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<4>, 16) : Ones(16), 2))
OR Replicate(Zeros(16) : Replicate(tmask_or<4>, 16), 2));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<5>, 32) : Ones(32), 1))
OR Replicate(Zeros(32) : Replicate(tmask_or<5>, 32), 1));

// Compute "wraparound mask"
wmask_and = immr OR NOT(levels);
wmask_or = immr AND levels;

wmask = Zeros(64);
wmask = ((wmask

Shared Pseudocode Functions Page 2927

AND Replicate(Ones(1) : Replicate(wmask_and<0>, 1), 32))
OR Replicate(Replicate(wmask_or<0>, 1) : Zeros(1), 32));

// optimization of first step:
// wmask = Replicate(wmask_or<0> : '0', 32);
wmask = ((wmask

AND Replicate(Ones(2) : Replicate(wmask_and<1>, 2), 16))
OR Replicate(Replicate(wmask_or<1>, 2) : Zeros(2), 16));

wmask = ((wmask
AND Replicate(Ones(4) : Replicate(wmask_and<2>, 4), 8))
OR Replicate(Replicate(wmask_or<2>, 4) : Zeros(4), 8));

wmask = ((wmask
AND Replicate(Ones(8) : Replicate(wmask_and<3>, 8), 4))
OR Replicate(Replicate(wmask_or<3>, 8) : Zeros(8), 4));

wmask = ((wmask
AND Replicate(Ones(16) : Replicate(wmask_and<4>, 16), 2))
OR Replicate(Replicate(wmask_or<4>, 16) : Zeros(16), 2));

wmask = ((wmask
AND Replicate(Ones(32) : Replicate(wmask_and<5>, 32), 1))
OR Replicate(Replicate(wmask_or<5>, 32) : Zeros(32), 1));

if diff<6> != '0' then // borrow from S - R
wmask = wmask AND tmask;

else
wmask = wmask OR tmask;

return (wmask<M-1:0>, tmask<M-1:0>);

Library pseudocode for aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/
MoveWideOp

enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};

Library pseudocode for aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

// MoveWidePreferred()
// ===================
//
// Return TRUE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single MOVZ or MOVN instruction.
// Used as a condition for the preferred MOV<-ORR alias.

boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
integer S = UInt(imms);
integer R = UInt(immr);
integer width = if sf == '1' then 64 else 32;

// element size must equal total immediate size
if sf == '1' && immN:imms != '1xxxxxx' then

return FALSE;
if sf == '0' && immN:imms != '00xxxxx' then

return FALSE;

// for MOVZ must contain no more than 16 ones
if S < 16 then

// ones must not span halfword boundary when rotated
return (-R MOD 16) <= (15 - S);

// for MOVN must contain no more than 16 zeros
if S >= width - 15 then

// zeros must not span halfword boundary when rotated
return (R MOD 16) <= (S - (width - 15));

return FALSE;

Shared Pseudocode Functions Page 2928

Library pseudocode for aarch64/instrs/integer/shiftreg/DecodeShift

// DecodeShift()
// =============
// Decode shift encodings

ShiftType DecodeShift(bits(2) op)
case op of

when '00' return ShiftType_LSL;
when '01' return ShiftType_LSR;
when '10' return ShiftType_ASR;
when '11' return ShiftType_ROR;

Library pseudocode for aarch64/instrs/integer/shiftreg/ShiftReg

// ShiftReg()
// ==========
// Perform shift of a register operand

bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount)
bits(N) result = X[reg];
case shiftype of

when ShiftType_LSL result = LSL(result, amount);
when ShiftType_LSR result = LSR(result, amount);
when ShiftType_ASR result = ASR(result, amount);
when ShiftType_ROR result = ROR(result, amount);

return result;

Library pseudocode for aarch64/instrs/integer/shiftreg/ShiftType

enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

Library pseudocode for aarch64/instrs/logicalop/LogicalOp

enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

Library pseudocode for aarch64/instrs/memory/memop/MemAtomicOp

enumeration MemAtomicOp {MemAtomicOp_ADD,
MemAtomicOp_BIC,
MemAtomicOp_EOR,
MemAtomicOp_ORR,
MemAtomicOp_SMAX,
MemAtomicOp_SMIN,
MemAtomicOp_UMAX,
MemAtomicOp_UMIN,
MemAtomicOp_SWP};

Library pseudocode for aarch64/instrs/memory/memop/MemOp

enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

Shared Pseudocode Functions Page 2929

Library pseudocode for aarch64/instrs/memory/prefetch/Prefetch

// Prefetch()
// ==========

// Decode and execute the prefetch hint on ADDRESS specified by PRFOP

Prefetch(bits(64) address, bits(5) prfop)
PrefetchHint hint;
integer target;
boolean stream;

case prfop<4:3> of
when '00' hint = Prefetch_READ; // PLD: prefetch for load
when '01' hint = Prefetch_EXEC; // PLI: preload instructions
when '10' hint = Prefetch_WRITE; // PST: prepare for store
when '11' return; // unallocated hint

target = UInt(prfop<2:1>); // target cache level
stream = (prfop<0> != '0'); // streaming (non-temporal)
Hint_Prefetch(address, hint, target, stream);
return;

Library pseudocode for aarch64/instrs/system/barriers/barrierop/MemBarrierOp

enumeration MemBarrierOp { MemBarrierOp_DSB // Data Synchronization Barrier
, MemBarrierOp_DMB // Data Memory Barrier
, MemBarrierOp_ISB // Instruction Synchronization Barrier
, MemBarrierOp_SSBB // Speculative Synchronization Barrier to VA
, MemBarrierOp_PSSBB // Speculative Synchronization Barrier to PA
, MemBarrierOp_SB // Speculation Barrier

};

Library pseudocode for aarch64/instrs/system/hints/syshintop/SystemHintOp

enumeration SystemHintOp {
SystemHintOp_NOP,
SystemHintOp_YIELD,
SystemHintOp_WFE,
SystemHintOp_WFI,
SystemHintOp_SEV,
SystemHintOp_SEVL,
SystemHintOp_DGH,
SystemHintOp_ESB,
SystemHintOp_PSB,
SystemHintOp_TSB,
SystemHintOp_BTI,
SystemHintOp_WFET,
SystemHintOp_WFIT,
SystemHintOp_CSDB

};

Library pseudocode for aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
PSTATEField_PAN, // Armv8.1
PSTATEField_UAO, // Armv8.2
PSTATEField_DIT, // Armv8.4
PSTATEField_SSBS,
PSTATEField_TCO, // Armv8.5
PSTATEField_SP
};

Shared Pseudocode Functions Page 2930

Library pseudocode for aarch64/instrs/system/sysops/dc/AArch64.DC

// AArch64.DC()
// ============
// Perform Data Cache Operation.

AArch64.DC(bits(64) regval, CacheType cachetype, CacheOp cacheop, CacheOpScope opscope)
AccType acctype = AccType_DC;
CacheRecord cache;

cache.acctype = acctype;
cache.cachetype = cachetype;
cache.cacheop = cacheop;
cache.opscope = opscope;

if opscope == CacheOpScope_SetWay then
cache.shareability = Shareability_NSH;
(cache.set, cache.way, cache.level) = DecodeSW(regval, cachetype);
if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&

(HCR_EL2.SWIO == '1' || HCR_EL2.<DC,VM> != '00')) then
cache.cacheop = CacheOp_CleanInvalidate;

CACHE_OP(cache);
return;

if opscope == CacheOpScope_PoDP && boolean IMPLEMENTATION_DEFINED "Memory system does not supports PoDP" then
opscope = CacheOpScope_PoP;

if opscope == CacheOpScope_PoP && boolean IMPLEMENTATION_DEFINED "Memory system does not supports PoP" then
opscope = CacheOpScope_PoC;

need_translate = DCInstNeedsTranslation(opscope);
iswrite = cacheop == CacheOp_Invalidate;
vaddress = regval;

size = 0; // by default no watchpoint address
if iswrite then

size = integer IMPLEMENTATION_DEFINED "Data Cache Invalidate Watchpoint Size";
assert size >= 4*(2^(UInt(CTR_EL0.DminLine))) && size <= 2048;
assert (size<32:0> AND (size-1)<32:0>) == 0; // size is power of 2
vaddress = Align(regval, size);

cache.translated = need_translate;
cache.vaddress = vaddress;

if need_translate then
wasaligned = TRUE;
memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);
if IsFault(memaddrdesc) then

AArch64.Abort(regval, memaddrdesc.fault);

memattrs = memaddrdesc.memattrs;
cache.paddress = memaddrdesc.paddress;
if opscope IN {CacheOpScope_PoC, CacheOpScope_PoP, CacheOpScope_PoDP} then

cache.shareability = memattrs.shareability;
else

cache.shareability = Shareability_NSH;
else

cache.shareability = Shareability UNKNOWN;
cache.paddress = FullAddress UNKNOWN;

if cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
cache.cacheop = CacheOp_CleanInvalidate;

CACHE_OP(cache);
return;

Shared Pseudocode Functions Page 2931

Library pseudocode for aarch64/instrs/system/sysops/dc/AArch64.MemZero

// AArch64.MemZero()
// =================

AArch64.MemZero(bits(64) regval, CacheType cachetype)

AccType acctype = AccType_DCZVA;
boolean iswrite = TRUE;
boolean wasaligned = TRUE;

integer size = 4*(2^(UInt(DCZID_EL0.BS)));
bits(64) vaddress = Align(regval, size);

memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);

if IsFault(memaddrdesc) then
if IsDebugException(memaddrdesc.fault) then

AArch64.Abort(vaddress, memaddrdesc.fault);
else

AArch64.Abort(regval, memaddrdesc.fault);
else

if cachetype == CacheType_Data then
AArch64.DataMemZero(regval, vaddress, memaddrdesc, size);

elsif cachetype == CacheType_Tag then
if HaveMTEExt() then AArch64.TagMemZero(vaddress, size);

elsif cachetype == CacheType_Data_Tag then
if HaveMTEExt() then AArch64.TagMemZero(vaddress, size);
AArch64.DataMemZero(regval, vaddress, memaddrdesc, size);

return;

Shared Pseudocode Functions Page 2932

Library pseudocode for aarch64/instrs/system/sysops/ic/AArch64.IC

// AArch64.IC()
// ============
// Perform Instruction Cache Operation.

AArch64.IC(CacheOpScope opscope)
regval = bits(64) UNKNOWN;
AArch64.IC(regval, opscope);

// AArch64.IC()
// ============
// Perform Instruction Cache Operation.

AArch64.IC(bits(64) regval, CacheOpScope opscope)
CacheRecord cache;
AccType acctype = AccType_IC;

cache.acctype = acctype;
cache.cachetype = CacheType_Instruction;
cache.cacheop = CacheOp_Invalidate;
cache.opscope = opscope;

if opscope IN {CacheOpScope_ALLU, CacheOpScope_ALLUIS} then
if opscope == CacheOpScope_ALLUIS || (opscope == CacheOpScope_ALLU && PSTATE.EL == EL1

&& EL2Enabled() && HCR_EL2.FB == '1') then
cache.shareability = Shareability_ISH;

else
cache.shareability = Shareability_NSH;

cache.regval = regval;
CACHE_OP(cache);

else
assert opscope == CacheOpScope_PoU;

bits(64) vaddress = regval;
need_translate = ICInstNeedsTranslation(opscope);

cache.vaddress = regval;
cache.shareability = Shareability_NSH;
cache.translated = need_translate;

if !need_translate then
cache.paddress = FullAddress UNKNOWN;
CACHE_OP(cache);
return;

iswrite = FALSE;
wasaligned = TRUE;
size = 0;
memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);

if IsFault(memaddrdesc) then
AArch64.Abort(regval, memaddrdesc.fault);

cache.paddress = memaddrdesc.paddress;
CACHE_OP(cache);

return;

Shared Pseudocode Functions Page 2933

Library pseudocode for aarch64/instrs/system/sysops/sysop/SysOp

// SysOp()
// =======

SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
case op1:CRn:CRm:op2 of

when '000 0111 1000 000' return Sys_AT; // S1E1R
when '100 0111 1000 000' return Sys_AT; // S1E2R
when '110 0111 1000 000' return Sys_AT; // S1E3R
when '000 0111 1000 001' return Sys_AT; // S1E1W
when '100 0111 1000 001' return Sys_AT; // S1E2W
when '110 0111 1000 001' return Sys_AT; // S1E3W
when '000 0111 1000 010' return Sys_AT; // S1E0R
when '000 0111 1000 011' return Sys_AT; // S1E0W
when '100 0111 1000 100' return Sys_AT; // S12E1R
when '100 0111 1000 101' return Sys_AT; // S12E1W
when '100 0111 1000 110' return Sys_AT; // S12E0R
when '100 0111 1000 111' return Sys_AT; // S12E0W
when '011 0111 0100 001' return Sys_DC; // ZVA
when '000 0111 0110 001' return Sys_DC; // IVAC
when '000 0111 0110 010' return Sys_DC; // ISW
when '011 0111 1010 001' return Sys_DC; // CVAC
when '000 0111 1010 010' return Sys_DC; // CSW
when '011 0111 1011 001' return Sys_DC; // CVAU
when '011 0111 1110 001' return Sys_DC; // CIVAC
when '000 0111 1110 010' return Sys_DC; // CISW
when '011 0111 1101 001' return Sys_DC; // CVADP
when '000 0111 0001 000' return Sys_IC; // IALLUIS
when '000 0111 0101 000' return Sys_IC; // IALLU
when '011 0111 0101 001' return Sys_IC; // IVAU
when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS
when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
when '100 1000 0111 000' return Sys_TLBI; // ALLE2
when '110 1000 0111 000' return Sys_TLBI; // ALLE3
when '000 1000 0111 001' return Sys_TLBI; // VAE1
when '100 1000 0111 001' return Sys_TLBI; // VAE2
when '110 1000 0111 001' return Sys_TLBI; // VAE3
when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
when '000 1000 0111 011' return Sys_TLBI; // VAAE1
when '100 1000 0111 100' return Sys_TLBI; // ALLE1
when '000 1000 0111 101' return Sys_TLBI; // VALE1
when '100 1000 0111 101' return Sys_TLBI; // VALE2
when '110 1000 0111 101' return Sys_TLBI; // VALE3
when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
when '000 1000 0111 111' return Sys_TLBI; // VAALE1

return Sys_SYS;

Library pseudocode for aarch64/instrs/system/sysops/sysop/SystemOp

enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

Shared Pseudocode Functions Page 2934

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ALL

// AArch32.DTLBI_ALL()
// ===================
// Invalidate all data TLB entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.

AArch32.DTLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_DALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ASID

// AArch32.DTLBI_ASID()
// ====================
// Invalidate all data TLB stage 1 entries matching the indicated VMID (where regime supports)
// and ASID in the parameter Rt in the indicated translation regime with the
// indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.DTLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_DASID;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2935

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_VA

// AArch32.DTLBI_VA()
// ==================
// Invalidate by VA all stage 1 data TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.DTLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_DVA;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ALL

// AArch32.ITLBI_ALL()
// ===================
// Invalidate all instruction TLB entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.

AArch32.ITLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_IALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2936

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ASID

// AArch32.ITLBI_ASID()
// ====================
// Invalidate all instruction TLB stage 1 entries matching the indicated VMID (where regime supports)
// and ASID in the parameter Rt in the indicated translation regime with the
// indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.ITLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_IASID;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_VA

// AArch32.ITLBI_VA()
// ==================
// Invalidate by VA all stage 1 instruction TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.ITLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_IVA;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2937

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ALL

// AArch32.TLBI_ALL()
// ==================
// Invalidate all entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_ALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ASID

// AArch32.TLBI_ASID()
// ===================
// Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
// and ASID in the parameter Rt in the indicated translation regime with the
// indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_ASID;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2938

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_IPAS2

// AArch32.TLBI_IPAS2()
// ====================
// Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
// domain matching the indicated VMID in the indicated regime with the indicated security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// IPA and related parameters of the are derived from Rt.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2};
assert security == SS_NonSecure;

TLBIRecord r;
r.op = TLBIOp_IPAS2;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.address = Zeros(24) : Rt<27:0> : Zeros(12);
r.ipaspace = PAS_NonSecure;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2939

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VA

// AArch32.TLBI_VA()
// =================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VA;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2940

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VAA

// AArch32.TLBI_VAA()
// ==================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
// with the indicated security state.
// VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VAA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALL

// AArch32.TLBI_VMALL()
// ====================
// Invalidate all stage 1 entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability
// domain that match the indicated VMID (where applicable).
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// Note: stage 2 only entries are not in the scope of this operation.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VMALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2941

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALLS12

// AArch32.TLBI_VMALLS12()
// =======================
// Invalidate all stage 1 and stage 2 entries for the indicated translation
// regime with the indicated security state for all TLBs within the indicated
// shareability domain that match the indicated VMID.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch32.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_VMALLS12;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ALL

// AArch64.TLBI_ALL()
// ==================
// Invalidate all entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_ALL;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2942

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ASID

// AArch64.TLBI_ASID()
// ===================
// Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
// and ASID in the parameter Xt in the indicated translation regime with the
// indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_ASID;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Xt<63:48>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2943

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_IPAS2

// AArch64.TLBI_IPAS2()
// ====================
// Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
// domain matching the indicated VMID in the indicated regime with the indicated security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// IPA and related parameters of the are derived from Xt.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_IPAS2;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.address = ZeroExtend(Xt<39:0> : Zeros(12));

case security of
when SS_NonSecure

r.ipaspace = PAS_NonSecure;
when SS_Secure

r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2944

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RIPAS2

// AArch64.TLBI_RIPAS2()
// =====================
// Range invalidate by IPA all stage 2 only TLB entries in the indicated
// shareability domain matching the indicated VMID in the indicated regime with the indicated
// security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// The range of IPA and related parameters of the are derived from Xt.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RIPAS2;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer baseaddr = SInt(Xt<36:0>);

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

if !valid then return;

case security of
when SS_NonSecure

r.ipaspace = PAS_NonSecure;
when SS_Secure

r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2945

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVA

// AArch64.TLBI_RVA()
// ==================
// Range invalidate by VA range all stage 1 TLB entries in the indicated
// shareability domain matching the indicated VMID and ASID (where regime
// supports VMID, ASID) in the indicated regime with the indicated security state.
// ASID, and range related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_RVA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RVA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Xt<63:48>;

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

if !valid then return;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2946

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVAA

// AArch64.TLBI_RVAA()
// ===================
// Range invalidate by VA range all stage 1 TLB entries in the indicated
// shareability domain matching the indicated VMID (where regimesupports VMID)
// and all ASID in the indicated regime with the indicated security state.
// VA range related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_RVAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RVAA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer baseaddr = SInt(Xt<36:0>);

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

if !valid then return;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2947

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VA

// AArch64.TLBI_VA()
// =================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Xt<63:48>;
r.address = ZeroExtend(Xt<43:0> : Zeros(12));

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2948

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VAA

// AArch64.TLBI_VAA()
// ==================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
// with the indicated security state.
// VA and related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries at all levels
// TLBILevel_Last : this applies to TLB entries at last level only
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VAA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.address = ZeroExtend(Xt<43:0> : Zeros(12));

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALL

// AArch64.TLBI_VMALL()
// ====================
// Invalidate all stage 1 entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability
// domain that match the indicated VMID (where applicable).
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// Note: stage 2 only entries are not in the scope of this operation.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VMALL;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 2949

Library pseudocode for aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALLS12

// AArch64.TLBI_VMALLS12()
// =======================
// Invalidate all stage 1 and stage 2 entries for the indicated translation
// regime with the indicated security state for all TLBs within the indicated
// shareability domain that match the indicated VMID.
// The indicated attr defines the attributes of the memory operations that must be completed in
// order to deem this operation to be completed.
// When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
// are required to complete.

AArch64.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_VMALLS12;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/ASID_NONE

constant bits(16) ASID_NONE = Zeros();

Library pseudocode for aarch64/instrs/system/sysops/tlbi/Broadcast

// Broadcast()
// ===========
// IMPLEMENTATION DEFINED function to broadcast TLBI operation within the indicated shareability
// domain.

Broadcast(Shareability shareability, TLBIRecord r)
IMPLEMENTATION_DEFINED;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/HasLargeAddress

// HasLargeAddress()
// =================
// Returns TRUE if the regime is configured for 52 bit addresses, FALSE otherwise.

boolean HasLargeAddress(Regime regime)
if !Have52BitIPAAndPASpaceExt() then

return FALSE;
case regime of

when Regime_EL3
return TCR_EL3<32> == '1';

when Regime_EL2
return TCR_EL2<32> == '1';

when Regime_EL20
return TCR_EL2<59> == '1';

when Regime_EL10
return TCR_EL1<59> == '1';

otherwise
Unreachable();

Shared Pseudocode Functions Page 2950

Library pseudocode for aarch64/instrs/system/sysops/tlbi/SecurityStateAtEL

// SecurityStateAtEL()
// ===================
// Returns the effective security state at the exception level based off current settings.

SecurityState SecurityStateAtEL(bits(2) EL)
if !HaveEL(EL3) then

if boolean IMPLEMENTATION_DEFINED "Secure-only implementation" then
return SS_Secure;

else
return SS_NonSecure;

elsif EL == EL3 then
return SS_Secure;

else
// For EL2 call only when EL2 is enabled in current security state
assert(EL != EL2 || EL2Enabled());
if !ELUsingAArch32(EL3) then

return if SCR_EL3.NS == '1' then SS_NonSecure else SS_Secure;
else

return if SCR.NS == '1' then SS_NonSecure else SS_Secure;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI

// TLBI()
// ======
// Performs TLB maintenance of operation on TLB to invalidate the matching transition table entries.

TLBI(TLBIRecord r)
IMPLEMENTATION_DEFINED;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBILevel

enumeration TLBILevel {
TLBILevel_Any,
TLBILevel_Last

};

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBIMemAttr

enumeration TLBIMemAttr {
TLBI_AllAttr,
TLBI_ExcludeXS

};

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBIOp

enumeration TLBIOp {
TLBIOp_DALL, // AArch32 Data TLBI operations - deprecated
TLBIOp_DASID,
TLBIOp_DVA,
TLBIOp_IALL, // AArch32 Instruction TLBI operations - deprecated
TLBIOp_IASID,
TLBIOp_IVA,
TLBIOp_ALL,
TLBIOp_ASID,
TLBIOp_IPAS2,
TLBIOp_VAA,
TLBIOp_VA,
TLBIOp_VMALL,
TLBIOp_VMALLS12,
TLBIOp_RIPAS2,
TLBIOp_RVAA,
TLBIOp_RVA,

};

Shared Pseudocode Functions Page 2951

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBIRange

// TLBIRange()
// ===========
// Extract the input address range information from encoded Xt.

(boolean, bits(2), bits(64), bits(64)) TLBIRange(Regime regime, bits(64) Xt)
boolean valid = TRUE;
bits(64) start = Zeros(64);
bits(64) end = Zeros(64);

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer tg_bits;

if tg == '00' then
return (FALSE, tg, start, end);

case tg of
when '01' // 4KB

tg_bits = 12;
if HasLargeAddress(regime) then

start<52:16> = Xt<36:0>;
start<63:53> = Replicate(Xt<36>, 11);

else
start<48:12> = Xt<36:0>;
start<63:49> = Replicate(Xt<36>, 15);

when '10' // 16KB
tg_bits = 14;
if HasLargeAddress(regime) then

start<52:16> = Xt<36:0>;
start<63:53> = Replicate(Xt<36>, 11);

else
start<50:14> = Xt<36:0>;
start<63:51> = Replicate(Xt<36>, 13);

when '11' // 64KB
tg_bits = 16;
start<52:16> = Xt<36:0>;
start<63:53> = Replicate(Xt<36>, 11);

otherwise
Unreachable();

integer range = (num+1) << (5*scale + 1 + tg_bits);
end = start + range<63:0>;

if end<52> != start<52> then
// overflow, saturate it
end = Replicate(start<52>, 64-52) : Ones(52);

return (valid, tg, start, end);

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBIRecord

type TLBIRecord is (
TLBIOp op,
boolean from_aarch64, // originated as an AArch64 operation
SecurityState security,
Regime regime,
bits(16) vmid,
bits(16) asid,
TLBILevel level,
TLBIMemAttr attr,
PASpace ipaspace, // For operations that take IPA as input address
bits(64) address, // input address, for range operations, start address
bits(64) end_address, // for range operations, end address
bits(2) tg, // for range operations, translation granule

)

Shared Pseudocode Functions Page 2952

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_ALL

// TLBI_ALL()
// ==========

TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
if UsingAArch32() then

AArch32.TLBI_ALL(security, regime, shareability, attr);
else

AArch64.TLBI_ALL(security, regime, shareability, attr);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_ASID

// TLBI_ASID()
// ===========

TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
TLBIMemAttr attr, bits(N) reg)

if UsingAArch32() then
assert N == 32;
AArch32.TLBI_ASID(security, regime, vmid, shareability, attr, reg<31:0>);

else
assert N == 64;
AArch64.TLBI_ASID(security, regime, vmid, shareability, attr, reg<63:0>);

return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_IPAS2

// TLBI_IPAS2()
// ============

TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(N) reg)

if UsingAArch32() then
assert N == 32;
AArch32.TLBI_IPAS2(security, regime, vmid, shareability, level, attr, reg<31:0>);

else
assert N == 64;
AArch64.TLBI_IPAS2(security, regime, vmid, shareability, level, attr, reg<63:0>);

return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_RIPAS2

// TLBI_RIPAS2()
// =============

TLBI_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert !UsingAArch32();

AArch64.TLBI_RIPAS2(security, regime, vmid, shareability, level, attr, Xt);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_RVA

// TLBI_RVA()
// ==========

TLBI_RVA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert !UsingAArch32();

AArch64.TLBI_RVA(security, regime, vmid, shareability, level, attr, Xt);
return;

Shared Pseudocode Functions Page 2953

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_RVAA

// TLBI_RVAA()
// ===========

TLBI_RVAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert !UsingAArch32();

AArch64.TLBI_RVAA(security, regime, vmid, shareability, level, attr, Xt);
return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_VA

// TLBI_VA()
// =========

TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(N) reg)

if UsingAArch32() then
assert N == 32;
AArch32.TLBI_VA(security, regime, vmid, shareability, level, attr, reg<31:0>);

else
assert N == 64;
AArch64.TLBI_VA(security, regime, vmid, shareability, level, attr, reg<63:0>);

return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_VAA

// TLBI_VAA()
// ==========

TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(N) reg)

if UsingAArch32() then
assert N == 32;
AArch32.TLBI_VAA(security, regime, vmid, shareability, level, attr, reg<31:0>);

else
assert N == 64;
AArch64.TLBI_VAA(security, regime, vmid, shareability, level, attr, reg<63:0>);

return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_VMALL

// TLBI_VMALL()
// ============

TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

if UsingAArch32() then
AArch32.TLBI_VMALL(security, regime, vmid, shareability, attr);

else
AArch64.TLBI_VMALL(security, regime, vmid, shareability, attr);

return;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/TLBI_VMALLS12

// TLBI_VMALLS12()
// ===============

TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

if UsingAArch32() then
AArch32.TLBI_VMALLS12(security, regime, vmid, shareability, attr);

else
AArch64.TLBI_VMALLS12(security, regime, vmid, shareability, attr);

return;

Shared Pseudocode Functions Page 2954

Library pseudocode for aarch64/instrs/system/sysops/tlbi/VMID

// VMID[]
// ======
// Effective VMID.

bits(16) VMID[]
if EL2Enabled() then

if !ELUsingAArch32(EL2) then
if Have16bitVMID() && VTCR_EL2.VS == '1' then

return VTTBR_EL2.VMID;
else

return ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
else

return ZeroExtend(VTTBR.VMID, 16);
elsif HaveEL(EL2) && HaveSecureEL2Ext() then

return Zeros(16);
else

return VMID_NONE;

Library pseudocode for aarch64/instrs/system/sysops/tlbi/VMID_NONE

constant bits(16) VMID_NONE = Zeros();

Library pseudocode for aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/
VBitOp

enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

Library pseudocode for aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp

enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
CompareOp_LE, CompareOp_LT};

Library pseudocode for aarch64/instrs/vector/logical/immediateop/ImmediateOp

enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
ImmediateOp_ORR, ImmediateOp_BIC};

Shared Pseudocode Functions Page 2955

Library pseudocode for aarch64/instrs/vector/reduce/reduceop/Reduce

// Reduce()
// ========

bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
boolean altfp = HaveAltFP() && !UsingAArch32() && FPCR.AH == '1';
return Reduce(op, input, esize, altfp);

// Reduce()
// ========
// Perform the operation 'op' on pairs of elements from the input vector,
// reducing the vector to a scalar result. The 'altfp' argument controls
// alternative floating-point behaviour.

bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize, boolean altfp)
integer half;
bits(esize) hi;
bits(esize) lo;
bits(esize) result;

if N == esize then
return input<esize-1:0>;

half = N DIV 2;
hi = Reduce(op, input<N-1:half>, esize, altfp);
lo = Reduce(op, input<half-1:0>, esize, altfp);

case op of
when ReduceOp_FMINNUM

result = FPMinNum(lo, hi, FPCR[]);
when ReduceOp_FMAXNUM

result = FPMaxNum(lo, hi, FPCR[]);
when ReduceOp_FMIN

result = FPMin(lo, hi, FPCR[], altfp);
when ReduceOp_FMAX

result = FPMax(lo, hi, FPCR[], altfp);
when ReduceOp_FADD

result = FPAdd(lo, hi, FPCR[]);
when ReduceOp_ADD

result = lo + hi;

return result;

Library pseudocode for aarch64/instrs/vector/reduce/reduceop/ReduceOp

enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
ReduceOp_FMIN, ReduceOp_FMAX,
ReduceOp_FADD, ReduceOp_ADD};

Shared Pseudocode Functions Page 2956

Library pseudocode for aarch64/translation/debug/AArch64.CheckBreakpoint

// AArch64.CheckBreakpoint()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
// translation regime, when either debug exceptions are enabled, or halting debug is enabled
// and halting is allowed.

FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, AccType acctype, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert (UsingAArch32() && size IN {2,4}) || size == 4;

match = FALSE;

for i = 0 to UInt(ID_AA64DFR0_EL1.BRPs)
match_i = AArch64.BreakpointMatch(i, vaddress, acctype, size);
match = match || match_i;

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Breakpoint;
Halt(reason);

elsif match then
acctype = AccType_IFETCH;
iswrite = FALSE;
return AArch64.DebugFault(acctype, iswrite);

else
return NoFault();

Library pseudocode for aarch64/translation/debug/AArch64.CheckDebug

// AArch64.CheckDebug()
// ====================
// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)

FaultRecord fault = NoFault();

d_side = (acctype != AccType_IFETCH);
if HaveNV2Ext() && acctype == AccType_NV2REGISTER then

mask = '0';
generate_exception = AArch64.GenerateDebugExceptionsFrom(EL2, IsSecure(), mask) && MDSCR_EL1.MDE == '1';

else
generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';

halt = HaltOnBreakpointOrWatchpoint();

if generate_exception || halt then
if d_side then

fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
else

fault = AArch64.CheckBreakpoint(vaddress, acctype, size);

return fault;

Shared Pseudocode Functions Page 2957

Library pseudocode for aarch64/translation/debug/AArch64.CheckWatchpoint

// AArch64.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "address",
// when either debug exceptions are enabled for the access, or halting debug
// is enabled and halting is allowed.

FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
boolean iswrite, integer size)

assert !ELUsingAArch32(S1TranslationRegime());

if acctype IN {AccType_TTW, AccType_IC, AccType_AT, AccType_ATPAN} then
return NoFault();

if acctype == AccType_DC then
if !iswrite then

return NoFault();

match = FALSE;
match_on_read = FALSE;
ispriv = AArch64.AccessUsesEL(acctype) != EL0;

for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
if AArch64.WatchpointMatch(i, vaddress, size, ispriv, acctype, iswrite) then

match = TRUE;
if DBGWCR_EL1[i].LSC<0> == '1' then

match_on_read = TRUE;

if match && acctype == AccType_ATOMICRW then
iswrite = !match_on_read;

if match && HaltOnBreakpointOrWatchpoint() then
if acctype != AccType_NONFAULT && acctype != AccType_CNOTFIRST then

reason = DebugHalt_Watchpoint;
EDWAR = vaddress;
Halt(reason);

else
// Fault will be reported and cancelled
return AArch64.DebugFault(acctype, iswrite);

elsif match then
return AArch64.DebugFault(acctype, iswrite);

else
return NoFault();

Shared Pseudocode Functions Page 2958

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.BlockBase

// AArch64.BlockBase()
// ===================
// Extract the address embedded in a block descriptor pointing to the base of
// a memory block

bits(52) AArch64.BlockBase(bits(64) descriptor, bit ds, TGx tgx, integer level)
bits(52) blockbase = Zeros();

if tgx == TGx_4KB && level == 2 then
blockbase<47:21> = descriptor<47:21>;

elsif tgx == TGx_4KB && level == 1 then
blockbase<47:30> = descriptor<47:30>;

elsif tgx == TGx_4KB && level == 0 then
blockbase<47:39> = descriptor<47:39>;

elsif tgx == TGx_16KB && level == 2 then
blockbase<47:25> = descriptor<47:25>;

elsif tgx == TGx_16KB && level == 1 then
blockbase<47:36> = descriptor<47:36>;

elsif tgx == TGx_64KB && level == 2 then
blockbase<47:29> = descriptor<47:29>;

elsif tgx == TGx_64KB && level == 1 then
blockbase<47:42> = descriptor<47:42>;

else
Unreachable();

if Have52BitPAExt() && tgx == TGx_64KB then
blockbase<51:48> = descriptor<15:12>;

elsif ds == '1' then
blockbase<51:48> = descriptor<9:8>:descriptor<49:48>;

return blockbase;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.IASize

// AArch64.IASize()
// ================
// Retrieve the number of bits containing the input address

integer AArch64.IASize(bits(6) txsz)
return 64 - UInt(txsz);

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase

// AArch64.NextTableBase()
// =======================
// Extract the address embedded in a table descriptor pointing to the base of
// the next level table of descriptors

bits(52) AArch64.NextTableBase(bits(64) descriptor, bit ds, TGx tgx)
bits(52) tablebase = Zeros();

case tgx of
when TGx_4KB tablebase<47:12> = descriptor<47:12>;
when TGx_16KB tablebase<47:14> = descriptor<47:14>;
when TGx_64KB tablebase<47:16> = descriptor<47:16>;

if Have52BitPAExt() && tgx == TGx_64KB then
tablebase<51:48> = descriptor<15:12>;

elsif ds == '1' then
tablebase<51:48> = descriptor<9:8>:descriptor<49:48>;

return tablebase;

Shared Pseudocode Functions Page 2959

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.PageBase

// AArch64.PageBase()
// ==================
// Extract the address embedded in a page descriptor pointing to the base of
// a memory page

bits(52) AArch64.PageBase(bits(64) descriptor, bit ds, TGx tgx)
bits(52) pagebase = Zeros();

case tgx of
when TGx_4KB pagebase<47:12> = descriptor<47:12>;
when TGx_16KB pagebase<47:14> = descriptor<47:14>;
when TGx_64KB pagebase<47:16> = descriptor<47:16>;

if Have52BitPAExt() && tgx == TGx_64KB then
pagebase<51:48> = descriptor<15:12>;

elsif ds == '1' then
pagebase<51:48> = descriptor<9:8>:descriptor<49:48>;

return pagebase;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize

// AArch64.PhysicalAddressSize()
// =============================
// Retrieve the number of bits bounding the physical address

integer AArch64.PhysicalAddressSize(bits(3) encoded_ps, TGx tgx)
integer ps;

case encoded_ps of
when '000' ps = 32;
when '001' ps = 36;
when '010' ps = 40;
when '011' ps = 42;
when '100' ps = 44;
when '101' ps = 48;
when '110' ps = 52;
otherwise

ps = integer IMPLEMENTATION_DEFINED "Reserved Intermediate Physical Address size value";

if tgx != TGx_64KB && !Have52BitIPAAndPASpaceExt() then
max_ps = Min(48, AArch64.PAMax());

else
max_ps = AArch64.PAMax();

return Min(ps, max_ps);

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel

// AArch64.S1StartLevel()
// ======================
// Compute the initial lookup level when performing a stage 1 translation
// table walk

integer AArch64.S1StartLevel(S1TTWParams walkparams)
// Input Address size
iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;

return FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);

Shared Pseudocode Functions Page 2960

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress

// AArch64.S2SLTTEntryAddress()
// ============================
// Compute the first stage 2 translation table descriptor address within the
// table pointed to by the base at the start level

FullAddress AArch64.S2SLTTEntryAddress(S2TTWParams walkparams, bits(52) ipa,
FullAddress tablebase)

startlevel = AArch64.S2StartLevel(walkparams);
iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;
levels = FINAL_LEVEL - startlevel;

bits(52) index;
lsb = levels*stride + granulebits;
msb = iasize - 1;
index = ZeroExtend(ipa<msb:lsb>:Zeros(3));

FullAddress descaddress;
descaddress.address = tablebase.address OR index;
descaddress.paspace = tablebase.paspace;

return descaddress;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel

// AArch64.S2StartLevel()
// ======================
// Determine the initial lookup level when performing a stage 2 translation
// table walk

integer AArch64.S2StartLevel(S2TTWParams walkparams)
case walkparams.tgx of

when TGx_4KB
case walkparams.sl2:walkparams.sl0 of

when '000' return 2;
when '001' return 1;
when '010' return 0;
when '011' return 3;
when '100' return -1;

when TGx_16KB
case walkparams.sl0 of

when '00' return 3;
when '01' return 2;
when '10' return 1;
when '11' return 0;

when TGx_64KB
case walkparams.sl0 of

when '00' return 3;
when '01' return 2;
when '10' return 1;

Shared Pseudocode Functions Page 2961

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.TTBaseAddress

// AArch64.TTBaseAddress()
// =======================
// Retrieve the PA/IPA pointing to the base of the initial translation table

bits(52) AArch64.TTBaseAddress(bits(64) ttb, bits(6) txsz, bits(3) ps,
bit ds, TGx tgx, integer startlevel)

bits(52) tablebase = Zeros();

// Input Address size
iasize = AArch64.IASize(txsz);
granulebits = TGxGranuleBits(tgx);
stride = granulebits - 3;
levels = FINAL_LEVEL - startlevel;

// Base address is aligned to size of the initial translation table in bytes
tsize = iasize - (levels*stride + granulebits) + 3;

if (Have52BitPAExt() && tgx == TGx_64KB && ps == '110') || (ds == '1') then
tsize = Max(tsize, 6);
tablebase<51:6> = ttb<5:2>:ttb<47:6>;

else
tablebase<47:1> = ttb<47:1>;

tablebase = Align(tablebase, 1 << tsize);
return tablebase;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress

// AArch64.TTEntryAddress()
// ========================
// Compute translation table descriptor address within the table pointed to by
// the table base

FullAddress AArch64.TTEntryAddress(integer level, TGx tgx, bits(6) txsz,
bits(64) ia, FullAddress tablebase)

// Input Address size
iasize = AArch64.IASize(txsz);
granulebits = TGxGranuleBits(tgx);
stride = granulebits - 3;
levels = FINAL_LEVEL - level;

bits(52) index;
lsb = levels*stride + granulebits;
msb = Min(iasize - 1, lsb + stride - 1);
index = ZeroExtend(ia<msb:lsb>:Zeros(3));

FullAddress descaddress;
descaddress.address = tablebase.address OR index;
descaddress.paspace = tablebase.paspace;

return descaddress;

Shared Pseudocode Functions Page 2962

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.AddrTop

// AArch64.AddrTop()
// =================
// Get the top bit position of the virtual address.
// Bits above are not accounted as part of the translation process.

integer AArch64.AddrTop(bit tbid, AccType acctype, bit tbi)
if tbid == '1' && acctype == AccType_IFETCH then

return 63;

if tbi == '1' then
return 55;

else
return 63;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults

// AArch64.ContiguousBitFaults()
// =============================
// If contiguous bit is set, returns whether the translation size exceeds the
// input address size and if the implementation generates a fault

boolean AArch64.ContiguousBitFaults(bits(6) txsz, TGx tgx, integer level)
// Input Address size
iasize = AArch64.IASize(txsz);
// Translation size
tsize = TranslationSize(tgx, level) + AArch64.ContiguousSizeLog2(tgx, level);

fault = boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit";

return tsize > iasize && fault;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.DebugFault

// AArch64.DebugFault()
// ====================
// Return a fault record indicating a hardware watchpoint/breakpoint

FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)
FaultRecord fault;

fault.statuscode = Fault_Debug;
fault.acctype = acctype;
fault.write = iswrite;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

return fault;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.ExclusiveFault

// AArch64.ExclusiveFault()
// ========================

FaultRecord AArch64.ExclusiveFault(AccType acctype, boolean iswrite,
boolean secondstage, boolean s2fs1walk)

FaultRecord fault;

fault.statuscode = Fault_Exclusive;
fault.acctype = acctype;
fault.write = iswrite;
fault.secondstage = secondstage;
fault.s2fs1walk = s2fs1walk;

return fault;

Shared Pseudocode Functions Page 2963

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange

// AArch64.IPAIsOutOfRange()
// =========================
// Check bits not resolved by translation are ZERO

boolean AArch64.IPAIsOutOfRange(bits(52) ipa, S2TTWParams walkparams)
//Input Address size
iasize = AArch64.IASize(walkparams.txsz);

if iasize < 52 then
return !IsZero(ipa<51:iasize>);

else
return FALSE;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.OAOutOfRange

// AArch64.OAOutOfRange()
// ======================
// Returns whether output address is expressed in the configured size number of bits

boolean AArch64.OAOutOfRange(TTWState walkstate, bits(3) ps, TGx tgx)
// Output Address size
oasize = AArch64.PhysicalAddressSize(ps, tgx);
baseaddress = walkstate.baseaddress.address;

if oasize < 52 then
return !IsZero(baseaddress<51:oasize>);

else
return FALSE;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault

// AArch64.S1HasAlignmentFault()
// =============================
// Returns whether stage 1 output fails alignment requirement on data accesses
// to Device memory

boolean AArch64.S1HasAlignmentFault(AccType acctype, boolean aligned,
bit ntlsmd, MemoryAttributes memattrs)

if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
return FALSE;

if acctype == AccType_A32LSMD && ntlsmd == '0' && memattrs.device != DeviceType_GRE then
return TRUE;

return !aligned || acctype == AccType_DCZVA;

Shared Pseudocode Functions Page 2964

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1HasPermissionsFault

Shared Pseudocode Functions Page 2965

// AArch64.S1HasPermissionsFault()
// ===============================
// Returns whether stage 1 access violates permissions of target memory

boolean AArch64.S1HasPermissionsFault(Regime regime, TTWState walkstate,
S1TTWParams walkparams, boolean ispriv,
AccType acctype, boolean iswrite)

permissions = walkstate.permissions;

if HasUnprivileged(regime) then
// Apply leaf permissions
case permissions.ap<2:1> of

when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // Privileged access
when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // No effect
when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // Read-only, privileged access
when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // Read-only

// Apply hierarchical permissions
case permissions.ap_table of

when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

// Locations writable by unprivileged cannot be executed by privileged
px = NOT(permissions.pxn OR permissions.pxn_table OR uw);
ux = NOT(permissions.uxn OR permissions.uxn_table);

pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT, AccType_NV2REGISTER});
if HavePANExt() && pan_access && !(PSTATE.EL == EL1 && walkparams.nv1 == '1') then

pan = PSTATE.PAN AND (ur OR uw OR (walkparams.epan AND ux));
pr = pr AND NOT(pan);
pw = pw AND NOT(pan);

(r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);
else

// Apply leaf permissions
case permissions.ap<2> of

when '0' (r,w) = ('1','1'); // No effect
when '1' (r,w) = ('1','0'); // Read-only

// Apply hierarchical permissions
case permissions.ap_table<1> of

when '0' (r,w) = (r , w); // No effect
when '1' (r,w) = (r ,'0'); // Read-only

x = NOT(permissions.xn OR permissions.xn_table);

// Prevent execution from writable locations if WXN is set
x = x AND NOT(walkparams.wxn AND w);

// Prevent execution from Non-secure space by PE in secure state if SIF is set
if (AArch64.CurrentSecurityState() == SS_Secure &&

walkstate.baseaddress.paspace == PAS_NonSecure) then
x = x AND NOT(walkparams.sif);

if acctype == AccType_IFETCH then
if (ConstrainUnpredictable(Unpredictable_INSTRDEVICE) == Constraint_FAULT &&

walkstate.memattrs.memtype == MemType_Device) then
return TRUE;

return x == '0';
elsif acctype == AccType_DC then

if iswrite then
return w == '0';

else
// DC from privileged context which do no write cannot permission fault
return !ispriv && r == '0';

elsif acctype == AccType_IC then
// IC instructions do not write

Shared Pseudocode Functions Page 2966

assert !iswrite;
impdef_ic_fault = boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution";

// IC from privileged context cannot permission fault
return !ispriv && r == '0' && impdef_ic_fault;

elsif iswrite then
return w == '0';

else
return r == '0';

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1InvalidTxSZ

// AArch64.S1InvalidTxSZ()
// =======================
// Detect erroneous configuration of stage 1 TxSZ field if the implementation
// does not constrain the value of TxSZ

boolean AArch64.S1InvalidTxSZ(S1TTWParams walkparams)
mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

return UInt(walkparams.txsz) < mintxsz || UInt(walkparams.txsz) > maxtxsz;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault

// AArch64.S2HasAlignmentFault()
// =============================
// Returns whether stage 2 output fails alignment requirement on data accesses
// to Device memory

boolean AArch64.S2HasAlignmentFault(AccType acctype, boolean aligned,
MemoryAttributes memattrs)

if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
return FALSE;

return !aligned || acctype == AccType_DCZVA;

Shared Pseudocode Functions Page 2967

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2HasPermissionsFault

// AArch64.S2HasPermissionsFault()
// ===============================
// Returns whether stage 2 access violates permissions of target memory

boolean AArch64.S2HasPermissionsFault(boolean s2fs1walk, TTWState walkstate,
S2TTWParams walkparams, boolean ispriv,
AccType acctype, boolean iswrite)

permissions = walkstate.permissions;
memtype = walkstate.memattrs.memtype;

r = permissions.s2ap<0>;
w = permissions.s2ap<1>;

case (permissions.s2xn:permissions.s2xnx) of
when '00' (px,ux) = ('1','1');
when '01' (px,ux) = ('0','1');
when '10' (px,ux) = ('0','0');
when '11' (px,ux) = ('1','0');

x = if ispriv then px else ux;

if s2fs1walk && walkparams.ptw == '1' && memtype == MemType_Device then
return TRUE;

elsif acctype == AccType_IFETCH then
constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
if constraint == Constraint_FAULT && memtype == MemType_Device then

return TRUE;
return x == '0';

elsif acctype == AccType_DC then
// AArch32 DC maintenance instructions operating by VA cannot fault.
if iswrite then

return !UsingAArch32() && w == '0';
else

// DC from privileged context which do no write cannot permission fault
return !UsingAArch32() && !ispriv && r == '0';

elsif acctype == AccType_IC then
// IC instructions do not write
assert !iswrite;
impdef_ic_fault = boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution";

// AArch32 IC maintenance instructions operating by VA cannot fault.
// IC from privileged context cannot permission fault
return !UsingAArch32() && !ispriv && r == '0' && impdef_ic_fault;

elsif iswrite then
return w == '0';

else
return r == '0';

Shared Pseudocode Functions Page 2968

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL

// AArch64.S2InconsistentSL()
// ==========================
// Detect inconsistent configuration of stage 2 TxSZ and SL fields

boolean AArch64.S2InconsistentSL(S2TTWParams walkparams)
startlevel = AArch64.S2StartLevel(walkparams);
levels = FINAL_LEVEL - startlevel;
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;

// Input address size must at least be large enough to be resolved from the start level
sl_min_iasize = (

levels * stride // Bits resolved by table walk, except initial level
+ granulebits // Bits directly mapped to output address
+ 1); // At least 1 more bit to be decoded by initial level

// Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
sl_max_iasize = sl_min_iasize + (stride-1) + 4;
// Configured Input Address size
iasize = AArch64.IASize(walkparams.txsz);

return iasize < sl_min_iasize || iasize > sl_max_iasize;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2InvalidSL

// AArch64.S2InvalidSL()
// =====================
// Detect invalid configuration of SL field

boolean AArch64.S2InvalidSL(S2TTWParams walkparams)
case walkparams.tgx of

when TGx_4KB
case walkparams.sl2:walkparams.sl0 of

when '1x1' return TRUE;
when '11x' return TRUE;
when '010' return AArch64.PAMax() < 44;
when '011' return !HaveSmallTranslationTableExt();
otherwise return FALSE;

when TGx_16KB
case walkparams.ds:walkparams.sl0 of

when '011' return TRUE;
when '010' return AArch64.PAMax() < 42;
otherwise return FALSE;

when TGx_64KB
case walkparams.sl0 of

when '11' return TRUE;
when '10' return AArch64.PAMax() < 44;
otherwise return FALSE;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2InvalidTxSZ

// AArch64.S2InvalidTxSZ()
// =======================
// Detect erroneous configuration of stage 2 TxSZ field if the implementation
// does not constrain the value of TxSZ

boolean AArch64.S2InvalidTxSZ(S2TTWParams walkparams, boolean s1aarch64)
mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx, s1aarch64);
maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

return UInt(walkparams.txsz) < mintxsz || UInt(walkparams.txsz) > maxtxsz;

Shared Pseudocode Functions Page 2969

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange

// AArch64.VAIsOutOfRange()
// ========================
// Check bits not resolved by translation are identical and of accepted value

boolean AArch64.VAIsOutOfRange(bits(64) va, AccType acctype, Regime regime,
S1TTWParams walkparams)

addrtop = AArch64.AddrTop(walkparams.tbid, acctype, walkparams.tbi);
// Input Address size
iasize = AArch64.IASize(walkparams.txsz);

if HasUnprivileged(regime) then
if AArch64.GetVARange(va) == VARange_LOWER then

return !IsZero(va<addrtop:iasize>);
else

return !IsOnes(va<addrtop:iasize>);
else

return !IsZero(va<addrtop:iasize>);

Library pseudocode for aarch64/translation/vmsa_memattr/AArch64.IsS2ResultTagged

// AArch64.IsS2ResultTagged()
// ==========================
// Determine whether the combined output memory attributes of stage 1 and
// stage 2 indicate tagged memory

boolean AArch64.IsS2ResultTagged(MemoryAttributes s2_memattrs, boolean s1_tagged)
return (

s1_tagged &&
(s2_memattrs.memtype == MemType_Normal) &&
(s2_memattrs.inner.attrs == MemAttr_WB) &&
(s2_memattrs.inner.hints == MemHint_RWA) &&
(!s2_memattrs.inner.transient) &&
(s2_memattrs.outer.attrs == MemAttr_WB) &&
(s2_memattrs.outer.hints == MemHint_RWA) &&
(!s2_memattrs.outer.transient)

);

Shared Pseudocode Functions Page 2970

Library pseudocode for aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs

// AArch64.S2ApplyFWBMemAttrs()
// ============================
// Apply stage 2 forced Write-Back on stage 1 memory attributes.

MemoryAttributes AArch64.S2ApplyFWBMemAttrs(MemoryAttributes s1_memattrs,
bits(4) s2_attr, bits(2) s2_sh)

MemoryAttributes memattrs;

if s2_attr<2> == '0' then // S2 Device, S1 any
s2_device = DecodeDevice(s2_attr<1:0>);
memattrs.memtype = MemType_Device;
if s1_memattrs.memtype == MemType_Device then

memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_device);
else

memattrs.device = s2_device;

elsif s2_attr<1:0> == '11' then // S2 attr = S1 attr
memattrs = s1_memattrs;

elsif s2_attr<1:0> == '10' then // Force writeback
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.outer.attrs = MemAttr_WB;

if (s1_memattrs.memtype == MemType_Normal &&
s1_memattrs.inner.attrs != MemAttr_NC) then

memattrs.inner.hints = s1_memattrs.inner.hints;
memattrs.inner.transient = s1_memattrs.inner.transient;

else
memattrs.inner.hints = MemHint_RWA;
memattrs.inner.transient = FALSE;

if (s1_memattrs.memtype == MemType_Normal &&
s1_memattrs.outer.attrs != MemAttr_NC) then

memattrs.outer.hints = s1_memattrs.outer.hints;
memattrs.outer.transient = s1_memattrs.outer.transient;

else
memattrs.outer.hints = MemHint_RWA;
memattrs.outer.transient = FALSE;

else // Non-cacheable unless S1 is device
if s1_memattrs.memtype == MemType_Device then

memattrs = s1_memattrs;
else

MemAttrHints cacheability_attr;
cacheability_attr.attrs = MemAttr_NC;

memattrs.memtype = MemType_Normal;
memattrs.inner = cacheability_attr;
memattrs.outer = cacheability_attr;

s2_shareability = DecodeShareability(s2_sh);
memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability,

s2_shareability);
memattrs.tagged = AArch64.IsS2ResultTagged(memattrs, s1_memattrs.tagged);

memattrs.shareability = NormaliseShareability(memattrs);
return memattrs;

Shared Pseudocode Functions Page 2971

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.AccessUsesEL

// AArch64.AccessUsesEL()
// ======================
// Returns the Exception Level of the regime that will manage the translation for a given access type.

bits(2) AArch64.AccessUsesEL(AccType acctype)
if acctype == AccType_UNPRIV then

return EL0;
elsif acctype == AccType_NV2REGISTER then

return EL2;
else

return PSTATE.EL;

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.FaultAllowsSetAccessFlag

// AArch64.FaultAllowsSetAccessFlag()
// ==================================
// Determine whether the access flag could be set by HW given the fault status

boolean AArch64.FaultAllowsSetAccessFlag(FaultRecord fault)
if fault.statuscode == Fault_None then

return TRUE;
elsif fault.statuscode IN {Fault_Alignment, Fault_Permission} then

return ConstrainUnpredictable(Unpredictable_AFUPDATE) == Constraint_TRUE;
else

return FALSE;

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.FullTranslate

// AArch64.FullTranslate()
// =======================
// Address translation as specified by VMSA
// Alignment check NOT due to memory type is expected to be done before translation

AddressDescriptor AArch64.FullTranslate(bits(64) va, AccType acctype,
boolean iswrite, boolean aligned)

fault = NoFault();
fault.acctype = acctype;
fault.write = iswrite;

regime = TranslationRegime(PSTATE.EL, acctype);

(fault, ipa) = AArch64.S1Translate(fault, regime, va, acctype, aligned, iswrite);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(va, fault);

if regime == Regime_EL10 && EL2Enabled() then
s1aarch64 = TRUE;
s2fs1walk = FALSE;
(fault, pa) = AArch64.S2Translate(fault, ipa, s1aarch64, s2fs1walk,

acctype, aligned, iswrite);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(va, fault);

else
return pa;

else
return ipa;

Shared Pseudocode Functions Page 2972

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc

// AArch64.MemSwapTableDesc()
// ==========================
// Perform HW update of table descriptor as an atomic operation

(FaultRecord, bits(64)) AArch64.MemSwapTableDesc(FaultRecord fault,
bits(64) prev_desc, bits(64) new_desc, bit ee,
AddressDescriptor descupdateaddress)

descupdateaccess = CreateAccessDescriptor(AccType_ATOMICRW);

if ee == '1' then
new_desc = BigEndianReverse(new_desc);
prev_desc = BigEndianReverse(prev_desc);

// All observers in the shareability domain observe the
// following memory read and write accesses atomically.
(memstatus, mem_desc) = PhysMemRead(descupdateaddress, 8, descupdateaccess);
if IsFault(memstatus) then

iswrite = FALSE;
fault = HandleExternalTTWAbort(memstatus, iswrite, descupdateaddress,

descupdateaccess, 8, fault);
if IsFault(fault.statuscode) then

fault.acctype = AccType_ATOMICRW;
return (fault, bits(64) UNKNOWN);

if mem_desc == prev_desc then
memstatus = PhysMemWrite(descupdateaddress, 8,

descupdateaccess, new_desc);
iswrite = TRUE;
if IsFault(memstatus) then

fault = HandleExternalTTWAbort(memstatus, iswrite, descupdateaddress,
descupdateaccess, 8, fault);

fault.acctype = memstatus.acctype;
if IsFault(fault.statuscode) then

fault.acctype = AccType_ATOMICRW;
return (fault, bits(64) UNKNOWN);

mem_desc = new_desc;

if ee == '1' then
mem_desc = BigEndianReverse(mem_desc);

assert mem_desc == new_desc;

return (fault, mem_desc);

Shared Pseudocode Functions Page 2973

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput

// AArch64.S1DisabledOutput()
// ==========================
// Map the the VA to IPA/PA and assign default memory attributes

(FaultRecord, AddressDescriptor) AArch64.S1DisabledOutput(FaultRecord fault,
Regime regime, bits(64) va, AccType acctype, boolean aligned)

walkparams = AArch64.GetS1TTWParams(regime, va);

// No memory page is guarded when stage 1 address translation is disabled
SetInGuardedPage(FALSE);

// Output Address
FullAddress oa;
oa.address = va<51:0>;
case AArch64.CurrentSecurityState() of

when SS_Secure oa.paspace = PAS_Secure;
when SS_NonSecure oa.paspace = PAS_NonSecure;

MemoryAttributes memattrs;
if regime == Regime_EL10 && EL2Enabled() && walkparams.dc == '1' then

MemAttrHints default_cacheability;
default_cacheability.attrs = MemAttr_WB;
default_cacheability.hints = MemHint_RWA;
default_cacheability.transient = FALSE;

memattrs.memtype = MemType_Normal;
memattrs.outer = default_cacheability;
memattrs.inner = default_cacheability;
memattrs.shareability = Shareability_NSH;
memattrs.tagged = walkparams.dct == '1';
memattrs.xs = '0';

elsif acctype == AccType_IFETCH then
MemAttrHints i_cache_attr;
if AArch64.S1ICacheEnabled(regime) then

i_cache_attr.attrs = MemAttr_WT;
i_cache_attr.hints = MemHint_RA;
i_cache_attr.transient = FALSE;

else
i_cache_attr.attrs = MemAttr_NC;

memattrs.memtype = MemType_Normal;
memattrs.outer = i_cache_attr;
memattrs.inner = i_cache_attr;
memattrs.shareability = Shareability_OSH;
memattrs.tagged = FALSE;
memattrs.xs = '1';

else
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;
memattrs.xs = '1';

fault.level = 0;
addrtop = AArch64.AddrTop(walkparams.tbid, acctype, walkparams.tbi);
if !IsZero(va<addrtop:AArch64.PAMax()>) then

fault.statuscode = Fault_AddressSize;
elsif AArch64.S1HasAlignmentFault(acctype, aligned, walkparams.ntlsmd, memattrs) then

fault.statuscode = Fault_Alignment;

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

else
ipa = CreateAddressDescriptor(va, oa, memattrs);
return (fault, ipa);

Shared Pseudocode Functions Page 2974

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.S1Translate

Shared Pseudocode Functions Page 2975

// AArch64.S1Translate()
// =====================
// Translate VA to IPA/PA depending on the regime

(FaultRecord, AddressDescriptor) AArch64.S1Translate(FaultRecord fault,
Regime regime, bits(64) va, AccType acctype, boolean aligned,
boolean iswrite)

// Prepare fault fields in case a fault is detected
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

if !AArch64.S1Enabled(regime) then
return AArch64.S1DisabledOutput(fault, regime, va, acctype, aligned);

walkparams = AArch64.GetS1TTWParams(regime, va);

if (AArch64.VAIsOutOfRange(va, acctype, regime, walkparams) ||
(AArch64.AccessUsesEL(acctype) == EL0 && walkparams.e0pd == '1')) then

fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

(fault, descaddress, walkstate,
descriptor) = AArch64.S1Walk(fault, walkparams, va, regime, acctype,

iswrite);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

ispriv = AArch64.AccessUsesEL(acctype) != EL0;

if acctype == AccType_IFETCH then
// Flag the fetched instruction is from a guarded page
SetInGuardedPage(walkstate.guardedpage == '1');

if AArch64.S1HasAlignmentFault(acctype, aligned, walkparams.ntlsmd,
walkstate.memattrs) then

fault.statuscode = Fault_Alignment;
elsif IsAtomicRW(acctype) then

if AArch64.S1HasPermissionsFault(regime, walkstate, walkparams,
ispriv, acctype, FALSE) then

// The permission fault was not caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = FALSE;

elsif AArch64.S1HasPermissionsFault(regime, walkstate, walkparams,
ispriv, acctype, TRUE) then

// The permission fault _was_ caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = TRUE;

elsif AArch64.S1HasPermissionsFault(regime, walkstate, walkparams,
ispriv, acctype, iswrite) then

fault.statuscode = Fault_Permission;

new_desc = descriptor;
if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then

// Set descriptor AF bit
new_desc<10> = '1';

// If HW update of dirty bit is enabled, the walk state permissions
// will already reflect a configuration permitting writes.
// The update of the descriptor occurs only if the descriptor bits in
// memory do not reflect that and the access instigates a write.
if (fault.statuscode == Fault_None &&

walkparams.ha == '1' &&
walkparams.hd == '1' &&
descriptor<51> == '1' && // Descriptor DBM bit
(IsAtomicRW(acctype) || iswrite) &&
!(acctype IN {AccType_AT, AccType_ATPAN, AccType_IC, AccType_DC})) then

// Clear descriptor AP[2] bit permitting stage 1 writes

Shared Pseudocode Functions Page 2976

new_desc<7> = '0';

// Either the access flag was clear or AP<2> is set
if new_desc != descriptor then

if regime == Regime_EL10 && EL2Enabled() then
s1aarch64 = TRUE;
s2fs1walk = TRUE;
aligned = TRUE;
iswrite = TRUE;
(s2fault, descupdateaddress) = AArch64.S2Translate(fault, descaddress,

s1aarch64, s2fs1walk, AccType_ATOMICRW,
aligned, iswrite);

if s2fault.statuscode != Fault_None then
return (s2fault, AddressDescriptor UNKNOWN);

else
descupdateaddress = descaddress;

(fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
walkparams.ee, descupdateaddress);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

// Output Address
oa = StageOA(walkstate.baseaddress, va, walkparams.tgx, walkstate.level);

if (acctype == AccType_IFETCH &&
(walkstate.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(regime))) then

// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();
memattrs.xs = walkstate.memattrs.xs;

elsif (acctype != AccType_IFETCH && !AArch64.S1DCacheEnabled(regime) &&
walkstate.memattrs.memtype == MemType_Normal) then

// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();
memattrs.xs = walkstate.memattrs.xs;

// The effect of SCTLR_ELx.C when '0' is Constrained UNPREDICTABLE
// on the Tagged attribute
if HaveMTE2Ext() && walkstate.memattrs.tagged then

memattrs.tagged = ConstrainUnpredictableBool(Unpredictable_S1CTAGGED);
else

memattrs = walkstate.memattrs;

// Shareability of target memory subject to stage 2 translation
// is maintained as input to stage 2
if regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' then

memattrs.shareability = walkstate.memattrs.shareability;
else

memattrs.shareability = NormaliseShareability(memattrs);

if acctype == AccType_ATOMICLS64 && memattrs.memtype == MemType_Normal then
if memattrs.inner.attrs != MemAttr_NC || memattrs.outer.attrs != MemAttr_NC then

fault.statuscode = Fault_Exclusive;
return (fault, AddressDescriptor UNKNOWN);

ipa = CreateAddressDescriptor(va, oa, memattrs);
return (fault, ipa);

Shared Pseudocode Functions Page 2977

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.S2Translate

Shared Pseudocode Functions Page 2978

// AArch64.S2Translate()
// =====================
// Translate stage 1 IPA to PA and combine memory attributes

(FaultRecord, AddressDescriptor) AArch64.S2Translate(FaultRecord fault,
AddressDescriptor ipa, boolean s1aarch64, boolean s2fs1walk,
AccType acctype, boolean aligned, boolean iswrite)

walkparams = AArch64.GetS2TTWParams(ipa.paddress.paspace, s1aarch64);

// Prepare fault fields in case a fault is detected
fault.statuscode = Fault_None; // Ignore any faults from stage 1
fault.secondstage = TRUE;
fault.s2fs1walk = s2fs1walk;
fault.ipaddress = ipa.paddress;

if walkparams.vm != '1' then
// Stage 2 translation is disabled
return (fault, ipa);

if AArch64.IPAIsOutOfRange(ipa.paddress.address, walkparams) then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

(fault, descaddress, walkstate,
descriptor) = AArch64.S2Walk(fault, ipa, walkparams, acctype, iswrite,

s1aarch64);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

ispriv = AArch64.AccessUsesEL(acctype) != EL0;

if AArch64.S2HasAlignmentFault(acctype, aligned, walkstate.memattrs) then
fault.statuscode = Fault_Alignment;

elsif IsAtomicRW(acctype) then
if AArch64.S2HasPermissionsFault(s2fs1walk, walkstate, walkparams,

ispriv, acctype, FALSE) then
// The permission fault was not caused by lack of write permissions
fault.statuscode = Fault_Permission;
fault.write = FALSE;

elsif AArch64.S2HasPermissionsFault(s2fs1walk, walkstate, walkparams,
ispriv, acctype, TRUE) then

// The permission fault _was_ caused by lack of write permissions.
// However, HW updates, which are atomic writes for stage 1
// descriptors, permissions fault reflect the original access.
fault.statuscode = Fault_Permission;
if !fault.s2fs1walk then

fault.write = TRUE;
elsif AArch64.S2HasPermissionsFault(s2fs1walk, walkstate, walkparams,

ispriv, acctype, iswrite) then
fault.statuscode = Fault_Permission;

new_desc = descriptor;
if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then

// Set descriptor AF bit
new_desc<10> = '1';

// If HW update of dirty bit is enabled, the walk state permissions
// will already reflect a configuration permitting writes.
// The update of the descriptor occurs only if the descriptor bits in
// memory do not reflect that and the access instigates a write.
if (fault.statuscode == Fault_None &&

walkparams.ha == '1' &&
walkparams.hd == '1' &&
descriptor<51> == '1' && // Descriptor DBM bit
(IsAtomicRW(acctype) || iswrite) &&
!(acctype IN {AccType_AT, AccType_ATPAN, AccType_IC, AccType_DC})) then

// Set descriptor S2AP[1] bit permitting stage 2 writes
new_desc<7> = '1';

Shared Pseudocode Functions Page 2979

// Either the access flag was clear or S2AP<1> is clear
if new_desc != descriptor then

(fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
walkparams.ee, descaddress);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

ipa_64 = ZeroExtend(ipa.paddress.address, 64);
// Output Address
oa = StageOA(walkstate.baseaddress, ipa_64, walkparams.tgx, walkstate.level);

if ((s2fs1walk &&
walkstate.memattrs.memtype == MemType_Device && walkparams.ptw == '0') ||

(acctype == AccType_IFETCH &&
(walkstate.memattrs.memtype == MemType_Device || HCR_EL2.ID == '1')) ||

(acctype != AccType_IFETCH &&
walkstate.memattrs.memtype == MemType_Normal && HCR_EL2.CD == '1')) then

// Treat memory attributes as Normal Non-Cacheable
s2_memattrs = NormalNCMemAttr();
s2_memattrs.xs = walkstate.memattrs.xs;

else
s2_memattrs = walkstate.memattrs;

if !s2fs1walk && acctype == AccType_ATOMICLS64 && s2_memattrs.memtype == MemType_Normal then
if s2_memattrs.inner.attrs != MemAttr_NC || s2_memattrs.outer.attrs != MemAttr_NC then

fault.statuscode = Fault_Exclusive;
return (fault, AddressDescriptor UNKNOWN);

if walkparams.fwb == '0' then
memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs);

else
memattrs = s2_memattrs;

pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);
return (fault, pa);

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.TranslateAddress

// AArch64.TranslateAddress()
// ==========================
// Main entry point for translating an address

AddressDescriptor AArch64.TranslateAddress(bits(64) va, AccType acctype,
boolean iswrite, boolean aligned,
integer size)

result = AArch64.FullTranslate(va, acctype, iswrite, aligned);

if !IsFault(result) then
result.fault = AArch64.CheckDebug(va, acctype, iswrite, size);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(va);

return result;

Shared Pseudocode Functions Page 2980

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported

// AArch64.BlockDescSupported()
// ============================
// Determine whether a block descriptor is valid for the given granule size
// and level

boolean AArch64.BlockDescSupported(bit ds, TGx tgx, integer level)
case tgx of

when TGx_4KB return level == 2 || level == 1 || (level == 0 && ds == '1');
when TGx_16KB return level == 2 || (level == 1 && ds == '1');
when TGx_64KB return level == 2 || (level == 1 && AArch64.PAMax() == 52);

return FALSE;

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults

// AArch64.BlocknTFaults()
// =======================
// Identify whether the nT bit in a block descriptor is effectively set
// causing a translation fault

boolean AArch64.BlocknTFaults(bits(64) descriptor)
if !HaveBlockBBM() then

return FALSE;

bbm_level = AArch64.BlockBBMSupportLevel();
nT_faults = boolean IMPLEMENTATION_DEFINED "BBM level 1 or 2 support nT bit causes Translation Fault";

return bbm_level IN {1, 2} && descriptor<16> == '1' && nT_faults;

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit

// AArch64.ContiguousBit()
// =======================
// Get the value of the contiguous bit
// REVISIT AARCH-16801

bit AArch64.ContiguousBit(TGx tgx, integer level, bits(64) descriptor)
if tgx == TGx_64KB && level == 1 && !Have52BitVAExt() then

return '0'; // RES0
if tgx == TGx_16KB && level == 1 then

return '0'; // RES0
if tgx == TGx_4KB && level == 0 then

return '0'; // RES0

return descriptor<52>;

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.ContiguousSizeLog2

// AArch64.ContiguousSizeLog2()
// ============================
// Given the translation granule and level, determine the number of descriptors
// to the logarithm base 2 that describe a contiguous output space

integer AArch64.ContiguousSizeLog2(TGx tgx, integer level)
case tgx of

when TGx_4KB return 4;
when TGx_16KB return if level == 2 then 5 else 7;
when TGx_64KB return 5;

Shared Pseudocode Functions Page 2981

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType

// AArch64.DecodeDescriptorType()
// ==============================
// Determine whether the descriptor is a page, block or table

DescriptorType AArch64.DecodeDescriptorType(bits(64) descriptor, bit ds,
TGx tgx, integer level)

if descriptor<1:0> == '11' && level == FINAL_LEVEL then
return DescriptorType_Page;

elsif descriptor<1:0> == '11' then
return DescriptorType_Table;

elsif descriptor<1:0> == '01' then
if AArch64.BlockDescSupported(ds, tgx, level) then

return DescriptorType_Block;
else

return DescriptorType_Invalid;
else

return DescriptorType_Invalid;

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms

// AArch64.S1ApplyOutputPerms()
// ============================
// Apply output permissions encoded in stage 1 page/block descriptors

Permissions AArch64.S1ApplyOutputPerms(Permissions permissions, bits(64) descriptor,
Regime regime, S1TTWParams walkparams)

if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then
permissions.ap<2:1> = descriptor<7>:'0';
permissions.pxn = descriptor<54>;

return permissions;

if HasUnprivileged(regime) then
permissions.ap<2:1> = descriptor<7:6>;
permissions.uxn = descriptor<54>;
permissions.pxn = descriptor<53>;

else
permissions.ap<2:1> = descriptor<7>:'1';
permissions.xn = descriptor<54>;

// Descriptors marked with DBM set have the effective value of AP[2] cleared.
// This implies no permission faults caused by lack of write permissions are
// reported, and the Dirty bit can be set.
if walkparams.ha == '1' && walkparams.hd == '1' && descriptor<51> == '1' then

permissions.ap<2> = '0';

return permissions;

Shared Pseudocode Functions Page 2982

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms

// AArch64.S1ApplyTablePerms()
// ===========================
// Apply hierarchical permissions encoded in stage 1 table descriptors

Permissions AArch64.S1ApplyTablePerms(Permissions permissions, bits(64) descriptor,
Regime regime, S1TTWParams walkparams)

if walkparams.hpd == '1' then
permissions.ap_table = Zeros();
if HasUnprivileged(regime) then

permissions.uxn_table = Zeros();
permissions.pxn_table = Zeros();

else
permissions.xn_table = Zeros();

return permissions;

if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then
ap_table = descriptor<62>:'0';
pxn_table = descriptor<60>;
permissions.ap_table = permissions.ap_table OR ap_table;
permissions.pxn_table = permissions.pxn_table OR pxn_table;

return permissions;

if HasUnprivileged(regime) then
ap_table = descriptor<62:61>;
uxn_table = descriptor<60>;
pxn_table = descriptor<59>;
permissions.ap_table = permissions.ap_table OR ap_table;
permissions.uxn_table = permissions.uxn_table OR uxn_table;
permissions.pxn_table = permissions.pxn_table OR pxn_table;

else
ap_table = descriptor<62>:'0';
xn_table = descriptor<60>;
permissions.ap_table = permissions.ap_table OR ap_table;
permissions.xn_table = permissions.xn_table OR xn_table;

return permissions;

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms

// AArch64.S2ApplyOutputPerms()
// ============================
// Apply output permissions encoded in stage 2 page/block descriptors

Permissions AArch64.S2ApplyOutputPerms(bits(64) descriptor, S2TTWParams walkparams)
Permissions permissions;

permissions.s2ap = descriptor<7:6>;
permissions.s2xn = descriptor<54>;

if HaveExtendedExecuteNeverExt() then
permissions.s2xnx = descriptor<53>;

else
permissions.s2xnx = '0';

// Descriptors marked with DBM set have the effective value of S2AP[1] set.
// This implies no permission faults caused by lack of write permissions are
// reported, and the Dirty bit can be set.
if walkparams.ha == '1' && walkparams.hd == '1' && descriptor<51> == '1' then

permissions.s2ap<1> = '1';

return permissions;

Shared Pseudocode Functions Page 2983

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState

// AArch64.S1InitialTTWState()
// ===========================
// Set properties of first access to translation tables in stage 1

TTWState AArch64.S1InitialTTWState(S1TTWParams walkparams, bits(64) va,
Regime regime)

TTWState walkstate;
FullAddress tablebase;

startlevel = AArch64.S1StartLevel(walkparams);
ttbr = AArch64.S1TTBR(regime, va);
case AArch64.CurrentSecurityState() of

when SS_Secure tablebase.paspace = PAS_Secure;
when SS_NonSecure tablebase.paspace = PAS_NonSecure;

tablebase.address = AArch64.TTBaseAddress(ttbr, walkparams.txsz,
walkparams.ps, walkparams.ds,
walkparams.tgx, startlevel);

walkstate.baseaddress = tablebase;
walkstate.level = startlevel;
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,

walkparams.orgn);

return walkstate;

Shared Pseudocode Functions Page 2984

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLast

// AArch64.S1NextWalkStateLast()
// =============================
// Decode stage 1 page or block descriptor as output to this stage of translation

TTWState AArch64.S1NextWalkStateLast(TTWState currentstate, Regime regime,
S1TTWParams walkparams, bits(64) descriptor)

TTWState nextstate;
FullAddress baseaddress;

if currentstate.level == FINAL_LEVEL then
baseaddress.address = AArch64.PageBase(descriptor, walkparams.ds,

walkparams.tgx);
else

baseaddress.address = AArch64.BlockBase(descriptor, walkparams.ds,
walkparams.tgx, currentstate.level);

if currentstate.baseaddress.paspace == PAS_Secure then
// Determine PA space of the block from NS bit
baseaddress.paspace = if descriptor<5> == '0' then PAS_Secure else PAS_NonSecure;

else
baseaddress.paspace = PAS_NonSecure;

nextstate.istable = FALSE;
nextstate.level = currentstate.level;
nextstate.baseaddress = baseaddress;

attrindx = descriptor<4:2>;
sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
attr = MAIRAttr(UInt(attrindx), walkparams.mair);
s1aarch64 = TRUE;

nextstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64);
nextstate.permissions = AArch64.S1ApplyOutputPerms(currentstate.permissions,

descriptor, regime, walkparams);
nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, currentstate.level,

descriptor);
nextstate.guardedpage = descriptor<50>;

return nextstate;

Shared Pseudocode Functions Page 2985

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable

// AArch64.S1NextWalkStateTable()
// ==============================
// Decode stage 1 table descriptor to transition to the next level

TTWState AArch64.S1NextWalkStateTable(TTWState currentstate, Regime regime,
S1TTWParams walkparams, bits(64) descriptor)

TTWState nextstate;
FullAddress tablebase;

tablebase.address = AArch64.NextTableBase(descriptor, walkparams.ds,
walkparams.tgx);

if currentstate.baseaddress.paspace == PAS_Secure then
// Determine PA space of the next table from NSTable bit
tablebase.paspace = if descriptor<63> == '0' then PAS_Secure else PAS_NonSecure;

else
// Otherwise bit 63 is RES0 and there is no NSTable bit
tablebase.paspace = currentstate.baseaddress.paspace;

nextstate.istable = TRUE;
nextstate.level = currentstate.level + 1;
nextstate.baseaddress = tablebase;
nextstate.memattrs = currentstate.memattrs;
nextstate.permissions = AArch64.S1ApplyTablePerms(currentstate.permissions,

descriptor, regime,
walkparams);

return nextstate;

Shared Pseudocode Functions Page 2986

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1Walk

Shared Pseudocode Functions Page 2987

// AArch64.S1Walk()
// ================
// Traverse stage 1 translation tables obtaining the final descriptor
// as well as the address leading to that descriptor

(FaultRecord, AddressDescriptor, TTWState, bits(64)) AArch64.S1Walk(
FaultRecord fault, S1TTWParams walkparams, bits(64) va, Regime regime,
AccType acctype, boolean iswrite)

if HasUnprivileged(regime) && AArch64.S1EPD(regime, va) == '1' then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

if PSTATE.EL == EL0 && walkparams.nfd == '1' then
if acctype == AccType_NONFAULT then

fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

if AArch64.S1InvalidTxSZ(walkparams) then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

walkstate = AArch64.S1InitialTTWState(walkparams, va, regime);

// Detect Address Size Fault by TTB
if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then

fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

bits(64) descriptor;
repeat

fault.level = walkstate.level;

FullAddress descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.tgx,
walkparams.txsz, va,
walkstate.baseaddress);

if !AArch64.S1DCacheEnabled(regime) then
walkmemattrs = NormalNCMemAttr();
walkmemattrs.xs = walkstate.memattrs.xs;

else
walkmemattrs = walkstate.memattrs;

// Shareability of target memory subject to stage 2 translation
// is maintained as input to stage 2.
if regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' then

walkmemattrs.shareability = walkstate.memattrs.shareability;
else

walkmemattrs.shareability = NormaliseShareability(walkmemattrs);

walkaddress = CreateAddressDescriptor(va, descaddress, walkmemattrs);

if regime == Regime_EL10 && EL2Enabled() then
s1aarch64 = TRUE;
s2fs1walk = TRUE;
aligned = TRUE;
iswrite = FALSE;
(s2fault, s2walkaddress) = AArch64.S2Translate(fault, walkaddress,

s1aarch64, s2fs1walk, AccType_TTW,
aligned, iswrite);

if s2fault.statuscode != Fault_None then
return (s2fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

Shared Pseudocode Functions Page 2988

bits(64) UNKNOWN);

(fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, fault);
else

(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.ds,
walkparams.tgx, walkstate.level);

case desctype of
when DescriptorType_Table

walkstate = AArch64.S1NextWalkStateTable(walkstate, regime,
walkparams, descriptor);

// Detect Address Size Fault by table descriptor
if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then

fault.statuscode = Fault_AddressSize;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

when DescriptorType_Page, DescriptorType_Block
walkstate = AArch64.S1NextWalkStateLast(walkstate, regime,

walkparams, descriptor);

when DescriptorType_Invalid
fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

otherwise
Unreachable();

until desctype IN {DescriptorType_Page, DescriptorType_Block};

if (walkstate.contiguous == '1' &&
AArch64.ContiguousBitFaults(walkparams.txsz, walkparams.tgx,

walkstate.level)) then
fault.statuscode = Fault_Translation;

elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor) then
fault.statuscode = Fault_Translation;

// Detect Address Size Fault by final output
elsif AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then

fault.statuscode = Fault_AddressSize;
// Check descriptor AF bit
elsif descriptor<10> == '0'

&& walkparams.ha == '0'
&& (!(acctype IN {AccType_IC, AccType_DC})
|| boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations") then

fault.statuscode = Fault_AccessFlag;
if fault.statuscode != Fault_None then

return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
bits(64) UNKNOWN);

else
return (fault, walkaddress, walkstate, descriptor);

Shared Pseudocode Functions Page 2989

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState

// AArch64.S2InitialTTWState()
// ===========================
// Set properties of first access to translation tables in stage 2

TTWState AArch64.S2InitialTTWState(S2TTWParams walkparams)
TTWState walkstate;
FullAddress tablebase;

ttbr = VTTBR_EL2;
startlevel = AArch64.S2StartLevel(walkparams);
tablebase.paspace = PAS_NonSecure;
tablebase.address = AArch64.TTBaseAddress(ttbr, walkparams.txsz,

walkparams.ps, walkparams.ds,
walkparams.tgx, startlevel);

walkstate.baseaddress = tablebase;
walkstate.level = startlevel;
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,

walkparams.orgn);

return walkstate;

Shared Pseudocode Functions Page 2990

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLast

// AArch64.S2NextWalkStateLast()
// =============================
// Decode stage 2 page or block descriptor as output to this stage of translation

TTWState AArch64.S2NextWalkStateLast(TTWState currentstate, S2TTWParams walkparams,
AddressDescriptor ipa, bits(64) descriptor)

TTWState nextstate;
FullAddress baseaddress;

if AArch64.CurrentSecurityState() == SS_Secure then
baseaddress.paspace = AArch64.SS2OutputPASpace(walkparams,

ipa.paddress.paspace);
else

baseaddress.paspace = PAS_NonSecure;

if currentstate.level == FINAL_LEVEL then
baseaddress.address = AArch64.PageBase(descriptor, walkparams.ds,

walkparams.tgx);
else

baseaddress.address = AArch64.BlockBase(descriptor, walkparams.ds,
walkparams.tgx, currentstate.level);

nextstate.istable = FALSE;
nextstate.level = currentstate.level;
nextstate.baseaddress = baseaddress;
nextstate.permissions = AArch64.S2ApplyOutputPerms(descriptor, walkparams);

s2_attr = descriptor<5:2>;
s2_sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
s2_fnxs = descriptor<11>;
if walkparams.fwb == '1' then

nextstate.memattrs = AArch64.S2ApplyFWBMemAttrs(ipa.memattrs, s2_attr, s2_sh);
if s2_attr<1:0> == '10' then // Force writeback

nextstate.memattrs.xs = '0';
else

nextstate.memattrs.xs = if s2_fnxs == '1' then '0' else ipa.memattrs.xs;
else

nextstate.memattrs = S2DecodeMemAttrs(s2_attr, s2_sh);
nextstate.memattrs.xs = if s2_fnxs == '1' then '0' else ipa.memattrs.xs;

nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, currentstate.level,
descriptor);

return nextstate;

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable

// AArch64.S2NextWalkStateTable()
// ==============================
// Decode stage 2 table descriptor to transition to the next level

TTWState AArch64.S2NextWalkStateTable(TTWState currentstate,
S2TTWParams walkparams,
bits(64) descriptor)

TTWState nextstate;
FullAddress tablebase;

tablebase.address = AArch64.NextTableBase(descriptor, walkparams.ds,
walkparams.tgx);

tablebase.paspace = currentstate.baseaddress.paspace;

nextstate.istable = TRUE;
nextstate.level = currentstate.level + 1;
nextstate.baseaddress = tablebase;
nextstate.memattrs = currentstate.memattrs;

return nextstate;

Shared Pseudocode Functions Page 2991

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2Walk

Shared Pseudocode Functions Page 2992

// AArch64.S2Walk()
// ================
// Traverse stage 2 translation tables obtaining the final descriptor
// as well as the address leading to that descriptor

(FaultRecord, AddressDescriptor, TTWState, bits(64)) AArch64.S2Walk(
FaultRecord fault, AddressDescriptor ipa, S2TTWParams walkparams,
AccType acctype, boolean iswrite, boolean s1aarch64)

if (AArch64.S2InvalidTxSZ(walkparams, s1aarch64) ||
AArch64.S2InvalidSL(walkparams) ||
AArch64.S2InconsistentSL(walkparams)) then

fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

if AArch64.CurrentSecurityState() == SS_Secure then
walkstate = AArch64.SS2InitialTTWState(walkparams, ipa.paddress.paspace);

else
walkstate = AArch64.S2InitialTTWState(walkparams);

// Detect Address Size Fault by TTB
if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then

fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

bits(64) descriptor;
repeat

fault.level = walkstate.level;

FullAddress descaddress;
if walkstate.level == AArch64.S2StartLevel(walkparams) then

// Initial lookup might index into concatenated tables
descaddress = AArch64.S2SLTTEntryAddress(walkparams, ipa.paddress.address,

walkstate.baseaddress);
else

ipa_64 = ZeroExtend(ipa.paddress.address, 64);
descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.tgx,

walkparams.txsz, ipa_64,
walkstate.baseaddress);

if HCR_EL2.CD == '1' then
walkmemattrs = NormalNCMemAttr();
walkmemattrs.xs = walkstate.memattrs.xs;

else
walkmemattrs = walkstate.memattrs;

// VA parameter is for the Abort() call on the other side of _Mem
walkaddress = CreateAddressDescriptor(ipa.vaddress, descaddress, walkmemattrs);

walkaddress.memattrs.shareability = NormaliseShareability(walkaddress.memattrs);
(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, fault);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.ds,
walkparams.tgx, walkstate.level);

case desctype of
when DescriptorType_Table

walkstate = AArch64.S2NextWalkStateTable(walkstate, walkparams,
descriptor);

// Detect Address Size Fault by table descriptor
if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then

fault.statuscode = Fault_AddressSize;

Shared Pseudocode Functions Page 2993

return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,
bits(64) UNKNOWN);

when DescriptorType_Page, DescriptorType_Block
walkstate = AArch64.S2NextWalkStateLast(walkstate, walkparams,

ipa, descriptor);

when DescriptorType_Invalid
fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(64) UNKNOWN);

otherwise
Unreachable();

until desctype IN {DescriptorType_Page, DescriptorType_Block};

if (walkstate.contiguous == '1' &&
AArch64.ContiguousBitFaults(walkparams.txsz, walkparams.tgx,

walkstate.level)) then
fault.statuscode = Fault_Translation;

elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor) then
fault.statuscode = Fault_Translation;

// Detect Address Size Fault by final output
elsif AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx) then

fault.statuscode = Fault_AddressSize;
// Check descriptor AF bit
elsif descriptor<10> == '0'

&& walkparams.ha == '0'
&& (!(acctype IN {AccType_IC, AccType_DC})
|| boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations") then

fault.statuscode = Fault_AccessFlag;
if fault.statuscode != Fault_None then

return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);
else

return (fault, walkaddress, walkstate, descriptor);

Shared Pseudocode Functions Page 2994

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState

// AArch64.SS2InitialTTWState()
// ============================
// Set properties of first access to translation tables in Secure stage 2

TTWState AArch64.SS2InitialTTWState(S2TTWParams walkparams, PASpace ipaspace)
TTWState walkstate;
FullAddress tablebase;

if ipaspace == PAS_Secure then
ttbr = VSTTBR_EL2;

else
ttbr = VTTBR_EL2;

if ipaspace == PAS_Secure then
if walkparams.sw == '0' then

tablebase.paspace = PAS_Secure;
else

tablebase.paspace = PAS_NonSecure;
else

if walkparams.nsw == '0' then
tablebase.paspace = PAS_Secure;

else
tablebase.paspace = PAS_NonSecure;

startlevel = AArch64.S2StartLevel(walkparams);
tablebase.address = AArch64.TTBaseAddress(ttbr, walkparams.txsz,

walkparams.ps, walkparams.ds,
walkparams.tgx, startlevel);

walkstate.baseaddress = tablebase;
walkstate.level = startlevel;
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,

walkparams.orgn);

return walkstate;

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace

// AArch64.SS2OutputPASpace()
// ==========================
// Assign PA Space to output of Secure stage 2 translation

PASpace AArch64.SS2OutputPASpace(S2TTWParams walkparams, PASpace ipaspace)
if ipaspace == PAS_Secure then

if walkparams.<sw,sa> == '00' then
return PAS_Secure;

else
return PAS_NonSecure;

else
if walkparams.<sw,sa,nsw,nsa> == '0000' then

return PAS_Secure;
else

return PAS_NonSecure;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel

// AArch64.BBMSupportLevel()
// =========================
// Returns the level of FEAT_BBM supported

integer AArch64.BlockBBMSupportLevel()
if !HaveBlockBBM() then

return integer UNKNOWN;
else

return integer IMPLEMENTATION_DEFINED "Block BBM support level";

Shared Pseudocode Functions Page 2995

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.CurrentSecurityState

// AArch64.CurrentSecurityState()
// ==============================
// Return secutity state of current EL

SecurityState AArch64.CurrentSecurityState()
return SecurityStateAtEL(PSTATE.EL);

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.DecodeTG0

// AArch64.DecodeTG0()
// ===================
// Decode granule size configuration bits TG0

TGx AArch64.DecodeTG0(bits(2) tg0)
if tg0 == '11' then

tg0 = bits(2) IMPLEMENTATION_DEFINED "Reserved TG0 encoding granule size";

case tg0 of
when '00' return TGx_4KB;
when '01' return TGx_64KB;
when '10' return TGx_16KB;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.DecodeTG1

// AArch64.DecodeTG1()
// ===================
// Decode granule size configuration bits TG1

TGx AArch64.DecodeTG1(bits(2) tg1)
if tg1 == '00' then

tg1 = bits(2) IMPLEMENTATION_DEFINED "Reserved TG1 encoding granule size";

case tg1 of
when '10' return TGx_4KB;
when '11' return TGx_64KB;
when '01' return TGx_16KB;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams

// AArch64.GetS1TTWParams()
// ========================
// Returns stage 1 translation table walk parameters from respective controlling
// system registers.

S1TTWParams AArch64.GetS1TTWParams(Regime regime, bits(64) va)
S1TTWParams walkparams;

varange = AArch64.GetVARange(va);

case regime of
when Regime_EL3 walkparams = AArch64.S1TTWParamsEL3();
when Regime_EL2 walkparams = AArch64.S1TTWParamsEL2();
when Regime_EL20 walkparams = AArch64.S1TTWParamsEL20(varange);
when Regime_EL10 walkparams = AArch64.S1TTWParamsEL10(varange);

maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
mintxsz = AArch64.S1MinTxSZ(walkparams.ds, walkparams.tgx);
if UInt(walkparams.txsz) > maxtxsz then

if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum") then
walkparams.txsz = maxtxsz<5:0>;

elsif !Have52BitVAExt() && UInt(walkparams.txsz) < mintxsz then
if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum") then

walkparams.txsz = mintxsz<5:0>;

return walkparams;

Shared Pseudocode Functions Page 2996

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams

// AArch64.GetS2TTWParams()
// ========================
// Gather walk parameters for stage 2 translation

S2TTWParams AArch64.GetS2TTWParams(PASpace ipaspace, boolean s1aarch64)
S2TTWParams walkparams;

ss = AArch64.CurrentSecurityState();
if ss == SS_NonSecure then

walkparams = AArch64.NSS2TTWParams(s1aarch64);
elsif HaveSecureEL2Ext() && ss == SS_Secure then

walkparams = AArch64.SS2TTWParams(ipaspace, s1aarch64);
else

Unreachable();

maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
mintxsz = AArch64.S2MinTxSZ(walkparams.ds, walkparams.tgx, s1aarch64);
if UInt(walkparams.txsz) > maxtxsz then

if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum") then
walkparams.txsz = maxtxsz<5:0>;

elsif !Have52BitPAExt() && UInt(walkparams.txsz) < mintxsz then
if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum") then

walkparams.txsz = mintxsz<5:0>;

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.GetVARange

// AArch64.GetVARange()
// ====================
// Determines if the VA that is to be translated lies in LOWER or UPPER address range.

VARange AArch64.GetVARange(bits(64) va)
if va<55> == '0' then

return VARange_LOWER;
else

return VARange_UPPER;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ

// AArch64.MaxTxSZ()
// =================
// Retrieve the maximum value of TxSZ indicating minimum input address size for both
// stages of translation

integer AArch64.MaxTxSZ(TGx tgx)
if HaveSmallTranslationTableExt() && !UsingAArch32() then

case tgx of
when TGx_4KB return 48;
when TGx_16KB return 48;
when TGx_64KB return 47;

return 39;

Shared Pseudocode Functions Page 2997

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams

// AArch64.NSS2TTWParams()
// =======================
// Gather walk parameters specific for Non-secure stage 2 translation

S2TTWParams AArch64.NSS2TTWParams(boolean s1aarch64)
S2TTWParams walkparams;

walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
walkparams.tgx = AArch64.DecodeTG0(VTCR_EL2.TG0);
walkparams.txsz = VTCR_EL2.T0SZ;
walkparams.sl0 = VTCR_EL2.SL0;
walkparams.ps = VTCR_EL2.PS;
walkparams.irgn = VTCR_EL2.IRGN0;
walkparams.orgn = VTCR_EL2.ORGN0;
walkparams.sh = VTCR_EL2.SH0;
walkparams.ee = SCTLR_EL2.EE;

walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
walkparams.fwb = if HaveStage2MemAttrControl() then HCR_EL2.FWB else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then VTCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then VTCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = VTCR_EL2.DS;
else

walkparams.ds = '0';
if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then

walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
else

walkparams.sl2 = '0';

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.PAMax

// AArch64.PAMax()
// ===============
// Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
// physical address for this processor

integer AArch64.PAMax()
return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled

// AArch64.S1DCacheEnabled()
// =========================
// Determine cacheability of stage 1 data accesses

boolean AArch64.S1DCacheEnabled(Regime regime)
case regime of

when Regime_EL3 return SCTLR_EL3.C == '1';
when Regime_EL2 return SCTLR_EL2.C == '1';
when Regime_EL20 return SCTLR_EL2.C == '1';
when Regime_EL10 return SCTLR_EL1.C == '1';

Shared Pseudocode Functions Page 2998

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1EPD

// AArch64.S1EPD()
// ===============
// Determine whether stage 1 translation table walk is allowed for the VA range

bit AArch64.S1EPD(Regime regime, bits(64) va)
assert HasUnprivileged(regime);
varange = AArch64.GetVARange(va);

case regime of
when Regime_EL20 return if varange == VARange_LOWER then TCR_EL2.EPD0 else TCR_EL2.EPD1;
when Regime_EL10 return if varange == VARange_LOWER then TCR_EL1.EPD0 else TCR_EL1.EPD1;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1Enabled

// AArch64.S1Enabled()
// ===================
// Determine if stage 1 for the acting translation regime is enabled

boolean AArch64.S1Enabled(Regime regime)
case regime of

when Regime_EL3 return SCTLR_EL3.M == '1';
when Regime_EL2 return SCTLR_EL2.M == '1';
when Regime_EL20 return SCTLR_EL2.M == '1';
when Regime_EL10 return (!EL2Enabled() || HCR_EL2.<DC,TGE> == '00') && SCTLR_EL1.M == '1';

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled

// AArch64.S1ICacheEnabled()
// =========================
// Determine cacheability of stage 1 instruction fetches

boolean AArch64.S1ICacheEnabled(Regime regime)
case regime of

when Regime_EL3 return SCTLR_EL3.I == '1';
when Regime_EL2 return SCTLR_EL2.I == '1';
when Regime_EL20 return SCTLR_EL2.I == '1';
when Regime_EL10 return SCTLR_EL1.I == '1';

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ

// AArch64.S1MinTxSZ()
// ===================
// Retrieve the minimum value of TxSZ indicating maximum input address size for stage 1

integer AArch64.S1MinTxSZ(bit ds, TGx tgx)
if (Have52BitVAExt() && tgx == TGx_64KB) || ds == '1' then

return 12;

return 16;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTBR

// AArch64.S1TTBR()
// ================
// Identify stage 1 table base register for the acting translation regime

bits(64) AArch64.S1TTBR(Regime regime, bits(64) va)
varange = AArch64.GetVARange(va);

case regime of
when Regime_EL3 return TTBR0_EL3;
when Regime_EL2 return TTBR0_EL2;
when Regime_EL20 return if varange == VARange_LOWER then TTBR0_EL2 else TTBR1_EL2;
when Regime_EL10 return if varange == VARange_LOWER then TTBR0_EL1 else TTBR1_EL1;

Shared Pseudocode Functions Page 2999

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10

// AArch64.S1TTWParamsEL10()
// =========================
// Gather stage 1 translation table walk parameters for EL1&0 regime
// (with EL2 enabled or disabled)

S1TTWParams AArch64.S1TTWParamsEL10(VARange varange)
S1TTWParams walkparams;

if varange == VARange_LOWER then
walkparams.tgx = AArch64.DecodeTG0(TCR_EL1.TG0);
walkparams.txsz = TCR_EL1.T0SZ;
walkparams.irgn = TCR_EL1.IRGN0;
walkparams.orgn = TCR_EL1.ORGN0;
walkparams.sh = TCR_EL1.SH0;
walkparams.tbi = TCR_EL1.TBI0;

walkparams.nfd = if HaveSVE() then TCR_EL1.NFD0 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL1.TBID0 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD0 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD0 else '0';

else
walkparams.tgx = AArch64.DecodeTG1(TCR_EL1.TG1);
walkparams.txsz = TCR_EL1.T1SZ;
walkparams.irgn = TCR_EL1.IRGN1;
walkparams.orgn = TCR_EL1.ORGN1;
walkparams.sh = TCR_EL1.SH1;
walkparams.tbi = TCR_EL1.TBI1;

walkparams.nfd = if HaveSVE() then TCR_EL1.NFD1 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL1.TBID1 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD1 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD1 else '0';

walkparams.mair = MAIR_EL1;
walkparams.wxn = SCTLR_EL1.WXN;
walkparams.ps = TCR_EL1.IPS;
walkparams.ee = SCTLR_EL1.EE;
walkparams.sif = SCR_EL3.SIF;

if EL2Enabled() then
walkparams.dc = HCR_EL2.DC;
walkparams.dct = if HaveMTE2Ext() then HCR_EL2.DCT else '0';

if HaveTrapLoadStoreMultipleDeviceExt() then
walkparams.ntlsmd = SCTLR_EL1.nTLSMD;

else
walkparams.ntlsmd = '1';

if EL2Enabled() then
if HCR_EL2.<NV,NV1> == '01' then

case ConstrainUnpredictable(Unpredictable_NVNV1) of
when Constraint_NVNV1_00 walkparams.nv1 = '0';
when Constraint_NVNV1_01 walkparams.nv1 = '1';
when Constraint_NVNV1_11 walkparams.nv1 = '1';

else
walkparams.nv1 = HCR_EL2.NV1;

else
walkparams.nv1 = '0';

walkparams.epan = if HavePAN3Ext() then SCTLR_EL1.EPAN else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL1.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL1.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL1.DS;
else

walkparams.ds = '0';

return walkparams;

Shared Pseudocode Functions Page 3000

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2

// AArch64.S1TTWParamsEL2()
// ========================
// Gather stage 1 translation table walk parameters for EL2 regime

S1TTWParams AArch64.S1TTWParamsEL2()
S1TTWParams walkparams;

walkparams.tgx = AArch64.DecodeTG0(TCR_EL2.TG0);
walkparams.txsz = TCR_EL2.T0SZ;
walkparams.ps = TCR_EL2.PS;
walkparams.irgn = TCR_EL2.IRGN0;
walkparams.orgn = TCR_EL2.ORGN0;
walkparams.sh = TCR_EL2.SH0;
walkparams.tbi = TCR_EL2.TBI;
walkparams.mair = MAIR_EL2;
walkparams.wxn = SCTLR_EL2.WXN;
walkparams.ee = SCTLR_EL2.EE;
walkparams.sif = SCR_EL3.SIF;

walkparams.tbid = if HavePACExt() then TCR_EL2.TBID else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL2.DS;
else

walkparams.ds = '0';

return walkparams;

Shared Pseudocode Functions Page 3001

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20

// AArch64.S1TTWParamsEL20()
// =========================
// Gather stage 1 translation table walk parameters for EL2&0 regime

S1TTWParams AArch64.S1TTWParamsEL20(VARange varange)
S1TTWParams walkparams;

if varange == VARange_LOWER then
walkparams.tgx = AArch64.DecodeTG0(TCR_EL2.TG0);
walkparams.txsz = TCR_EL2.T0SZ;
walkparams.irgn = TCR_EL2.IRGN0;
walkparams.orgn = TCR_EL2.ORGN0;
walkparams.sh = TCR_EL2.SH0;
walkparams.tbi = TCR_EL2.TBI0;

walkparams.nfd = if HaveSVE() then TCR_EL2.NFD0 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL2.TBID0 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL2.E0PD0 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD0 else '0';

else
walkparams.tgx = AArch64.DecodeTG1(TCR_EL2.TG1);
walkparams.txsz = TCR_EL2.T1SZ;
walkparams.irgn = TCR_EL2.IRGN1;
walkparams.orgn = TCR_EL2.ORGN1;
walkparams.sh = TCR_EL2.SH1;
walkparams.tbi = TCR_EL2.TBI1;

walkparams.nfd = if HaveSVE() then TCR_EL2.NFD1 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL2.TBID1 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL2.E0PD1 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD1 else '0';

walkparams.mair = MAIR_EL2;
walkparams.wxn = SCTLR_EL2.WXN;
walkparams.ps = TCR_EL2.IPS;
walkparams.ee = SCTLR_EL2.EE;
walkparams.sif = SCR_EL3.SIF;

if HaveTrapLoadStoreMultipleDeviceExt() then
walkparams.ntlsmd = SCTLR_EL2.nTLSMD;

else
walkparams.ntlsmd = '1';

walkparams.epan = if HavePAN3Ext() then SCTLR_EL2.EPAN else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL2.DS;
else

walkparams.ds = '0';

return walkparams;

Shared Pseudocode Functions Page 3002

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3

// AArch64.S1TTWParamsEL3()
// ========================
// Gather stage 1 translation table walk parameters for EL3 regime

S1TTWParams AArch64.S1TTWParamsEL3()
S1TTWParams walkparams;

walkparams.tgx = AArch64.DecodeTG0(TCR_EL3.TG0);
walkparams.txsz = TCR_EL3.T0SZ;
walkparams.ps = TCR_EL3.PS;
walkparams.irgn = TCR_EL3.IRGN0;
walkparams.orgn = TCR_EL3.ORGN0;
walkparams.sh = TCR_EL3.SH0;
walkparams.tbi = TCR_EL3.TBI;
walkparams.mair = MAIR_EL3;
walkparams.wxn = SCTLR_EL3.WXN;
walkparams.ee = SCTLR_EL3.EE;
walkparams.sif = SCR_EL3.SIF;

walkparams.tbid = if HavePACExt() then TCR_EL3.TBID else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL3.HPD else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL3.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL3.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL3.DS;
else

walkparams.ds = '0';

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ

// AArch64.S2MinTxSZ()
// ===================
// Retrieve the minimum value of TxSZ indicating maximum input address size for stage 2

integer AArch64.S2MinTxSZ(bit ds, TGx tgx, boolean s1aarch64)
ips = AArch64.PAMax();

if Have52BitPAExt() && tgx != TGx_64KB && ds == '0' then
ips = Min(48, AArch64.PAMax());

min_txsz = 64 - ips;
if !s1aarch64 then

// EL1 is AArch32
min_txsz = Min(min_txsz, 24);

return min_txsz;

Shared Pseudocode Functions Page 3003

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams

// AArch64.SS2TTWParams()
// ======================
// Gather walk parameters specific for secure stage 2 translation

S2TTWParams AArch64.SS2TTWParams(PASpace ipaspace, boolean s1aarch64)
S2TTWParams walkparams;
assert AArch64.CurrentSecurityState() == SS_Secure;

if ipaspace == PAS_Secure then
walkparams.tgx = AArch64.DecodeTG0(VSTCR_EL2.TG0);
walkparams.txsz = VSTCR_EL2.T0SZ;
walkparams.sl0 = VSTCR_EL2.SL0;
if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then

walkparams.sl2 = VSTCR_EL2.SL2 AND VTCR_EL2.DS;
else

walkparams.sl2 = '0';
elsif ipaspace == PAS_NonSecure then

walkparams.tgx = AArch64.DecodeTG0(VTCR_EL2.TG0);
walkparams.txsz = VTCR_EL2.T0SZ;
walkparams.sl0 = VTCR_EL2.SL0;
if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then

walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
else

walkparams.sl2 = '0';
else

Unreachable();

walkparams.sw = VSTCR_EL2.SW;
walkparams.nsw = VTCR_EL2.NSW;
walkparams.sa = VSTCR_EL2.SA;
walkparams.nsa = VTCR_EL2.NSA;
walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
walkparams.ps = VTCR_EL2.PS;
walkparams.irgn = VTCR_EL2.IRGN0;
walkparams.orgn = VTCR_EL2.ORGN0;
walkparams.sh = VTCR_EL2.SH0;
walkparams.ee = SCTLR_EL2.EE;

walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
walkparams.fwb = if HaveStage2MemAttrControl() then HCR_EL2.FWB else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then VTCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then VTCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = VTCR_EL2.DS;
else

walkparams.ds = '0';

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.VAMax

// AArch64.VAMax()
// ===============
// Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
// the virtual address for this processor

integer AArch64.VAMax()
return integer IMPLEMENTATION_DEFINED "Maximum Virtual Address Size";

Shared Pseudocode Functions Page 3004

Library pseudocode for shared/debug/ClearStickyErrors/ClearStickyErrors

// ClearStickyErrors()
// ===================

ClearStickyErrors()
EDSCR.TXU = '0'; // Clear TX underrun flag
EDSCR.RXO = '0'; // Clear RX overrun flag

if Halted() then // in Debug state
EDSCR.ITO = '0'; // Clear ITR overrun flag

// If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
// The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
// in the pseudocode.
if Halted() && EDSCR.ITE == '0' && ConstrainUnpredictableBool(Unpredictable_CLEARERRITEZERO) then

return;
EDSCR.ERR = '0'; // Clear cumulative error flag

return;

Library pseudocode for shared/debug/DebugTarget/DebugTarget

// DebugTarget()
// =============
// Returns the debug exception target Exception level

bits(2) DebugTarget()
secure = IsSecure();
return DebugTargetFrom(secure);

Library pseudocode for shared/debug/DebugTarget/DebugTargetFrom

// DebugTargetFrom()
// =================

bits(2) DebugTargetFrom(boolean secure)
if HaveEL(EL2) && (!secure || (HaveSecureEL2Ext() &&

(!HaveEL(EL3) ||SCR_EL3.EEL2 == '1'))) then
if ELUsingAArch32(EL2) then

route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');
else

route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
else

route_to_el2 = FALSE;

if route_to_el2 then
target = EL2;

elsif HaveEL(EL3) && !HaveAArch64() && secure then
target = EL3;

else
target = EL1;

return target;

Shared Pseudocode Functions Page 3005

Library pseudocode for shared/debug/DoubleLockStatus/DoubleLockStatus

// DoubleLockStatus()
// ==================
// Returns the state of the OS Double Lock.
// FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
// TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

boolean DoubleLockStatus()
if !HaveDoubleLock() then

return FALSE;
elsif ELUsingAArch32(EL1) then

return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
else

return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

Library pseudocode for shared/debug/OSLockStatus/OSLockStatus

// OSLockStatus()
// ==============
// Returns the state of the OS Lock.

boolean OSLockStatus()
return (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK) == '1';

Library pseudocode for shared/debug/SoftwareLockStatus/Component

enumeration Component {
Component_PMU,
Component_Debug,
Component_CTI

};

Library pseudocode for shared/debug/SoftwareLockStatus/GetAccessComponent

// Returns the accessed component.
Component GetAccessComponent();

Library pseudocode for shared/debug/SoftwareLockStatus/SoftwareLockStatus

// SoftwareLockStatus()
// ====================
// Returns the state of the Software Lock.

boolean SoftwareLockStatus()
Component component = GetAccessComponent();
if !HaveSoftwareLock(component) then

return FALSE;
case component of

when Component_Debug
return EDLSR.SLK == '1';

when Component_PMU
return PMLSR.SLK == '1';

when Component_CTI
return CTILSR.SLK == '1';

otherwise
Unreachable();

Shared Pseudocode Functions Page 3006

Library pseudocode for shared/debug/authentication/AllowExternalDebugAccess

// AllowExternalDebugAccess()
// ==========================
// Returns TRUE if an external debug interface access to the External debug registers
// is allowed, FALSE otherwise.

boolean AllowExternalDebugAccess()
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() then

return AllowExternalDebugAccess(IsAccessSecure());
else

return AllowExternalDebugAccess(ExternalSecureInvasiveDebugEnabled());

// AllowExternalDebugAccess()
// ==========================
// Returns TRUE if an external debug interface access to the External debug registers
// is allowed for the given Security state, FALSE otherwise.

boolean AllowExternalDebugAccess(boolean allow_secure)
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() || ExternalInvasiveDebugEnabled() then

if allow_secure then
return TRUE;

elsif HaveEL(EL3) then
if ELUsingAArch32(EL3) then

return SDCR.EDAD == '0';
else

return MDCR_EL3.EDAD == '0';
else

return !IsSecure();
else

return FALSE;

Library pseudocode for shared/debug/authentication/AllowExternalPMUAccess

// AllowExternalPMUAccess()
// ========================
// Returns TRUE if an external debug interface access to the PMU registers is allowed, FALSE otherwise.

boolean AllowExternalPMUAccess()
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() then

return AllowExternalPMUAccess(IsAccessSecure());
else

return AllowExternalPMUAccess(ExternalSecureNoninvasiveDebugEnabled());

// AllowExternalPMUAccess()
// ========================
// Returns TRUE if an external debug interface access to the PMU registers is allowed for the given
// Security state, FALSE otherwise.

boolean AllowExternalPMUAccess(boolean allow_secure)
// The access may also be subject to OS Lock, power-down, etc.
if HaveSecureExtDebugView() || ExternalNoninvasiveDebugEnabled() then

if allow_secure then
return TRUE;

elsif HaveEL(EL3) then
if ELUsingAArch32(EL3) then

return SDCR.EPMAD == '0';
else

return MDCR_EL3.EPMAD == '0';
else

return !IsSecure();
else

return FALSE;

Shared Pseudocode Functions Page 3007

Library pseudocode for shared/debug/authentication/Debug_authentication

signal DBGEN;
signal NIDEN;
signal SPIDEN;
signal SPNIDEN;

Library pseudocode for shared/debug/authentication/ExternalInvasiveDebugEnabled

// ExternalInvasiveDebugEnabled()
// ==============================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the DBGEN signal.

boolean ExternalInvasiveDebugEnabled()
return DBGEN == HIGH;

Library pseudocode for shared/debug/authentication/ExternalNoninvasiveDebugAllowed

// ExternalNoninvasiveDebugAllowed()
// =================================
// Returns TRUE if Trace and PC Sample-based Profiling are allowed

boolean ExternalNoninvasiveDebugAllowed()
return (ExternalNoninvasiveDebugEnabled() &&

(!IsSecure() || ExternalSecureNoninvasiveDebugEnabled() ||
(ELUsingAArch32(EL1) && PSTATE.EL == EL0 && SDER.SUNIDEN == '1')));

Library pseudocode for shared/debug/authentication/ExternalNoninvasiveDebugEnabled

// ExternalNoninvasiveDebugEnabled()
// =================================
// This function returns TRUE if the FEAT_Debugv8p4 is implemented, otherwise this
// function is IMPLEMENTATION DEFINED.
// In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
// OR NIDEN) signal.

boolean ExternalNoninvasiveDebugEnabled()
return !HaveNoninvasiveDebugAuth() || ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

Library pseudocode for shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

// ExternalSecureInvasiveDebugEnabled()
// ====================================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
// CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.

boolean ExternalSecureInvasiveDebugEnabled()
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

Shared Pseudocode Functions Page 3008

Library pseudocode for shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

// ExternalSecureNoninvasiveDebugEnabled()
// =======================================
// This function returns the value of ExternalSecureInvasiveDebugEnabled() when FEAT_Debugv8p4
// is implemented. Otherwise, the definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
// (SPIDEN OR SPNIDEN) signal.

boolean ExternalSecureNoninvasiveDebugEnabled()
if !HaveEL(EL3) && !IsSecure() then return FALSE;
if HaveNoninvasiveDebugAuth() then

return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);
else

return ExternalSecureInvasiveDebugEnabled();

Library pseudocode for shared/debug/authentication/IsAccessSecure

// Returns TRUE when an access is Secure
boolean IsAccessSecure();

Library pseudocode for shared/debug/authentication/IsCorePowered

// Returns TRUE if the Core power domain is powered on, FALSE otherwise.
boolean IsCorePowered();

Shared Pseudocode Functions Page 3009

Library pseudocode for shared/debug/breakpoint/CheckValidStateMatch

// CheckValidStateMatch()
// ======================
// Checks for an invalid state match that will generate Constrained Unpredictable behaviour, otherwise
// returns Constraint_NONE.

(Constraint, bits(2), bit, bits(2)) CheckValidStateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean isbreakpnt)
boolean reserved = FALSE;

// Match 'Usr/Sys/Svc' only valid for AArch32 breakpoints
if (!isbreakpnt || !HaveAArch32EL(EL1)) && HMC:PxC == '000' && SSC != '11' then

reserved = TRUE;

// Both EL3 and EL2 are not implemented
if !HaveEL(EL3) && !HaveEL(EL2) && (HMC != '0' || SSC != '00') then

reserved = TRUE;

// EL3 is not implemented
if !HaveEL(EL3) && SSC IN {'01','10'} && HMC:SSC:PxC != '10100' then

reserved = TRUE;

// EL3 using AArch64 only
if (!HaveEL(EL3) || !HaveAArch64()) && HMC:SSC:PxC == '11000' then

reserved = TRUE;

// EL2 is not implemented
if !HaveEL(EL2) && HMC:SSC:PxC == '11100' then

reserved = TRUE;

// Secure EL2 is not implemented
if !HaveSecureEL2Ext() && (HMC:SSC:PxC) IN {'01100','10100','x11x1'} then

reserved = TRUE;

// Values that are not allocated in any architecture version
if (HMC:SSC:PxC) IN {'01110','100x0','10110','11x10'} then

reserved = TRUE;

if reserved then
// If parameters are set to a reserved type, behaves as either disabled or a defined type
(c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits(Unpredictable_RESBPWPCTRL);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then

return (c, bits(2) UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

return (Constraint_NONE, SSC, HMC, PxC);

Library pseudocode for shared/debug/breakpoint/NumBreakpointsImplemented

// NumBreakpointsImplemented()
// ===========================
// Returns the number of breakpoints implemented. This is indicated to software by
// DBGDIDR.BRPs in AArch32 state, and ID_AA64DFR0_EL1.BRPs in AArch64 state.

integer NumBreakpointsImplemented()
return integer IMPLEMENTATION_DEFINED "Number of breakpoints";

Library pseudocode for shared/debug/breakpoint/NumContextAwareBreakpointsImplemented

// NumContextAwareBreakpointsImplemented()
// =======================================
// Returns the number of context-aware breakpoints implemented. This is indicated to software by
// DBGDIDR.CTX_CMPs in AArch32 state, and ID_AA64DFR0_EL1.CTX_CMPs in AArch64 state.

integer NumContextAwareBreakpointsImplemented()
return integer IMPLEMENTATION_DEFINED "Number of context-aware breakpoints";

Shared Pseudocode Functions Page 3010

Library pseudocode for shared/debug/breakpoint/NumWatchpointsImplemented

// NumWatchpointsImplemented()
// ===========================
// Returns the number of watchpoints implemented. This is indicated to software by
// DBGDIDR.WRPs in AArch32 state, and ID_AA64DFR0_EL1.WRPs in AArch64 state.

integer NumWatchpointsImplemented()
return integer IMPLEMENTATION_DEFINED "Number of watchpoints";

Library pseudocode for shared/debug/cti/CTI_SetEventLevel

// Set a Cross Trigger multi-cycle input event trigger to the specified level.
CTI_SetEventLevel(CrossTriggerIn id, signal level);

Library pseudocode for shared/debug/cti/CTI_SignalEvent

// Signal a discrete event on a Cross Trigger input event trigger.
CTI_SignalEvent(CrossTriggerIn id);

Library pseudocode for shared/debug/cti/CrossTrigger

enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

Library pseudocode for shared/debug/dccanditr/CheckForDCCInterrupts

// CheckForDCCInterrupts()
// =======================

CheckForDCCInterrupts()
commrx = (EDSCR.RXfull == '1');
commtx = (EDSCR.TXfull == '0');

// COMMRX and COMMTX support is optional and not recommended for new designs.
// SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
// SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

// The value to be driven onto the common COMMIRQ signal.
if ELUsingAArch32(EL1) then

commirq = ((commrx && DBGDCCINT.RX == '1') ||
(commtx && DBGDCCINT.TX == '1'));

else
commirq = ((commrx && MDCCINT_EL1.RX == '1') ||

(commtx && MDCCINT_EL1.TX == '1'));
SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);

return;

Shared Pseudocode Functions Page 3011

Library pseudocode for shared/debug/dccanditr/DBGDTRRX_EL0

// DBGDTRRX_EL0[] (external write)
// ===============================
// Called on writes to debug register 0x08C.

DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
return;

EDSCR.RXfull = '1';
DTRRX = value;

if Halted() && EDSCR.MA == '1' then
EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
if !UsingAArch32() then

ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
X[1] = bits(64) UNKNOWN;

else
ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
R[1] = bits(32) UNKNOWN;

// If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then

EDSCR.RXfull = bit UNKNOWN;
DBGDTRRX_EL0 = bits(64) UNKNOWN;

else
// "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
assert EDSCR.RXfull == '0';

EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
return;

// DBGDTRRX_EL0[] (external read)
// ==============================

bits(32) DBGDTRRX_EL0[boolean memory_mapped]
return DTRRX;

Shared Pseudocode Functions Page 3012

Library pseudocode for shared/debug/dccanditr/DBGDTRTX_EL0

// DBGDTRTX_EL0[] (external read)
// ==============================
// Called on reads of debug register 0x080.

bits(32) DBGDTRTX_EL0[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return bits(32) UNKNOWN;

underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
value = if underrun then bits(32) UNKNOWN else DTRTX;

if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects

return value;

if underrun then
EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
return value; // Return UNKNOWN

EDSCR.TXfull = '0';
if Halted() && EDSCR.MA == '1' then

EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

if !UsingAArch32() then
ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"

else
ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"

// If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then

EDSCR.TXfull = bit UNKNOWN;
DBGDTRTX_EL0 = bits(64) UNKNOWN;

else
if !UsingAArch32() then

ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
else

ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
// "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
assert EDSCR.TXfull == '1';

if !UsingAArch32() then
X[1] = bits(64) UNKNOWN;

else
R[1] = bits(32) UNKNOWN;

EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

return value;

// DBGDTRTX_EL0[] (external write)
// ===============================

DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
DTRTX = value;
return;

Shared Pseudocode Functions Page 3013

Library pseudocode for shared/debug/dccanditr/DBGDTR_EL0

// DBGDTR_EL0[] (write)
// ====================
// System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

DBGDTR_EL0[] = bits(N) value
// For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
// For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
assert N IN {32,64};
if EDSCR.TXfull == '1' then

value = bits(N) UNKNOWN;
// On a 64-bit write, implement a half-duplex channel
if N == 64 then DTRRX = value<63:32>;
DTRTX = value<31:0>; // 32-bit or 64-bit write
EDSCR.TXfull = '1';
return;

// DBGDTR_EL0[] (read)
// ===================
// System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

bits(N) DBGDTR_EL0[]
// For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
// For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
assert N IN {32,64};
bits(N) result;
if EDSCR.RXfull == '0' then

result = bits(N) UNKNOWN;
else

// On a 64-bit read, implement a half-duplex channel
// NOTE: the word order is reversed on reads with regards to writes
if N == 64 then result<63:32> = DTRTX;
result<31:0> = DTRRX;

EDSCR.RXfull = '0';
return result;

Library pseudocode for shared/debug/dccanditr/DTR

bits(32) DTRRX;
bits(32) DTRTX;

Shared Pseudocode Functions Page 3014

Library pseudocode for shared/debug/dccanditr/EDITR

// EDITR[] (external write)
// ========================
// Called on writes to debug register 0x084.

EDITR[boolean memory_mapped] = bits(32) value
if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits

IMPLEMENTATION_DEFINED "generate error response";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

if !Halted() then return; // Non-debug state: ignore write

if EDSCR.ITE == '0' || EDSCR.MA == '1' then
EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
return;

// ITE indicates whether the processor is ready to accept another instruction; the processor
// may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
// is no indication that the pipeline is empty (all instructions have completed). In this
// pseudocode, the assumption is that only one instruction can be executed at a time,
// meaning ITE acts like "InstrCompl".
EDSCR.ITE = '0';

if !UsingAArch32() then
ExecuteA64(value);

else
ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

EDSCR.ITE = '1';

return;

Shared Pseudocode Functions Page 3015

Library pseudocode for shared/debug/halting/DCPSInstruction

Shared Pseudocode Functions Page 3016

// DCPSInstruction()
// =================
// Operation of the DCPS instruction in Debug state

DCPSInstruction(bits(2) target_el)

SynchronizeContext();

case target_el of
when EL1

if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
elsif EL2Enabled() && HCR_EL2.TGE == '1' then UNDEFINED;
else handle_el = EL1;

when EL2
if !HaveEL(EL2) then UNDEFINED;
elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
elsif !IsSecureEL2Enabled() && IsSecure() then UNDEFINED;
else handle_el = EL2;

when EL3
if EDSCR.SDD == '1' || !HaveEL(EL3) then UNDEFINED;
handle_el = EL3;

otherwise
Unreachable();

from_secure = IsSecure();
if ELUsingAArch32(handle_el) then

if PSTATE.M == M32_Monitor then SCR.NS = '0';
assert UsingAArch32(); // Cannot move from AArch64 to AArch32
case handle_el of

when EL1
AArch32.WriteMode(M32_Svc);
if HavePANExt() && SCTLR.SPAN == '0' then

PSTATE.PAN = '1';
when EL2 AArch32.WriteMode(M32_Hyp);
when EL3

AArch32.WriteMode(M32_Monitor);
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

if handle_el == EL2 then
ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;

else
LR = bits(32) UNKNOWN;

SPSR[] = bits(32) UNKNOWN;
PSTATE.E = SCTLR[].EE;
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

else // Targeting AArch64
if UsingAArch32() then

AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(target_el);
PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;
if HavePANExt() && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||

(handle_el == EL2 && HCR_EL2.E2H == '1' &&
HCR_EL2.TGE == '1' && SCTLR_EL2.SPAN == '0')) then

PSTATE.PAN = '1';
ELR[] = bits(64) UNKNOWN; SPSR[] = bits(64) UNKNOWN; ESR[] = bits(64) UNKNOWN;
DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;
if HaveUAOExt() then PSTATE.UAO = '0';
if HaveMTEExt() then PSTATE.TCO = '1';

UpdateEDSCRFields(); // Update EDSCR PE state flags
sync_errors = HaveIESB() && SCTLR[].IESB == '1';
if HaveDoubleFaultExt() && !UsingAArch32() then

sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3);
// SCTLR[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

Shared Pseudocode Functions Page 3017

sync_errors = FALSE;
if sync_errors then

SynchronizeErrors();
return;

Library pseudocode for shared/debug/halting/DRPSInstruction

// DRPSInstruction()
// =================
// Operation of the A64 DRPS and T32 ERET instructions in Debug state

DRPSInstruction()

SynchronizeContext();

sync_errors = HaveIESB() && SCTLR[].IESB == '1';
if HaveDoubleFaultExt() && !UsingAArch32() then

sync_errors = sync_errors || (SCR_EL3.EA == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3);
// SCTLR[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

sync_errors = FALSE;
if sync_errors then

SynchronizeErrors();

bits(64) spsr = SPSR[];
SetPSTATEFromPSR(spsr);

// PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
// behave as if UNKNOWN.
if UsingAArch32() then

PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
// In AArch32, all instructions are T32 and unconditional.
PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

else
PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;

UpdateEDSCRFields(); // Update EDSCR PE state flags

return;

Library pseudocode for shared/debug/halting/DebugHalt

constant bits(6) DebugHalt_Breakpoint = '000111';
constant bits(6) DebugHalt_EDBGRQ = '010011';
constant bits(6) DebugHalt_Step_Normal = '011011';
constant bits(6) DebugHalt_Step_Exclusive = '011111';
constant bits(6) DebugHalt_OSUnlockCatch = '100011';
constant bits(6) DebugHalt_ResetCatch = '100111';
constant bits(6) DebugHalt_Watchpoint = '101011';
constant bits(6) DebugHalt_HaltInstruction = '101111';
constant bits(6) DebugHalt_SoftwareAccess = '110011';
constant bits(6) DebugHalt_ExceptionCatch = '110111';
constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

Library pseudocode for shared/debug/halting/DisableITRAndResumeInstructionPrefetch

DisableITRAndResumeInstructionPrefetch();

Library pseudocode for shared/debug/halting/ExecuteA64

// Execute an A64 instruction in Debug state.
ExecuteA64(bits(32) instr);

Shared Pseudocode Functions Page 3018

Library pseudocode for shared/debug/halting/ExecuteT32

// Execute a T32 instruction in Debug state.
ExecuteT32(bits(16) hw1, bits(16) hw2);

Library pseudocode for shared/debug/halting/ExitDebugState

// ExitDebugState()
// ================

ExitDebugState()
assert Halted();
SynchronizeContext();

// Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
// detect that the PE has restarted.
EDSCR.STATUS = '000001'; // Signal restarting
EDESR<2:0> = '000'; // Clear any pending Halting debug events

bits(64) new_pc;
bits(64) spsr;

if UsingAArch32() then
new_pc = ZeroExtend(DLR);
spsr = ZeroExtend(DSPSR);

else
new_pc = DLR_EL0;
spsr = DSPSR_EL0;

// If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
if UsingAArch32() then

SetPSTATEFromPSR(spsr<31:0>); // Can update privileged bits, even at EL0
else

SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0

boolean branch_conditional = FALSE;
if UsingAArch32() then

if ConstrainUnpredictableBool(Unpredictable_RESTARTALIGNPC) then new_pc<0> = '0';
// AArch32 branch
BranchTo(new_pc<31:0>, BranchType_DBGEXIT, branch_conditional);

else
// If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
if spsr<4> == '1' && ConstrainUnpredictableBool(Unpredictable_RESTARTZEROUPPERPC) then

new_pc<63:32> = Zeros();
// A type of branch that is never predicted
BranchTo(new_pc, BranchType_DBGEXIT, branch_conditional);

(EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
UpdateEDSCRFields(); // Stop signalling PE state
DisableITRAndResumeInstructionPrefetch();

return;

Shared Pseudocode Functions Page 3019

Library pseudocode for shared/debug/halting/Halt

// Halt()
// ======

Halt(bits(6) reason)

CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

bits(64) preferred_restart_address = ThisInstrAddr();
bits(32) spsr_32;
bits(64) spsr_64;
if UsingAArch32() then

spsr_32 = GetPSRFromPSTATE(DebugState);
else

spsr_64 = GetPSRFromPSTATE(DebugState);

if (HaveBTIExt() &&
!(reason IN {DebugHalt_Step_Normal, DebugHalt_Step_Exclusive, DebugHalt_Step_NoSyndrome,

DebugHalt_Breakpoint, DebugHalt_HaltInstruction}) &&
ConstrainUnpredictableBool(Unpredictable_ZEROBTYPE)) then
if UsingAArch32() then

spsr_32<11:10> = '00';
else

spsr_64<11:10> = '00';

if UsingAArch32() then
DLR = preferred_restart_address<31:0>;
DSPSR = spsr_32;

else
DLR_EL0 = preferred_restart_address;
DSPSR_EL0 = spsr_64;

EDSCR.ITE = '1';
EDSCR.ITO = '0';
if IsSecure() then

EDSCR.SDD = '0'; // If entered in Secure state, allow debug
elsif HaveEL(EL3) then

EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
else

assert EDSCR.SDD == '1'; // Otherwise EDSCR.SDD is RES1
EDSCR.MA = '0';

// In Debug state:
// * PSTATE.{SS,SSBS,D,A,I,F} are not observable and ignored so behave-as-if UNKNOWN.
// * PSTATE.{N,Z,C,V,Q,GE,E,M,nRW,EL,SP,DIT} are also not observable, but since these
// are not changed on exception entry, this function also leaves them unchanged.
// * PSTATE.{IT,T} are ignored.
// * PSTATE.IL is ignored and behave-as-if 0.
// * PSTATE.BTYPE is ignored and behave-as-if 0.
// * PSTATE.TCO is set 1.
// * PSTATE.{UAO,PAN} are observable and not changed on entry into Debug state.
if UsingAArch32() then

PSTATE.<IT,SS,SSBS,A,I,F,T> = bits(14) UNKNOWN;
else

PSTATE.<SS,SSBS,D,A,I,F> = bits(6) UNKNOWN;
PSTATE.TCO = '1';
PSTATE.BTYPE = '00';

PSTATE.IL = '0';

StopInstructionPrefetchAndEnableITR();
EDSCR.STATUS = reason; // Signal entered Debug state
UpdateEDSCRFields(); // Update EDSCR PE state flags.

return;

Shared Pseudocode Functions Page 3020

Library pseudocode for shared/debug/halting/HaltOnBreakpointOrWatchpoint

// HaltOnBreakpointOrWatchpoint()
// ==============================
// Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
// state entry, FALSE if they should be considered for a debug exception.

boolean HaltOnBreakpointOrWatchpoint()
return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

Library pseudocode for shared/debug/halting/Halted

// Halted()
// ========

boolean Halted()
return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

Library pseudocode for shared/debug/halting/HaltingAllowed

// HaltingAllowed()
// ================
// Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

boolean HaltingAllowed()
if Halted() || DoubleLockStatus() then

return FALSE;
elsif IsSecure() then

return ExternalSecureInvasiveDebugEnabled();
else

return ExternalInvasiveDebugEnabled();

Library pseudocode for shared/debug/halting/Restarting

// Restarting()
// ============

boolean Restarting()
return EDSCR.STATUS == '000001'; // Restarting

Library pseudocode for shared/debug/halting/StopInstructionPrefetchAndEnableITR

StopInstructionPrefetchAndEnableITR();

Shared Pseudocode Functions Page 3021

Library pseudocode for shared/debug/halting/UpdateEDSCRFields

// UpdateEDSCRFields()
// ===================
// Update EDSCR PE state fields

UpdateEDSCRFields()

if !Halted() then
EDSCR.EL = '00';
EDSCR.NS = bit UNKNOWN;
EDSCR.RW = '1111';

else
EDSCR.EL = PSTATE.EL;
EDSCR.NS = if IsSecure() then '0' else '1';

bits(4) RW;
RW<1> = if ELUsingAArch32(EL1) then '0' else '1';
if PSTATE.EL != EL0 then

RW<0> = RW<1>;
else

RW<0> = if UsingAArch32() then '0' else '1';
if !HaveEL(EL2) || (HaveEL(EL3) && SCR_GEN[].NS == '0' && !IsSecureEL2Enabled()) then

RW<2> = RW<1>;
else

RW<2> = if ELUsingAArch32(EL2) then '0' else '1';
if !HaveEL(EL3) then

RW<3> = RW<2>;
else

RW<3> = if ELUsingAArch32(EL3) then '0' else '1';

// The least-significant bits of EDSCR.RW are UNKNOWN if any higher EL is using AArch32.
if RW<3> == '0' then RW<2:0> = bits(3) UNKNOWN;
elsif RW<2> == '0' then RW<1:0> = bits(2) UNKNOWN;
elsif RW<1> == '0' then RW<0> = bit UNKNOWN;
EDSCR.RW = RW;

return;

Library pseudocode for shared/debug/haltingevents/CheckExceptionCatch

// CheckExceptionCatch()
// =====================
// Check whether an Exception Catch debug event is set on the current Exception level

CheckExceptionCatch(boolean exception_entry)
// Called after an exception entry or exit, that is, such that IsSecure() and PSTATE.EL are correct
// for the exception target. When FEAT_Debugv8p2 is not implemented, this function might also be called
// at any time.
base = if IsSecure() then 0 else 4;
if HaltingAllowed() then

if HaveExtendedECDebugEvents() then
exception_exit = !exception_entry;
ctrl = EDECCR<UInt(PSTATE.EL) + base + 8>:EDECCR<UInt(PSTATE.EL) + base>;
case ctrl of

when '00' halt = FALSE;
when '01' halt = TRUE;
when '10' halt = (exception_exit == TRUE);
when '11' halt = (exception_entry == TRUE);

else
halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');

if halt then Halt(DebugHalt_ExceptionCatch);

Shared Pseudocode Functions Page 3022

Library pseudocode for shared/debug/haltingevents/CheckHaltingStep

// CheckHaltingStep()
// ==================
// Check whether EDESR.SS has been set by Halting Step

CheckHaltingStep()
if HaltingAllowed() && EDESR.SS == '1' then

// The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
if HaltingStep_DidNotStep() then

Halt(DebugHalt_Step_NoSyndrome);
elsif HaltingStep_SteppedEX() then

Halt(DebugHalt_Step_Exclusive);
else

Halt(DebugHalt_Step_Normal);

Library pseudocode for shared/debug/haltingevents/CheckOSUnlockCatch

// CheckOSUnlockCatch()
// ====================
// Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

CheckOSUnlockCatch()

if (HaveDoPD() && CTIDEVCTL.OSUCE == '1')
|| (!HaveDoPD() && EDECR.OSUCE == '1')
then

if !Halted() then EDESR.OSUC = '1';

Library pseudocode for shared/debug/haltingevents/CheckPendingOSUnlockCatch

// CheckPendingOSUnlockCatch()
// ===========================
// Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

CheckPendingOSUnlockCatch()
if HaltingAllowed() && EDESR.OSUC == '1' then

Halt(DebugHalt_OSUnlockCatch);

Library pseudocode for shared/debug/haltingevents/CheckPendingResetCatch

// CheckPendingResetCatch()
// ========================
// Check whether EDESR.RC has been set by a Reset Catch debug event

CheckPendingResetCatch()
if HaltingAllowed() && EDESR.RC == '1' then

Halt(DebugHalt_ResetCatch);

Library pseudocode for shared/debug/haltingevents/CheckResetCatch

// CheckResetCatch()
// =================
// Called after reset

CheckResetCatch()
if (HaveDoPD() && CTIDEVCTL.RCE == '1') || (!HaveDoPD() && EDECR.RCE == '1') then

EDESR.RC = '1';
// If halting is allowed then halt immediately
if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

Shared Pseudocode Functions Page 3023

Library pseudocode for shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

// CheckSoftwareAccessToDebugRegisters()
// =====================================
// Check for access to Breakpoint and Watchpoint registers.

CheckSoftwareAccessToDebugRegisters()
os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then

Halt(DebugHalt_SoftwareAccess);

Library pseudocode for shared/debug/haltingevents/ExternalDebugRequest

// ExternalDebugRequest()
// ======================

ExternalDebugRequest()
if HaltingAllowed() then

Halt(DebugHalt_EDBGRQ);
// Otherwise the CTI continues to assert the debug request until it is taken.

Library pseudocode for shared/debug/haltingevents/HaltingStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.
boolean HaltingStep_DidNotStep();

Library pseudocode for shared/debug/haltingevents/HaltingStep_SteppedEX

// Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
// executed in the active-not-pending state.
boolean HaltingStep_SteppedEX();

Library pseudocode for shared/debug/haltingevents/RunHaltingStep

// RunHaltingStep()
// ================

RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
boolean reset)

// "exception_generated" is TRUE if the previous instruction generated a synchronous exception
// or was cancelled by an asynchronous exception.
//
// if "exception_generated" is TRUE then "exception_target" is the target of the exception, and
// "syscall" is TRUE if the exception is a synchronous exception where the preferred return
// address is the instruction following that which generated the exception.
//
// "reset" is TRUE if exiting reset state into the highest EL.

if reset then assert !Halted(); // Cannot come out of reset halted
active = EDECR.SS == '1' && !Halted();

if active && reset then // Coming out of reset with EDECR.SS set
EDESR.SS = '1';

elsif active && HaltingAllowed() then
if exception_generated && exception_target == EL3 then

advance = syscall || ExternalSecureInvasiveDebugEnabled();
else

advance = TRUE;
if advance then EDESR.SS = '1';

return;

Shared Pseudocode Functions Page 3024

Library pseudocode for shared/debug/interrupts/ExternalDebugInterruptsDisabled

// ExternalDebugInterruptsDisabled()
// =================================
// Determine whether EDSCR disables interrupts routed to 'target'.

boolean ExternalDebugInterruptsDisabled(bits(2) target)
if Havev8p4Debug() then

if target == EL3 || IsSecure() then
int_dis = (EDSCR.INTdis[0] == '1' && ExternalSecureInvasiveDebugEnabled());

else
int_dis = (EDSCR.INTdis[0] == '1');

else
case target of

when EL3
int_dis = (EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled());

when EL2
int_dis = (EDSCR.INTdis == '1x' && ExternalInvasiveDebugEnabled());

when EL1
if IsSecure() then

int_dis = (EDSCR.INTdis == '1x' && ExternalSecureInvasiveDebugEnabled());
else

int_dis = (EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled());
return int_dis;

Library pseudocode for shared/debug/interrupts/InterruptID

enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
InterruptID_COMMRX, InterruptID_COMMTX};

Library pseudocode for shared/debug/interrupts/SetInterruptRequestLevel

// Set a level-sensitive interrupt to the specified level.
SetInterruptRequestLevel(InterruptID id, signal level);

Library pseudocode for shared/debug/pmu/NumEventCountersImplemented

// NumEventCountersImplemented()
// =============================
// Returns the number of event counters implemented. This is indicated to software at the
// highest Exception level by PMCR.N in AArch32 state, and PMCR_EL0.N in AArch64 state.

integer NumEventCountersImplemented()
return integer IMPLEMENTATION_DEFINED "Number of event counters";

Shared Pseudocode Functions Page 3025

Library pseudocode for shared/debug/samplebasedprofiling/CreatePCSample

// CreatePCSample()
// ================

CreatePCSample()
// In a simple sequential execution of the program, CreatePCSample is executed each time the PE
// executes an instruction that can be sampled. An implementation is not constrained such that
// reads of EDPCSRlo return the current values of PC, etc.

pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
pc_sample.pc = ThisInstrAddr();
pc_sample.el = PSTATE.EL;
pc_sample.rw = if UsingAArch32() then '0' else '1';
pc_sample.ns = if IsSecure() then '0' else '1';
pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1<31:0>;
pc_sample.has_el2 = EL2Enabled();

if EL2Enabled() then
if ELUsingAArch32(EL2) then

pc_sample.vmid = ZeroExtend(VTTBR.VMID, 16);
elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then

pc_sample.vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
else

pc_sample.vmid = VTTBR_EL2.VMID;
if (HaveVirtHostExt() || HaveV82Debug()) && !ELUsingAArch32(EL2) then

pc_sample.contextidr_el2 = CONTEXTIDR_EL2<31:0>;
else

pc_sample.contextidr_el2 = bits(32) UNKNOWN;
pc_sample.el0h = PSTATE.EL == EL0 && IsInHost();

return;

Shared Pseudocode Functions Page 3026

Library pseudocode for shared/debug/samplebasedprofiling/EDPCSRlo

// EDPCSRlo[] (read)
// =================

bits(32) EDPCSRlo[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return bits(32) UNKNOWN;

// The Software lock is OPTIONAL.
update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects

if pc_sample.valid then
sample = pc_sample.pc<31:0>;
if update then

if HaveVirtHostExt() && EDSCR.SC2 == '1' then
EDPCSRhi.PC = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
EDPCSRhi.EL = pc_sample.el;
EDPCSRhi.NS = pc_sample.ns;

else
EDPCSRhi = (if pc_sample.rw == '0' then Zeros(32) else pc_sample.pc<63:32>);

EDCIDSR = pc_sample.contextidr;
if (HaveVirtHostExt() || HaveV82Debug()) && EDSCR.SC2 == '1' then

EDVIDSR = (if HaveEL(EL2) && pc_sample.ns == '1' then pc_sample.contextidr_el2
else bits(32) UNKNOWN);

else
if HaveEL(EL2) && pc_sample.ns == '1' && pc_sample.el IN {EL1,EL0} then

EDVIDSR.VMID = pc_sample.vmid;
else

EDVIDSR.VMID = Zeros();
EDVIDSR.NS = pc_sample.ns;
EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
EDVIDSR.E3 = (if pc_sample.el == EL3 then '1' else '0') AND pc_sample.rw;
// The conditions for setting HV are not specified if PCSRhi is zero.
// An example implementation may be "pc_sample.rw".
EDVIDSR.HV = (if !IsZero(EDPCSRhi) then '1' else bit IMPLEMENTATION_DEFINED "0 or 1");

else
sample = Ones(32);
if update then

EDPCSRhi = bits(32) UNKNOWN;
EDCIDSR = bits(32) UNKNOWN;
EDVIDSR = bits(32) UNKNOWN;

return sample;

Library pseudocode for shared/debug/samplebasedprofiling/PCSample

type PCSample is (
boolean valid,
bits(64) pc,
bits(2) el,
bit rw,
bit ns,
boolean has_el2,
bits(32) contextidr,
bits(32) contextidr_el2,
boolean el0h,
bits(16) vmid

)

PCSample pc_sample;

Shared Pseudocode Functions Page 3027

Library pseudocode for shared/debug/samplebasedprofiling/PMPCSR

// PMPCSR[] (read)
// ===============

bits(32) PMPCSR[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return bits(32) UNKNOWN;

// The Software lock is OPTIONAL.
update = !memory_mapped || PMLSR.SLK == '0'; // Software locked: no side-effects

if pc_sample.valid then
sample = pc_sample.pc<31:0>;
if update then

PMPCSR<55:32> = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
PMPCSR.EL = pc_sample.el;
PMPCSR.NS = pc_sample.ns;

PMCID1SR = pc_sample.contextidr;
PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;

PMVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} && !pc_sample.el0h
then pc_sample.vmid else bits(16) UNKNOWN);

else
sample = Ones(32);
if update then

PMPCSR<55:32> = bits(24) UNKNOWN;
PMPCSR.EL = bits(2) UNKNOWN;
PMPCSR.NS = bit UNKNOWN;

PMCID1SR = bits(32) UNKNOWN;
PMCID2SR = bits(32) UNKNOWN;

PMVIDSR.VMID = bits(16) UNKNOWN;

return sample;

Library pseudocode for shared/debug/softwarestep/CheckSoftwareStep

// CheckSoftwareStep()
// ===================
// Take a Software Step exception if in the active-pending state

CheckSoftwareStep()

// Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
// AArch32 state. However, because Software Step is only active when the debug target Exception
// level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
step_enabled = !ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() && MDSCR_EL1.SS == '1';
if step_enabled && PSTATE.SS == '0' then

AArch64.SoftwareStepException();

Shared Pseudocode Functions Page 3028

Library pseudocode for shared/debug/softwarestep/DebugExceptionReturnSS

// DebugExceptionReturnSS()
// ========================
// Returns value to write to PSTATE.SS on an exception return or Debug state exit.

bit DebugExceptionReturnSS(bits(N) spsr)
if UsingAArch32() then

assert N == 32;
else

assert N == 64;

assert Halted() || Restarting() || PSTATE.EL != EL0;

if Restarting() then
enabled_at_source = FALSE;

elsif UsingAArch32() then
enabled_at_source = AArch32.GenerateDebugExceptions();

else
enabled_at_source = AArch64.GenerateDebugExceptions();

if IllegalExceptionReturn(spsr) then
dest = PSTATE.EL;

else
(valid, dest) = ELFromSPSR(spsr); assert valid;

dest_is_secure = IsSecureBelowEL3() || dest == EL3;
dest_using_32 = (if dest == EL0 then spsr<4> == '1' else ELUsingAArch32(dest));
if dest_using_32 then

enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest, dest_is_secure);
else

mask = spsr<9>;
enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, dest_is_secure, mask);

ELd = DebugTargetFrom(dest_is_secure);
if !ELUsingAArch32(ELd) && MDSCR_EL1.SS == '1' && !enabled_at_source && enabled_at_dest then

SS_bit = spsr<21>;
else

SS_bit = '0';

return SS_bit;

Library pseudocode for shared/debug/softwarestep/SSAdvance

// SSAdvance()
// ===========
// Advance the Software Step state machine.

SSAdvance()

// A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
// current Software Step state machine. However, this check is made to illustrate that the
// processor only needs to consider advancing the state machine from the active-not-pending
// state.
target = DebugTarget();
step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
active_not_pending = step_enabled && PSTATE.SS == '1';

if active_not_pending then PSTATE.SS = '0';

return;

Shared Pseudocode Functions Page 3029

Library pseudocode for shared/debug/softwarestep/SoftwareStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.
// Might return TRUE or FALSE if the previously executed instruction was an ISB or ERET executed
// in the active-not-pending state, or if another exception was taken before the Software Step exception.
// Returns FALSE otherwise, indicating that the previously executed instruction was executed in the
// active-not-pending state, that is, the instruction was stepped.
boolean SoftwareStep_DidNotStep();

Library pseudocode for shared/debug/softwarestep/SoftwareStep_SteppedEX

// Returns a value that describes the previously executed instruction. The result is valid only if
// SoftwareStep_DidNotStep() returns FALSE.
// Might return TRUE or FALSE if the instruction was an AArch32 LDREX or LDAEX that failed its condition code test.
// Otherwise returns TRUE if the instruction was a Load-Exclusive class instruction, and FALSE if the
// instruction was not a Load-Exclusive class instruction.
boolean SoftwareStep_SteppedEX();

Library pseudocode for shared/exceptions/exceptions/ConditionSyndrome

// ConditionSyndrome()
// ===================
// Return CV and COND fields of instruction syndrome

bits(5) ConditionSyndrome()

bits(5) syndrome;

if UsingAArch32() then
cond = AArch32.CurrentCond();
if PSTATE.T == '0' then // A32

syndrome<4> = '1';
// A conditional A32 instruction that is known to pass its condition code check
// can be presented either with COND set to 0xE, the value for unconditional, or
// the COND value held in the instruction.
if ConditionHolds(cond) && ConstrainUnpredictableBool(Unpredictable_ESRCONDPASS) then

syndrome<3:0> = '1110';
else

syndrome<3:0> = cond;
else // T32

// When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
// * CV set to 0 and COND is set to an UNKNOWN value
// * CV set to 1 and COND is set to the condition code for the condition that
// applied to the instruction.
if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then

syndrome<4> = '1';
syndrome<3:0> = cond;

else
syndrome<4> = '0';
syndrome<3:0> = bits(4) UNKNOWN;

else
syndrome<4> = '1';
syndrome<3:0> = '1110';

return syndrome;

Shared Pseudocode Functions Page 3030

Library pseudocode for shared/exceptions/exceptions/Exception

enumeration Exception {Exception_Uncategorized, // Uncategorized or unknown reason
Exception_WFxTrap, // Trapped WFI or WFE instruction
Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access, coproc=0b1111
Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access, coproc=0b1111
Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access, coproc=0b1110
Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access, coproc=0b1110
Exception_CP14RRTTrap, // Trapped AArch32 MRRC access, coproc=0b1110
Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
Exception_LDST64BTrap, // Trapped access to ST64BV, ST64BV0, ST64B and LD64B
// Trapped BXJ instruction not supported in Armv8
Exception_PACTrap, // Trapped invalid PAC use
Exception_IllegalState, // Illegal Execution state
Exception_SupervisorCall, // Supervisor Call
Exception_HypervisorCall, // Hypervisor Call
Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
Exception_SystemRegisterTrap, // Trapped MRS or MSR system register access
Exception_ERetTrap, // Trapped invalid ERET use
Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
Exception_PCAlignment, // PC alignment fault
Exception_DataAbort, // Data Abort
Exception_NV2DataAbort, // Data abort at EL1 reported as being from EL2
Exception_PACFail, // PAC Authentication failure
Exception_SPAlignment, // SP alignment fault
Exception_FPTrappedException, // IEEE trapped FP exception
Exception_SError, // SError interrupt
Exception_Breakpoint, // (Hardware) Breakpoint
Exception_SoftwareStep, // Software Step
Exception_Watchpoint, // Watchpoint
Exception_NV2Watchpoint, // Watchpoint at EL1 reported as being from EL2
Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
Exception_VectorCatch, // AArch32 Vector Catch
Exception_IRQ, // IRQ interrupt
Exception_SVEAccessTrap, // HCPTR trapped access to SVE
Exception_BranchTarget, // Branch Target Identification
Exception_FIQ}; // FIQ interrupt

Library pseudocode for shared/exceptions/exceptions/ExceptionRecord

type ExceptionRecord is (
Exception exceptype, // Exception class
bits(25) syndrome, // Syndrome record
bits(5) syndrome2, // ST64BV(0) return value register specifier
bits(64) vaddress, // Virtual fault address
boolean ipavalid, // Validity of Intermediate Physical fault address
bit NS, // Intermediate Physical fault address space
bits(52) ipaddress) // Intermediate Physical fault address

Shared Pseudocode Functions Page 3031

Library pseudocode for shared/exceptions/exceptions/ExceptionSyndrome

// ExceptionSyndrome()
// ===================
// Return a blank exception syndrome record for an exception of the given type.

ExceptionRecord ExceptionSyndrome(Exception exceptype)

ExceptionRecord r;

r.exceptype = exceptype;

// Initialize all other fields
r.syndrome = Zeros();
r.syndrome2 = Zeros();
r.vaddress = Zeros();
r.ipavalid = FALSE;
r.NS = '0';
r.ipaddress = Zeros();
return r;

Library pseudocode for shared/functions/aborts/EncodeLDFSC

// EncodeLDFSC()
// =============
// Function that gives the Long-descriptor FSC code for types of Fault

bits(6) EncodeLDFSC(Fault statuscode, integer level)
bits(6) result;

if level == -1 then
assert Have52BitIPAAndPASpaceExt();
case statuscode of

when Fault_AddressSize result = '101001';
when Fault_Translation result = '101011';
when Fault_SyncExternalOnWalk result = '010011';
when Fault_SyncParityOnWalk result = '011011'; assert !HaveRASExt();
otherwise Unreachable();

return result;
case statuscode of

when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {0,1,2,3};
when Fault_Permission result = '0011':level<1:0>; assert level IN {0,1,2,3};
when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncExternal result = '010000';
when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncParity result = '011000';
when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
when Fault_AsyncParity result = '011001';
when Fault_AsyncExternal result = '010001';
when Fault_Alignment result = '100001';
when Fault_Debug result = '100010';
when Fault_TLBConflict result = '110000';
when Fault_HWUpdateAccessFlag result = '110001';
when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
otherwise Unreachable();

return result;

Shared Pseudocode Functions Page 3032

Library pseudocode for shared/functions/aborts/IPAValid

// IPAValid()
// ==========
// Return TRUE if the IPA is reported for the abort

boolean IPAValid(FaultRecord fault)
assert fault.statuscode != Fault_None;

if fault.s2fs1walk then
return fault.statuscode IN {

Fault_AccessFlag,
Fault_Permission,
Fault_Translation,
Fault_AddressSize

};
elsif fault.secondstage then

return fault.statuscode IN {
Fault_AccessFlag,
Fault_Translation,
Fault_AddressSize

};
else

return FALSE;

Library pseudocode for shared/functions/aborts/IsAsyncAbort

// IsAsyncAbort()
// ==============
// Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
// otherwise.

boolean IsAsyncAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsAsyncAbort()
// ==============

boolean IsAsyncAbort(FaultRecord fault)
return IsAsyncAbort(fault.statuscode);

Library pseudocode for shared/functions/aborts/IsDebugException

// IsDebugException()
// ==================

boolean IsDebugException(FaultRecord fault)
assert fault.statuscode != Fault_None;
return fault.statuscode == Fault_Debug;

Shared Pseudocode Functions Page 3033

Library pseudocode for shared/functions/aborts/IsExternalAbort

// IsExternalAbort()
// =================
// Returns TRUE if the abort currently being processed is an External abort and FALSE otherwise.

boolean IsExternalAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {
Fault_SyncExternal,
Fault_SyncParity,
Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk,
Fault_AsyncExternal,
Fault_AsyncParity

});

// IsExternalAbort()
// =================

boolean IsExternalAbort(FaultRecord fault)
return IsExternalAbort(fault.statuscode);

Library pseudocode for shared/functions/aborts/IsExternalSyncAbort

// IsExternalSyncAbort()
// =====================
// Returns TRUE if the abort currently being processed is an external synchronous abort and FALSE otherwise.

boolean IsExternalSyncAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {
Fault_SyncExternal,
Fault_SyncParity,
Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk

});

// IsExternalSyncAbort()
// =====================

boolean IsExternalSyncAbort(FaultRecord fault)
return IsExternalSyncAbort(fault.statuscode);

Library pseudocode for shared/functions/aborts/IsFault

// IsFault()
// =========
// Return TRUE if a fault is associated with an address descriptor

boolean IsFault(AddressDescriptor addrdesc)
return addrdesc.fault.statuscode != Fault_None;

// IsFault()
// =========

boolean IsFault(Fault fault)
return fault != Fault_None;

// IsFault()
// =========

boolean IsFault(PhysMemRetStatus retstatus)
return retstatus.statuscode != Fault_None;

Shared Pseudocode Functions Page 3034

Library pseudocode for shared/functions/aborts/IsSErrorInterrupt

// IsSErrorInterrupt()
// ===================
// Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
// otherwise.

boolean IsSErrorInterrupt(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsSErrorInterrupt()
// ===================

boolean IsSErrorInterrupt(FaultRecord fault)
return IsSErrorInterrupt(fault.statuscode);

Library pseudocode for shared/functions/aborts/IsSecondStage

// IsSecondStage()
// ===============

boolean IsSecondStage(FaultRecord fault)
assert fault.statuscode != Fault_None;

return fault.secondstage;

Library pseudocode for shared/functions/aborts/LSInstructionSyndrome

// Returns the extended syndrome information for a second stage fault.
// <10> - Syndrome valid bit. The syndrome is only valid for certain types of access instruction.
// <9:8> - Access size.
// <7> - Sign extended (for loads).
// <6:2> - Transfer register.
// <1> - Transfer register is 64-bit.
// <0> - Instruction has acquire/release semantics.
bits(11) LSInstructionSyndrome();

Library pseudocode for shared/functions/cache/CACHE_OP

// CACHE_OP()
// ==========
// Performs Cache maintenance operations as per CacheRecord.

CACHE_OP(CacheRecord cache)
IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/cache/CacheOp

enumeration CacheOp {
CacheOp_Clean,
CacheOp_Invalidate,
CacheOp_CleanInvalidate

};

Shared Pseudocode Functions Page 3035

Library pseudocode for shared/functions/cache/CacheOpScope

enumeration CacheOpScope {
CacheOpScope_SetWay,
CacheOpScope_PoU,
CacheOpScope_PoC,
CacheOpScope_PoP,
CacheOpScope_PoDP,
CacheOpScope_ALLU,
CacheOpScope_ALLUIS

};

Library pseudocode for shared/functions/cache/CacheRecord

type CacheRecord is (
AccType acctype, // Access type
CacheOp cacheop, // Cache operation
CacheOpScope opscope, // Cache operation type
CacheType cachetype, // Cache type
bits(64) regval,
FullAddress paddress,
bits(64) vaddress, // For VA operations
integer set, // For SW operations
integer way, // For SW operations
integer level, // For SW operations
Shareability shareability,
boolean translated

)

Library pseudocode for shared/functions/cache/CacheType

enumeration CacheType {
CacheType_Data,
CacheType_Tag,
CacheType_Data_Tag,
CacheType_Instruction

};

Library pseudocode for shared/functions/cache/DCInstNeedsTranslation

// DCInstNeedsTranslation()
// ========================
// Check whether Data Cache operation needs translation.

boolean DCInstNeedsTranslation(CacheOpScope opscope)
if CLIDR_EL1.LoC == '000' then

return !boolean IMPLEMENTATION_DEFINED "No fault generated for DC operations if PoC is before any level of cache";

if CLIDR_EL1.LoUU == '000' && opscope == CacheOpScope_PoU then
return !boolean IMPLEMENTATION_DEFINED "No fault generated for DC operations if PoU is before any level of cache";

return TRUE;

Library pseudocode for shared/functions/cache/DecodeSW

// DecodeSW()
// ==========
// Decode input value into set, way and level for SW instructions.

(integer, integer, integer) DecodeSW(bits(64) regval, CacheType cachetype)
level = UInt(regval[3:1]);
(set, way, linesize) = GetCacheInfo(level, cachetype);
return (set, way, level);

Shared Pseudocode Functions Page 3036

Library pseudocode for shared/functions/cache/GetCacheInfo

// Returns numsets, assosciativity & linesize.
(integer, integer, integer) GetCacheInfo(integer level, CacheType cachetype);

Library pseudocode for shared/functions/cache/ICInstNeedsTranslation

// ICInstNeedsTranslation()
// ========================
// Check whether Instruction Cache operation needs translation.

boolean ICInstNeedsTranslation(CacheOpScope opscope)
return boolean IMPLEMENTATION_DEFINED "Instruction Cache needs translation";

Library pseudocode for shared/functions/common/ASR

// ASR()
// =====

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = ASR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/ASR_C

// ASR_C()
// =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

Library pseudocode for shared/functions/common/Abs

// Abs()
// =====

integer Abs(integer x)
return if x >= 0 then x else -x;

// Abs()
// =====

real Abs(real x)
return if x >= 0.0 then x else -x;

Library pseudocode for shared/functions/common/Align

// Align()
// =======

integer Align(integer x, integer y)
return y * (x DIV y);

// Align()
// =======

bits(N) Align(bits(N) x, integer y)
return Align(UInt(x), y)<N-1:0>;

Shared Pseudocode Functions Page 3037

Library pseudocode for shared/functions/common/BitCount

// BitCount()
// ==========

integer BitCount(bits(N) x)
integer result = 0;
for i = 0 to N-1

if x<i> == '1' then
result = result + 1;

return result;

Library pseudocode for shared/functions/common/CountLeadingSignBits

// CountLeadingSignBits()
// ======================

integer CountLeadingSignBits(bits(N) x)
return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

Library pseudocode for shared/functions/common/CountLeadingZeroBits

// CountLeadingZeroBits()
// ======================

integer CountLeadingZeroBits(bits(N) x)
return N - (HighestSetBit(x) + 1);

Library pseudocode for shared/functions/common/Elem

// Elem[] - non-assignment form
// ============================

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 && (e+1)*size <= N;
return vector<e*size+size-1 : e*size>;

// Elem[] - non-assignment form
// ============================

bits(size) Elem[bits(N) vector, integer e]
return Elem[vector, e, size];

// Elem[] - assignment form
// ========================

Elem[bits(N) &vector, integer e, integer size] = bits(size) value
assert e >= 0 && (e+1)*size <= N;
vector<(e+1)*size-1:e*size> = value;
return;

// Elem[] - assignment form
// ========================

Elem[bits(N) &vector, integer e] = bits(size) value
Elem[vector, e, size] = value;
return;

Shared Pseudocode Functions Page 3038

Library pseudocode for shared/functions/common/Extend

// Extend()
// ========

bits(N) Extend(bits(M) x, integer N, boolean unsigned)
return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

// Extend()
// ========

bits(N) Extend(bits(M) x, boolean unsigned)
return Extend(x, N, unsigned);

Library pseudocode for shared/functions/common/HighestSetBit

// HighestSetBit()
// ===============

integer HighestSetBit(bits(N) x)
for i = N-1 downto 0

if x<i> == '1' then return i;
return -1;

Library pseudocode for shared/functions/common/Int

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
result = if unsigned then UInt(x) else SInt(x);
return result;

Library pseudocode for shared/functions/common/IsOnes

// IsOnes()
// ========

boolean IsOnes(bits(N) x)
return x == Ones(N);

Library pseudocode for shared/functions/common/IsZero

// IsZero()
// ========

boolean IsZero(bits(N) x)
return x == Zeros(N);

Library pseudocode for shared/functions/common/IsZeroBit

// IsZeroBit()
// ===========

bit IsZeroBit(bits(N) x)
return if IsZero(x) then '1' else '0';

Shared Pseudocode Functions Page 3039

Library pseudocode for shared/functions/common/LSL

// LSL()
// =====

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = LSL_C(x, shift);
return result;

Library pseudocode for shared/functions/common/LSL_C

// LSL_C()
// =======

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

Library pseudocode for shared/functions/common/LSR

// LSR()
// =====

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = LSR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/LSR_C

// LSR_C()
// =======

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

Library pseudocode for shared/functions/common/LowestSetBit

// LowestSetBit()
// ==============

integer LowestSetBit(bits(N) x)
for i = 0 to N-1

if x<i> == '1' then return i;
return N;

Shared Pseudocode Functions Page 3040

Library pseudocode for shared/functions/common/Max

// Max()
// =====

integer Max(integer a, integer b)
return if a >= b then a else b;

// Max()
// =====

real Max(real a, real b)
return if a >= b then a else b;

Library pseudocode for shared/functions/common/Min

// Min()
// =====

integer Min(integer a, integer b)
return if a <= b then a else b;

// Min()
// =====

real Min(real a, real b)
return if a <= b then a else b;

Library pseudocode for shared/functions/common/Ones

// Ones()
// ======

bits(N) Ones(integer N)
return Replicate('1',N);

// Ones()
// ======

bits(N) Ones()
return Ones(N);

Library pseudocode for shared/functions/common/ROR

// ROR()
// =====

bits(N) ROR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = ROR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/ROR_C

// ROR_C()
// =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

Shared Pseudocode Functions Page 3041

Library pseudocode for shared/functions/common/Replicate

// Replicate()
// ===========

bits(N) Replicate(bits(M) x)
assert N MOD M == 0;
return Replicate(x, N DIV M);

bits(M*N) Replicate(bits(M) x, integer N);

Library pseudocode for shared/functions/common/RoundDown

integer RoundDown(real x);

Library pseudocode for shared/functions/common/RoundTowardsZero

// RoundTowardsZero()
// ==================

integer RoundTowardsZero(real x)
return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);

Library pseudocode for shared/functions/common/RoundUp

integer RoundUp(real x);

Library pseudocode for shared/functions/common/SInt

// SInt()
// ======

integer SInt(bits(N) x)
result = 0;
for i = 0 to N-1

if x<i> == '1' then result = result + 2^i;
if x<N-1> == '1' then result = result - 2^N;
return result;

Library pseudocode for shared/functions/common/SignExtend

// SignExtend()
// ============

bits(N) SignExtend(bits(M) x, integer N)
assert N >= M;
return Replicate(x<M-1>, N-M) : x;

// SignExtend()
// ============

bits(N) SignExtend(bits(M) x)
return SignExtend(x, N);

Library pseudocode for shared/functions/common/UInt

// UInt()
// ======

integer UInt(bits(N) x)
result = 0;
for i = 0 to N-1

if x<i> == '1' then result = result + 2^i;
return result;

Shared Pseudocode Functions Page 3042

Library pseudocode for shared/functions/common/ZeroExtend

// ZeroExtend()
// ============

bits(N) ZeroExtend(bits(M) x, integer N)
assert N >= M;
return Zeros(N-M) : x;

// ZeroExtend()
// ============

bits(N) ZeroExtend(bits(M) x)
return ZeroExtend(x, N);

Library pseudocode for shared/functions/common/Zeros

// Zeros()
// =======

bits(N) Zeros(integer N)
return Replicate('0',N);

// Zeros()
// =======

bits(N) Zeros()
return Zeros(N);

Library pseudocode for shared/functions/counters/GenericCounterTick

// GenericCounterTick()
// ====================
// Increments PhysicalCount value for every clock tick.

GenericCounterTick()
if CNTCR.EN == '0' then

return;
if HaveCNTSCExt() && CNTCR.SCEN == '1' then

PhysicalCount = PhysicalCount + ZeroExtend(CNTSCR);
else

PhysicalCount<87:24> = PhysicalCount<87:24> + 1;

Library pseudocode for shared/functions/counters/PhysicalCount

bits(88) PhysicalCount;

Library pseudocode for shared/functions/crc/BitReverse

// BitReverse()
// ============

bits(N) BitReverse(bits(N) data)
bits(N) result;
for i = 0 to N-1

result<N-i-1> = data<i>;
return result;

Library pseudocode for shared/functions/crc/HaveCRCExt

// HaveCRCExt()
// ============

boolean HaveCRCExt()
return HasArchVersion(ARMv8p1) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

Shared Pseudocode Functions Page 3043

Library pseudocode for shared/functions/crc/Poly32Mod2

// Poly32Mod2()
// ============

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
assert N > 32;
for i = N-1 downto 32

if data<i> == '1' then
data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));

return data<31:0>;

Library pseudocode for shared/functions/crypto/AESInvMixColumns

// AESInvMixColumns()
// ==================
// Transformation in the Inverse Cipher that is the inverse of AESMixColumns.

bits(128) AESInvMixColumns(bits (128) op)
bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

bits(4*8) out0;
bits(4*8) out1;
bits(4*8) out2;
bits(4*8) out3;

for c = 0 to 3
out0<c*8+:8> = FFmul0E(in0<c*8+:8>) EOR FFmul0B(in1<c*8+:8>) EOR FFmul0D(in2<c*8+:8>) EOR FFmul09(in3<c*8+:8>);
out1<c*8+:8> = FFmul09(in0<c*8+:8>) EOR FFmul0E(in1<c*8+:8>) EOR FFmul0B(in2<c*8+:8>) EOR FFmul0D(in3<c*8+:8>);
out2<c*8+:8> = FFmul0D(in0<c*8+:8>) EOR FFmul09(in1<c*8+:8>) EOR FFmul0E(in2<c*8+:8>) EOR FFmul0B(in3<c*8+:8>);
out3<c*8+:8> = FFmul0B(in0<c*8+:8>) EOR FFmul0D(in1<c*8+:8>) EOR FFmul09(in2<c*8+:8>) EOR FFmul0E(in3<c*8+:8>);

return (
out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>

);

Library pseudocode for shared/functions/crypto/AESInvShiftRows

// AESInvShiftRows()
// =================
// Transformation in the Inverse Cipher that is inverse of AESShiftRows.

bits(128) AESInvShiftRows(bits(128) op)
return (

op< 24+:8> : op< 48+:8> : op< 72+:8> : op< 96+:8> :
op<120+:8> : op< 16+:8> : op< 40+:8> : op< 64+:8> :
op< 88+:8> : op<112+:8> : op< 8+:8> : op< 32+:8> :
op< 56+:8> : op< 80+:8> : op<104+:8> : op< 0+:8>

);

Shared Pseudocode Functions Page 3044

Library pseudocode for shared/functions/crypto/AESInvSubBytes

// AESInvSubBytes()
// ================
// Transformation in the Inverse Cipher that is the inverse of AESSubBytes.

bits(128) AESInvSubBytes(bits(128) op)
// Inverse S-box values
bits(16*16*8) GF2_inv = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x7d0c2155631469e126d677ba7e042b17<127:0> :
/*E*/ 0x619953833cbbebc8b0f52aae4d3be0a0<127:0> :
/*D*/ 0xef9cc9939f7ae52d0d4ab519a97f5160<127:0> :
/*C*/ 0x5fec8027591012b131c7078833a8dd1f<127:0> :
/*B*/ 0xf45acd78fec0db9a2079d2c64b3e56fc<127:0> :
/*A*/ 0x1bbe18aa0e62b76f89c5291d711af147<127:0> :
/*9*/ 0x6edf751ce837f9e28535ade72274ac96<127:0> :
/*8*/ 0x73e6b4f0cecff297eadc674f4111913a<127:0> :
/*7*/ 0x6b8a130103bdafc1020f3fca8f1e2cd0<127:0> :
/*6*/ 0x0645b3b80558e4f70ad3bc8c00abd890<127:0> :
/*5*/ 0x849d8da75746155edab9edfd5048706c<127:0> :
/*4*/ 0x92b6655dcc5ca4d41698688664f6f872<127:0> :
/*3*/ 0x25d18b6d49a25b76b224d92866a12e08<127:0> :
/*2*/ 0x4ec3fa420b954cee3d23c2a632947b54<127:0> :
/*1*/ 0xcbe9dec444438e3487ff2f9b8239e37c<127:0> :
/*0*/ 0xfbd7f3819ea340bf38a53630d56a0952<127:0>

);
bits(128) out;
for i = 0 to 15

out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)*8+:8>;
return out;

Library pseudocode for shared/functions/crypto/AESMixColumns

// AESMixColumns()
// ===============
// Transformation in the Cipher that takes all of the columns of the
// State and mixes their data (independently of one another) to
// produce new columns.

bits(128) AESMixColumns(bits (128) op)
bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

bits(4*8) out0;
bits(4*8) out1;
bits(4*8) out2;
bits(4*8) out3;

for c = 0 to 3
out0<c*8+:8> = FFmul02(in0<c*8+:8>) EOR FFmul03(in1<c*8+:8>) EOR in2<c*8+:8> EOR in3<c*8+:8>;
out1<c*8+:8> = in0<c*8+:8> EOR FFmul02(in1<c*8+:8>) EOR FFmul03(in2<c*8+:8>) EOR in3<c*8+:8>;
out2<c*8+:8> = in0<c*8+:8> EOR in1<c*8+:8> EOR FFmul02(in2<c*8+:8>) EOR FFmul03(in3<c*8+:8>);
out3<c*8+:8> = FFmul03(in0<c*8+:8>) EOR in1<c*8+:8> EOR in2<c*8+:8> EOR FFmul02(in3<c*8+:8>);

return (
out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>

);

Shared Pseudocode Functions Page 3045

Library pseudocode for shared/functions/crypto/AESShiftRows

// AESShiftRows()
// ==============
// Transformation in the Cipher that processes the State by cyclically
// shifting the last three rows of the State by different offsets.

bits(128) AESShiftRows(bits(128) op)
return (

op< 88+:8> : op< 48+:8> : op< 8+:8> : op< 96+:8> :
op< 56+:8> : op< 16+:8> : op<104+:8> : op< 64+:8> :
op< 24+:8> : op<112+:8> : op< 72+:8> : op< 32+:8> :
op<120+:8> : op< 80+:8> : op< 40+:8> : op< 0+:8>

);

Library pseudocode for shared/functions/crypto/AESSubBytes

// AESSubBytes()
// =============
// Transformation in the Cipher that processes the State using a nonlinear
// byte substitution table (S-box) that operates on each of the State bytes
// independently.

bits(128) AESSubBytes(bits(128) op)
// S-box values
bits(16*16*8) GF2 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x16bb54b00f2d99416842e6bf0d89a18c<127:0> :
/*E*/ 0xdf2855cee9871e9b948ed9691198f8e1<127:0> :
/*D*/ 0x9e1dc186b95735610ef6034866b53e70<127:0> :
/*C*/ 0x8a8bbd4b1f74dde8c6b4a61c2e2578ba<127:0> :
/*B*/ 0x08ae7a65eaf4566ca94ed58d6d37c8e7<127:0> :
/*A*/ 0x79e4959162acd3c25c2406490a3a32e0<127:0> :
/*9*/ 0xdb0b5ede14b8ee4688902a22dc4f8160<127:0> :
/*8*/ 0x73195d643d7ea7c41744975fec130ccd<127:0> :
/*7*/ 0xd2f3ff1021dab6bcf5389d928f40a351<127:0> :
/*6*/ 0xa89f3c507f02f94585334d43fbaaefd0<127:0> :
/*5*/ 0xcf584c4a39becb6a5bb1fc20ed00d153<127:0> :
/*4*/ 0x842fe329b3d63b52a05a6e1b1a2c8309<127:0> :
/*3*/ 0x75b227ebe28012079a059618c323c704<127:0> :
/*2*/ 0x1531d871f1e5a534ccf73f362693fdb7<127:0> :
/*1*/ 0xc072a49cafa2d4adf04759fa7dc982ca<127:0> :
/*0*/ 0x76abd7fe2b670130c56f6bf27b777c63<127:0>

);
bits(128) out;
for i = 0 to 15

out<i*8+:8> = GF2<UInt(op<i*8+:8>)*8+:8>;
return out;

Shared Pseudocode Functions Page 3046

Library pseudocode for shared/functions/crypto/FFmul02

// FFmul02()
// =========

bits(8) FFmul02(bits(8) b)
bits(256*8) FFmul_02 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0xE5E7E1E3EDEFE9EBF5F7F1F3FDFFF9FB<127:0> :
/*E*/ 0xC5C7C1C3CDCFC9CBD5D7D1D3DDDFD9DB<127:0> :
/*D*/ 0xA5A7A1A3ADAFA9ABB5B7B1B3BDBFB9BB<127:0> :
/*C*/ 0x858781838D8F898B959791939D9F999B<127:0> :
/*B*/ 0x656761636D6F696B757771737D7F797B<127:0> :
/*A*/ 0x454741434D4F494B555751535D5F595B<127:0> :
/*9*/ 0x252721232D2F292B353731333D3F393B<127:0> :
/*8*/ 0x050701030D0F090B151711131D1F191B<127:0> :
/*7*/ 0xFEFCFAF8F6F4F2F0EEECEAE8E6E4E2E0<127:0> :
/*6*/ 0xDEDCDAD8D6D4D2D0CECCCAC8C6C4C2C0<127:0> :
/*5*/ 0xBEBCBAB8B6B4B2B0AEACAAA8A6A4A2A0<127:0> :
/*4*/ 0x9E9C9A98969492908E8C8A8886848280<127:0> :
/*3*/ 0x7E7C7A78767472706E6C6A6866646260<127:0> :
/*2*/ 0x5E5C5A58565452504E4C4A4846444240<127:0> :
/*1*/ 0x3E3C3A38363432302E2C2A2826242220<127:0> :
/*0*/ 0x1E1C1A18161412100E0C0A0806040200<127:0>

);
return FFmul_02<UInt(b)*8+:8>;

Library pseudocode for shared/functions/crypto/FFmul03

// FFmul03()
// =========

bits(8) FFmul03(bits(8) b)
bits(256*8) FFmul_03 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
/*E*/ 0x2A292C2F26252023323134373E3D383B<127:0> :
/*D*/ 0x7A797C7F76757073626164676E6D686B<127:0> :
/*C*/ 0x4A494C4F46454043525154575E5D585B<127:0> :
/*B*/ 0xDAD9DCDFD6D5D0D3C2C1C4C7CECDC8CB<127:0> :
/*A*/ 0xEAE9ECEFE6E5E0E3F2F1F4F7FEFDF8FB<127:0> :
/*9*/ 0xBAB9BCBFB6B5B0B3A2A1A4A7AEADA8AB<127:0> :
/*8*/ 0x8A898C8F86858083929194979E9D989B<127:0> :
/*7*/ 0x818287848D8E8B88999A9F9C95969390<127:0> :
/*6*/ 0xB1B2B7B4BDBEBBB8A9AAAFACA5A6A3A0<127:0> :
/*5*/ 0xE1E2E7E4EDEEEBE8F9FAFFFCF5F6F3F0<127:0> :
/*4*/ 0xD1D2D7D4DDDEDBD8C9CACFCCC5C6C3C0<127:0> :
/*3*/ 0x414247444D4E4B48595A5F5C55565350<127:0> :
/*2*/ 0x717277747D7E7B78696A6F6C65666360<127:0> :
/*1*/ 0x212227242D2E2B28393A3F3C35363330<127:0> :
/*0*/ 0x111217141D1E1B18090A0F0C05060300<127:0>

);
return FFmul_03<UInt(b)*8+:8>;

Shared Pseudocode Functions Page 3047

Library pseudocode for shared/functions/crypto/FFmul09

// FFmul09()
// =========

bits(8) FFmul09(bits(8) b)
bits(256*8) FFmul_09 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x464F545D626B70790E071C152A233831<127:0> :
/*E*/ 0xD6DFC4CDF2FBE0E99E978C85BAB3A8A1<127:0> :
/*D*/ 0x7D746F6659504B42353C272E1118030A<127:0> :
/*C*/ 0xEDE4FFF6C9C0DBD2A5ACB7BE8188939A<127:0> :
/*B*/ 0x3039222B141D060F78716A635C554E47<127:0> :
/*A*/ 0xA0A9B2BB848D969FE8E1FAF3CCC5DED7<127:0> :
/*9*/ 0x0B0219102F263D34434A5158676E757C<127:0> :
/*8*/ 0x9B928980BFB6ADA4D3DAC1C8F7FEE5EC<127:0> :
/*7*/ 0xAAA3B8B18E879C95E2EBF0F9C6CFD4DD<127:0> :
/*6*/ 0x3A3328211E170C05727B6069565F444D<127:0> :
/*5*/ 0x9198838AB5BCA7AED9D0CBC2FDF4EFE6<127:0> :
/*4*/ 0x0108131A252C373E49405B526D647F76<127:0> :
/*3*/ 0xDCD5CEC7F8F1EAE3949D868FB0B9A2AB<127:0> :
/*2*/ 0x4C455E5768617A73040D161F2029323B<127:0> :
/*1*/ 0xE7EEF5FCC3CAD1D8AFA6BDB48B829990<127:0> :
/*0*/ 0x777E656C535A41483F362D241B120900<127:0>

);
return FFmul_09<UInt(b)*8+:8>;

Library pseudocode for shared/functions/crypto/FFmul0B

// FFmul0B()
// =========

bits(8) FFmul0B(bits(8) b)
bits(256*8) FFmul_0B = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0xA3A8B5BE8F849992FBF0EDE6D7DCC1CA<127:0> :
/*E*/ 0x1318050E3F3429224B405D56676C717A<127:0> :
/*D*/ 0xD8D3CEC5F4FFE2E9808B969DACA7BAB1<127:0> :
/*C*/ 0x68637E75444F5259303B262D1C170A01<127:0> :
/*B*/ 0x555E434879726F640D061B10212A373C<127:0> :
/*A*/ 0xE5EEF3F8C9C2DFD4BDB6ABA0919A878C<127:0> :
/*9*/ 0x2E2538330209141F767D606B5A514C47<127:0> :
/*8*/ 0x9E958883B2B9A4AFC6CDD0DBEAE1FCF7<127:0> :
/*7*/ 0x545F424978736E650C071A11202B363D<127:0> :
/*6*/ 0xE4EFF2F9C8C3DED5BCB7AAA1909B868D<127:0> :
/*5*/ 0x2F2439320308151E777C616A5B504D46<127:0> :
/*4*/ 0x9F948982B3B8A5AEC7CCD1DAEBE0FDF6<127:0> :
/*3*/ 0xA2A9B4BF8E859893FAF1ECE7D6DDC0CB<127:0> :
/*2*/ 0x1219040F3E3528234A415C57666D707B<127:0> :
/*1*/ 0xD9D2CFC4F5FEE3E8818A979CADA6BBB0<127:0> :
/*0*/ 0x69627F74454E5358313A272C1D160B00<127:0>

);
return FFmul_0B<UInt(b)*8+:8>;

Shared Pseudocode Functions Page 3048

Library pseudocode for shared/functions/crypto/FFmul0D

// FFmul0D()
// =========

bits(8) FFmul0D(bits(8) b)
bits(256*8) FFmul_0D = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x979A8D80A3AEB9B4FFF2E5E8CBC6D1DC<127:0> :
/*E*/ 0x474A5D50737E69642F2235381B16010C<127:0> :
/*D*/ 0x2C21363B1815020F44495E53707D6A67<127:0> :
/*C*/ 0xFCF1E6EBC8C5D2DF94998E83A0ADBAB7<127:0> :
/*B*/ 0xFAF7E0EDCEC3D4D9929F8885A6ABBCB1<127:0> :
/*A*/ 0x2A27303D1E130409424F5855767B6C61<127:0> :
/*9*/ 0x414C5B5675786F622924333E1D10070A<127:0> :
/*8*/ 0x919C8B86A5A8BFB2F9F4E3EECDC0D7DA<127:0> :
/*7*/ 0x4D40575A7974636E25283F32111C0B06<127:0> :
/*6*/ 0x9D90878AA9A4B3BEF5F8EFE2C1CCDBD6<127:0> :
/*5*/ 0xF6FBECE1C2CFD8D59E938489AAA7B0BD<127:0> :
/*4*/ 0x262B3C31121F08054E4354597A77606D<127:0> :
/*3*/ 0x202D3A3714190E034845525F7C71666B<127:0> :
/*2*/ 0xF0FDEAE7C4C9DED39895828FACA1B6BB<127:0> :
/*1*/ 0x9B96818CAFA2B5B8F3FEE9E4C7CADDD0<127:0> :
/*0*/ 0x4B46515C7F726568232E3934171A0D00<127:0>

);
return FFmul_0D<UInt(b)*8+:8>;

Library pseudocode for shared/functions/crypto/FFmul0E

// FFmul0E()
// =========

bits(8) FFmul0E(bits(8) b)
bits(256*8) FFmul_0E = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x8D83919FB5BBA9A7FDF3E1EFC5CBD9D7<127:0> :
/*E*/ 0x6D63717F555B49471D13010F252B3937<127:0> :
/*D*/ 0x56584A446E60727C26283A341E10020C<127:0> :
/*C*/ 0xB6B8AAA48E80929CC6C8DAD4FEF0E2EC<127:0> :
/*B*/ 0x202E3C321816040A505E4C426866747A<127:0> :
/*A*/ 0xC0CEDCD2F8F6E4EAB0BEACA28886949A<127:0> :
/*9*/ 0xFBF5E7E9C3CDDFD18B859799B3BDAFA1<127:0> :
/*8*/ 0x1B150709232D3F316B657779535D4F41<127:0> :
/*7*/ 0xCCC2D0DEF4FAE8E6BCB2A0AE848A9896<127:0> :
/*6*/ 0x2C22303E141A08065C52404E646A7876<127:0> :
/*5*/ 0x17190B052F21333D67697B755F51434D<127:0> :
/*4*/ 0xF7F9EBE5CFC1D3DD87899B95BFB1A3AD<127:0> :
/*3*/ 0x616F7D735957454B111F0D032927353B<127:0> :
/*2*/ 0x818F9D93B9B7A5ABF1FFEDE3C9C7D5DB<127:0> :
/*1*/ 0xBAB4A6A8828C9E90CAC4D6D8F2FCEEE0<127:0> :
/*0*/ 0x5A544648626C7E702A243638121C0E00<127:0>

);
return FFmul_0E<UInt(b)*8+:8>;

Library pseudocode for shared/functions/crypto/HaveAESExt

// HaveAESExt()
// ============
// TRUE if AES cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveAESExt()
return boolean IMPLEMENTATION_DEFINED "Has AES Crypto instructions";

Shared Pseudocode Functions Page 3049

Library pseudocode for shared/functions/crypto/HaveBit128PMULLExt

// HaveBit128PMULLExt()
// ====================
// TRUE if 128 bit form of PMULL instructions support is implemented,
// FALSE otherwise.

boolean HaveBit128PMULLExt()
return boolean IMPLEMENTATION_DEFINED "Has 128-bit form of PMULL instructions";

Library pseudocode for shared/functions/crypto/HaveSHA1Ext

// HaveSHA1Ext()
// =============
// TRUE if SHA1 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA1Ext()
return boolean IMPLEMENTATION_DEFINED "Has SHA1 Crypto instructions";

Library pseudocode for shared/functions/crypto/HaveSHA256Ext

// HaveSHA256Ext()
// ===============
// TRUE if SHA256 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA256Ext()
return boolean IMPLEMENTATION_DEFINED "Has SHA256 Crypto instructions";

Library pseudocode for shared/functions/crypto/HaveSHA3Ext

// HaveSHA3Ext()
// =============
// TRUE if SHA3 cryptographic instructions support is implemented,
// and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA3Ext()
if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then

return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SHA3 Crypto instructions";

Library pseudocode for shared/functions/crypto/HaveSHA512Ext

// HaveSHA512Ext()
// ===============
// TRUE if SHA512 cryptographic instructions support is implemented,
// and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA512Ext()
if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then

return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SHA512 Crypto instructions";

Shared Pseudocode Functions Page 3050

Library pseudocode for shared/functions/crypto/HaveSM3Ext

// HaveSM3Ext()
// ============
// TRUE if SM3 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM3Ext()
if !HasArchVersion(ARMv8p2) then

return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SM3 Crypto instructions";

Library pseudocode for shared/functions/crypto/HaveSM4Ext

// HaveSM4Ext()
// ============
// TRUE if SM4 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM4Ext()
if !HasArchVersion(ARMv8p2) then

return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SM4 Crypto instructions";

Library pseudocode for shared/functions/crypto/ROL

// ROL()
// =====

bits(N) ROL(bits(N) x, integer shift)
assert shift >= 0 && shift <= N;
if (shift == 0) then

return x;
return ROR(x, N-shift);

Library pseudocode for shared/functions/crypto/SHA256hash

// SHA256hash()
// ============

bits(128) SHA256hash(bits (128) X, bits(128) Y, bits(128) W, boolean part1)
bits(32) chs, maj, t;

for e = 0 to 3
chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
X<127:96> = t + X<127:96>;
Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
<Y, X> = ROL(Y : X, 32);

return (if part1 then X else Y);

Library pseudocode for shared/functions/crypto/SHAchoose

// SHAchoose()
// ===========

bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
return (((y EOR z) AND x) EOR z);

Shared Pseudocode Functions Page 3051

Library pseudocode for shared/functions/crypto/SHAhashSIGMA0

// SHAhashSIGMA0()
// ===============

bits(32) SHAhashSIGMA0(bits(32) x)
return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

Library pseudocode for shared/functions/crypto/SHAhashSIGMA1

// SHAhashSIGMA1()
// ===============

bits(32) SHAhashSIGMA1(bits(32) x)
return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

Library pseudocode for shared/functions/crypto/SHAmajority

// SHAmajority()
// =============

bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
return ((x AND y) OR ((x OR y) AND z));

Library pseudocode for shared/functions/crypto/SHAparity

// SHAparity()
// ===========

bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
return (x EOR y EOR z);

Library pseudocode for shared/functions/crypto/Sbox

// Sbox()
// ======
// Used in SM4E crypto instruction

bits(8) Sbox(bits(8) sboxin)
bits(8) sboxout;
bits(2048) sboxstring = 0xd690e9fecce13db716b614c228fb2c052b679a762abe04c3aa441326498606999c4250f491ef987a33540b43edcfac62e4b31ca9c908e89580df94fa758f3fa64707a7fcf37317ba83593c19e6854fa8686b81b27164da8bf8eb0f4b70569d351e240e5e6358d1a225227c3b01217887d40046579fd327524c3602e7a0c4c89eeabf8ad240c738b5a3f7f2cef96115a1e0ae5da49b341a55ad933230f58cb1e31df6e22e8266ca60c02923ab0d534e6fd5db3745defd8e2f03ff6a726d6c5b518d1baf92bbddbc7f11d95c411f105ad80ac13188a5cd7bbd2d74d012b8e5b4b08969974a0c96777e65b9f109c56ec68418f07dec3adc4d2079ee5f3ed7cb3948<2047:0>;

sboxout = sboxstring<(255-UInt(sboxin))*8+7:(255-UInt(sboxin))*8>;
return sboxout;

Library pseudocode for shared/functions/exclusive/ClearExclusiveByAddress

// Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
// record any part of the physical address region of size bytes starting at paddress.
// It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
// is also cleared if it records any part of the address region.
ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/ClearExclusiveLocal

// Clear the local Exclusives monitor for the specified processorid.
ClearExclusiveLocal(integer processorid);

Shared Pseudocode Functions Page 3052

Library pseudocode for shared/functions/exclusive/ClearExclusiveMonitors

// ClearExclusiveMonitors()
// ========================
// Clear the local Exclusives monitor for the executing PE.

ClearExclusiveMonitors()
ClearExclusiveLocal(ProcessorID());

Library pseudocode for shared/functions/exclusive/ExclusiveMonitorsStatus

// Returns '0' to indicate success if the last memory write by this PE was to
// the same physical address region endorsed by ExclusiveMonitorsPass().
// Returns '1' to indicate failure if address translation resulted in a different
// physical address.
bit ExclusiveMonitorsStatus();

Library pseudocode for shared/functions/exclusive/IsExclusiveGlobal

// Return TRUE if the global Exclusives monitor for processorid includes all of
// the physical address region of size bytes starting at paddress.
boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/IsExclusiveLocal

// Return TRUE if the local Exclusives monitor for processorid includes all of
// the physical address region of size bytes starting at paddress.
boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/MarkExclusiveGlobal

// Record the physical address region of size bytes starting at paddress in
// the global Exclusives monitor for processorid.
MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/MarkExclusiveLocal

// Record the physical address region of size bytes starting at paddress in
// the local Exclusives monitor for processorid.
MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/ProcessorID

// Return the ID of the currently executing PE.
integer ProcessorID();

Library pseudocode for shared/functions/extension/AArch32.HaveHPDExt

// AArch32.HaveHPDExt()
// ====================

boolean AArch32.HaveHPDExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/AArch64.HaveHPDExt

// AArch64.HaveHPDExt()
// ====================

boolean AArch64.HaveHPDExt()
return HasArchVersion(ARMv8p1);

Shared Pseudocode Functions Page 3053

Library pseudocode for shared/functions/extension/Have52BitIPAAndPASpaceExt

// Have52BitIPAAndPASpaceExt()
// ===========================
// Returns TRUE if 52-bit IPA and PA extension support
// is implemented, and FALSE otherwise.

boolean Have52BitIPAAndPASpaceExt()
return (HasArchVersion(ARMv8p7) &&

boolean IMPLEMENTATION_DEFINED "Has 52-bit IPA and PA support" &&
Have52BitVAExt() && Have52BitPAExt());

Library pseudocode for shared/functions/extension/Have52BitPAExt

// Have52BitPAExt()
// ================
// Returns TRUE if Large Physical Address extension
// support is implemented and FALSE otherwise.

boolean Have52BitPAExt()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit PA/IPA support";

Library pseudocode for shared/functions/extension/Have52BitVAExt

// Have52BitVAExt()
// ================
// Returns TRUE if Large Virtual Address extension
// support is implemented and FALSE otherwise.

boolean Have52BitVAExt()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit VA support";

Library pseudocode for shared/functions/extension/HaveAArch32BF16Ext

// HaveAArch32BF16Ext()
// ====================
// Returns TRUE if AArch32 BFloat16 instruction support is implemented, and FALSE otherwise.

boolean HaveAArch32BF16Ext()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 BFloat16 extension";

Library pseudocode for shared/functions/extension/HaveAArch32Int8MatMulExt

// HaveAArch32Int8MatMulExt()
// ==========================
// Returns TRUE if AArch32 8-bit integer matrix multiply instruction support
// implemented, and FALSE otherwise.

boolean HaveAArch32Int8MatMulExt()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 Int8 Mat Mul extension";

Library pseudocode for shared/functions/extension/HaveAltFP

// HaveAltFP()
// ===========
// Returns TRUE if alternative Floating-point extension support
// is implemented, and FALSE otherwise.

boolean HaveAltFP()
return HasArchVersion(ARMv8p7);

Shared Pseudocode Functions Page 3054

Library pseudocode for shared/functions/extension/HaveAtomicExt

// HaveAtomicExt()
// ===============

boolean HaveAtomicExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/HaveBF16Ext

// HaveBF16Ext()
// =============
// Returns TRUE if AArch64 BFloat16 instruction support is implemented, and FALSE otherwise.

boolean HaveBF16Ext()
return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch64 BFloat16 extension");

Library pseudocode for shared/functions/extension/HaveBTIExt

// HaveBTIExt()
// ============
// Returns TRUE if support for Branch Target Indentification is implemented.

boolean HaveBTIExt()
return HasArchVersion(ARMv8p5);

Library pseudocode for shared/functions/extension/HaveBlockBBM

// HaveBlockBBM()
// ==============
// Returns TRUE if support for changing block size without requring break-before-make is implemented.

boolean HaveBlockBBM()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveCNTSCExt

// HaveCNTSCExt()
// ==============
// Returns TRUE if the Generic Counter Scaling is implemented, and FALSE
// otherwise.

boolean HaveCNTSCExt()
return (HasArchVersion(ARMv8p4) &&

boolean IMPLEMENTATION_DEFINED "Has Generic Counter Scaling support");

Library pseudocode for shared/functions/extension/HaveCommonNotPrivateTransExt

// HaveCommonNotPrivateTransExt()
// ==============================

boolean HaveCommonNotPrivateTransExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveDGHExt

// HaveDGHExt()
// ============
// Returns TRUE if Data Gathering Hint instruction support is implemented, and FALSE otherwise.

boolean HaveDGHExt()
return boolean IMPLEMENTATION_DEFINED "Has AArch64 DGH extension";

Shared Pseudocode Functions Page 3055

Library pseudocode for shared/functions/extension/HaveDITExt

// HaveDITExt()
// ============

boolean HaveDITExt()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveDOTPExt

// HaveDOTPExt()
// =============
// Returns TRUE if Dot Product feature support is implemented, and FALSE otherwise.

boolean HaveDOTPExt()
return HasArchVersion(ARMv8p4) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has Dot Product extension");

Library pseudocode for shared/functions/extension/HaveDoPD

// HaveDoPD()
// ==========
// Returns TRUE if Debug Over Power Down extension
// support is implemented and FALSE otherwise.

boolean HaveDoPD()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has DoPD extension";

Library pseudocode for shared/functions/extension/HaveDoubleFaultExt

// HaveDoubleFaultExt()
// ====================

boolean HaveDoubleFaultExt()
return (HasArchVersion(ARMv8p4) && HaveEL(EL3) && !ELUsingAArch32(EL3) && HaveIESB());

Library pseudocode for shared/functions/extension/HaveDoubleLock

// HaveDoubleLock()
// ================
// Returns TRUE if support for the OS Double Lock is implemented.

boolean HaveDoubleLock()
return !HasArchVersion(ARMv8p4) || boolean IMPLEMENTATION_DEFINED "OS Double Lock is implemented";

Library pseudocode for shared/functions/extension/HaveE0PDExt

// HaveE0PDExt()
// =============
// Returns TRUE if support for constant fault times for unprivileged accesses
// to the memory map is implemented.

boolean HaveE0PDExt()
return HasArchVersion(ARMv8p5);

Library pseudocode for shared/functions/extension/HaveECVExt

// HaveECVExt()
// ============
// Returns TRUE if Enhanced Counter Virtualization extension
// support is implemented, and FALSE otherwise.

boolean HaveECVExt()
return HasArchVersion(ARMv8p6);

Shared Pseudocode Functions Page 3056

Library pseudocode for shared/functions/extension/HaveEMPAMExt

// HaveEMPAMExt()
// ==============
// Returns TRUE if Enhanced MPAM is implemented, and FALSE otherwise.

boolean HaveEMPAMExt()
return (HasArchVersion(ARMv8p6) &&

HaveMPAMExt() &&
boolean IMPLEMENTATION_DEFINED "Has enhanced MPAM extension");

Library pseudocode for shared/functions/extension/HaveExtendedCacheSets

// HaveExtendedCacheSets()
// =======================

boolean HaveExtendedCacheSets()
return HasArchVersion(ARMv8p3);

Library pseudocode for shared/functions/extension/HaveExtendedECDebugEvents

// HaveExtendedECDebugEvents()
// ===========================

boolean HaveExtendedECDebugEvents()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveExtendedExecuteNeverExt

// HaveExtendedExecuteNeverExt()
// =============================

boolean HaveExtendedExecuteNeverExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveFCADDExt

// HaveFCADDExt()
// ==============

boolean HaveFCADDExt()
return HasArchVersion(ARMv8p3);

Library pseudocode for shared/functions/extension/HaveFGTExt

// HaveFGTExt()
// ============
// Returns TRUE if Fine Grained Trap is implemented, and FALSE otherwise.

boolean HaveFGTExt()
return HasArchVersion(ARMv8p6) && !ELUsingAArch32(EL2);

Library pseudocode for shared/functions/extension/HaveFJCVTZSExt

// HaveFJCVTZSExt()
// ================

boolean HaveFJCVTZSExt()
return HasArchVersion(ARMv8p3);

Shared Pseudocode Functions Page 3057

Library pseudocode for shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext

// HaveFP16MulNoRoundingToFP32Ext()
// ================================
// Returns TRUE if has FP16 multiply with no intermediate rounding accumulate to FP32 instructions,
// and FALSE otherwise

boolean HaveFP16MulNoRoundingToFP32Ext()
if !HaveFP16Ext() then return FALSE;
if HasArchVersion(ARMv8p4) then return TRUE;
return (HasArchVersion(ARMv8p2) &&

boolean IMPLEMENTATION_DEFINED "Has accumulate FP16 product into FP32 extension");

Library pseudocode for shared/functions/extension/HaveFeatHCX

// HaveFeatHCX()
// =============
// Returns TRUE if HCRX_EL2 Trap Control register is implemented,
// and FALSE otherwise.

boolean HaveFeatHCX()
return HasArchVersion(ARMv8p7);

Library pseudocode for shared/functions/extension/HaveFeatLS64

// HaveFeatLS64()
// ==============
// Returns TRUE if the LD64B, ST64B, ST64BV, and ST64BV0 instructions are
// supported, and FALSE otherwise.

boolean HaveFeatLS64()
return (HasArchVersion(ARMv8p7) &&

boolean IMPLEMENTATION_DEFINED "Has Load Store 64-Byte instruction support");

Library pseudocode for shared/functions/extension/HaveFeatRPRES

// HaveFeatRPRES()
// ===============
// Returns TRUE if reciprocal estimate implements 12-bit precision
// when FPCR.AH=1, and FALSE otherwise.

boolean HaveFeatRPRES()
return (HasArchVersion(ARMv8p7) &&

(boolean IMPLEMENTATION_DEFINED "Has increased Reciprocal Estimate and Square Root Estimate precision support") &&
HaveAltFP());

Library pseudocode for shared/functions/extension/HaveFeatWFxT

// HaveFeatWFxT()
// ==============
// Returns TRUE if WFET and WFIT instruction support is implemented,
// and FALSE otherwise.

boolean HaveFeatWFxT()
return HasArchVersion(ARMv8p7);

Library pseudocode for shared/functions/extension/HaveFeatWFxT2

// HaveFeatWFxT2()
// ===============
// Returns TRUE if the register number is reported in the ESR_ELx
// on exceptions to WFIT and WFET.

boolean HaveFeatWFxT2()
return HaveFeatWFxT() && boolean IMPLEMENTATION_DEFINED "Has feature WFxT2";

Shared Pseudocode Functions Page 3058

Library pseudocode for shared/functions/extension/HaveFeatXS

// HaveFeatXS()
// ============
// Returns TRUE if XS attribute and the TLBI and DSB instructions with nXS qualifier
// are supported, and FALSE otherwise.

boolean HaveFeatXS()
return HasArchVersion(ARMv8p7);

Library pseudocode for shared/functions/extension/HaveFlagFormatExt

// HaveFlagFormatExt()
// ===================
// Returns TRUE if flag format conversion instructions implemented.

boolean HaveFlagFormatExt()
return HasArchVersion(ARMv8p5);

Library pseudocode for shared/functions/extension/HaveFlagManipulateExt

// HaveFlagManipulateExt()
// =======================
// Returns TRUE if flag manipulate instructions are implemented.

boolean HaveFlagManipulateExt()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveFrintExt

// HaveFrintExt()
// ==============
// Returns TRUE if FRINT instructions are implemented.

boolean HaveFrintExt()
return HasArchVersion(ARMv8p5);

Library pseudocode for shared/functions/extension/HaveHPMDExt

// HaveHPMDExt()
// =============

boolean HaveHPMDExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/HaveIDSExt

// HaveIDSExt()
// ============
// Returns TRUE if ID register handling feature is implemented.

boolean HaveIDSExt()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveIESB

// HaveIESB()
// ==========

boolean HaveIESB()
return (HaveRASExt() &&

boolean IMPLEMENTATION_DEFINED "Has Implicit Error Synchronization Barrier");

Shared Pseudocode Functions Page 3059

Library pseudocode for shared/functions/extension/HaveInt8MatMulExt

// HaveInt8MatMulExt()
// ===================
// Returns TRUE if AArch64 8-bit integer matrix multiply instruction support
// implemented, and FALSE otherwise.

boolean HaveInt8MatMulExt()
return HasArchVersion(ARMv8p6) || (HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch64 Int8 Mat Mul extension");

Library pseudocode for shared/functions/extension/HaveLSE2Ext

// HaveLSE2Ext()
// =============
// Returns TRUE if LSE2 is implemented, and FALSE otherwise.

boolean HaveLSE2Ext()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveMPAMExt

// HaveMPAMExt()
// =============
// Returns TRUE if MPAM is implemented, and FALSE otherwise.

boolean HaveMPAMExt()
return (HasArchVersion(ARMv8p2) &&

boolean IMPLEMENTATION_DEFINED "Has MPAM extension");

Library pseudocode for shared/functions/extension/HaveMTE2Ext

// HaveMTE2Ext()
// =============
// Returns TRUE if MTE support is beyond EL0, and FALSE otherwise.

boolean HaveMTE2Ext()
if !HasArchVersion(ARMv8p5) then

return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has MTE2 extension";

Library pseudocode for shared/functions/extension/HaveMTE3Ext

// HaveMTE3Ext()
// =============
// Returns TRUE if MTE Asymmetric Fault Handling support is
// implemented, and FALSE otherwise.

boolean HaveMTE3Ext()
return ((HasArchVersion(ARMv8p7) && HaveMTE2Ext()) || (HasArchVersion(ARMv8p5) &&

boolean IMPLEMENTATION_DEFINED "Has MTE3 extension"));

Library pseudocode for shared/functions/extension/HaveMTEExt

// HaveMTEExt()
// ============
// Returns TRUE if MTE implemented, and FALSE otherwise.

boolean HaveMTEExt()
if !HasArchVersion(ARMv8p5) then

return FALSE;
if HaveMTE2Ext() then

return TRUE;
return boolean IMPLEMENTATION_DEFINED "Has MTE extension";

Shared Pseudocode Functions Page 3060

Library pseudocode for shared/functions/extension/HaveNV2Ext

// HaveNV2Ext()
// ============
// Returns TRUE if Enhanced Nested Virtualization is implemented.

boolean HaveNV2Ext()
return (HasArchVersion(ARMv8p4) && HaveNVExt()

&& boolean IMPLEMENTATION_DEFINED "Has support for Enhanced Nested Virtualization");

Library pseudocode for shared/functions/extension/HaveNVExt

// HaveNVExt()
// ===========
// Returns TRUE if Nested Virtualization is implemented.

boolean HaveNVExt()
return HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has Nested Virtualization";

Library pseudocode for shared/functions/extension/HaveNoSecurePMUDisableOverride

// HaveNoSecurePMUDisableOverride()
// ================================

boolean HaveNoSecurePMUDisableOverride()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveNoninvasiveDebugAuth

// HaveNoninvasiveDebugAuth()
// ==========================
// Returns TRUE if the Non-invasive debug controls are implemented.

boolean HaveNoninvasiveDebugAuth()
return !HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HavePAN3Ext

// HavePAN3Ext()
// =============
// Returns TRUE if SCTLR_EL1.EPAN and SCTLR_EL2.EPAN support is implemented,
// and FALSE otherwise.

boolean HavePAN3Ext()
return HasArchVersion(ARMv8p7) || (HasArchVersion(ARMv8p1) &&

boolean IMPLEMENTATION_DEFINED "Has PAN3 extension");

Library pseudocode for shared/functions/extension/HavePANExt

// HavePANExt()
// ============

boolean HavePANExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/HavePMUv3p7

// HavePMUv3p7()
// =============
// Returns TRUE if the PMUv3p7 extension is implemented, and FALSE otherwise.

boolean HavePMUv3p7()
return (HasArchVersion(ARMv8p7) && Havev85PMU() &&

boolean IMPLEMENTATION_DEFINED "Has PMUv3p7 extension");

Shared Pseudocode Functions Page 3061

Library pseudocode for shared/functions/extension/HavePageBasedHardwareAttributes

// HavePageBasedHardwareAttributes()
// =================================

boolean HavePageBasedHardwareAttributes()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HavePrivATExt

// HavePrivATExt()
// ===============

boolean HavePrivATExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveQRDMLAHExt

// HaveQRDMLAHExt()
// ================

boolean HaveQRDMLAHExt()
return HasArchVersion(ARMv8p1);

boolean HaveAccessFlagUpdateExt()
return HasArchVersion(ARMv8p1);

boolean HaveDirtyBitModifierExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/HaveRASExt

// HaveRASExt()
// ============

boolean HaveRASExt()
return (HasArchVersion(ARMv8p2) ||

boolean IMPLEMENTATION_DEFINED "Has RAS extension");

Library pseudocode for shared/functions/extension/HaveRNG

// HaveRNG()
// =========
// Returns TRUE if Random Number Generator extension
// support is implemented and FALSE otherwise.

boolean HaveRNG()
return HasArchVersion(ARMv8p5) && boolean IMPLEMENTATION_DEFINED "Has RNG extension";

Library pseudocode for shared/functions/extension/HaveSBExt

// HaveSBExt()
// ===========
// Returns TRUE if support for SB is implemented, and FALSE otherwise.

boolean HaveSBExt()
return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SB extension";

Shared Pseudocode Functions Page 3062

Library pseudocode for shared/functions/extension/HaveSSBSExt

// HaveSSBSExt()
// =============
// Returns TRUE if support for SSBS is implemented, and FALSE otherwise.

boolean HaveSSBSExt()
return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SSBS extension";

Library pseudocode for shared/functions/extension/HaveSecureEL2Ext

// HaveSecureEL2Ext()
// ==================
// Returns TRUE if Secure EL2 is implemented.

boolean HaveSecureEL2Ext()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveSecureExtDebugView

// HaveSecureExtDebugView()
// ========================
// Returns TRUE if support for Secure and Non-secure views of debug peripherals is implemented.

boolean HaveSecureExtDebugView()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveSelfHostedTrace

// HaveSelfHostedTrace()
// =====================

boolean HaveSelfHostedTrace()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveSmallTranslationTblExt

// HaveSmallTranslationTblExt()
// ============================
// Returns TRUE if Small Translation Table Support is implemented.

boolean HaveSmallTranslationTableExt()
return HasArchVersion(ARMv8p4) && boolean IMPLEMENTATION_DEFINED "Has Small Translation Table extension";

Library pseudocode for shared/functions/extension/HaveSoftwareLock

// HaveSoftwareLock()
// ==================
// Returns TRUE if Software Lock is implemented.

boolean HaveSoftwareLock(Component component)
if Havev8p4Debug() then

return FALSE;
if HaveDoPD() && component != Component_CTI then

return FALSE;
case component of

when Component_Debug
return boolean IMPLEMENTATION_DEFINED "Debug has Software Lock";

when Component_PMU
return boolean IMPLEMENTATION_DEFINED "PMU has Software Lock";

when Component_CTI
return boolean IMPLEMENTATION_DEFINED "CTI has Software Lock";

otherwise
Unreachable();

Shared Pseudocode Functions Page 3063

Library pseudocode for shared/functions/extension/HaveStage2MemAttrControl

// HaveStage2MemAttrControl()
// ==========================
// Returns TRUE if support for Stage2 control of memory types and cacheability attributes is implemented.

boolean HaveStage2MemAttrControl()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/HaveStatisticalProfiling

// HaveStatisticalProfiling()
// ==========================
// Returns TRUE if Statistical Profiling Extension is implemented,
// and FALSE otherwise.

boolean HaveStatisticalProfiling()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveStatisticalProfilingv1p1

// HaveStatisticalProfilingv1p1()
// ==============================
// Returns TRUE if the SPEv1p1 extension is implemented, and FALSE otherwise.

boolean HaveStatisticalProfilingv1p1()
return (HasArchVersion(ARMv8p3) &&

boolean IMPLEMENTATION_DEFINED "Has SPEv1p1 extension");

Library pseudocode for shared/functions/extension/HaveStatisticalProfilingv1p2

// HaveStatisticalProfilingv1p2()
// ==============================
// Returns TRUE if the SPEv1p2 extension is implemented, and FALSE otherwise.

boolean HaveStatisticalProfilingv1p2()
return (HasArchVersion(ARMv8p7) && HaveStatisticalProfiling() &&

boolean IMPLEMENTATION_DEFINED "Has SPEv1p2 extension");

Library pseudocode for shared/functions/extension/HaveTWEDExt

// HaveTWEDExt()
// =============
// Returns TRUE if Delayed Trapping of WFE instruction support is implemented, and FALSE otherwise.

boolean HaveTWEDExt()
return boolean IMPLEMENTATION_DEFINED "Has TWED extension";

Library pseudocode for shared/functions/extension/HaveTraceExt

// HaveTraceExt()
// ==============
// Returns TRUE if Trace functionality as described by the Trace Architecture
// is implemented.

boolean HaveTraceExt()
return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";

Library pseudocode for shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt

// HaveTrapLoadStoreMultipleDeviceExt()
// ====================================

boolean HaveTrapLoadStoreMultipleDeviceExt()
return HasArchVersion(ARMv8p2);

Shared Pseudocode Functions Page 3064

Library pseudocode for shared/functions/extension/HaveUAOExt

// HaveUAOExt()
// ============

boolean HaveUAOExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveV82Debug

// HaveV82Debug()
// ==============

boolean HaveV82Debug()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveVirtHostExt

// HaveVirtHostExt()
// =================

boolean HaveVirtHostExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/Havev85PMU

// Havev85PMU()
// ============
// Returns TRUE if v8.5-Performance Monitor Unit extension
// support is implemented, and FALSE otherwise.

boolean Havev85PMU()
return HasArchVersion(ARMv8p5) && boolean IMPLEMENTATION_DEFINED "Has PMUv3p5 extension";

Library pseudocode for shared/functions/extension/Havev8p4Debug

// Havev8p4Debug()
// ===============
// Returns TRUE if support for the Debugv8p4 feature is implemented and FALSE otherwise.

boolean Havev8p4Debug()
return HasArchVersion(ARMv8p4);

Library pseudocode for shared/functions/extension/InsertIESBBeforeException

// If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
// SError interrupt must be taken before executing any instructions in the exception handler.
// However, this can be before the branch to the exception handler is made.
boolean InsertIESBBeforeException(bits(2) el);

Shared Pseudocode Functions Page 3065

Library pseudocode for shared/functions/externalaborts/HandleExternalAbort

// HandleExternalAbort()
// =====================
// Takes a Synchronous/Asynchronous abort based on fault.

HandleExternalAbort(PhysMemRetStatus memretstatus, boolean iswrite,
AddressDescriptor memaddrdesc, integer size,
AccessDescriptor accdesc)

assert (memretstatus.statuscode IN {Fault_SyncExternal, Fault_AsyncExternal} ||
(!HaveRASExt() && memretstatus.statuscode IN {Fault_SyncParity,

Fault_AsyncParity}));
fault = NoFault();
fault.statuscode = memretstatus.statuscode;
fault.write = iswrite;
fault.extflag = memretstatus.extflag;
fault.acctype = memretstatus.acctype;
// It is implementation specific whether external aborts signaled
// in-band synchronously are taken synchronously or asynchronously
if (IsExternalSyncAbort(fault) &&

!IsExternalAbortTakenSynchronously(memretstatus, iswrite, memaddrdesc,
size, accdesc)) then

if fault.statuscode == Fault_SyncParity then
fault.statuscode = Fault_AsyncParity;

else
fault.statuscode = Fault_AsyncExternal;

if HaveRASExt() then
fault.errortype = PEErrorState(memretstatus);

else
fault.errortype = bits(2) UNKNOWN;

if IsExternalSyncAbort(fault) then
if UsingAArch32() then

AArch32.Abort(memaddrdesc.vaddress<31:0>, fault);
else

AArch64.Abort(memaddrdesc.vaddress, fault);

else
PendSErrorInterrupt(fault);

Library pseudocode for shared/functions/externalaborts/HandleExternalReadAbort

// HandleExternalReadAbort()
// =========================
// Wrapper function for HandleExternalAbort function in case of an External
// Abort on memory read.

HandleExternalReadAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
integer size, AccessDescriptor accdesc)

iswrite = FALSE;
HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

Shared Pseudocode Functions Page 3066

Library pseudocode for shared/functions/externalaborts/HandleExternalTTWAbort

// HandleExternalTTWAbort()
// ========================
// Take Asynchronous abort or update FaultRecord for Translation Walk
// based on PhysMemRetStatus.

FaultRecord HandleExternalTTWAbort(PhysMemRetStatus memretstatus, boolean iswrite,
AddressDescriptor memaddrdesc,
AccessDescriptor accdesc, integer size,
FaultRecord input_fault)

output_fault = input_fault;
output_fault.extflag = memretstatus.extflag;
output_fault.statuscode = memretstatus.statuscode;
if (IsExternalSyncAbort(output_fault) &&

!IsExternalAbortTakenSynchronously(memretstatus, iswrite,
memaddrdesc,
size, accdesc)) then

if output_fault.statuscode == Fault_SyncParity then
output_fault.statuscode = Fault_AsyncParity;

else
output_fault.statuscode = Fault_AsyncExternal;

// If a synchronous fault is on a translation table walk, then update
// the fault type
if IsExternalSyncAbort(output_fault) then

if output_fault.statuscode == Fault_SyncParity then
output_fault.statuscode = Fault_SyncParityOnWalk;

else
output_fault.statuscode = Fault_SyncExternalOnWalk;

if HaveRASExt() then
output_fault.errortype = PEErrorState(memretstatus);

else
output_fault.errortype = bits(2) UNKNOWN;

if !IsExternalSyncAbort(output_fault) then
PendSErrorInterrupt(output_fault);
output_fault.statuscode = Fault_None;

return output_fault;

Library pseudocode for shared/functions/externalaborts/HandleExternalWriteAbort

// HandleExternalWriteAbort()
// ==========================
// Wrapper function for HandleExternalAbort function in case of an External
// Abort on memory write.

HandleExternalWriteAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
integer size, AccessDescriptor accdesc)

iswrite = TRUE;
HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

Shared Pseudocode Functions Page 3067

Library pseudocode for shared/functions/externalaborts/IsExternalAbortTakenSynchronously

// Return an implementation specific value:
// TRUE if the fault returned for the access can be taken synchronously,
// FALSE otherwise.
// This might vary between accesses, for example depending on the error type
// or memory type being accessed.
// External aborts on data accesses and translation table walks on data accesses
// can be either synchronous or asynchronous.
// When FEAT_DoubleFault is not implemented, External aborts on instruction
// fetches and translation table walks on instruction fetches can be either
// synchronous or asynchronous.
// When FEAT_DoubleFault is implemented, all External abort exceptions on
// instruction fetches and translation table walks on instruction fetches
// must be synchronous.
boolean IsExternalAbortTakenSynchronously(PhysMemRetStatus memstatus,

boolean iswrite,
AddressDescriptor desc,
integer size,
AccessDescriptor accdesc);

Library pseudocode for shared/functions/externalaborts/PEErrorState

// Return the implementation specific PE error state.
// memstatus is the response returned from the system.
// It is implementation specific whether this is used or ignored.
bits(2) PEErrorState(PhysMemRetStatus memstatus);

Library pseudocode for shared/functions/externalaborts/PendSErrorInterrupt

// Pend the SError.
PendSErrorInterrupt(FaultRecord fault);

Shared Pseudocode Functions Page 3068

Library pseudocode for shared/functions/float/bfloat/BFAdd

// BFAdd()
// =======
// Single-precision add following BFloat16 computation behaviors.

bits(32) BFAdd(bits(32) op1, bits(32) op2)

bits(32) result;

FPCRType fpcr = FPCR[];
(type1,sign1,value1) = BFUnpack(op1);
(type2,sign2,value2) = BFUnpack(op2);
if type1 == FPType_QNaN || type2 == FPType_QNaN then

result = FPDefaultNaN(fpcr);
else

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == NOT(sign2) then

result = FPDefaultNaN(fpcr);
elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then

result = FPInfinity('0');
elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then

result = FPInfinity('1');
elsif zero1 && zero2 && sign1 == sign2 then

result = FPZero(sign1);
else

result_value = value1 + value2;
if result_value == 0.0 then

result = FPZero('0'); // Positive sign when Round to Odd
else

result = BFRound(result_value);

return result;

Library pseudocode for shared/functions/float/bfloat/BFDotAdd

// BFDotAdd()
// ==========
// BFloat16 2-way dot-product and add to single-precision
// result = addend + op1_a*op2_a + op1_b*op2_b

bits(32) BFDotAdd(bits(32) addend, bits(16) op1_a, bits(16) op1_b,
bits(16) op2_a, bits(16) op2_b, FPCRType fpcr)

bits(32) prod;

prod = BFAdd(BFMul(op1_a, op2_a), BFMul(op1_b, op2_b));
result = BFAdd(addend, prod);

return result;

Shared Pseudocode Functions Page 3069

Library pseudocode for shared/functions/float/bfloat/BFMatMulAdd

// BFMatMulAdd()
// =============
// BFloat16 matrix multiply and add to single-precision matrix
// result[2, 2] = addend[2, 2] + (op1[2, 4] * op2[4, 2])

bits(N) BFMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2)

assert N == 128;

bits(N) result;
bits(32) sum;

for i = 0 to 1
for j = 0 to 1

sum = Elem[addend, 2*i + j, 32];
for k = 0 to 1

bits(16) elt1_a = Elem[op1, 4*i + 2*k + 0, 16];
bits(16) elt1_b = Elem[op1, 4*i + 2*k + 1, 16];
bits(16) elt2_a = Elem[op2, 4*j + 2*k + 0, 16];
bits(16) elt2_b = Elem[op2, 4*j + 2*k + 1, 16];
sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);

Elem[result, 2*i + j, 32] = sum;

return result;

Library pseudocode for shared/functions/float/bfloat/BFMul

// BFMul()
// =======
// BFloat16 widening multiply to single-precision following BFloat16
// computation behaviors.

bits(32) BFMul(bits(16) op1, bits(16) op2)

bits(32) result;

FPCRType fpcr = FPCR[];
(type1,sign1,value1) = BFUnpack(op1);
(type2,sign2,value2) = BFUnpack(op2);
if type1 == FPType_QNaN || type2 == FPType_QNaN then

result = FPDefaultNaN(fpcr);
else

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if (inf1 && zero2) || (zero1 && inf2) then

result = FPDefaultNaN(fpcr);
elsif inf1 || inf2 then

result = FPInfinity(sign1 EOR sign2);
elsif zero1 || zero2 then

result = FPZero(sign1 EOR sign2);
else

result = BFRound(value1*value2);

return result;

Shared Pseudocode Functions Page 3070

Library pseudocode for shared/functions/float/bfloat/BFMulAdd

// BFMulAdd()
// ==========
// Used by BFMLALB and BFMLALT instructions.

bits(N) BFMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean altfp = HaveAltFP() && fpcr.AH == '1'; // When TRUE:
boolean fpexc = !altfp; // Do not generate floating point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then fpcr.RMode = '00'; // Use RNE rounding mode
return FPMulAdd(addend, op1, op2, fpcr, fpexc);

Library pseudocode for shared/functions/float/bfloat/BFNeg

// BFNeg()
// =======

bits(16) BFNeg(bits(16) op)
return NOT(op<15>) : op<14:0>;

Shared Pseudocode Functions Page 3071

Library pseudocode for shared/functions/float/bfloat/BFRound

// BFRound()
// =========
// Converts a real number OP into a single-precision value using the
// Round to Odd rounding mode and following BFloat16 computation behaviors.

bits(32) BFRound(real op)

assert op != 0.0;
bits(32) result;

// Format parameters - minimum exponent, numbers of exponent and fraction bits.
minimum_exp = -126; E = 8; F = 23;

// Split value into sign, unrounded mantissa and exponent.
if op < 0.0 then

sign = '1'; mantissa = -op;
else

sign = '0'; mantissa = op;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Fixed Flush-to-zero.
if exponent < minimum_exp then

return FPZero(sign);

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);
if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
error = mantissa * 2.0^F - Real(int_mant);

// Round to Odd
if error != 0.0 then

int_mant<0> = '1';

// Deal with overflow and generate result.
if biased_exp >= 2^E - 1 then

result = FPInfinity(sign); // Overflows generate appropriately-signed Infinity
else

result = sign : biased_exp<30-F:0> : int_mant<F-1:0>;

return result;

Shared Pseudocode Functions Page 3072

Library pseudocode for shared/functions/float/bfloat/BFUnpack

// BFUnpack()
// ==========
// Unpacks a BFloat16 or single-precision value into its type,
// sign bit and real number that it represents.
// The real number result has the correct sign for numbers and infinities,
// is very large in magnitude for infinities, and is 0.0 for NaNs.
// (These values are chosen to simplify the description of
// comparisons and conversions.)

(FPType, bit, real) BFUnpack(bits(N) fpval)

assert N IN {16,32};

if N == 16 then
sign = fpval<15>;
exp = fpval<14:7>;
frac = fpval<6:0> : Zeros(16);

else // N == 32
sign = fpval<31>;
exp = fpval<30:23>;
frac = fpval<22:0>;

if IsZero(exp) then
fptype = FPType_Zero; value = 0.0; // Fixed Flush to Zero

elsif IsOnes(exp) then
if IsZero(frac) then

fptype = FPType_Infinity; value = 2.0^1000000;
else // no SNaN for BF16 arithmetic

fptype = FPType_QNaN; value = 0.0;
else

fptype = FPType_Nonzero;
value = 2.0^(UInt(exp)-127) * (1.0 + Real(UInt(frac)) * 2.0^-23);

if sign == '1' then value = -value;

return (fptype, sign, value);

Shared Pseudocode Functions Page 3073

Library pseudocode for shared/functions/float/bfloat/FPConvertBF

// FPConvertBF()
// =============
// Converts a single-precision OP to BFloat16 value with using rounding mode of
// Round to Nearest Even when executed from AArch64 state and
// FPCR.AH == '1', otherwise rounding is controlled by FPCR/FPSCR.

bits(16) FPConvertBF(bits(32) op, FPCRType fpcr, FPRounding rounding)

bits(32) result; // BF16 value in top 16 bits
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then rounding = FPRounding_TIEEVEN; // Use RNE rounding mode

// Unpack floating-point operand, with always flush-to-zero if fpcr.AH == '1'.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
if fpcr.DN == '1' then

result = FPDefaultNaN(fpcr);
else

result = FPConvertNaN(op);
if fptype == FPType_SNaN then

if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Infinity then

result = FPInfinity(sign);
elsif fptype == FPType_Zero then

result = FPZero(sign);
else

result = FPRoundCVBF(value, fpcr, rounding, fpexc);

// Returns correctly rounded BF16 value from top 16 bits
return result<31:16>;

// FPConvertBF()
// =============
// Converts a single-precision operand to BFloat16 value.

bits(16) FPConvertBF(bits(32) op, FPCRType fpcr)
return FPConvertBF(op, fpcr, FPRoundingMode(fpcr));

Library pseudocode for shared/functions/float/bfloat/FPRoundCVBF

// FPRoundCVBF()
// =============
// Converts a real number OP into a BFloat16 value using the supplied
// rounding mode RMODE. The 'fpexc' argument controls the generation of
// floating-point exceptions.

bits(32) FPRoundCVBF(real op, FPCRType fpcr, FPRounding rounding, boolean fpexc)
boolean isbfloat16 = TRUE;
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

Shared Pseudocode Functions Page 3074

Library pseudocode for shared/functions/float/fixedtofp/FixedToFP

// FixedToFP()
// ===========

// Convert M-bit fixed point OP with FBITS fractional bits to
// N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

assert N IN {16,32,64};
assert M IN {16,32,64};
bits(N) result;
assert fbits >= 0;
assert rounding != FPRounding_ODD;

// Correct signed-ness
int_operand = Int(op, unsigned);

// Scale by fractional bits and generate a real value
real_operand = Real(int_operand) / 2.0^fbits;

if real_operand == 0.0 then
result = FPZero('0');

else
result = FPRound(real_operand, fpcr, rounding);

return result;

Library pseudocode for shared/functions/float/fpabs/FPAbs

// FPAbs()
// =======

bits(N) FPAbs(bits(N) op)

assert N IN {16,32,64};
if !UsingAArch32() && HaveAltFP() then

FPCRType fpcr = FPCR[];
if fpcr.AH == '1' then

(fptype, -, -) = FPUnpack(op, fpcr, FALSE);
if fptype IN {FPType_SNaN, FPType_QNaN} then

return op; // When fpcr.AH=1, sign of NaN has no consequence

return '0' : op<N-2:0>;

Shared Pseudocode Functions Page 3075

Library pseudocode for shared/functions/float/fpadd/FPAdd

// FPAdd()
// =======

bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPAdd(op1, op2, fpcr, fpexc);

// FPAdd()
// =======

bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);

(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);

boolean altfmaxfmin = FALSE; // Do not use altfp mode for FMIN, FMAX and variants
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, altfmaxfmin, fpexc);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == NOT(sign2) then

result = FPDefaultNaN(fpcr);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
result = FPInfinity('0');

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
result = FPInfinity('1');

elsif zero1 && zero2 && sign1 == sign2 then
result = FPZero(sign1);

else
result_value = value1 + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr, rounding, fpexc);

if fpexc then FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 3076

Library pseudocode for shared/functions/float/fpcompare/FPCompare

// FPCompare()
// ===========

bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
result = '0011';
if type1 == FPType_SNaN || type2 == FPType_SNaN || signal_nans then

FPProcessException(FPExc_InvalidOp, fpcr);
else

// All non-NaN cases can be evaluated on the values produced by FPUnpack()
if value1 == value2 then

result = '0110';
elsif value1 < value2 then

result = '1000';
else // value1 > value2

result = '0010';

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpcompareeq/FPCompareEQ

// FPCompareEQ()
// =============

boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
result = FALSE;
if type1 == FPType_SNaN || type2 == FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
else

// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 == value2);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 3077

Library pseudocode for shared/functions/float/fpcomparege/FPCompareGE

// FPCompareGE()
// =============

boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);

else
// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 >= value2);
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpcomparegt/FPCompareGT

// FPCompareGT()
// =============

boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);

else
// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 > value2);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 3078

Library pseudocode for shared/functions/float/fpconvert/FPConvert

// FPConvert()
// ===========

// Convert floating point OP with N-bit precision to M-bit precision,
// with rounding controlled by ROUNDING.
// This is used by the FP-to-FP conversion instructions and so for
// half-precision data ignores FZ16, but observes AHP.

bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)

assert M IN {16,32,64};
assert N IN {16,32,64};
bits(M) result;

// Unpack floating-point operand optionally with flush-to-zero.
(fptype,sign,value) = FPUnpackCV(op, fpcr);

alt_hp = (M == 16) && (fpcr.AHP == '1');

if fptype == FPType_SNaN || fptype == FPType_QNaN then
if alt_hp then

result = FPZero(sign);
elsif fpcr.DN == '1' then

result = FPDefaultNaN(fpcr);
else

result = FPConvertNaN(op);
if fptype == FPType_SNaN || alt_hp then

FPProcessException(FPExc_InvalidOp,fpcr);
elsif fptype == FPType_Infinity then

if alt_hp then
result = sign:Ones(M-1);
FPProcessException(FPExc_InvalidOp, fpcr);

else
result = FPInfinity(sign);

elsif fptype == FPType_Zero then
result = FPZero(sign);

else
result = FPRoundCV(value, fpcr, rounding);

FPProcessDenorm(fptype, N, fpcr);

return result;

// FPConvert()
// ===========

bits(M) FPConvert(bits(N) op, FPCRType fpcr)
return FPConvert(op, fpcr, FPRoundingMode(fpcr));

Shared Pseudocode Functions Page 3079

Library pseudocode for shared/functions/float/fpconvertnan/FPConvertNaN

// FPConvertNaN()
// ==============
// Converts a NaN of one floating-point type to another

bits(M) FPConvertNaN(bits(N) op)

assert N IN {16,32,64};
assert M IN {16,32,64};
bits(M) result;
bits(51) frac;

sign = op<N-1>;

// Unpack payload from input NaN
case N of

when 64 frac = op<50:0>;
when 32 frac = op<21:0>:Zeros(29);
when 16 frac = op<8:0>:Zeros(42);

// Repack payload into output NaN, while
// converting an SNaN to a QNaN.
case M of

when 64 result = sign:Ones(M-52):frac;
when 32 result = sign:Ones(M-23):frac<50:29>;
when 16 result = sign:Ones(M-10):frac<50:42>;

return result;

Library pseudocode for shared/functions/float/fpcrtype/FPCRType

type FPCRType;

Library pseudocode for shared/functions/float/fpdecoderm/FPDecodeRM

// FPDecodeRM()
// ============

// Decode most common AArch32 floating-point rounding encoding.

FPRounding FPDecodeRM(bits(2) rm)

case rm of
when '00' result = FPRounding_TIEAWAY; // A
when '01' result = FPRounding_TIEEVEN; // N
when '10' result = FPRounding_POSINF; // P
when '11' result = FPRounding_NEGINF; // M

return result;

Library pseudocode for shared/functions/float/fpdecoderounding/FPDecodeRounding

// FPDecodeRounding()
// ==================

// Decode floating-point rounding mode and common AArch64 encoding.

FPRounding FPDecodeRounding(bits(2) rmode)
case rmode of

when '00' return FPRounding_TIEEVEN; // N
when '01' return FPRounding_POSINF; // P
when '10' return FPRounding_NEGINF; // M
when '11' return FPRounding_ZERO; // Z

Shared Pseudocode Functions Page 3080

Library pseudocode for shared/functions/float/fpdefaultnan/FPDefaultNaN

// FPDefaultNaN()
// ==============

bits(N) FPDefaultNaN()
FPCRType fpcr = FPCR[];
return FPDefaultNaN(fpcr);

bits(N) FPDefaultNaN(FPCRType fpcr)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
bit sign = if HaveAltFP() && !UsingAArch32() then fpcr.AH else '0';

bits(E) exp = Ones(E);
bits(F) frac = '1':Zeros(F-1);

return sign : exp : frac;

Library pseudocode for shared/functions/float/fpdiv/FPDiv

// FPDiv()
// =======

bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

if !done then
inf1 = type1 == FPType_Infinity;
inf2 = type2 == FPType_Infinity;
zero1 = type1 == FPType_Zero;
zero2 = type2 == FPType_Zero;

if (inf1 && inf2) || (zero1 && zero2) then
result = FPDefaultNaN(fpcr);
FPProcessException(FPExc_InvalidOp, fpcr);

elsif inf1 || zero2 then
result = FPInfinity(sign1 EOR sign2);
if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);

elsif zero1 || inf2 then
result = FPZero(sign1 EOR sign2);

else
result = FPRound(value1/value2, fpcr);

if !zero2 then
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpexc/FPExc

enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

Shared Pseudocode Functions Page 3081

Library pseudocode for shared/functions/float/fpinfinity/FPInfinity

// FPInfinity()
// ============

bits(N) FPInfinity(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
bits(E) exp = Ones(E);
bits(F) frac = Zeros(F);

return sign : exp : frac;

Library pseudocode for shared/functions/float/fpmatmul/FPMatMulAdd

// FPMatMulAdd()
// =============
//
// Floating point matrix multiply and add to same precision matrix
// result[2, 2] = addend[2, 2] + (op1[2, 2] * op2[2, 2])

bits(N) FPMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, integer esize, FPCRType fpcr)

assert N == esize * 2 * 2;
bits(N) result;
bits(esize) prod0, prod1, sum;

for i = 0 to 1
for j = 0 to 1

sum = Elem[addend, 2*i + j, esize];
prod0 = FPMul(Elem[op1, 2*i + 0, esize],

Elem[op2, 2*j + 0, esize], fpcr);
prod1 = FPMul(Elem[op1, 2*i + 1, esize],

Elem[op2, 2*j + 1, esize], fpcr);
sum = FPAdd(sum, FPAdd(prod0, prod1, fpcr), fpcr);
Elem[result, 2*i + j, esize] = sum;

return result;

Shared Pseudocode Functions Page 3082

Library pseudocode for shared/functions/float/fpmax/FPMax

// FPMax()
// =======

bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
return FPMax(op1, op2, fpcr, altfp);

// FPMax()
// =======
// Compare two inputs and return the larger value after rounding. The
// 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
// if the function should use alternative floating-point behaviour.

bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean altfp)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if (altfp && type1 == FPType_Zero && type2 == FPType_Zero &&
((sign1 == '0' && sign2 == '1') || (sign1 == '1' && sign2 == '0'))) then
return FPZero(sign2);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, altfp, TRUE);

if !done then
if value1 > value2 then

(fptype,sign,value) = (type1,sign1,value1);
else

(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then

result = FPInfinity(sign);
elsif fptype == FPType_Zero then

sign = sign1 AND sign2; // Use most positive sign
result = FPZero(sign);

else
// The use of FPRound() covers the case where there is a trapped underflow exception
// for a denormalized number even though the result is exact.
rounding = FPRoundingMode(fpcr);
if altfp then // Denormal output is not flushed to zero

fpcr.FZ = '0';
fpcr.FZ16 = '0';

result = FPRound(value, fpcr, rounding, TRUE);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpmaxnormal/FPMaxNormal

// FPMaxNormal()
// =============

bits(N) FPMaxNormal(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = Ones(E-1):'0';
frac = Ones(F);

return sign : exp : frac;

Shared Pseudocode Functions Page 3083

Library pseudocode for shared/functions/float/fpmaxnum/FPMaxNum

// FPMaxNum()
// ==========

bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,-,-) = FPUnpack(op1, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

if !(altfp && type1_nan && type2_nan) then
// Treat a single quiet-NaN as -Infinity.
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = FPInfinity('1');
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = FPInfinity('1');

altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
result = FPMax(op1, op2, fpcr, altfmaxfmin);

return result;

Library pseudocode for shared/functions/float/fpmerge/IsMerging

// IsMerging()
// ===========
// Returns TRUE if the output elements other than the lowest are taken from
// the destination register.

boolean IsMerging(FPCRType fpcr)
boolean merge = HaveAltFP() && !UsingAArch32() && fpcr.NEP == '1';
return merge;

Shared Pseudocode Functions Page 3084

Library pseudocode for shared/functions/float/fpmin/FPMin

// FPMin()
// =======

bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
return FPMin(op1, op2, fpcr, altfp);

// FPMin()
// =======
// Compare two operands and return the smaller operand after rounding. The
// 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
// if the function should use alternative behaviour.

bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean altfp)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if (altfp && type1 == FPType_Zero && type2 == FPType_Zero &&
((sign1 == '0' && sign2 == '1') || (sign1 == '1' && sign2 == '0'))) then
return FPZero(sign2);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, altfp, TRUE);

if !done then
if value1 < value2 then

(fptype,sign,value) = (type1,sign1,value1);
else

(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then

result = FPInfinity(sign);
elsif fptype == FPType_Zero then

sign = sign1 OR sign2; // Use most negative sign
result = FPZero(sign);

else
// The use of FPRound() covers the case where there is a trapped underflow exception
// for a denormalized number even though the result is exact.
rounding = FPRoundingMode(fpcr);
if altfp then // Denormal output is not flushed to zero

fpcr.FZ = '0';
fpcr.FZ16 = '0';

result = FPRound(value, fpcr, rounding, TRUE);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 3085

Library pseudocode for shared/functions/float/fpminnum/FPMinNum

// FPMinNum()
// ==========

bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,-,-) = FPUnpack(op1, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

if !(altfp && type1_nan && type2_nan) then
// Treat a single quiet-NaN as +Infinity.
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = FPInfinity('0');
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = FPInfinity('0');

altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
result = FPMin(op1, op2, fpcr, altfmaxfmin);

return result;

Library pseudocode for shared/functions/float/fpmul/FPMul

// FPMul()
// =======

bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPDefaultNaN(fpcr);
FPProcessException(FPExc_InvalidOp, fpcr);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2);

elsif zero1 || zero2 then
result = FPZero(sign1 EOR sign2);

else
result = FPRound(value1*value2, fpcr);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 3086

Library pseudocode for shared/functions/float/fpmuladd/FPMulAdd

Shared Pseudocode Functions Page 3087

// FPMulAdd()
// ==========

bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPMulAdd(addend, op1, op2, fpcr, fpexc);

// FPMulAdd()
// ==========
//
// Calculates addend + op1*op2 with a single rounding. The 'fpcr' argument
// supplies the FPCR control bits, and 'fpexc' controls the generation of
// floating-point exceptions.

bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2,
FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};

(typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
rounding = FPRoundingMode(fpcr);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

if !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1') then
if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then

result = FPDefaultNaN(fpcr);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an
// Invalid Operation.
signP = sign1 EOR sign2;
infP = inf1 || inf2;
zeroP = zero1 || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero
// by infinity and additions of opposite-signed infinities.
invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

if invalidop then
result = FPDefaultNaN(fpcr);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then

result = FPInfinity('0');
elsif (infA && signA == '1') || (infP && signP == '1') then

result = FPInfinity('1');

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then

result = FPZero(signA);

// Otherwise calculate numerical result and round it.
else

result_value = valueA + (value1 * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr, rounding, fpexc);

if !invalidop && fpexc then

Shared Pseudocode Functions Page 3088

FPProcessDenorms3(typeA, type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 3089

Library pseudocode for shared/functions/float/fpmuladdh/FPMulAddH

Shared Pseudocode Functions Page 3090

// FPMulAddH()
// ===========
// Calculates addend + op1*op2.

bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPMulAddH(addend, op1, op2, fpcr, fpexc);

// FPMulAddH()
// ===========
// Calculates addend + op1*op2.

bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2,
FPCRType fpcr, boolean fpexc)

assert N == 32;
rounding = FPRoundingMode(fpcr);
(typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

if !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1') then
if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then

result = FPDefaultNaN(fpcr);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an
// Invalid Operation.
signP = sign1 EOR sign2;
infP = inf1 || inf2;
zeroP = zero1 || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
// additions of opposite-signed infinities.
invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

if invalidop then
result = FPDefaultNaN(fpcr);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then

result = FPInfinity('0');
elsif (infA && signA == '1') || (infP && signP == '1') then

result = FPInfinity('1');

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then

result = FPZero(signA);

// Otherwise calculate numerical result and round it.
else

result_value = valueA + (value1 * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr, rounding, fpexc);

if !invalidop && fpexc then
FPProcessDenorm(typeA, N, fpcr);

Shared Pseudocode Functions Page 3091

return result;

Library pseudocode for shared/functions/float/fpmuladdh/FPProcessNaNs3H

// FPProcessNaNs3H()
// =================

(boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
FPCRType fpcr, boolean fpexc)

assert N IN {32,64};

bits(N) result;
// When TRUE, use alternative NaN propagation rules.
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};
if altfp then

if (type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN) then
type_nan = FPType_SNaN;

else
type_nan = FPType_QNaN;

if altfp && op1_nan && op2_nan && op3_nan then // <n> register NaN selected
done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc));

elsif altfp && op2_nan && (op1_nan || op3_nan) then // <n> register NaN selected
done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc));

elsif altfp && op3_nan && op1_nan then // <m> register NaN selected
done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op3, fpcr, fpexc));

elsif type1 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_SNaN then
done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc));

elsif type3 == FPType_SNaN then
done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc));

elsif type1 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_QNaN then
done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc));

elsif type3 == FPType_QNaN then
done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc));

else
done = FALSE; result = Zeros(); // 'Don't care' result

return (done, result);

Shared Pseudocode Functions Page 3092

Library pseudocode for shared/functions/float/fpmulx/FPMulX

// FPMulX()
// ========

bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
bits(N) result;
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPTwo(sign1 EOR sign2);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2);

elsif zero1 || zero2 then
result = FPZero(sign1 EOR sign2);

else
result = FPRound(value1*value2, fpcr);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpneg/FPNeg

// FPNeg()
// =======

bits(N) FPNeg(bits(N) op)

assert N IN {16,32,64};
if !UsingAArch32() && HaveAltFP() then

FPCRType fpcr = FPCR[];
if fpcr.AH == '1' then

(fptype, -, -) = FPUnpack(op, fpcr, FALSE);
if fptype IN {FPType_SNaN, FPType_QNaN} then

return op; // When fpcr.AH=1, sign of NaN has no consequence

return NOT(op<N-1>) : op<N-2:0>;

Library pseudocode for shared/functions/float/fponepointfive/FPOnePointFive

// FPOnePointFive()
// ================

bits(N) FPOnePointFive(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-1);
frac = '1':Zeros(F-1);
result = sign : exp : frac;

return result;

Shared Pseudocode Functions Page 3093

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorm

// FPProcessDenorm()
// =================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorm(FPType fptype, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && fptype == FPType_Denormal then

FPProcessException(FPExc_InputDenorm, fpcr);

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorms

// FPProcessDenorms()
// ==================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorms(FPType type1, FPType type2, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal) then

FPProcessException(FPExc_InputDenorm, fpcr);

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorms3

// FPProcessDenorms3()
// ===================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorms3(FPType type1, FPType type2, FPType type3, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||

type3 == FPType_Denormal) then
FPProcessException(FPExc_InputDenorm, fpcr);

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorms4

// FPProcessDenorms4()
// ===================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorms4(FPType type1, FPType type2, FPType type3, FPType type4, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||

type3 == FPType_Denormal || type4 == FPType_Denormal) then
FPProcessException(FPExc_InputDenorm, fpcr);

Shared Pseudocode Functions Page 3094

Library pseudocode for shared/functions/float/fpprocessexception/FPProcessException

// FPProcessException()
// ====================
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

FPProcessException(FPExc exception, FPCRType fpcr)

// Determine the cumulative exception bit number
case exception of

when FPExc_InvalidOp cumul = 0;
when FPExc_DivideByZero cumul = 1;
when FPExc_Overflow cumul = 2;
when FPExc_Underflow cumul = 3;
when FPExc_Inexact cumul = 4;
when FPExc_InputDenorm cumul = 7;

enable = cumul + 8;
if fpcr<enable> == '1' then

// Trapping of the exception enabled.
// It is IMPLEMENTATION DEFINED whether the enable bit may be set at all, and
// if so then how exceptions may be accumulated before calling FPTrappedException()
IMPLEMENTATION_DEFINED "floating-point trap handling";

elsif UsingAArch32() then
// Set the cumulative exception bit
FPSCR<cumul> = '1';

else
// Set the cumulative exception bit
FPSR<cumul> = '1';

return;

Library pseudocode for shared/functions/float/fpprocessnan/FPProcessNaN

// FPProcessNaN()
// ==============

bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPProcessNaN(fptype, op, fpcr, fpexc);

// FPProcessNaN()
// ==============
// Handle NaN input operands, returning the operand or default NaN value
// if fpcr.DN is selected. The 'fpcr' argument supplies the FPCR control bits.
// The 'fpexc' argument controls the generation of exceptions, regardless of
// whether 'fptype' is a signalling NaN or a quiet NaN.

bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
assert fptype IN {FPType_QNaN, FPType_SNaN};

case N of
when 16 topfrac = 9;
when 32 topfrac = 22;
when 64 topfrac = 51;

result = op;
if fptype == FPType_SNaN then

result<topfrac> = '1';
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if fpcr.DN == '1' then // DefaultNaN requested
result = FPDefaultNaN(fpcr);

return result;

Shared Pseudocode Functions Page 3095

Library pseudocode for shared/functions/float/fpprocessnans/FPProcessNaNs

// FPProcessNaNs()
// ===============

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1,
bits(N) op2, FPCRType fpcr)

boolean altfmaxfmin = FALSE; // Do not use alfp mode for FMIN, FMAX and variants
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPProcessNaNs(type1, type2, op1, op2, fpcr, altfmaxfmin, fpexc);

// FPProcessNaNs()
// ===============
//
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits and 'altfmaxfmin' controls
// alternative floating-point behaviour for FMAX, FMIN and variants. 'fpexc'
// controls the generation of floating-point exceptions. Status information
// is updated directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
FPCRType fpcr, boolean altfmaxfmin, boolean fpexc)

assert N IN {16,32,64};
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
boolean any_snan = type1 == FPType_SNaN || type2 == FPType_SNaN;
FPType type_nan = if any_snan then FPType_SNaN else FPType_QNaN;

if altfmaxfmin && (op1_nan || op2_nan) then
FPProcessException(FPExc_InvalidOp, fpcr);
done = TRUE; sign2 = op2<N-1>;
result = if type2 == FPType_Zero then FPZero(sign2) else op2;

elsif altfp && op1_nan && op2_nan then
done = TRUE; result = FPProcessNaN(type_nan, op1, fpcr, fpexc); // <n> register NaN selected

elsif type1 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

elsif type1 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

else
done = FALSE; result = Zeros(); // 'Don't care' result

return (done, result);

Shared Pseudocode Functions Page 3096

Library pseudocode for shared/functions/float/fpprocessnans3/FPProcessNaNs3

// FPProcessNaNs3()
// ================

(boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N) op2, bits(N) op3,
FPCRType fpcr)

boolean fpexc = TRUE; // Generate floating-point exceptions
return FPProcessNaNs3(type1, type2, type3, op1, op2, op3, fpcr, fpexc);

// FPProcessNaNs3()
// ================
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
// generation of floating-point exceptions. Status information is updated
// directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N) op2, bits(N) op3,
FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};

boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp then

if type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN then
type_nan = FPType_SNaN;

else
type_nan = FPType_QNaN;

if altfp && op1_nan && op2_nan && op3_nan then
done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc); // <n> register NaN selected

elsif altfp && op2_nan && (op1_nan || op3_nan) then
done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc); // <n> register NaN selected

elsif altfp && op3_nan && op1_nan then
done = TRUE; result = FPProcessNaN(type_nan, op3, fpcr, fpexc); // <m> register NaN selected

elsif type1 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

elsif type3 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);

elsif type1 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

elsif type3 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);

else
done = FALSE; result = Zeros(); // 'Don't care' result

return (done, result);

Shared Pseudocode Functions Page 3097

Library pseudocode for shared/functions/float/fprecipestimate/FPRecipEstimate

Shared Pseudocode Functions Page 3098

// FPRecipEstimate()
// =================

bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)

assert N IN {16,32,64};

// When using alternative floating-point behaviour, do not generate
// floating-point exceptions, flush denormal input and output to zero,
// and use RNE rounding mode.
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean fpexc = !altfp;
if altfp then fpcr.<FIZ,FZ> = '11';
if altfp then fpcr.RMode = '00';

(fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

FPRounding rounding = FPRoundingMode(fpcr);
if fptype == FPType_SNaN || fptype == FPType_QNaN then

result = FPProcessNaN(fptype, operand, fpcr, fpexc);
elsif fptype == FPType_Infinity then

result = FPZero(sign);
elsif fptype == FPType_Zero then

result = FPInfinity(sign);
if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);

elsif (
(N == 16 && Abs(value) < 2.0^-16) ||
(N == 32 && Abs(value) < 2.0^-128) ||
(N == 64 && Abs(value) < 2.0^-1024)

) then
case rounding of

when FPRounding_TIEEVEN
overflow_to_inf = TRUE;

when FPRounding_POSINF
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
overflow_to_inf = (sign == '1');

when FPRounding_ZERO
overflow_to_inf = FALSE;

result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
if fpexc then

FPProcessException(FPExc_Overflow, fpcr);
FPProcessException(FPExc_Inexact, fpcr);

elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
&& (

(N == 16 && Abs(value) >= 2.0^14) ||
(N == 32 && Abs(value) >= 2.0^126) ||
(N == 64 && Abs(value) >= 2.0^1022)

) then
// Result flushed to zero of correct sign
result = FPZero(sign);

// Flush-to-zero never generates a trapped exception.
if UsingAArch32() then

FPSCR.UFC = '1';
else

if fpexc then FPSR.UFC = '1';
else

// Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
// calculate result exponent. Scaled value has copied sign bit,
// exponent = 1022 = double-precision biased version of -1,
// fraction = original fraction
case N of

when 16
fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);

when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);

when 64

Shared Pseudocode Functions Page 3099

fraction = operand<51:0>;
exp = UInt(operand<62:52>);

if exp == 0 then
if fraction<51> == '0' then

exp = -1;
fraction = fraction<49:0>:'00';

else
fraction = fraction<50:0>:'0';

integer scaled;
boolean increasedprecision = N==32 && HaveFeatRPRES() && altfp;

if !increasedprecision then
scaled = UInt('1':fraction<51:44>);

else
scaled = UInt('1':fraction<51:41>);

case N of
when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

// Scaled is in range 256 .. 511 or 2048 .. 4095 range representing a
// fixed-point number in range [0.5 .. 1.0].
estimate = RecipEstimate(scaled, increasedprecision);

// Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a
// fixed-point result in the range [1.0 .. 2.0].
// Convert to scaled floating point result with copied sign bit,
// high-order bits from estimate, and exponent calculated above.
if !increasedprecision then

fraction = estimate<7:0> : Zeros(44);
else

fraction = estimate<11:0> : Zeros(40);

if result_exp == 0 then
fraction = '1' : fraction<51:1>;

elsif result_exp == -1 then
fraction = '01' : fraction<51:2>;
result_exp = 0;

case N of
when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;

return result;

Shared Pseudocode Functions Page 3100

Library pseudocode for shared/functions/float/fprecipestimate/RecipEstimate

// RecipEstimate()
// ===============
// Compute estimate of reciprocal of 9-bit fixed-point number.
//
// a is in range 256 .. 511 or 2048 .. 4096 representing a number in
// the range 0.5 <= x < 1.0.
// increasedprecision determines if the mantissa is 8-bit or 12-bit.
// result is in the range 256 .. 511 or 4096 .. 8191 representing a
// number in the range 1.0 to 511/256 or 1.00 to 8191/4096.

integer RecipEstimate(integer a, boolean increasedprecision)

integer r;
if !increasedprecision then

assert 256 <= a && a < 512;
a = a*2+1; // Round to nearest
integer b = (2 ^ 19) DIV a;
r = (b+1) DIV 2; // Round to nearest
assert 256 <= r && r < 512;

else
assert 2048 <= a && a < 4096;
a = a*2+1; // Round to nearest
real real_val = Real(2^25)/Real(a);
r = RoundDown(real_val);
real error = real_val - Real(r);
boolean round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
if round_up then r = r+1;
assert 4096 <= r && r < 8192;

return r;

Shared Pseudocode Functions Page 3101

Library pseudocode for shared/functions/float/fprecpx/FPRecpX

// FPRecpX()
// =========

bits(N) FPRecpX(bits(N) op, FPCRType fpcr)

assert N IN {16,32,64};

case N of
when 16 esize = 5;
when 32 esize = 8;
when 64 esize = 11;

bits(N) result;
bits(esize) exp;
bits(esize) max_exp;
bits(N-(esize+1)) frac = Zeros();

boolean altfp = HaveAltFP() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

case N of
when 16 exp = op<10+esize-1:10>;
when 32 exp = op<23+esize-1:23>;
when 64 exp = op<52+esize-1:52>;

max_exp = Ones(esize) - 1;

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr, fpexc);

else
if IsZero(exp) then // Zero and denormals

result = sign:max_exp:frac;
else // Infinities and normals

result = sign:NOT(exp):frac;

return result;

Shared Pseudocode Functions Page 3102

Library pseudocode for shared/functions/float/fpround/FPRound

// FPRound()
// =========
// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
fpcr.AHP = '0';
boolean fpexc = TRUE; // Generate floating-point exceptions
boolean isbfloat16 = FALSE;
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

// FPRound()
// =========
// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.
//
// The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
// generation of floating-point exceptions. Status information is updated
// directly in the FPSR where appropriate.

bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding, boolean fpexc)
fpcr.AHP = '0';
boolean isbfloat16 = FALSE;
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

// FPRound()
// =========

bits(N) FPRound(real op, FPCRType fpcr)
return FPRound(op, fpcr, FPRoundingMode(fpcr));

Shared Pseudocode Functions Page 3103

Library pseudocode for shared/functions/float/fpround/FPRoundBase

Shared Pseudocode Functions Page 3104

// FPRoundBase()
// =============

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding, boolean isbfloat16)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

// FPRoundBase()
// =============
// Convert a real number OP into an N-bit floating-point value using the
// supplied rounding mode RMODE.
//
// The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
// generation of floating-point exceptions. Status information is updated
// directly in the FPSR where appropriate.

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding,
boolean isbfloat16, boolean fpexc)

assert N IN {16,32,64};
assert op != 0.0;
assert rounding != FPRounding_TIEAWAY;
bits(N) result;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then

minimum_exp = -14; E = 5; F = 10;
elsif N == 32 && isbfloat16 then

minimum_exp = -126; E = 8; F = 7;
elsif N == 32 then

minimum_exp = -126; E = 8; F = 23;
else // N == 64

minimum_exp = -1022; E = 11; F = 52;

// Split value into sign, unrounded mantissa and exponent.
if op < 0.0 then

sign = '1'; mantissa = -op;
else

sign = '0'; mantissa = op;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// When TRUE, detection of underflow occurs after rounding and the test for a
// denormalized number for single and double precision values occurs after rounding.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

// Deal with flush-to-zero before rounding if FPCR.AH != '1'.
if (!altfp && ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&

exponent < minimum_exp) then
// Flush-to-zero never generates a trapped exception.
if UsingAArch32() then

FPSCR.UFC = '1';
else

if fpexc then FPSR.UFC = '1';
return FPZero(sign);

biased_exp_unconstrained = exponent - minimum_exp + 1;
int_mant_unconstrained = RoundDown(mantissa * 2.0^F);
error_unconstrained = mantissa * 2.0^F - Real(int_mant_unconstrained);

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);
if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not

Shared Pseudocode Functions Page 3105

error = mantissa * 2.0^F - Real(int_mant);

// Underflow occurs if exponent is too small before rounding, and result is inexact or
// the Underflow exception is trapped. This applies before rounding if FPCR.AH != '1'.
if !altfp && biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then

if fpexc then FPProcessException(FPExc_Underflow, fpcr);

// Round result according to rounding mode.
if altfp then

case rounding of
when FPRounding_TIEEVEN

round_up_unconstrained = (error_unconstrained > 0.5 ||
(error_unconstrained == 0.5 && int_mant_unconstrained<0> == '1'));

round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
overflow_to_inf = TRUE;

when FPRounding_POSINF
round_up_unconstrained = (error_unconstrained != 0.0 && sign == '0');
round_up = (error != 0.0 && sign == '0');
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
round_up_unconstrained = (error_unconstrained != 0.0 && sign == '1');
round_up = (error != 0.0 && sign == '1');
overflow_to_inf = (sign == '1');

when FPRounding_ZERO, FPRounding_ODD
round_up_unconstrained = FALSE;
round_up = FALSE;
overflow_to_inf = FALSE;

if round_up_unconstrained then
int_mant_unconstrained = int_mant_unconstrained + 1;
if int_mant_unconstrained == 2^(F+1) then // Rounded up to next exponent

biased_exp_unconstrained = biased_exp_unconstrained + 1;
int_mant_unconstrained = int_mant_unconstrained DIV 2;

// Deal with flush-to-zero and underflow after rounding if FPCR.AH == '1'.
if biased_exp_unconstrained < 1 && int_mant_unconstrained != 0 then

// the result of unconstrained rounding is less than the minimum normalized number
if (fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16) then // Flush-to-zero

if fpexc then
FPSR.UFC = '1';
FPProcessException(FPExc_Inexact, fpcr);

return FPZero(sign);
elsif error != 0.0 || fpcr.UFE == '1' then

if fpexc then FPProcessException(FPExc_Underflow, fpcr);
else // altfp == FALSE

case rounding of
when FPRounding_TIEEVEN

round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
overflow_to_inf = TRUE;

when FPRounding_POSINF
round_up = (error != 0.0 && sign == '0');
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
round_up = (error != 0.0 && sign == '1');
overflow_to_inf = (sign == '1');

when FPRounding_ZERO, FPRounding_ODD
round_up = FALSE;
overflow_to_inf = FALSE;

if round_up then
int_mant = int_mant + 1;
if int_mant == 2^F then // Rounded up from denormalized to normalized

biased_exp = 1;
if int_mant == 2^(F+1) then // Rounded up to next exponent

biased_exp = biased_exp + 1;
int_mant = int_mant DIV 2;

// Handle rounding to odd
if error != 0.0 && rounding == FPRounding_ODD then

int_mant<0> = '1';

Shared Pseudocode Functions Page 3106

// Deal with overflow and generate result.
if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision

if biased_exp >= 2^E - 1 then
result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
if fpexc then FPProcessException(FPExc_Overflow, fpcr);
error = 1.0; // Ensure that an Inexact exception occurs

else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));

else // Alternative half precision
if biased_exp >= 2^E then

result = sign : Ones(N-1);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
error = 0.0; // Ensure that an Inexact exception does not occur

else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));

// Deal with Inexact exception.
if error != 0.0 then

if fpexc then FPProcessException(FPExc_Inexact, fpcr);

return result;

Library pseudocode for shared/functions/float/fpround/FPRoundCV

// FPRoundCV()
// ===========
// Used for FP <-> FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

bits(N) FPRoundCV(real op, FPCRType fpcr, FPRounding rounding)
fpcr.FZ16 = '0';
boolean fpexc = TRUE; // Generate floating-point exceptions
boolean isbfloat16 = FALSE;
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc);

Library pseudocode for shared/functions/float/fprounding/FPRounding

enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
FPRounding_NEGINF, FPRounding_ZERO,
FPRounding_TIEAWAY, FPRounding_ODD};

Library pseudocode for shared/functions/float/fproundingmode/FPRoundingMode

// FPRoundingMode()
// ================
// Return the current floating-point rounding mode.

FPRounding FPRoundingMode(FPCRType fpcr)
return FPDecodeRounding(fpcr.RMode);

Shared Pseudocode Functions Page 3107

Library pseudocode for shared/functions/float/fproundint/FPRoundInt

// FPRoundInt()
// ============

// Round op to nearest integral floating point value using rounding mode in FPCR/FPSCR.
// If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to op.

bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)

assert rounding != FPRounding_ODD;
assert N IN {16,32,64};

// When alternative floating-point support is TRUE, do not generate
// Input Denormal floating-point exceptions.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
fpexc = !altfp;

// Unpack using FPCR to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);

elsif fptype == FPType_Infinity then
result = FPInfinity(sign);

elsif fptype == FPType_Zero then
result = FPZero(sign);

else
// Extract integer component.
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
case rounding of

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));

when FPRounding_POSINF
round_up = (error != 0.0);

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = (error != 0.0 && int_result < 0);

when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Convert integer value into an equivalent real value.
real_result = Real(int_result);

// Re-encode as a floating-point value, result is always exact.
if real_result == 0.0 then

result = FPZero(sign);
else

result = FPRound(real_result, fpcr, FPRounding_ZERO);

// Generate inexact exceptions.
if error != 0.0 && exact then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 3108

Library pseudocode for shared/functions/float/fproundintn/FPRoundIntN

Shared Pseudocode Functions Page 3109

// FPRoundIntN()
// =============

bits(N) FPRoundIntN(bits(N) op, FPCRType fpcr, FPRounding rounding, integer intsize)
assert rounding != FPRounding_ODD;
assert N IN {32,64};
assert intsize IN {32, 64};
integer exp;
constant integer E = (if N == 32 then 8 else 11);
constant integer F = N - (E + 1);

// When alternative floating-point support is TRUE, do not generate
// Input Denormal floating-point exceptions.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
fpexc = !altfp;

// Unpack using FPCR to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
if N == 32 then

exp = 126 + intsize;
result = '1':exp<(E-1):0>:Zeros(F);

else
exp = 1022+intsize;
result = '1':exp<(E-1):0>:Zeros(F);

FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Zero then

result = FPZero(sign);
else

// Extract integer component.
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
case rounding of

when FPRounding_TIEEVEN
round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1');

when FPRounding_POSINF
round_up = error != 0.0;

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = error != 0.0 && int_result < 0;

when FPRounding_TIEAWAY
round_up = error > 0.5 || (error == 0.5 && int_result >= 0);

if round_up then int_result = int_result + 1;
overflow = int_result > 2^(intsize-1)-1 || int_result < -1*2^(intsize-1);

if overflow then
if N == 32 then

exp = 126 + intsize;
result = '1':exp<(E-1):0>:Zeros(F);

else
exp = 1022 + intsize;
result = '1':exp<(E-1):0>:Zeros(F);

FPProcessException(FPExc_InvalidOp, fpcr);
// This case shouldn't set Inexact.
error = 0.0;

else
// Convert integer value into an equivalent real value.
real_result = Real(int_result);

// Re-encode as a floating-point value, result is always exact.
if real_result == 0.0 then

result = FPZero(sign);
else

result = FPRound(real_result, fpcr, FPRounding_ZERO);

Shared Pseudocode Functions Page 3110

// Generate inexact exceptions.
if error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 3111

Library pseudocode for shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

Shared Pseudocode Functions Page 3112

// FPRSqrtEstimate()
// =================

bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)

assert N IN {16,32,64};

// When using alternative floating-point behaviour, do not generate
// floating-point exceptions and flush denormal input to zero.
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean fpexc = !altfp;
if altfp then fpcr.<FIZ,FZ> = '11';

(fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, operand, fpcr, fpexc);

elsif fptype == FPType_Zero then
result = FPInfinity(sign);
if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);

elsif sign == '1' then
result = FPDefaultNaN(fpcr);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif fptype == FPType_Infinity then
result = FPZero('0');

else
// Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
// evenness or oddness of the exponent unchanged, and calculate result exponent.
// Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
// biased version of -1 or -2, fraction = original fraction extended with zeros.

case N of
when 16

fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);

when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);

when 64
fraction = operand<51:0>;
exp = UInt(operand<62:52>);

if exp == 0 then
while fraction<51> == '0' do

fraction = fraction<50:0> : '0';
exp = exp - 1;

fraction = fraction<50:0> : '0';

integer scaled;
boolean increasedprecision = N==32 && HaveFeatRPRES() && altfp;

if !increasedprecision then
if exp<0> == '0' then

scaled = UInt('1':fraction<51:44>);
else

scaled = UInt('01':fraction<51:45>);
else

if exp<0> == '0' then
scaled = UInt('1':fraction<51:41>);

else
scaled = UInt('01':fraction<51:42>);

case N of
when 16 result_exp = (44 - exp) DIV 2;
when 32 result_exp = (380 - exp) DIV 2;
when 64 result_exp = (3068 - exp) DIV 2;

estimate = RecipSqrtEstimate(scaled, increasedprecision);

// Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a

Shared Pseudocode Functions Page 3113

// fixed-point result in the range [1.0 .. 2.0].
// Convert to scaled floating point result with copied sign bit and high-order
// fraction bits, and exponent calculated above.
case N of

when 16 result = '0' : result_exp<N-12:0> : estimate<7:0>:Zeros(2);
when 32

if !increasedprecision then
result = '0' : result_exp<N-25:0> : estimate<7:0>:Zeros(15);

else
result = '0' : result_exp<N-25:0> : estimate<11:0>:Zeros(11);

when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

return result;

Shared Pseudocode Functions Page 3114

Library pseudocode for shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

// RecipSqrtEstimate()
// ===================
// Compute estimate of reciprocal square root of 9-bit fixed-point number.
//
// a is in range 128 .. 511 or 1024 .. 4095, with increased precision,
// representing a number in the range 0.25 <= x < 1.0.
// increasedprecision determines if the mantissa is 8-bit or 12-bit.
// result is in the range 256 .. 511 or 4096 .. 8191, with increased precision,
// representing a number in the range 1.0 to 511/256 or 8191/4096.

integer RecipSqrtEstimate(integer a, boolean increasedprecision)

integer r;
if !increasedprecision then

assert 128 <= a && a < 512;
if a < 256 then // 0.25 .. 0.5

a = a*2+1; // a in units of 1/512 rounded to nearest
else // 0.5 .. 1.0

a = (a >> 1) << 1; // Discard bottom bit
a = (a+1)*2; // a in units of 1/256 rounded to nearest

integer b = 512;
while a*(b+1)*(b+1) < 2^28 do

b = b+1;
// b = largest b such that b < 2^14 / sqrt(a)
r = (b+1) DIV 2; // Round to nearest
assert 256 <= r && r < 512;

else
assert 1024 <= a && a < 4096;
real real_val;
real error;
integer int_val;

if a < 2048 then // 0.25... 0.5
a = a*2 + 1; // Take 10 bits of fraction and force a 1 at the bottom
real_val = Real(a)/2.0;

else // 0.5..1.0
a = (a >> 1) << 1; // Discard bottom bit
a = a+1; // Taking 10 bits of the fraction and force a 1 at the bottom
real_val = Real(a);

real_val = Sqrt(real_val); // This number will lie in the range of 32 to 64
// Round to nearest even for a DP float number

real_val = real_val * Real(2^47); // The integer is the size of the whole DP mantissa
int_val = RoundDown(real_val); // Calculate rounding value
error = real_val - Real(int_val);
round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
if round_up then int_val = int_val+1;

real_val = Real(2^65)/Real(int_val); // Lies in the range 4096 <= real_val < 8192
int_val = RoundDown(real_val); // Round that (to nearest even) to give integer
error = real_val - Real(int_val);
round_up = (error > 0.5 || (error == 0.5 && int_val<0> == '1'));
if round_up then int_val = int_val+1;

r = int_val;
assert 4096 <= r && r < 8192;

return r;

Shared Pseudocode Functions Page 3115

Library pseudocode for shared/functions/float/fpsqrt/FPSqrt

// FPSqrt()
// ========

bits(N) FPSqrt(bits(N) op, FPCRType fpcr)

assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);

elsif fptype == FPType_Zero then
result = FPZero(sign);

elsif fptype == FPType_Infinity && sign == '0' then
result = FPInfinity(sign);

elsif sign == '1' then
result = FPDefaultNaN(fpcr);
FPProcessException(FPExc_InvalidOp, fpcr);

else
result = FPRound(Sqrt(value), fpcr);

FPProcessDenorm(fptype, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpsub/FPSub

// FPSub()
// =======

bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if inf1 && inf2 && sign1 == sign2 then
result = FPDefaultNaN(fpcr);
FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0');

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1');

elsif zero1 && zero2 && sign1 == NOT(sign2) then
result = FPZero(sign1);

else
result_value = value1 - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr, rounding);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 3116

Library pseudocode for shared/functions/float/fpthree/FPThree

// FPThree()
// =========

bits(N) FPThree(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '1':Zeros(E-1);
frac = '1':Zeros(F-1);
result = sign : exp : frac;

return result;

Shared Pseudocode Functions Page 3117

Library pseudocode for shared/functions/float/fptofixed/FPToFixed

// FPToFixed()
// ===========

// Convert N-bit precision floating point OP to M-bit fixed point with
// FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

assert N IN {16,32,64};
assert M IN {16,32,64};
assert fbits >= 0;
assert rounding != FPRounding_ODD;

// When alternative floating-point support is TRUE, do not generate
// Input Denormal floating-point exceptions.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
fpexc = !altfp;

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then

FPProcessException(FPExc_InvalidOp, fpcr);

// Scale by fractional bits and produce integer rounded towards minus-infinity.
value = value * 2.0^fbits;
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
case rounding of

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));

when FPRounding_POSINF
round_up = (error != 0.0);

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = (error != 0.0 && int_result < 0);

when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Generate saturated result and exceptions.
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then

FPProcessException(FPExc_InvalidOp, fpcr);
elsif error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 3118

Library pseudocode for shared/functions/float/fptofixedjs/FPToFixedJS

// FPToFixedJS()
// =============

// Converts a double precision floating point input value
// to a signed integer, with rounding to zero.

(bits(N), bit) FPToFixedJS(bits(M) op, FPCRType fpcr, boolean Is64)

assert M == 64 && N == 32;

// If FALSE, never generate Input Denormal floating-point exceptions.
fpexc_idenorm = !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1');

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc_idenorm);

Z = '1';
// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
Z = '0';

int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.

round_it_up = (error != 0.0 && int_result < 0);
if round_it_up then int_result = int_result + 1;

if int_result < 0 then
result = int_result - 2^32*RoundUp(Real(int_result)/Real(2^32));

else
result = int_result - 2^32*RoundDown(Real(int_result)/Real(2^32));

// Generate exceptions.
if int_result < -(2^31) || int_result > (2^31)-1 then

FPProcessException(FPExc_InvalidOp, fpcr);
Z = '0';

elsif error != 0.0 then
FPProcessException(FPExc_Inexact, fpcr);
Z = '0';

elsif sign == '1' && value == 0.0 then
Z = '0';

elsif sign == '0' && value == 0.0 && !IsZero(op<51:0>) then
Z = '0';

if fptype == FPType_Infinity then result = 0;

return (result<N-1:0>, Z);

Library pseudocode for shared/functions/float/fptwo/FPTwo

// FPTwo()
// =======

bits(N) FPTwo(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '1':Zeros(E-1);
frac = Zeros(F);
result = sign : exp : frac;

return result;

Shared Pseudocode Functions Page 3119

Library pseudocode for shared/functions/float/fptype/FPType

enumeration FPType {FPType_Zero,
FPType_Denormal,
FPType_Nonzero,
FPType_Infinity,
FPType_QNaN,
FPType_SNaN};

Library pseudocode for shared/functions/float/fpunpack/FPUnpack

// FPUnpack()
// ==========

(FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
fpcr.AHP = '0';
boolean fpexc = TRUE; // Generate floating-point exceptions
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
return (fp_type, sign, value);

// FPUnpack()
// ==========
//
// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

(FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr, boolean fpexc)
fpcr.AHP = '0';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
return (fp_type, sign, value);

Shared Pseudocode Functions Page 3120

Library pseudocode for shared/functions/float/fpunpack/FPUnpackBase

Shared Pseudocode Functions Page 3121

// FPUnpackBase()
// ==============

(FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
return (fp_type, sign, value);

// FPUnpackBase()
// ==============
//
// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)
//
// The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
// generation of floating-point exceptions. Status information is updated
// directly in the FPSR where appropriate.

(FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};

boolean altfp = HaveAltFP() && !UsingAArch32();
boolean fiz = altfp && fpcr.FIZ == '1';
boolean fz = fpcr.FZ == '1' && !(altfp && fpcr.AH == '1');

if N == 16 then
sign = fpval<15>;
exp16 = fpval<14:10>;
frac16 = fpval<9:0>;
if IsZero(exp16) then

if IsZero(frac16) || fpcr.FZ16 == '1' then
fptype = FPType_Zero; value = 0.0;

else
fptype = FPType_Denormal; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);

elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
if IsZero(frac16) then

fptype = FPType_Infinity; value = 2.0^1000000;
else

fptype = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
fptype = FPType_Nonzero;
value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

elsif N == 32 then
sign = fpval<31>;
exp32 = fpval<30:23>;
frac32 = fpval<22:0>;

if IsZero(exp32) then
if IsZero(frac32) then

// Produce zero if value is zero.
fptype = FPType_Zero; value = 0.0;

elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01
fptype = FPType_Zero; value = 0.0;
// Check whether to raise Input Denormal floating-point exception.
// fpcr.FIZ==1 does not raise Input Denormal exception.
if fz then

// Denormalized input flushed to zero
if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);

else
fptype = FPType_Denormal; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);

elsif IsOnes(exp32) then
if IsZero(frac32) then

fptype = FPType_Infinity; value = 2.0^1000000;
else

Shared Pseudocode Functions Page 3122

fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
fptype = FPType_Nonzero;
value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

else // N == 64
sign = fpval<63>;
exp64 = fpval<62:52>;
frac64 = fpval<51:0>;

if IsZero(exp64) then
if IsZero(frac64) then

// Produce zero if value is zero.
fptype = FPType_Zero; value = 0.0;

elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01
fptype = FPType_Zero; value = 0.0;
// Check whether to raise Input Denormal floating-point exception.
// fpcr.FIZ==1 does not raise Input Denormal exception.
if fz then

// Denormalized input flushed to zero
if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);

else
fptype = FPType_Denormal; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);

elsif IsOnes(exp64) then
if IsZero(frac64) then

fptype = FPType_Infinity; value = 2.0^1000000;
else

fptype = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
fptype = FPType_Nonzero;
value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

if sign == '1' then value = -value;

return (fptype, sign, value);

Library pseudocode for shared/functions/float/fpunpack/FPUnpackCV

// FPUnpackCV()
// ============
//
// Used for FP <-> FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

(FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr)
fpcr.FZ16 = '0';
boolean fpexc = TRUE; // Generate floating-point exceptions
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
return (fp_type, sign, value);

Library pseudocode for shared/functions/float/fpzero/FPZero

// FPZero()
// ========

bits(N) FPZero(bit sign)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = Zeros(E);
frac = Zeros(F);
result = sign : exp : frac;

return result;

Shared Pseudocode Functions Page 3123

Library pseudocode for shared/functions/float/vfpexpandimm/VFPExpandImm

// VFPExpandImm()
// ==============

bits(N) VFPExpandImm(bits(8) imm8)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
sign = imm8<7>;
exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
frac = imm8<3:0>:Zeros(F-4);
result = sign : exp : frac;

return result;

Library pseudocode for shared/functions/integer/AddWithCarry

// AddWithCarry()
// ==============
// Integer addition with carry input, returning result and NZCV flags

(bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
bit n = result<N-1>;
bit z = if IsZero(result) then '1' else '0';
bit c = if UInt(result) == unsigned_sum then '0' else '1';
bit v = if SInt(result) == signed_sum then '0' else '1';
return (result, n:z:c:v);

Library pseudocode for shared/functions/memory/AArch64.BranchAddr

// AArch64.BranchAddr()
// ====================
// Return the virtual address with tag bits removed for storing to the program counter.

bits(64) AArch64.BranchAddr(bits(64) vaddress)
assert !UsingAArch32();
msbit = AddrTop(vaddress, TRUE, PSTATE.EL);
if msbit == 63 then

return vaddress;
elsif (PSTATE.EL IN {EL0, EL1} || IsInHost()) && vaddress<msbit> == '1' then

return SignExtend(vaddress<msbit:0>);
else

return ZeroExtend(vaddress<msbit:0>);

Shared Pseudocode Functions Page 3124

Library pseudocode for shared/functions/memory/AccType

enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal loads and stores
AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
AccType_A32LSMD, // Load and store multiple
AccType_ATOMIC, AccType_ATOMICRW, // Atomic loads and stores
AccType_ORDERED, AccType_ORDEREDRW, // Load-Acquire and Store-Release
AccType_ORDEREDATOMIC, // Load-Acquire and Store-Release with atomic access
AccType_ORDEREDATOMICRW,
AccType_ATOMICLS64, // Atomic 64-byte loads and stores
AccType_LIMITEDORDERED, // Load-LOAcquire and Store-LORelease
AccType_UNPRIV, // Load and store unprivileged
AccType_IFETCH, // Instruction fetch
AccType_TTW, // Translation table walk
AccType_NONFAULT, // Non-faulting loads
AccType_CNOTFIRST, // Contiguous FF load, not first element
AccType_NV2REGISTER, // MRS/MSR instruction used at EL1 and which is converted

// to a memory access that uses the EL2 translation regime
// Other operations
AccType_DC, // Data cache maintenance
AccType_IC, // Instruction cache maintenance
AccType_DCZVA, // DC ZVA instructions
AccType_ATPAN, // Address translation with PAN permission checks
AccType_AT}; // Address translation

Library pseudocode for shared/functions/memory/AccessDescriptor

type AccessDescriptor is (
MPAMinfo mpam,
AccType acctype)

Library pseudocode for shared/functions/memory/AddrTop

// AddrTop()
// =========
// Return the MSB number of a virtual address in the stage 1 translation regime for "el".
// If EL1 is using AArch64 then addresses from EL0 using AArch32 are zero-extended to 64 bits.

integer AddrTop(bits(64) address, boolean IsInstr, bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
if ELUsingAArch32(regime) then

// AArch32 translation regime.
return 31;

else
if EffectiveTBI(address, IsInstr, el) == '1' then

return 55;
else

return 63;

Library pseudocode for shared/functions/memory/AddressDescriptor

type AddressDescriptor is (
FaultRecord fault, // fault.statuscode indicates whether the address is valid
MemoryAttributes memattrs,
FullAddress paddress,
bits(64) vaddress

)

Library pseudocode for shared/functions/memory/Allocation

constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate

Shared Pseudocode Functions Page 3125

Library pseudocode for shared/functions/memory/BigEndian

// BigEndian()
// ===========

boolean BigEndian(AccType acctype)
boolean bigend;
if HaveNV2Ext() && acctype == AccType_NV2REGISTER then

return SCTLR_EL2.EE == '1';

if UsingAArch32() then
bigend = (PSTATE.E != '0');

elsif PSTATE.EL == EL0 then
bigend = (SCTLR[].E0E != '0');

else
bigend = (SCTLR[].EE != '0');

return bigend;

Library pseudocode for shared/functions/memory/BigEndianReverse

// BigEndianReverse()
// ==================

bits(width) BigEndianReverse (bits(width) value)
assert width IN {8, 16, 32, 64, 128};
integer half = width DIV 2;
if width == 8 then return value;
return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

Library pseudocode for shared/functions/memory/Cacheability

constant bits(2) MemAttr_NC = '00'; // Non-cacheable
constant bits(2) MemAttr_WT = '10'; // Write-through
constant bits(2) MemAttr_WB = '11'; // Write-back

Library pseudocode for shared/functions/memory/CreateAccessDescriptor

// CreateAccessDescriptor()
// ========================

AccessDescriptor CreateAccessDescriptor(AccType acctype)
AccessDescriptor accdesc;
accdesc.acctype = acctype;
accdesc.mpam = GenMPAMcurEL(acctype);
return accdesc;

Library pseudocode for shared/functions/memory/DataMemoryBarrier

DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

Library pseudocode for shared/functions/memory/DataSynchronizationBarrier

DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types, boolean nXS);

Library pseudocode for shared/functions/memory/DeviceType

enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

Shared Pseudocode Functions Page 3126

Library pseudocode for shared/functions/memory/EffectiveTBI

// EffectiveTBI()
// ==============
// Returns the effective TBI in the AArch64 stage 1 translation regime for "el".

bit EffectiveTBI(bits(64) address, boolean IsInstr, bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
assert(!ELUsingAArch32(regime));

case regime of
when EL1

tbi = if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0;
if HavePACExt() then

tbid = if address<55> == '1' then TCR_EL1.TBID1 else TCR_EL1.TBID0;
when EL2

if HaveVirtHostExt() && ELIsInHost(el) then
tbi = if address<55> == '1' then TCR_EL2.TBI1 else TCR_EL2.TBI0;
if HavePACExt() then

tbid = if address<55> == '1' then TCR_EL2.TBID1 else TCR_EL2.TBID0;
else

tbi = TCR_EL2.TBI;
if HavePACExt() then tbid = TCR_EL2.TBID;

when EL3
tbi = TCR_EL3.TBI;
if HavePACExt() then tbid = TCR_EL3.TBID;

return (if tbi == '1' && (!HavePACExt() || tbid == '0' || !IsInstr) then '1' else '0');

Library pseudocode for shared/functions/memory/EffectiveTCMA

// EffectiveTCMA()
// ===============
// Returns the effective TCMA of a virtual address in the stage 1 translation regime for "el".

bit EffectiveTCMA(bits(64) address, bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
assert(!ELUsingAArch32(regime));

case regime of
when EL1

tcma = if address<55> == '1' then TCR_EL1.TCMA1 else TCR_EL1.TCMA0;
when EL2

if HaveVirtHostExt() && ELIsInHost(el) then
tcma = if address<55> == '1' then TCR_EL2.TCMA1 else TCR_EL2.TCMA0;

else
tcma = TCR_EL2.TCMA;

when EL3
tcma = TCR_EL3.TCMA;

return tcma;

Shared Pseudocode Functions Page 3127

Library pseudocode for shared/functions/memory/Fault

enumeration Fault {Fault_None,
Fault_AccessFlag,
Fault_Alignment,
Fault_Background,
Fault_Domain,
Fault_Permission,
Fault_Translation,
Fault_AddressSize,
Fault_SyncExternal,
Fault_SyncExternalOnWalk,
Fault_SyncParity,
Fault_SyncParityOnWalk,
Fault_AsyncParity,
Fault_AsyncExternal,
Fault_Debug,
Fault_TLBConflict,
Fault_BranchTarget,
Fault_HWUpdateAccessFlag,
Fault_Lockdown,
Fault_Exclusive,
Fault_ICacheMaint};

Library pseudocode for shared/functions/memory/FaultRecord

type FaultRecord is (Fault statuscode, // Fault Status
AccType acctype, // Type of access that faulted
FullAddress ipaddress, // Intermediate physical address
boolean s2fs1walk, // Is on a Stage 1 translation table walk
boolean write, // TRUE for a write, FALSE for a read
integer level, // For translation, access flag and permission faults
bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
boolean secondstage, // Is a Stage 2 abort
bits(4) domain, // Domain number, AArch32 only
bits(2) errortype, // [Armv8.2 RAS] AArch32 AET or AArch64 SET
bits(4) debugmoe) // Debug method of entry, from AArch32 only

Library pseudocode for shared/functions/memory/FullAddress

type FullAddress is (
PASpace paspace,
bits(52) address

)

Library pseudocode for shared/functions/memory/Hint_Prefetch

// Signals the memory system that memory accesses of type HINT to or from the specified address are
// likely in the near future. The memory system may take some action to speed up the memory
// accesses when they do occur, such as pre-loading the the specified address into one or more
// caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
// stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
// synchronous abort due to Alignment or Translation faults and the like. Its only effect on
// software-visible state should be on caches and TLBs associated with address, which must be
// accessible by reads, writes or execution, as defined in the translation regime of the current
// Exception level. It is guaranteed not to access Device memory.
// A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
// instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
// memory location that cannot be accessed by instruction fetches.
Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

Library pseudocode for shared/functions/memory/MBReqDomain

enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

Shared Pseudocode Functions Page 3128

Library pseudocode for shared/functions/memory/MBReqTypes

enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

Library pseudocode for shared/functions/memory/MPAM

type PARTIDtype = bits(16);
type PMGtype = bits(8);
type PARTIDspaceType = bit;
constant PARTIDspaceType PIdSpace_Secure = '0';
constant PARTIDspaceType PIdSpace_NonSecure = '1';

type MPAMinfo is (
PARTIDspaceType mpam_ns,
PARTIDtype partid,
PMGtype pmg

)

Library pseudocode for shared/functions/memory/MemAttrHints

type MemAttrHints is (
bits(2) attrs, // See MemAttr_*, Cacheability attributes
bits(2) hints, // See MemHint_*, Allocation hints
boolean transient

)

Library pseudocode for shared/functions/memory/MemType

enumeration MemType {MemType_Normal, MemType_Device};

Library pseudocode for shared/functions/memory/MemoryAttributes

type MemoryAttributes is (
MemType memtype,
DeviceType device, // For Device memory types
MemAttrHints inner, // Inner hints and attributes
MemAttrHints outer, // Outer hints and attributes
Shareability shareability, // Shareability attribute
boolean tagged, // Tagged access
bit xs // XS attribute

)

Library pseudocode for shared/functions/memory/PASpace

enumeration PASpace {
PAS_NonSecure,
PAS_Secure,

};

Library pseudocode for shared/functions/memory/Permissions

type Permissions is (
bits(2) ap_table, // Stage 1 hierarchical access permissions
bit xn_table, // Stage 1 hierarchical execute-never for single EL regimes
bit pxn_table, // Stage 1 hierarchical privileged execute-never
bit uxn_table, // Stage 1 hierarchical unprivileged execute-never
bits(3) ap, // Stage 1 access permissions
bit xn, // Stage 1 execute-never for single EL regimes
bit uxn, // Stage 1 unprivileged execute-never
bit pxn, // Stage 1 privileged execute-never
bits(2) s2ap, // Stage 2 access permissions
bit s2xnx, // Stage 2 extended execute-never
bit s2xn // Stage 2 execute-never

)

Shared Pseudocode Functions Page 3129

Library pseudocode for shared/functions/memory/PhysMemRead

// Returns the value read from memory, and a PhysMemRetStatus.
// If there is an external abort on the read, the PhysMemRetStatus indicates this
// and the value is UNKNOWN.
// Otherwise the PhysMemRetStatus statuscode is Fault_None.
(PhysMemRetStatus, bits(8*size)) PhysMemRead(AddressDescriptor desc, integer size, AccessDescriptor accdesc);

Library pseudocode for shared/functions/memory/PhysMemRetStatus

type PhysMemRetStatus is (Fault statuscode, // Fault Status
bit extflag, // IMPLEMENTATION DEFINED

// syndrome for External aborts
bits(2) errortype, // optional error state

// returned on a physical
// memory access

bits(64) store64bstatus, // status of 64B store
AccType acctype) // Type of access that faulted

Library pseudocode for shared/functions/memory/PhysMemWrite

// Writes the value to memory, and returns a PhysMemRetStatus.
// If there is an external abort on the write, the PhysMemRetStatus indicates this.
// Otherwise the statuscode of PhysMemRetStatus is Fault_None.
PhysMemRetStatus PhysMemWrite(AddressDescriptor desc, integer size, AccessDescriptor accdesc, bits(8*size) value);

Library pseudocode for shared/functions/memory/PrefetchHint

enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

Library pseudocode for shared/functions/memory/Shareability

enumeration Shareability {
Shareability_NSH,
Shareability_ISH,
Shareability_OSH

};

Library pseudocode for shared/functions/memory/SpeculativeStoreBypassBarrierToPA

SpeculativeStoreBypassBarrierToPA();

Library pseudocode for shared/functions/memory/SpeculativeStoreBypassBarrierToVA

SpeculativeStoreBypassBarrierToVA();

Library pseudocode for shared/functions/memory/Tag

constant integer LOG2_TAG_GRANULE = 4;

constant integer TAG_GRANULE = 1 << LOG2_TAG_GRANULE;

Shared Pseudocode Functions Page 3130

Library pseudocode for shared/functions/mpam/DefaultMPAMinfo

// DefaultMPAMinfo()
// =================
// Returns default MPAM info. The partidspace argument sets
// the PARTID space of the default MPAM information returned.

MPAMinfo DefaultMPAMinfo(PARTIDspaceType partidspace)
MPAMinfo DefaultInfo;
DefaultInfo.mpam_ns = partidspace;
DefaultInfo.partid = DefaultPARTID;
DefaultInfo.pmg = DefaultPMG;
return DefaultInfo;

Library pseudocode for shared/functions/mpam/DefaultPARTID

constant PARTIDtype DefaultPARTID = 0<15:0>;

Library pseudocode for shared/functions/mpam/DefaultPMG

constant PMGtype DefaultPMG = 0<7:0>;

Library pseudocode for shared/functions/mpam/GenMPAMcurEL

// GenMPAMcurEL()
// ==============
// Returns MPAMinfo for the current EL and security state.
// May be called if MPAM is not implemented (but in an version that supports
// MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
// EL if can and use that to drive MPAM information generation. If mode
// cannot be converted, MPAM is not implemented, or MPAM is disabled return
// default MPAM information for the current security state.

MPAMinfo GenMPAMcurEL(AccType acctype)
bits(2) mpamEL;
boolean validEL = FALSE;
SecurityState security = if IsSecure() then SS_Secure else SS_NonSecure;
boolean InD = FALSE;
PARTIDspaceType pspace = PARTIDspaceFromSS(security);
if pspace == PIdSpace_NonSecure && !MPAMisEnabled() then

return DefaultMPAMinfo(pspace);
if UsingAArch32() then

(validEL, mpamEL) = ELFromM32(PSTATE.M);
else

mpamEL = PSTATE.EL;
validEL = TRUE;

case acctype of
when AccType_IFETCH, AccType_IC

InD = TRUE;
otherwise

// other access types are DATA accesses
InD = FALSE;

if !validEL then
return DefaultMPAMinfo(pspace);

if HaveEMPAMExt() && pspace == PIdSpace_Secure then
if MPAM3_EL3.FORCE_NS == '1' then

pspace = PIdSpace_NonSecure;
if MPAM3_EL3.SDEFLT == '1' then

return DefaultMPAMinfo(pspace);
if !MPAMisEnabled() then

return DefaultMPAMinfo(pspace);
else

return genMPAM(mpamEL, InD, pspace);

Shared Pseudocode Functions Page 3131

Library pseudocode for shared/functions/mpam/MAP_vPARTID

// MAP_vPARTID()
// =============
// Performs conversion of virtual PARTID into physical PARTID
// Contains all of the error checking and implementation
// choices for the conversion.

(PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
// should not ever be called if EL2 is not implemented
// or is implemented but not enabled in the current
// security state.
PARTIDtype ret;
boolean err;
integer virt = UInt(vpartid);
integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);

// vpartid_max is largest vpartid supported
integer vpartid_max = (vpmrmax << 2) + 3;

// One of many ways to reduce vpartid to value less than vpartid_max.
if UInt(vpartid) > vpartid_max then

virt = virt MOD (vpartid_max+1);

// Check for valid mapping entry.
if MPAMVPMV_EL2<virt> == '1' then

// vpartid has a valid mapping so access the map.
ret = mapvpmw(virt);
err = FALSE;

// Is the default virtual PARTID valid?
elsif MPAMVPMV_EL2<0> == '1' then

// Yes, so use default mapping for vpartid == 0.
ret = MPAMVPM0_EL2<0 +: 16>;
err = FALSE;

// Neither is valid so use default physical PARTID.
else

ret = DefaultPARTID;
err = TRUE;

// Check that the physical PARTID is in-range.
// This physical PARTID came from a virtual mapping entry.
integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
if UInt(ret) > partid_max then

// Out of range, so return default physical PARTID
ret = DefaultPARTID;
err = TRUE;

return (ret, err);

Library pseudocode for shared/functions/mpam/MPAMisEnabled

// MPAMisEnabled()
// ===============
// Returns TRUE if MPAMisEnabled.

boolean MPAMisEnabled()
el = HighestEL();
case el of

when EL3 return MPAM3_EL3.MPAMEN == '1';
when EL2 return MPAM2_EL2.MPAMEN == '1';
when EL1 return MPAM1_EL1.MPAMEN == '1';

Shared Pseudocode Functions Page 3132

Library pseudocode for shared/functions/mpam/MPAMisVirtual

// MPAMisVirtual()
// ===============
// Returns TRUE if MPAM is configured to be virtual at EL.

boolean MPAMisVirtual(bits(2) el)
return (MPAMIDR_EL1.HAS_HCR == '1' && EL2Enabled() &&

((el == EL0 && MPAMHCR_EL2.EL0_VPMEN == '1' &&
(HCR_EL2.E2H == '0' || HCR_EL2.TGE == '0')) ||

(el == EL1 && MPAMHCR_EL2.EL1_VPMEN == '1')));

Library pseudocode for shared/functions/mpam/PARTIDspaceFromSS

// PARTIDspaceFromSS()
// ===================
// Returns the primary PARTID space from the Security State.

PARTIDspaceType PARTIDspaceFromSS(SecurityState security)
case security of

when SS_NonSecure
return PIdSpace_NonSecure;

when SS_Secure
if HaveEMPAMExt() && MPAM3_EL3.FORCE_NS == '1' then

return PIdSpace_NonSecure;
else

return PIdSpace_Secure;
otherwise

Unreachable();

Library pseudocode for shared/functions/mpam/genMPAM

// genMPAM()
// =========
// Returns MPAMinfo for exception level el.
// If InD is TRUE returns MPAM information using PARTID_I and PMG_I fields
// of MPAMel_ELx register and otherwise using PARTID_D and PMG_D fields.
// Produces a PARTID in PARTID space pspace.

MPAMinfo genMPAM(bits(2) el, boolean InD, PARTIDspaceType pspace)
MPAMinfo returninfo;
PARTIDtype partidel;
boolean perr;
// gstplk is guest OS application locked by the EL2 hypervisor to
// only use EL1 the virtual machine's PARTIDs.
boolean gstplk = (el == EL0 && EL2Enabled() &&

MPAMHCR_EL2.GSTAPP_PLK == '1' &&
HCR_EL2.TGE == '0');

bits(2) eff_el = if gstplk then EL1 else el;
(partidel, perr) = genPARTID(eff_el, InD);
PMGtype groupel = genPMG(eff_el, InD, perr);
returninfo.mpam_ns = pspace;
returninfo.partid = partidel;
returninfo.pmg = groupel;
return returninfo;

Shared Pseudocode Functions Page 3133

Library pseudocode for shared/functions/mpam/genMPAMel

// genMPAMel()
// ===========
// Returns MPAMinfo for specified EL in the current security state.
// InD is TRUE for instruction access and FALSE otherwise.

MPAMinfo genMPAMel(bits(2) el, boolean InD)
SecurityState security = SecurityStateAtEL(el);
PARTIDspaceType space = PARTIDspaceFromSS(security);
boolean use_default = !(HaveMPAMExt() && MPAMisEnabled());
if HaveEMPAMExt() && space == PIdSpace_Secure then

if MPAM3_EL3.FORCE_NS == '1' then
space = PIdSpace_NonSecure;

if MPAM3_EL3.SDEFLT == '1' then
use_default = TRUE;

if !use_default then
return genMPAM(el, InD, space);

else
return DefaultMPAMinfo(space);

Library pseudocode for shared/functions/mpam/genPARTID

// genPARTID()
// ===========
// Returns physical PARTID and error boolean for exception level el.
// If InD is TRUE then PARTID is from MPAMel_ELx.PARTID_I and
// otherwise from MPAMel_ELx.PARTID_D.

(PARTIDtype, boolean) genPARTID(bits(2) el, boolean InD)
PARTIDtype partidel = getMPAM_PARTID(el, InD);
PARTIDtype partid_max = MPAMIDR_EL1.PARTID_MAX;
if UInt(partidel) > UInt(partid_max) then

return (DefaultPARTID, TRUE);
if MPAMisVirtual(el) then

return MAP_vPARTID(partidel);
else

return (partidel, FALSE);

Library pseudocode for shared/functions/mpam/genPMG

// genPMG()
// ========
// Returns PMG for exception level el and I- or D-side (InD).
// If PARTID generation (genPARTID) encountered an error, genPMG() should be
// called with partid_err as TRUE.

PMGtype genPMG(bits(2) el, boolean InD, boolean partid_err)
integer pmg_max = UInt(MPAMIDR_EL1.PMG_MAX);
// It is CONSTRAINED UNPREDICTABLE whether partid_err forces PMG to
// use the default or if it uses the PMG from getMPAM_PMG.
if partid_err then

return DefaultPMG;
PMGtype groupel = getMPAM_PMG(el, InD);
if UInt(groupel) <= pmg_max then

return groupel;
return DefaultPMG;

Shared Pseudocode Functions Page 3134

Library pseudocode for shared/functions/mpam/getMPAM_PARTID

// getMPAM_PARTID()
// ================
// Returns a PARTID from one of the MPAMn_ELx registers.
// MPAMn selects the MPAMn_ELx register used.
// If InD is TRUE, selects the PARTID_I field of that
// register. Otherwise, selects the PARTID_D field.

PARTIDtype getMPAM_PARTID(bits(2) MPAMn, boolean InD)
PARTIDtype partid;
boolean el2avail = EL2Enabled();

if InD then
case MPAMn of

when '11' partid = MPAM3_EL3.PARTID_I;
when '10' partid = if el2avail then MPAM2_EL2.PARTID_I else Zeros();
when '01' partid = MPAM1_EL1.PARTID_I;
when '00' partid = MPAM0_EL1.PARTID_I;
otherwise partid = PARTIDtype UNKNOWN;

else
case MPAMn of

when '11' partid = MPAM3_EL3.PARTID_D;
when '10' partid = if el2avail then MPAM2_EL2.PARTID_D else Zeros();
when '01' partid = MPAM1_EL1.PARTID_D;
when '00' partid = MPAM0_EL1.PARTID_D;
otherwise partid = PARTIDtype UNKNOWN;

return partid;

Library pseudocode for shared/functions/mpam/getMPAM_PMG

// getMPAM_PMG()
// =============
// Returns a PMG from one of the MPAMn_ELx registers.
// MPAMn selects the MPAMn_ELx register used.
// If InD is TRUE, selects the PMG_I field of that
// register. Otherwise, selects the PMG_D field.

PMGtype getMPAM_PMG(bits(2) MPAMn, boolean InD)
PMGtype pmg;
boolean el2avail = EL2Enabled();

if InD then
case MPAMn of

when '11' pmg = MPAM3_EL3.PMG_I;
when '10' pmg = if el2avail then MPAM2_EL2.PMG_I else Zeros();
when '01' pmg = MPAM1_EL1.PMG_I;
when '00' pmg = MPAM0_EL1.PMG_I;
otherwise pmg = PMGtype UNKNOWN;

else
case MPAMn of

when '11' pmg = MPAM3_EL3.PMG_D;
when '10' pmg = if el2avail then MPAM2_EL2.PMG_D else Zeros();
when '01' pmg = MPAM1_EL1.PMG_D;
when '00' pmg = MPAM0_EL1.PMG_D;
otherwise pmg = PMGtype UNKNOWN;

return pmg;

Shared Pseudocode Functions Page 3135

Library pseudocode for shared/functions/mpam/mapvpmw

// mapvpmw()
// =========
// Map a virtual PARTID into a physical PARTID using
// the MPAMVPMn_EL2 registers.
// vpartid is now assumed in-range and valid (checked by caller)
// returns physical PARTID from mapping entry.

PARTIDtype mapvpmw(integer vpartid)
bits(64) vpmw;
integer wd = vpartid DIV 4;
case wd of

when 0 vpmw = MPAMVPM0_EL2;
when 1 vpmw = MPAMVPM1_EL2;
when 2 vpmw = MPAMVPM2_EL2;
when 3 vpmw = MPAMVPM3_EL2;
when 4 vpmw = MPAMVPM4_EL2;
when 5 vpmw = MPAMVPM5_EL2;
when 6 vpmw = MPAMVPM6_EL2;
when 7 vpmw = MPAMVPM7_EL2;
otherwise vpmw = Zeros(64);

// vpme_lsb selects LSB of field within register
integer vpme_lsb = (vpartid MOD 4) * 16;
return vpmw<vpme_lsb +: 16>;

Library pseudocode for shared/functions/registers/BranchTo

// BranchTo()
// ==========
// Set program counter to a new address, with a branch type.
// Parameter branch_conditional indicates whether the executed branch has a conditional encoding.
// In AArch64 state the address might include a tag in the top eight bits.

BranchTo(bits(N) target, BranchType branch_type, boolean branch_conditional)
Hint_Branch(branch_type);
if N == 32 then

assert UsingAArch32();
_PC = ZeroExtend(target);

else
assert N == 64 && !UsingAArch32();
bits(64) target_vaddress = AArch64.BranchAddr(target<63:0>);
_PC = target_vaddress;

return;

Library pseudocode for shared/functions/registers/BranchToAddr

// BranchToAddr()
// ==============
// Set program counter to a new address, with a branch type.
// In AArch64 state the address does not include a tag in the top eight bits.

BranchToAddr(bits(N) target, BranchType branch_type)
Hint_Branch(branch_type);
if N == 32 then

assert UsingAArch32();
_PC = ZeroExtend(target);

else
assert N == 64 && !UsingAArch32();
_PC = target<63:0>;

return;

Shared Pseudocode Functions Page 3136

Library pseudocode for shared/functions/registers/BranchType

enumeration BranchType {
BranchType_DIRCALL, // Direct Branch with link
BranchType_INDCALL, // Indirect Branch with link
BranchType_ERET, // Exception return (indirect)
BranchType_DBGEXIT, // Exit from Debug state
BranchType_RET, // Indirect branch with function return hint
BranchType_DIR, // Direct branch
BranchType_INDIR, // Indirect branch
BranchType_EXCEPTION, // Exception entry
BranchType_RESET, // Reset
BranchType_UNKNOWN}; // Other

Library pseudocode for shared/functions/registers/Hint_Branch

// Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
// the next instruction.
Hint_Branch(BranchType hint);

Library pseudocode for shared/functions/registers/NextInstrAddr

// Return address of the sequentially next instruction.
bits(N) NextInstrAddr();

Library pseudocode for shared/functions/registers/ResetExternalDebugRegisters

// Reset the External Debug registers in the Core power domain.
ResetExternalDebugRegisters(boolean cold_reset);

Library pseudocode for shared/functions/registers/ThisInstrAddr

// ThisInstrAddr()
// ===============
// Return address of the current instruction.

bits(N) ThisInstrAddr()
assert N == 64 || (N == 32 && UsingAArch32());
return _PC<N-1:0>;

Library pseudocode for shared/functions/registers/_PC

bits(64) _PC;

Library pseudocode for shared/functions/registers/_R

array bits(64) _R[0..30];

Shared Pseudocode Functions Page 3137

Library pseudocode for shared/functions/sysregisters/SPSR

// SPSR[] - non-assignment form
// ============================

bits(N) SPSR[]
bits(N) result;
if UsingAArch32() then

assert N == 32;
case PSTATE.M of

when M32_FIQ result = SPSR_fiq<N-1:0>;
when M32_IRQ result = SPSR_irq<N-1:0>;
when M32_Svc result = SPSR_svc<N-1:0>;
when M32_Monitor result = SPSR_mon<N-1:0>;
when M32_Abort result = SPSR_abt<N-1:0>;
when M32_Hyp result = SPSR_hyp<N-1:0>;
when M32_Undef result = SPSR_und<N-1:0>;
otherwise Unreachable();

else
assert N == 64;
case PSTATE.EL of

when EL1 result = SPSR_EL1<N-1:0>;
when EL2 result = SPSR_EL2<N-1:0>;
when EL3 result = SPSR_EL3<N-1:0>;
otherwise Unreachable();

return result;

// SPSR[] - assignment form
// ========================

SPSR[] = bits(N) value
if UsingAArch32() then

assert N == 32;
case PSTATE.M of

when M32_FIQ SPSR_fiq = ZeroExtend(value);
when M32_IRQ SPSR_irq = ZeroExtend(value);
when M32_Svc SPSR_svc = ZeroExtend(value);
when M32_Monitor SPSR_mon = ZeroExtend(value);
when M32_Abort SPSR_abt = ZeroExtend(value);
when M32_Hyp SPSR_hyp = ZeroExtend(value);
when M32_Undef SPSR_und = ZeroExtend(value);
otherwise Unreachable();

else
assert N == 64;
case PSTATE.EL of

when EL1 SPSR_EL1 = ZeroExtend(value);
when EL2 SPSR_EL2 = ZeroExtend(value);
when EL3 SPSR_EL3 = ZeroExtend(value);
otherwise Unreachable();

return;

Library pseudocode for shared/functions/system/ArchVersion

enumeration ArchVersion {
ARMv8p0
, ARMv8p1
, ARMv8p2
, ARMv8p3
, ARMv8p4
, ARMv8p5
, ARMv8p6
, ARMv8p7

};

Shared Pseudocode Functions Page 3138

Library pseudocode for shared/functions/system/BranchTargetCheck

// BranchTargetCheck()
// ===================
// This function is executed checks if the current instruction is a valid target for a branch
// taken into, or inside, a guarded page. It is executed on every cycle once the current
// instruction has been decoded and the values of InGuardedPage and BTypeCompatible have been
// determined for the current instruction.

BranchTargetCheck()
assert HaveBTIExt() && !UsingAArch32();

// The branch target check considers two state variables:
// * InGuardedPage, which is evaluated during instruction fetch.
// * BTypeCompatible, which is evaluated during instruction decode.
if InGuardedPage && PSTATE.BTYPE != '00' && !BTypeCompatible && !Halted() then

bits(64) pc = ThisInstrAddr();
AArch64.BranchTargetException(pc<51:0>);

boolean branch_instr = AArch64.ExecutingBROrBLROrRetInstr();
boolean bti_instr = AArch64.ExecutingBTIInstr();

// PSTATE.BTYPE defaults to 00 for instructions that do not explictly set BTYPE.
if !(branch_instr || bti_instr) then

BTypeNext = '00';

Library pseudocode for shared/functions/system/ClearEventRegister

// ClearEventRegister()
// ====================
// Clear the Event Register of this PE.

ClearEventRegister()
EventRegister = '0';
return;

Library pseudocode for shared/functions/system/ClearPendingPhysicalSError

// Clear a pending physical SError interrupt.
ClearPendingPhysicalSError();

Library pseudocode for shared/functions/system/ClearPendingVirtualSError

// Clear a pending virtual SError interrupt.
ClearPendingVirtualSError();

Shared Pseudocode Functions Page 3139

Library pseudocode for shared/functions/system/ConditionHolds

// ConditionHolds()
// ================
// Return TRUE iff COND currently holds

boolean ConditionHolds(bits(4) cond)
// Evaluate base condition.
case cond<3:1> of

when '000' result = (PSTATE.Z == '1'); // EQ or NE
when '001' result = (PSTATE.C == '1'); // CS or CC
when '010' result = (PSTATE.N == '1'); // MI or PL
when '011' result = (PSTATE.V == '1'); // VS or VC
when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
when '111' result = TRUE; // AL

// Condition flag values in the set '111x' indicate always true
// Otherwise, invert condition if necessary.
if cond<0> == '1' && cond != '1111' then

result = !result;

return result;

Library pseudocode for shared/functions/system/ConsumptionOfSpeculativeDataBarrier

ConsumptionOfSpeculativeDataBarrier();

Library pseudocode for shared/functions/system/CurrentInstrSet

// CurrentInstrSet()
// =================

InstrSet CurrentInstrSet()

if UsingAArch32() then
result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
// PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.

else
result = InstrSet_A64;

return result;

Library pseudocode for shared/functions/system/CurrentPL

// CurrentPL()
// ===========

PrivilegeLevel CurrentPL()
return PLOfEL(PSTATE.EL);

Library pseudocode for shared/functions/system/DSBAlias

enumeration DSBAlias {DSBAlias_SSBB, DSBAlias_PSSBB, DSBAlias_DSB};

Library pseudocode for shared/functions/system/EL0

constant bits(2) EL3 = '11';
constant bits(2) EL2 = '10';
constant bits(2) EL1 = '01';
constant bits(2) EL0 = '00';

Shared Pseudocode Functions Page 3140

Library pseudocode for shared/functions/system/EL2Enabled

// EL2Enabled()
// ============
// Returns TRUE if EL2 is present and executing
// - with SCR_EL3.NS==1 when Non-secure EL2 is implemented, or
// - with SCR_EL3.NS==0 when Secure EL2 is implemented and enabled, or
// - when EL3 is not implemented.

boolean EL2Enabled()
return HaveEL(EL2) && (!HaveEL(EL3) || SCR_EL3.NS == '1' || IsSecureEL2Enabled());

Library pseudocode for shared/functions/system/ELFromM32

// ELFromM32()
// ===========

(boolean,bits(2)) ELFromM32(bits(5) mode)
// Convert an AArch32 mode encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
// and the current value of SCR.NS/SCR_EL3.NS.
// 'EL' is the Exception level decoded from 'mode'.
bits(2) el;
boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation
case mode of

when M32_Monitor
el = EL3;

when M32_Hyp
el = EL2;
valid = valid && (!HaveEL(EL3) || SCR_GEN[].NS == '1');

when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
// If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
// state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
// AArch64, then these modes are EL1 modes.
el = (if HaveEL(EL3) && !HaveAArch64() && SCR.NS == '0' then EL3 else EL1);

when M32_User
el = EL0;

otherwise
valid = FALSE; // Passed an illegal mode value

if !valid then el = bits(2) UNKNOWN;
return (valid, el);

Shared Pseudocode Functions Page 3141

Library pseudocode for shared/functions/system/ELFromSPSR

// ELFromSPSR()
// ============

// Convert an SPSR value encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
// 'EL' is the Exception level decoded from 'spsr'.

(boolean,bits(2)) ELFromSPSR(bits(N) spsr)
if spsr<4> == '0' then // AArch64 state

el = spsr<3:2>;
if !HaveAArch64() then // No AArch64 support

valid = FALSE;
elsif !HaveEL(el) then // Exception level not implemented

valid = FALSE;
elsif spsr<1> == '1' then // M[1] must be 0

valid = FALSE;
elsif el == EL0 && spsr<0> == '1' then // for EL0, M[0] must be 0

valid = FALSE;
elsif el == EL2 && HaveEL(EL3) && !IsSecureEL2Enabled() && SCR_EL3.NS == '0' then

valid = FALSE; // Unless Secure EL2 is enabled, EL2 only valid in Non-secure state
else

valid = TRUE;
elsif HaveAArch32() then // AArch32 state

(valid, el) = ELFromM32(spsr<4:0>);
else

valid = FALSE;

if !valid then el = bits(2) UNKNOWN;
return (valid,el);

Library pseudocode for shared/functions/system/ELIsInHost

// ELIsInHost()
// ============

boolean ELIsInHost(bits(2) el)
if !HaveVirtHostExt() || ELUsingAArch32(EL2) then

return FALSE;
case el of

when EL3
return FALSE;

when EL2
return EL2Enabled() && HCR_EL2.E2H == '1';

when EL1
return FALSE;

when EL0
return EL2Enabled() && HCR_EL2.<E2H,TGE> == '11';

otherwise
Unreachable();

Library pseudocode for shared/functions/system/ELStateUsingAArch32

// ELStateUsingAArch32()
// =====================

boolean ELStateUsingAArch32(bits(2) el, boolean secure)
// See ELStateUsingAArch32K() for description. Must only be called in circumstances where
// result is valid (typically, that means 'el IN {EL1,EL2,EL3}').
(known, aarch32) = ELStateUsingAArch32K(el, secure);
assert known;
return aarch32;

Shared Pseudocode Functions Page 3142

Library pseudocode for shared/functions/system/ELStateUsingAArch32K

// ELStateUsingAArch32K()
// ======================

(boolean,boolean) ELStateUsingAArch32K(bits(2) el, boolean secure)
// Returns (known, aarch32):
// 'known' is FALSE for EL0 if the current Exception level is not EL0 and EL1 is
// using AArch64, since it cannot determine the state of EL0; TRUE otherwise.
// 'aarch32' is TRUE if the specified Exception level is using AArch32; FALSE otherwise.
if !HaveAArch32EL(el) then

return (TRUE, FALSE); // Exception level is using AArch64
elsif secure && el == EL2 then

return (TRUE, FALSE); // Secure EL2 is using AArch64
elsif !HaveAArch64() then

return (TRUE, TRUE); // Highest Exception level, and therefore all levels are using AArch32
elsif el == HighestEL() then

return (TRUE, FALSE); // This is highest Exception level, so is using AArch64

// Remainder of function deals with the interprocessing cases when highest Exception level is using AArch64

boolean aarch32 = boolean UNKNOWN;
boolean known = TRUE;

aarch32_below_el3 = HaveEL(EL3) && SCR_EL3.RW == '0' && (!secure || !HaveSecureEL2Ext() || SCR_EL3.EEL2 == '0');
aarch32_at_el1 = (aarch32_below_el3 || (HaveEL(EL2) &&

((HaveSecureEL2Ext() && SCR_EL3.EEL2 == '1') || !secure) && HCR_EL2.RW == '0' &&
!(HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' && HaveVirtHostExt())));

if el == EL0 && !aarch32_at_el1 then // Only know if EL0 using AArch32 from PSTATE
if PSTATE.EL == EL0 then

aarch32 = PSTATE.nRW == '1'; // EL0 controlled by PSTATE
else

known = FALSE; // EL0 state is UNKNOWN
else

aarch32 = (aarch32_below_el3 && el != EL3) || (aarch32_at_el1 && el IN {EL1,EL0});

if !known then aarch32 = boolean UNKNOWN;
return (known, aarch32);

Library pseudocode for shared/functions/system/ELUsingAArch32

// ELUsingAArch32()
// ================

boolean ELUsingAArch32(bits(2) el)
return ELStateUsingAArch32(el, IsSecureBelowEL3());

Library pseudocode for shared/functions/system/ELUsingAArch32K

// ELUsingAArch32K()
// =================

(boolean,boolean) ELUsingAArch32K(bits(2) el)
return ELStateUsingAArch32K(el, IsSecureBelowEL3());

Library pseudocode for shared/functions/system/EndOfInstruction

// Terminate processing of the current instruction.
EndOfInstruction();

Library pseudocode for shared/functions/system/EnterLowPowerState

// PE enters a low-power state.
EnterLowPowerState();

Shared Pseudocode Functions Page 3143

Library pseudocode for shared/functions/system/EventRegister

bits(1) EventRegister;

Library pseudocode for shared/functions/system/ExceptionalOccurrenceTargetState

enumeration ExceptionalOccurrenceTargetState {
AArch32_NonDebugState,
AArch64_NonDebugState,
DebugState

};

Library pseudocode for shared/functions/system/FIQPending

// Returns TRUE if there is any pending physical FIQ.
boolean FIQPending();

Library pseudocode for shared/functions/system/GetPSRFromPSTATE

// GetPSRFromPSTATE()
// ==================
// Return a PSR value which represents the current PSTATE

bits(N) GetPSRFromPSTATE(ExceptionalOccurrenceTargetState targetELState)
if UsingAArch32() && (targetELState IN {AArch32_NonDebugState, DebugState}) then

assert N == 32;
else

assert N == 64;
bits(N) spsr = Zeros();
spsr<31:28> = PSTATE.<N,Z,C,V>;
if HavePANExt() then spsr<22> = PSTATE.PAN;
spsr<20> = PSTATE.IL;
if PSTATE.nRW == '1' then // AArch32 state

spsr<27> = PSTATE.Q;
spsr<26:25> = PSTATE.IT<1:0>;
if HaveSSBSExt() then spsr<23> = PSTATE.SSBS;
if HaveDITExt() then

if targetELState == AArch32_NonDebugState then
spsr<21> = PSTATE.DIT;

else //AArch64_NonDebugState or DebugState
spsr<24> = PSTATE.DIT;

if targetELState IN {AArch64_NonDebugState, DebugState} then
spsr<21> = PSTATE.SS;

spsr<19:16> = PSTATE.GE;
spsr<15:10> = PSTATE.IT<7:2>;
spsr<9> = PSTATE.E;
spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
spsr<5> = PSTATE.T;
assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
spsr<4:0> = PSTATE.M;

else // AArch64 state
if HaveMTEExt() then spsr<25> = PSTATE.TCO;
if HaveDITExt() then spsr<24> = PSTATE.DIT;
if HaveUAOExt() then spsr<23> = PSTATE.UAO;
spsr<21> = PSTATE.SS;
if HaveSSBSExt() then spsr<12> = PSTATE.SSBS;
if HaveBTIExt() then spsr<11:10> = PSTATE.BTYPE;
spsr<9:6> = PSTATE.<D,A,I,F>;
spsr<4> = PSTATE.nRW;
spsr<3:2> = PSTATE.EL;
spsr<0> = PSTATE.SP;

return spsr;

Shared Pseudocode Functions Page 3144

Library pseudocode for shared/functions/system/HasArchVersion

// HasArchVersion()
// ================
// Returns TRUE if the implemented architecture includes the extensions defined in the specified
// architecture version.

boolean HasArchVersion(ArchVersion version)
return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HaveAArch32

// HaveAArch32()
// =============
// Return TRUE if AArch32 state is supported at at least EL0.

boolean HaveAArch32()
return boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HaveAArch32EL

// HaveAArch32EL()
// ===============

boolean HaveAArch32EL(bits(2) el)
// Return TRUE if Exception level 'el' supports AArch32 in this implementation
if !HaveEL(el) then

return FALSE; // The Exception level is not implemented
elsif !HaveAArch32() then

return FALSE; // No Exception level can use AArch32
elsif !HaveAArch64() then

return TRUE; // All Exception levels are using AArch32
elsif el == HighestEL() then

return FALSE; // The highest Exception level is using AArch64
elsif el == EL0 then

return TRUE; // EL0 must support using AArch32 if any AArch32
return boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HaveAArch64

// HaveAArch64()
// =============
// Return TRUE if AArch64 state is supported at the highest Exception level.

boolean HaveAArch64()
return boolean IMPLEMENTATION_DEFINED "Highest EL using AArch64";

Library pseudocode for shared/functions/system/HaveEL

// HaveEL()
// ========
// Return TRUE if Exception level 'el' is supported

boolean HaveEL(bits(2) el)
if el IN {EL1,EL0} then

return TRUE; // EL1 and EL0 must exist
return boolean IMPLEMENTATION_DEFINED;

Shared Pseudocode Functions Page 3145

Library pseudocode for shared/functions/system/HaveELUsingSecurityState

// HaveELUsingSecurityState()
// ==========================
// Returns TRUE if Exception level 'el' with Security state 'secure' is supported,
// FALSE otherwise.

boolean HaveELUsingSecurityState(bits(2) el, boolean secure)

case el of
when EL3

assert secure;
return HaveEL(EL3);

when EL2
if secure then

return HaveEL(EL2) && HaveSecureEL2Ext();
else

return HaveEL(EL2);
otherwise

return (HaveEL(EL3) ||
(secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

Library pseudocode for shared/functions/system/HaveFP16Ext

// HaveFP16Ext()
// =============
// Return TRUE if FP16 extension is supported

boolean HaveFP16Ext()
return boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HighestEL

// HighestEL()
// ===========
// Returns the highest implemented Exception level.

bits(2) HighestEL()
if HaveEL(EL3) then

return EL3;
elsif HaveEL(EL2) then

return EL2;
else

return EL1;

Library pseudocode for shared/functions/system/Hint_DGH

// Provides a hint to close any gathering occurring within the micro-architecture.
Hint_DGH();

Shared Pseudocode Functions Page 3146

Library pseudocode for shared/functions/system/Hint_WFE

// Hint_WFE()
// ==========
// Provides a hint indicating that the PE can enter a low-power state
// and remain there until a wakeup event occurs or, for WFET, a local
// timeout event is generated when the virtual timer value equals or
// exceeds the supplied threshold value.

Hint_WFE(integer localtimeout, WFxType wfxtype)
if IsEventRegisterSet() then

ClearEventRegister();
else

trap = FALSE;
if PSTATE.EL == EL0 then

// Check for traps described by the OS which may be EL1 or EL2.
if HaveTWEDExt() then

sctlr = SCTLR[];
trap = sctlr.nTWE == '0';
target_el = EL1;

else
AArch64.CheckForWFxTrap(EL1, wfxtype);

if !trap && PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
// Check for traps described by the Hypervisor.
if HaveTWEDExt() then

trap = HCR_EL2.TWE == '1';
target_el = EL2;

else
AArch64.CheckForWFxTrap(EL2, wfxtype);

if !trap && HaveEL(EL3) && PSTATE.EL != EL3 then
// Check for traps described by the Secure Monitor.
if HaveTWEDExt() then

trap = SCR_EL3.TWE == '1';
target_el = EL3;

else
AArch64.CheckForWFxTrap(EL3, wfxtype);

if trap && PSTATE.EL != EL3 then
(delay_enabled, delay) = WFETrapDelay(target_el); // (If trap delay is enabled, Delay amount)
if !WaitForEventUntilDelay(delay_enabled, delay) then

// Event did not arrive before delay expired
AArch64.WFxTrap(wfxtype, target_el); // Trap WFE

else
WaitForEvent(localtimeout);

Library pseudocode for shared/functions/system/Hint_WFI

// Hint_WFI()
// ==========
// Provides a hint indicating that the PE can enter a low-power state and
// remain there until a wakeup event occurs or, for WFIT, a local timeout
// event is generated when the virtual timer value equals or exceeds the
// supplied threshold value.

Hint_WFI(integer localtimeout, WFxType wfxtype)
if !InterruptPending() then

if PSTATE.EL == EL0 then
// Check for traps described by the OS.
AArch64.CheckForWFxTrap(EL1, wfxtype);

if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
// Check for traps described by the Hypervisor.
AArch64.CheckForWFxTrap(EL2, wfxtype);

if HaveEL(EL3) && PSTATE.EL != EL3 then
// Check for traps described by the Secure Monitor.
AArch64.CheckForWFxTrap(EL3, wfxtype);

WaitForInterrupt(localtimeout);

Shared Pseudocode Functions Page 3147

Library pseudocode for shared/functions/system/Hint_Yield

// Provides a hint that the task performed by a thread is of low
// importance so that it could yield to improve overall performance.
Hint_Yield();

Library pseudocode for shared/functions/system/IRQPending

// Returns TRUE if there is any pending physical IRQ.
boolean IRQPending();

Library pseudocode for shared/functions/system/IllegalExceptionReturn

// IllegalExceptionReturn()
// ========================

boolean IllegalExceptionReturn(bits(N) spsr)

// Check for illegal return:
// * To an unimplemented Exception level.
// * To EL2 in Secure state, when SecureEL2 is not enabled.
// * To EL0 using AArch64 state, with SPSR.M[0]==1.
// * To AArch64 state with SPSR.M[1]==1.
// * To AArch32 state with an illegal value of SPSR.M.
(valid, target) = ELFromSPSR(spsr);
if !valid then return TRUE;

// Check for return to higher Exception level
if UInt(target) > UInt(PSTATE.EL) then return TRUE;

spsr_mode_is_aarch32 = (spsr<4> == '1');

// Check for illegal return:
// * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
// Execution state used in the Exception level being returned to, as determined by
// the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
// * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
// SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
// * To AArch64 state from AArch32 state (should be caught by above)
(known, target_el_is_aarch32) = ELUsingAArch32K(target);
assert known || (target == EL0 && !ELUsingAArch32(EL1));
if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

// Check for illegal return from AArch32 to AArch64
if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

// Check for illegal return to EL1 when HCR.TGE is set and when either of
// * SecureEL2 is enabled.
// * SecureEL2 is not enabled and EL1 is in Non-secure state.
if HaveEL(EL2) && target == EL1 && HCR_EL2.TGE == '1' then

if (!IsSecureBelowEL3() || IsSecureEL2Enabled()) then return TRUE;
return FALSE;

Library pseudocode for shared/functions/system/InstrSet

enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

Library pseudocode for shared/functions/system/InstructionSynchronizationBarrier

InstructionSynchronizationBarrier();

Shared Pseudocode Functions Page 3148

Library pseudocode for shared/functions/system/InterruptPending

// InterruptPending()
// ==================
// Returns TRUE if there are any pending physical or virtual
// interrupts, and FALSE otherwise.

boolean InterruptPending()
boolean pending_virtual_interrupt = FALSE;
boolean pending_physical_interrupt = (IRQPending() || FIQPending() ||

IsPhysicalSErrorPending());

if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.TGE == '0' then
boolean virq_pending = HCR_EL2.IMO == '1' && (VirtualIRQPending() || HCR_EL2.VI == '1') ;
boolean vfiq_pending = HCR_EL2.FMO == '1' && (VirtualFIQPending() || HCR_EL2.VF == '1');
boolean vsei_pending = HCR_EL2.AMO == '1' && (IsVirtualSErrorPending() || HCR_EL2.VSE == '1');
pending_virtual_interrupt = vsei_pending || virq_pending || vfiq_pending;

return pending_physical_interrupt || pending_virtual_interrupt;

Library pseudocode for shared/functions/system/IsEventRegisterSet

// IsEventRegisterSet()
// ====================
// Return TRUE if the Event Register of this PE is set, and FALSE if it is clear.

boolean IsEventRegisterSet()
return EventRegister == '1';

Library pseudocode for shared/functions/system/IsHighestEL

// IsHighestEL()
// =============
// Returns TRUE if given exception level is the highest exception level implemented

boolean IsHighestEL(bits(2) el)
return HighestEL() == el;

Library pseudocode for shared/functions/system/IsInHost

// IsInHost()
// ==========

boolean IsInHost()
return ELIsInHost(PSTATE.EL);

Library pseudocode for shared/functions/system/IsPhysicalSErrorPending

// Returns TRUE if a physical SError interrupt is pending.
boolean IsPhysicalSErrorPending();

Shared Pseudocode Functions Page 3149

Library pseudocode for shared/functions/system/IsSErrorEdgeTriggered

// IsSErrorEdgeTriggered()
// =======================
// Returns TRUE if the physical SError interrupt is edge-triggered
// and FALSE otherwise.

boolean IsSErrorEdgeTriggered(bits(2) target_el, bits(25) syndrome)
if HaveRASExt() then

if HaveDoubleFaultExt() then
return TRUE;

if ELUsingAArch32(target_el) then
if syndrome<11:10> != '00' then

// AArch32 and not Uncontainable.
return TRUE;

else
if syndrome<24> == '0' && syndrome<5:0> != '000000' then

// AArch64 and neither IMPLEMENTATION DEFINED syndrome nor Uncategorized.
return TRUE;

return boolean IMPLEMENTATION_DEFINED "Edge-triggered SError";

Library pseudocode for shared/functions/system/IsSecure

// IsSecure()
// ==========
// Returns TRUE if current Exception level is in Secure state.

boolean IsSecure()
if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then

return TRUE;
elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then

return TRUE;
return IsSecureBelowEL3();

Library pseudocode for shared/functions/system/IsSecureBelowEL3

// IsSecureBelowEL3()
// ==================
// Return TRUE if an Exception level below EL3 is in Secure state
// or would be following an exception return to that level.
//
// Differs from IsSecure in that it ignores the current EL or Mode
// in considering security state.
// That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
// exception return would pass to Secure or Non-secure state.

boolean IsSecureBelowEL3()
if HaveEL(EL3) then

return SCR_GEN[].NS == '0';
elsif HaveEL(EL2) && (!HaveSecureEL2Ext() || !HaveAArch64()) then

// If Secure EL2 is not an architecture option then we must be Non-secure.
return FALSE;

else
// TRUE if processor is Secure or FALSE if Non-secure.
return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

Shared Pseudocode Functions Page 3150

Library pseudocode for shared/functions/system/IsSecureEL2Enabled

// IsSecureEL2Enabled()
// ====================
// Returns TRUE if Secure EL2 is enabled, FALSE otherwise.

boolean IsSecureEL2Enabled()
if HaveEL(EL2) && HaveSecureEL2Ext() then

if HaveEL(EL3) then
if !ELUsingAArch32(EL3) && SCR_EL3.EEL2 == '1' then

return TRUE;
else

return FALSE;
else

return IsSecure();
else

return FALSE;

Library pseudocode for shared/functions/system/IsSynchronizablePhysicalSErrorPending

// Returns TRUE if a synchronizable physical SError interrupt is pending.
boolean IsSynchronizablePhysicalSErrorPending();

Library pseudocode for shared/functions/system/IsVirtualSErrorPending

// Returns TRUE if a virtual SError interrupt is pending.
boolean IsVirtualSErrorPending();

Library pseudocode for shared/functions/system/LocalTimeoutEvent

// Returns TRUE if a local timeout event is generated when the value of
// CNTVCT_EL0 equals or exceeds the threshold value for the first time.
// If the threshold value is less than zero a local timeout event will
// not be generated.
boolean LocalTimeoutEvent(integer localtimeout);

Library pseudocode for shared/functions/system/Mode_Bits

constant bits(5) M32_User = '10000';
constant bits(5) M32_FIQ = '10001';
constant bits(5) M32_IRQ = '10010';
constant bits(5) M32_Svc = '10011';
constant bits(5) M32_Monitor = '10110';
constant bits(5) M32_Abort = '10111';
constant bits(5) M32_Hyp = '11010';
constant bits(5) M32_Undef = '11011';
constant bits(5) M32_System = '11111';

Library pseudocode for shared/functions/system/PLOfEL

// PLOfEL()
// ========

PrivilegeLevel PLOfEL(bits(2) el)
case el of

when EL3 return if !HaveAArch64() then PL1 else PL3;
when EL2 return PL2;
when EL1 return PL1;
when EL0 return PL0;

Library pseudocode for shared/functions/system/PSTATE

ProcState PSTATE;

Shared Pseudocode Functions Page 3151

Library pseudocode for shared/functions/system/PhysicalCountInt

// PhysicalCountInt()
// ==================
// Returns the integral part of physical count value of the System counter.

bits(64) PhysicalCountInt()
return PhysicalCount<87:24>;

Library pseudocode for shared/functions/system/PrivilegeLevel

enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

Library pseudocode for shared/functions/system/ProcState

type ProcState is (
bits (1) N, // Negative condition flag
bits (1) Z, // Zero condition flag
bits (1) C, // Carry condition flag
bits (1) V, // oVerflow condition flag
bits (1) D, // Debug mask bit [AArch64 only]
bits (1) A, // SError interrupt mask bit
bits (1) I, // IRQ mask bit
bits (1) F, // FIQ mask bit
bits (1) PAN, // Privileged Access Never Bit [v8.1]
bits (1) UAO, // User Access Override [v8.2]
bits (1) DIT, // Data Independent Timing [v8.4]
bits (1) TCO, // Tag Check Override [v8.5, AArch64 only]
bits (2) BTYPE, // Branch Type [v8.5]
bits (1) SS, // Software step bit
bits (1) IL, // Illegal Execution state bit
bits (2) EL, // Exception level
bits (1) nRW, // not Register Width: 0=64, 1=32
bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
bits (1) Q, // Cumulative saturation flag [AArch32 only]
bits (4) GE, // Greater than or Equal flags [AArch32 only]
bits (1) SSBS, // Speculative Store Bypass Safe
bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
bits (1) E, // Endianness bit [AArch32 only]
bits (5) M // Mode field [AArch32 only]

)

Shared Pseudocode Functions Page 3152

Library pseudocode for shared/functions/system/RestoredITBits

// RestoredITBits()
// ================
// Get the value of PSTATE.IT to be restored on this exception return.

bits(8) RestoredITBits(bits(N) spsr)
it = spsr<15:10,26:25>;

// When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
// to zero or copied from the SPSR.
if PSTATE.IL == '1' then

if ConstrainUnpredictableBool(Unpredictable_ILZEROIT) then return '00000000';
else return it;

// The IT bits are forced to zero when they are set to a reserved value.
if !IsZero(it<7:4>) && IsZero(it<3:0>) then

return '00000000';

// The IT bits are forced to zero when returning to A32 state, or when returning to an EL
// with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then

return '00000000';
else

return it;

Library pseudocode for shared/functions/system/SCRType

type SCRType;

Library pseudocode for shared/functions/system/SCR_GEN

// SCR_GEN[]
// =========

SCRType SCR_GEN[]
// AArch32 secure & AArch64 EL3 registers are not architecturally mapped
assert HaveEL(EL3);
bits(64) r;
if !HaveAArch64() then

r = ZeroExtend(SCR);
else

r = SCR_EL3;
return r;

Library pseudocode for shared/functions/system/SecurityState

enumeration SecurityState {
SS_NonSecure,
SS_Secure

};

Library pseudocode for shared/functions/system/SendEvent

// Signal an event to all PEs in a multiprocessor system to set their Event Registers.
// When a PE executes the SEV instruction, it causes this function to be executed.
SendEvent();

Shared Pseudocode Functions Page 3153

Library pseudocode for shared/functions/system/SendEventLocal

// SendEventLocal()
// ================
// Set the local Event Register of this PE.
// When a PE executes the SEVL instruction, it causes this function to be executed.

SendEventLocal()
EventRegister = '1';
return;

Library pseudocode for shared/functions/system/SetPSTATEFromPSR

// SetPSTATEFromPSR()
// ==================
// Set PSTATE based on a PSR value

SetPSTATEFromPSR(bits(N) spsr)
boolean from_aarch64 = !UsingAArch32();
assert N == (if from_aarch64 then 64 else 32);
PSTATE.SS = DebugExceptionReturnSS(spsr);
ShouldAdvanceSS = FALSE;
if IllegalExceptionReturn(spsr) then

PSTATE.IL = '1';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
if HaveBTIExt() then PSTATE.BTYPE = bits(2) UNKNOWN;
if HaveUAOExt() then PSTATE.UAO = bit UNKNOWN;
if HaveDITExt() then PSTATE.DIT = bit UNKNOWN;
if HaveMTEExt() then PSTATE.TCO = bit UNKNOWN;

else
// State that is reinstated only on a legal exception return
PSTATE.IL = spsr<20>;
if spsr<4> == '1' then // AArch32 state

AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
if HaveSSBSExt() then PSTATE.SSBS = spsr<23>;

else // AArch64 state
PSTATE.nRW = '0';
PSTATE.EL = spsr<3:2>;
PSTATE.SP = spsr<0>;
if HaveBTIExt() then PSTATE.BTYPE = spsr<11:10>;
if HaveSSBSExt() then PSTATE.SSBS = spsr<12>;
if HaveUAOExt() then PSTATE.UAO = spsr<23>;
if HaveDITExt() then PSTATE.DIT = spsr<24>;
if HaveMTEExt() then PSTATE.TCO = spsr<25>;

// If PSTATE.IL is set and returning to AArch32 state, it is CONSTRAINED UNPREDICTABLE whether
// the T bit is set to zero or copied from SPSR.
if PSTATE.IL == '1' && PSTATE.nRW == '1' then

if ConstrainUnpredictableBool(Unpredictable_ILZEROT) then spsr<5> = '0';

// State that is reinstated regardless of illegal exception return
PSTATE.<N,Z,C,V> = spsr<31:28>;
if HavePANExt() then PSTATE.PAN = spsr<22>;
if PSTATE.nRW == '1' then // AArch32 state

PSTATE.Q = spsr<27>;
PSTATE.IT = RestoredITBits(spsr);
ShouldAdvanceIT = FALSE;
if HaveDITExt() then PSTATE.DIT = (if (Restarting() || from_aarch64) then spsr<24> else spsr<21>);
PSTATE.GE = spsr<19:16>;
PSTATE.E = spsr<9>;
PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.D in AArch32 state
PSTATE.T = spsr<5>; // PSTATE.J is RES0

else // AArch64 state
PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state

return;

Shared Pseudocode Functions Page 3154

Library pseudocode for shared/functions/system/ShouldAdvanceIT

boolean ShouldAdvanceIT;

Library pseudocode for shared/functions/system/ShouldAdvanceSS

boolean ShouldAdvanceSS;

Library pseudocode for shared/functions/system/SpeculationBarrier

SpeculationBarrier();

Library pseudocode for shared/functions/system/SynchronizeContext

SynchronizeContext();

Library pseudocode for shared/functions/system/SynchronizeErrors

// Implements the error synchronization event.
SynchronizeErrors();

Library pseudocode for shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

// Take any pending unmasked physical SError interrupt.
TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);

Library pseudocode for shared/functions/system/TakeUnmaskedSErrorInterrupts

// Take any pending unmasked physical SError interrupt or unmasked virtual SError
// interrupt.
TakeUnmaskedSErrorInterrupts();

Library pseudocode for shared/functions/system/ThisInstr

bits(32) ThisInstr();

Library pseudocode for shared/functions/system/ThisInstrLength

integer ThisInstrLength();

Library pseudocode for shared/functions/system/Unreachable

Unreachable()
assert FALSE;

Library pseudocode for shared/functions/system/UsingAArch32

// UsingAArch32()
// ==============
// Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

boolean UsingAArch32()
boolean aarch32 = (PSTATE.nRW == '1');
if !HaveAArch32() then assert !aarch32;
if !HaveAArch64() then assert aarch32;
return aarch32;

Library pseudocode for shared/functions/system/VirtualFIQPending

// Returns TRUE if there is any pending virtual FIQ.
boolean VirtualFIQPending();

Shared Pseudocode Functions Page 3155

Library pseudocode for shared/functions/system/VirtualIRQPending

// Returns TRUE if there is any pending virtual IRQ.
boolean VirtualIRQPending();

Library pseudocode for shared/functions/system/WFxType

enumeration WFxType {WFxType_WFE, WFxType_WFI, WFxType_WFET, WFxType_WFIT};

Library pseudocode for shared/functions/system/WaitForEvent

// WaitForEvent()
// ==============
// PE optionally suspends execution until one of the following occurs:
// - A WFE wake-up event.
// - A reset.
// - The implementation chooses to resume execution.
// - A Wait for Event with Timeout (WFET) is executing, and a local timeout event occurs
// It is IMPLEMENTATION DEFINED whether restarting execution after the period of
// suspension causes the Event Register to be cleared.

WaitForEvent(integer localtimeout)
if !(IsEventRegisterSet() || LocalTimeoutEvent(localtimeout)) then

EnterLowPowerState();
return;

Library pseudocode for shared/functions/system/WaitForInterrupt

// WaitForInterrupt()
// ==================
// PE optionally suspends execution until one of the following occurs:
// - A WFI wake-up event.
// - A reset.
// - The implementation chooses to resume execution.
// - A Wait for Interrupt with Timeout (WFIT) is executing, and a local timeout event occurs.

WaitForInterrupt(integer localtimeout)
if localtimeout < 0 then

EnterLowPowerState();
else

if !LocalTimeoutEvent(localtimeout) then
EnterLowPowerState();

return;

Shared Pseudocode Functions Page 3156

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictable

Shared Pseudocode Functions Page 3157

// ConstrainUnpredictable()
// ========================
// Return the appropriate Constraint result to control the caller's behavior. The return value
// is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
// (The permitted list is determined by an assert or case statement at the call site.)

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the Armv8 Architecture Reference Manual.
// The extra argument is used here to allow this example definition. This is an example only and
// does not imply a fixed implementation of these behaviors. Indeed the intention is that it should
// be defined by each implementation, according to its implementation choices.

Constraint ConstrainUnpredictable(Unpredictable which)
case which of

when Unpredictable_VMSR
return Constraint_UNDEF;

when Unpredictable_WBOVERLAPLD
return Constraint_WBSUPPRESS; // return loaded value

when Unpredictable_WBOVERLAPST
return Constraint_NONE; // store pre-writeback value

when Unpredictable_LDPOVERLAP
return Constraint_UNDEF; // instruction is UNDEFINED

when Unpredictable_BASEOVERLAP
return Constraint_UNKNOWN; // use UNKNOWN address

when Unpredictable_DATAOVERLAP
return Constraint_UNKNOWN; // store UNKNOWN value

when Unpredictable_DEVPAGE2
return Constraint_FAULT; // take an alignment fault

when Unpredictable_DEVICETAGSTORE
return Constraint_NONE; // Do not take a fault

when Unpredictable_INSTRDEVICE
return Constraint_NONE; // Do not take a fault

when Unpredictable_RESCPACR
return Constraint_TRUE; // Map to UNKNOWN value

when Unpredictable_RESMAIR
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_S1CTAGGED
return Constraint_FALSE; // SCTLR_ELx.C == '0' marks address as untagged

when Unpredictable_S2RESMEMATTR
return Constraint_NC; // Map to Noncacheable value

when Unpredictable_RESTEXCB
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESDACR
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESPRRR
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESVTCRS
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESTnSZ
return Constraint_FORCE; // Map to the limit value

when Unpredictable_OORTnSZ
return Constraint_FORCE; // Map to the limit value

when Unpredictable_LARGEIPA
return Constraint_FORCE; // Restrict the IA size to the PAMax value

when Unpredictable_ESRCONDPASS
return Constraint_FALSE; // Report as "AL"

when Unpredictable_ILZEROIT
return Constraint_FALSE; // Do not zero PSTATE.IT

when Unpredictable_ILZEROT
return Constraint_FALSE; // Do not zero PSTATE.T

when Unpredictable_BPVECTORCATCHPRI
return Constraint_TRUE; // Debug Vector Catch: match on 2nd halfword

when Unpredictable_VCMATCHHALF
return Constraint_FALSE; // No match

when Unpredictable_VCMATCHDAPA
return Constraint_FALSE; // No match on Data Abort or Prefetch abort

when Unpredictable_WPMASKANDBAS
return Constraint_FALSE; // Watchpoint disabled

when Unpredictable_WPBASCONTIGUOUS
return Constraint_FALSE; // Watchpoint disabled

Shared Pseudocode Functions Page 3158

when Unpredictable_RESWPMASK
return Constraint_DISABLED; // Watchpoint disabled

when Unpredictable_WPMASKEDBITS
return Constraint_FALSE; // Watchpoint disabled

when Unpredictable_RESBPWPCTRL
return Constraint_DISABLED; // Breakpoint/watchpoint disabled

when Unpredictable_BPNOTIMPL
return Constraint_DISABLED; // Breakpoint disabled

when Unpredictable_RESBPTYPE
return Constraint_DISABLED; // Breakpoint disabled

when Unpredictable_BPNOTCTXCMP
return Constraint_DISABLED; // Breakpoint disabled

when Unpredictable_BPMATCHHALF
return Constraint_FALSE; // No match

when Unpredictable_BPMISMATCHHALF
return Constraint_FALSE; // No match

when Unpredictable_RESTARTALIGNPC
return Constraint_FALSE; // Do not force alignment

when Unpredictable_RESTARTZEROUPPERPC
return Constraint_TRUE; // Force zero extension

when Unpredictable_ZEROUPPER
return Constraint_TRUE; // zero top halves of X registers

when Unpredictable_ERETZEROUPPERPC
return Constraint_TRUE; // zero top half of PC

when Unpredictable_A32FORCEALIGNPC
return Constraint_FALSE; // Do not force alignment

when Unpredictable_SMD
return Constraint_UNDEF; // disabled SMC is Unallocated

when Unpredictable_NONFAULT
return Constraint_FALSE; // Speculation enabled

when Unpredictable_SVEZEROUPPER
return Constraint_TRUE; // zero top bits of Z registers

when Unpredictable_SVELDNFDATA
return Constraint_TRUE; // Load mem data in NF loads

when Unpredictable_SVELDNFZERO
return Constraint_TRUE; // Write zeros in NF loads

when Unpredictable_CHECKSPNONEACTIVE
return Constraint_TRUE; // Check SP alignment

when Unpredictable_NVNV1
return Constraint_NVNV1_00; // Map unpredictable configuration of HCR_EL2<NV,NV1>

// to NV = 0 and NV1 = 0
when Unpredictable_Shareability

return Constraint_OSH; // Map reserved encoding of shareability to outer shareable
when Unpredictable_AFUPDATE // AF update for alignment or permission fault

return Constraint_TRUE;
when Unpredictable_IESBinDebug // Use SCTLR[].IESB in Debug state

return Constraint_TRUE;
when Unpredictable_BADPMSFCR // Bad settings for PMSFCR_EL1/PMSEVFR_EL1/PMSLATFR_EL1

return Constraint_TRUE;
when Unpredictable_ZEROBTYPE

return Constraint_TRUE; // Save BTYPE in SPSR_ELx/DPSR_EL0 as '00'
when Unpredictable_CLEARERRITEZERO // Clearing sticky errors when instruction in flight

return Constraint_FALSE;
when Unpredictable_ALUEXCEPTIONRETURN

return Constraint_UNDEF;
when Unpredictable_DBGxVR_RESS

return Constraint_FALSE;
when Unpredictable_PMSCR_PCT

return Constraint_PMSCR_PCT_VIRT;
when Unpredictable_WFxTDEBUG

return Constraint_FALSE; // WFxT in Debug state does not execute as a NOP
when Unpredictable_LS64UNSUPPORTED

return Constraint_LIMITED_ATOMICITY; // Accesses are not single-copy atomic above the byte level
// Misaligned exclusives, atomics, acquire/release to region that is not Normal Cacheable WB are atomic
when Unpredictable_MISALIGNEDATOMIC

return Constraint_FALSE;

when Unpredictable_IGNORETRAPINDEBUG
return Constraint_TRUE; // Trap to register access in debug state is ignored

Shared Pseudocode Functions Page 3159

when Unpredictable_PMUEVENTCOUNTER
return Constraint_UNDEF; // Accesses to the register are UNDEFINED

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableBits

// ConstrainUnpredictableBits()
// ============================

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
// If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
// value is always an allocated value; that is, one for which the behavior is not itself
// CONSTRAINED.

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the Armv8 Architecture Reference Manual.
// See the NOTE on ConstrainUnpredictable() for more information.

// This is an example placeholder only and does not imply a fixed implementation of the bits part
// of the result, and may not be applicable in all cases.

(Constraint,bits(width)) ConstrainUnpredictableBits(Unpredictable which)

c = ConstrainUnpredictable(which);

if c == Constraint_UNKNOWN then
return (c, Zeros(width)); // See notes; this is an example implementation only

elsif c == Constraint_PMSCR_PCT_VIRT then
return (c,Zeros(width));

else
return (c, bits(width) UNKNOWN); // bits result not used

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableBool

// ConstrainUnpredictableBool()
// ============================

// This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the Armv8 Architecture Reference Manual.
// See the NOTE on ConstrainUnpredictable() for more information.

boolean ConstrainUnpredictableBool(Unpredictable which)

c = ConstrainUnpredictable(which);
assert c IN {Constraint_TRUE, Constraint_FALSE};
return (c == Constraint_TRUE);

Shared Pseudocode Functions Page 3160

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableInteger

// ConstrainUnpredictableInteger()
// ===============================

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
// the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
// low to high, inclusive.

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the Armv8 Architecture Reference Manual.
// See the NOTE on ConstrainUnpredictable() for more information.

// This is an example placeholder only and does not imply a fixed implementation of the integer part
// of the result.

(Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high, Unpredictable which)

c = ConstrainUnpredictable(which);

if c == Constraint_UNKNOWN then
return (c, low); // See notes; this is an example implementation only

else
return (c, integer UNKNOWN); // integer result not used

Library pseudocode for shared/functions/unpredictable/Constraint

enumeration Constraint {// General
Constraint_NONE, // Instruction executes with

// no change or side-effect to its described behavior
Constraint_UNKNOWN, // Destination register has UNKNOWN value
Constraint_UNDEF, // Instruction is UNDEFINED
Constraint_UNDEFEL0, // Instruction is UNDEFINED at EL0 only
Constraint_NOP, // Instruction executes as NOP
Constraint_TRUE,
Constraint_FALSE,
Constraint_DISABLED,
Constraint_UNCOND, // Instruction executes unconditionally
Constraint_COND, // Instruction executes conditionally
Constraint_ADDITIONAL_DECODE, // Instruction executes with additional decode
// Load-store
Constraint_WBSUPPRESS,
Constraint_FAULT,
Constraint_LIMITED_ATOMICITY, // Accesses are not single-copy atomic above the byte level
Constraint_NVNV1_00,
Constraint_NVNV1_01,
Constraint_NVNV1_11,
Constraint_OSH, // Constrain to Outer shareable
Constraint_ISH, // Constrain to Inner shareable
Constraint_NSH, // Constrain to Nonshareable

Constraint_NC, // Constrain to Noncacheable
Constraint_WT, // Constrain to Writethrough
Constraint_WB, // Constrain to Writeback

// IPA too large
Constraint_FORCE, Constraint_FORCENOSLCHECK,
// PMSCR_PCT reserved values select Virtual timestamp
Constraint_PMSCR_PCT_VIRT};

Shared Pseudocode Functions Page 3161

Library pseudocode for shared/functions/unpredictable/Unpredictable

Shared Pseudocode Functions Page 3162

enumeration Unpredictable {// VMSR on MVFR
Unpredictable_VMSR,
// Writeback/transfer register overlap (load)
Unpredictable_WBOVERLAPLD,
// Writeback/transfer register overlap (store)
Unpredictable_WBOVERLAPST,
// Load Pair transfer register overlap
Unpredictable_LDPOVERLAP,
// Store-exclusive base/status register overlap
Unpredictable_BASEOVERLAP,
// Store-exclusive data/status register overlap
Unpredictable_DATAOVERLAP,
// Load-store alignment checks
Unpredictable_DEVPAGE2,
// Instruction fetch from Device memory
Unpredictable_INSTRDEVICE,
// Reserved CPACR value
Unpredictable_RESCPACR,
// Reserved MAIR value
Unpredictable_RESMAIR,
// Effect of SCTLR_ELx.C on Tagged attribute
Unpredictable_S1CTAGGED,
// Reserved Stage 2 MemAttr value
Unpredictable_S2RESMEMATTR,
// Reserved TEX:C:B value
Unpredictable_RESTEXCB,
// Reserved PRRR value
Unpredictable_RESPRRR,
// Reserved DACR field
Unpredictable_RESDACR,
// Reserved VTCR.S value
Unpredictable_RESVTCRS,
// Reserved TCR.TnSZ value
Unpredictable_RESTnSZ,
// Reserved SCTLR_ELx.TCF value
Unpredictable_RESTCF,
// Tag stored to Device memory
Unpredictable_DEVICETAGSTORE,
// Out-of-range TCR.TnSZ value
Unpredictable_OORTnSZ,
// IPA size exceeds PA size
Unpredictable_LARGEIPA,
// Syndrome for a known-passing conditional A32 instruction
Unpredictable_ESRCONDPASS,
// Illegal State exception: zero PSTATE.IT
Unpredictable_ILZEROIT,
// Illegal State exception: zero PSTATE.T
Unpredictable_ILZEROT,
// Debug: prioritization of Vector Catch
Unpredictable_BPVECTORCATCHPRI,
// Debug Vector Catch: match on 2nd halfword
Unpredictable_VCMATCHHALF,
// Debug Vector Catch: match on Data Abort or Prefetch abort
Unpredictable_VCMATCHDAPA,
// Debug watchpoints: non-zero MASK and non-ones BAS
Unpredictable_WPMASKANDBAS,
// Debug watchpoints: non-contiguous BAS
Unpredictable_WPBASCONTIGUOUS,
// Debug watchpoints: reserved MASK
Unpredictable_RESWPMASK,
// Debug watchpoints: non-zero MASKed bits of address
Unpredictable_WPMASKEDBITS,
// Debug breakpoints and watchpoints: reserved control bits
Unpredictable_RESBPWPCTRL,
// Debug breakpoints: not implemented
Unpredictable_BPNOTIMPL,
// Debug breakpoints: reserved type
Unpredictable_RESBPTYPE,
// Debug breakpoints: not-context-aware breakpoint
Unpredictable_BPNOTCTXCMP,

Shared Pseudocode Functions Page 3163

// Debug breakpoints: match on 2nd halfword of instruction
Unpredictable_BPMATCHHALF,
// Debug breakpoints: mismatch on 2nd halfword of instruction
Unpredictable_BPMISMATCHHALF,
// Debug: restart to a misaligned AArch32 PC value
Unpredictable_RESTARTALIGNPC,
// Debug: restart to a not-zero-extended AArch32 PC value
Unpredictable_RESTARTZEROUPPERPC,
// Zero top 32 bits of X registers in AArch32 state
Unpredictable_ZEROUPPER,
// Zero top 32 bits of PC on illegal return to AArch32 state
Unpredictable_ERETZEROUPPERPC,
// Force address to be aligned when interworking branch to A32 state
Unpredictable_A32FORCEALIGNPC,
// SMC disabled
Unpredictable_SMD,
// FF speculation
Unpredictable_NONFAULT,
// Zero top bits of Z registers in EL change
Unpredictable_SVEZEROUPPER,
// Load mem data in NF loads
Unpredictable_SVELDNFDATA,
// Write zeros in NF loads
Unpredictable_SVELDNFZERO,
// SP alignment fault when predicate is all zero
Unpredictable_CHECKSPNONEACTIVE,
// HCR_EL2.<NV,NV1> == '01'
Unpredictable_NVNV1,
// Reserved shareability encoding
Unpredictable_Shareability,
// Access Flag Update by HW
Unpredictable_AFUPDATE,
// Consider SCTLR[].IESB in Debug state
Unpredictable_IESBinDebug,
// Bad settings for PMSFCR_EL1/PMSEVFR_EL1/PMSLATFR_EL1
Unpredictable_BADPMSFCR,
// Zero saved BType value in SPSR_ELx/DPSR_EL0
Unpredictable_ZEROBTYPE,
// Timestamp constrained to virtual or physical
Unpredictable_EL2TIMESTAMP,
Unpredictable_EL1TIMESTAMP,
// WFET or WFIT instruction in Debug state
Unpredictable_WFxTDEBUG,
// Address does not support LS64 instructions
Unpredictable_LS64UNSUPPORTED,
// Misaligned exclusives, atomics, acquire/release to region that is not Normal Cacheable WB are atomic
Unpredictable_MISALIGNEDATOMIC,
// Clearing DCC/ITR sticky flags when instruction is in flight
Unpredictable_CLEARERRITEZERO,
// ALUEXCEPTIONRETURN when in user/system mode in A32 instructions
Unpredictable_ALUEXCEPTIONRETURN,
// Trap to register in debug state are ignored
Unpredictable_IGNORETRAPINDEBUG,
// Compare DBGBVR.RESS for BP/WP
Unpredictable_DBGxVR_RESS,
// Inaccessible event counter
Unpredictable_PMUEVENTCOUNTER,
// Reserved PMSCR.PCT behaviour.
Unpredictable_PMSCR_PCT};

Shared Pseudocode Functions Page 3164

Library pseudocode for shared/functions/vector/AdvSIMDExpandImm

// AdvSIMDExpandImm()
// ==================

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
case cmode<3:1> of

when '000'
imm64 = Replicate(Zeros(24):imm8, 2);

when '001'
imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);

when '010'
imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);

when '011'
imm64 = Replicate(imm8:Zeros(24), 2);

when '100'
imm64 = Replicate(Zeros(8):imm8, 4);

when '101'
imm64 = Replicate(imm8:Zeros(8), 4);

when '110'
if cmode<0> == '0' then

imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
else

imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
when '111'

if cmode<0> == '0' && op == '0' then
imm64 = Replicate(imm8, 8);

if cmode<0> == '0' && op == '1' then
imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;

if cmode<0> == '1' && op == '0' then
imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
imm64 = Replicate(imm32, 2);

if cmode<0> == '1' && op == '1' then
if UsingAArch32() then ReservedEncoding();
imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

return imm64;

Library pseudocode for shared/functions/vector/MatMulAdd

// MatMulAdd()
// ===========
//
// Signed or unsigned 8-bit integer matrix multiply and add to 32-bit integer matrix
// result[2, 2] = addend[2, 2] + (op1[2, 8] * op2[8, 2])

bits(N) MatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean op1_unsigned, boolean op2_unsigned)
assert N == 128;

bits(N) result;
bits(32) sum;
integer prod;

for i = 0 to 1
for j = 0 to 1

sum = Elem[addend, 2*i + j, 32];
for k = 0 to 7

prod = Int(Elem[op1, 8*i + k, 8], op1_unsigned) * Int(Elem[op2, 8*j + k, 8], op2_unsigned);
sum = sum + prod;

Elem[result, 2*i + j, 32] = sum;

return result;

Shared Pseudocode Functions Page 3165

Library pseudocode for shared/functions/vector/PolynomialMult

// PolynomialMult()
// ================

bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
result = Zeros(M+N);
extended_op2 = ZeroExtend(op2, M+N);
for i=0 to M-1

if op1<i> == '1' then
result = result EOR LSL(extended_op2, i);

return result;

Library pseudocode for shared/functions/vector/SatQ

// SatQ()
// ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

Library pseudocode for shared/functions/vector/SignedSatQ

// SignedSatQ()
// ============

(bits(N), boolean) SignedSatQ(integer i, integer N)
if i > 2^(N-1) - 1 then

result = 2^(N-1) - 1; saturated = TRUE;
elsif i < -(2^(N-1)) then

result = -(2^(N-1)); saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

Library pseudocode for shared/functions/vector/UnsignedRSqrtEstimate

// UnsignedRSqrtEstimate()
// =======================

bits(N) UnsignedRSqrtEstimate(bits(N) operand)
assert N == 32;
if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF

result = Ones(N);
else

// input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)
// estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
increasedprecision = FALSE;
estimate = RecipSqrtEstimate(UInt(operand<31:23>), increasedprecision);
// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

Shared Pseudocode Functions Page 3166

Library pseudocode for shared/functions/vector/UnsignedRecipEstimate

// UnsignedRecipEstimate()
// =======================

bits(N) UnsignedRecipEstimate(bits(N) operand)
assert N == 32;
if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF

result = Ones(N);
else

// input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)

// estimate is in the range 256 to 511 representing [1.0 .. 2.0)
increasedprecision = FALSE;
estimate = RecipEstimate(UInt(operand<31:23>), increasedprecision);

// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

Library pseudocode for shared/functions/vector/UnsignedSatQ

// UnsignedSatQ()
// ==============

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2^N - 1 then

result = 2^N - 1; saturated = TRUE;
elsif i < 0 then

result = 0; saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

Library pseudocode for shared/trace/selfhosted/SelfHostedTraceEnabled

// SelfHostedTraceEnabled()
// ========================
// Returns TRUE if Self-hosted Trace is enabled.

boolean SelfHostedTraceEnabled()
if !HaveTraceExt() || !HaveSelfHostedTrace() then return FALSE;
if HaveEL(EL3) then

secure_trace_enable = (if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE);
niden = (secure_trace_enable == '0' || ExternalSecureNoninvasiveDebugEnabled());

else
// If no EL3, IsSecure() returns the Effective value of (SCR_EL3.NS == '0')
niden = (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled());

return (EDSCR.TFO == '0' || !niden);

Shared Pseudocode Functions Page 3167

Library pseudocode for shared/trace/selfhosted/TraceAllowed

// TraceAllowed()
// ==============
// Returns TRUE if Self-hosted Trace is allowed in the current Security state and Exception level

boolean TraceAllowed()
if !HaveTraceExt() then return FALSE;
if SelfHostedTraceEnabled() then

if IsSecure() && HaveEL(EL3) then
secure_trace_enable = (if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE);
if secure_trace_enable == '0' then return FALSE;

TGE_bit = if EL2Enabled() then HCR_EL2.TGE else '0';
case PSTATE.EL of

when EL3 TRE_bit = if !HaveAArch64() then TRFCR.E1TRE else '0';
when EL2 TRE_bit = TRFCR_EL2.E2TRE;
when EL1 TRE_bit = TRFCR_EL1.E1TRE;
when EL0 TRE_bit = if TGE_bit == '1' then TRFCR_EL2.E0HTRE else TRFCR_EL1.E0TRE;

return TRE_bit == '1';
else

return (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled());

Library pseudocode for shared/trace/selfhosted/TraceContextIDR2

// TraceContextIDR2()
// ==================

boolean TraceContextIDR2()
if !TraceAllowed()|| !HaveEL(EL2) then return FALSE;
return (!SelfHostedTraceEnabled() || TRFCR_EL2.CX == '1');

Library pseudocode for shared/trace/selfhosted/TraceSynchronizationBarrier

// Memory barrier instruction that preserves the relative order of memory accesses to System
// registers due to trace operations and other memory accesses to the same registers
TraceSynchronizationBarrier();

Shared Pseudocode Functions Page 3168

Library pseudocode for shared/trace/selfhosted/TraceTimeStamp

// TraceTimeStamp()
// ================

TimeStamp TraceTimeStamp()
if SelfHostedTraceEnabled() then

if HaveEL(EL2) then
TS_el2 = TRFCR_EL2.TS;
if !HaveECVExt() && TS_el2 == '10' then

// Reserved value
(-, TS_el2) = ConstrainUnpredictableBits(Unpredictable_EL2TIMESTAMP);

case TS_el2 of
when '00'

// Falls out to check TRFCR_EL1.TS
when '01'

return TimeStamp_Virtual;
when '10'

assert HaveECVExt(); // Otherwise ConstrainUnpredictableBits removes this case
return TimeStamp_OffsetPhysical;

when '11'
return TimeStamp_Physical;

TS_el1 = TRFCR_EL1.TS;
if TS_el1 == '00' || (!HaveECVExt() && TS_el1 == '10') then

// Reserved value
(-, TS_el1) = ConstrainUnpredictableBits(Unpredictable_EL1TIMESTAMP);

case TS_el1 of
when '01'

return TimeStamp_Virtual;
when '10'

assert HaveECVExt();
return TimeStamp_OffsetPhysical;

when '11'
return TimeStamp_Physical;

otherwise
Unreachable(); // ConstrainUnpredictableBits removes this case

else
return TimeStamp_CoreSight;

Library pseudocode for shared/translation/attrs/DecodeDevice

// DecodeDevice()
// ==============
// Decode output Device type

DeviceType DecodeDevice(bits(2) device)
case device of

when '00' return DeviceType_nGnRnE;
when '01' return DeviceType_nGnRE;
when '10' return DeviceType_nGRE;
when '11' return DeviceType_GRE;

Shared Pseudocode Functions Page 3169

Library pseudocode for shared/translation/attrs/DecodeLDFAttr

// DecodeLDFAttr()
// ===============
// Decode memory attributes using LDF (Long Descriptor Format) mapping

MemAttrHints DecodeLDFAttr(bits(4) attr)
MemAttrHints ldfattr;

if attr == 'x0xx' then ldfattr.attrs = MemAttr_WT; // Write-through
elsif attr == '0100' then ldfattr.attrs = MemAttr_NC; // Non-cacheable
elsif attr == 'x1xx' then ldfattr.attrs = MemAttr_WB; // Write-back
else Unreachable();

// Allocation hints are applicable only to cacheable memory.
if ldfattr.attrs != MemAttr_NC then

case attr<1:0> of
when '00' ldfattr.hints = MemHint_No; // No allocation hints
when '01' ldfattr.hints = MemHint_WA; // Write-allocate
when '10' ldfattr.hints = MemHint_RA; // Read-allocate
when '11' ldfattr.hints = MemHint_RWA; // Read/Write allocate

// The Transient hint applies only to cacheable memory with some allocation hints.
if ldfattr.attrs != MemAttr_NC && ldfattr.hints != MemHint_No then

ldfattr.transient = attr<3> == '0';

return ldfattr;

Library pseudocode for shared/translation/attrs/DecodeSDFAttr

// DecodeSDFAttr()
// ===============
// Decode memory attributes using SDF (Short Descriptor Format) mapping

MemAttrHints DecodeSDFAttr(bits(2) rgn)
MemAttrHints sdfattr;

case rgn of
when '00' // Non-cacheable (no allocate)

sdfattr.attrs = MemAttr_NC;
when '01' // Write-back, Read and Write allocate

sdfattr.attrs = MemAttr_WB;
sdfattr.hints = MemHint_RWA;

when '10' // Write-through, Read allocate
sdfattr.attrs = MemAttr_WT;
sdfattr.hints = MemHint_RA;

when '11' // Write-back, Read allocate
sdfattr.attrs = MemAttr_WB;
sdfattr.hints = MemHint_RA;

sdfattr.transient = FALSE;

return sdfattr;

Shared Pseudocode Functions Page 3170

Library pseudocode for shared/translation/attrs/DecodeShareability

// DecodeShareability()
// ====================
// Decode shareability of target memory region

Shareability DecodeShareability(bits(2) sh)
case sh of

when '10' return Shareability_OSH;
when '11' return Shareability_ISH;
when '00' return Shareability_NSH;
otherwise

case ConstrainUnpredictable(Unpredictable_Shareability) of
when Constraint_OSH return Shareability_OSH;
when Constraint_ISH return Shareability_ISH;
when Constraint_NSH return Shareability_NSH;

Library pseudocode for shared/translation/attrs/MAIRAttr

// MAIRAttr()
// ==========
// Retrieve the memory attribute encoding indexed in the given MAIR

bits(8) MAIRAttr(integer index, MAIRType mair)
bit_index = 8 * index;
return mair<bit_index+7:bit_index>;

Library pseudocode for shared/translation/attrs/NormalNCMemAttr

// NormalNCMemAttr()
// =================
// Normal Non-cacheable memory attributes

MemoryAttributes NormalNCMemAttr()
MemAttrHints non_cacheable;
non_cacheable.attrs = MemAttr_NC;

MemoryAttributes nc_memattrs;
nc_memattrs.memtype = MemType_Normal;
nc_memattrs.outer = non_cacheable;
nc_memattrs.inner = non_cacheable;
nc_memattrs.shareability = Shareability_OSH;
nc_memattrs.tagged = FALSE;

return nc_memattrs;

Library pseudocode for shared/translation/attrs/NormaliseShareability

// NormaliseShareability()
// =======================
// Force Outer Shareability on Device and Normal iNCoNC memory

Shareability NormaliseShareability(MemoryAttributes memattrs)
if (memattrs.memtype == MemType_Device ||

(memattrs.inner.attrs == MemAttr_NC &&
memattrs.outer.attrs == MemAttr_NC)) then

return Shareability_OSH;
else

return memattrs.shareability;

Shared Pseudocode Functions Page 3171

Library pseudocode for shared/translation/attrs/S1ConstrainUnpredictableRESMAIR

// S1ConstrainUnpredictableRESMAIR()
// =================================
// Determine whether a reserved value occupies MAIR_ELx.AttrN

boolean S1ConstrainUnpredictableRESMAIR(bits(8) attr, boolean s1aarch64)
case attr of

when '0000xx01' return !(s1aarch64 && HaveFeatXS());
when '0000xxxx' return attr<1:0> != '00';
when '01000000' return !(s1aarch64 && HaveFeatXS());
when '10100000' return !(s1aarch64 && HaveFeatXS());
when '11110000' return !(s1aarch64 && HaveMTE2Ext());
when 'xxxx0000' return TRUE;
otherwise return FALSE;

Shared Pseudocode Functions Page 3172

Library pseudocode for shared/translation/attrs/S1DecodeMemAttrs

// S1DecodeMemAttrs()
// ==================
// Decode MAIR-format memory attributes assigned in stage 1

MemoryAttributes S1DecodeMemAttrs(bits(8) attr, bits(2) sh, boolean s1aarch64)
if S1ConstrainUnpredictableRESMAIR(attr, s1aarch64) then

(-, attr) = ConstrainUnpredictableBits(Unpredictable_RESMAIR);

MemoryAttributes memattrs;
case attr of

when '0000xxxx' // Device memory
memattrs.memtype = MemType_Device;
memattrs.device = DecodeDevice(attr<3:2>);
memattrs.tagged = FALSE;
memattrs.xs = if s1aarch64 then NOT attr<0> else '1';

when '01000000'
assert s1aarch64 && HaveFeatXS();
memattrs.memtype = MemType_Normal;
memattrs.tagged = FALSE;
memattrs.outer.attrs = MemAttr_NC;
memattrs.inner.attrs = MemAttr_NC;
memattrs.xs = '0';

when '10100000'
assert s1aarch64 && HaveFeatXS();
memattrs.memtype = MemType_Normal;
memattrs.tagged = FALSE;
memattrs.outer.attrs = MemAttr_WT;
memattrs.outer.hints = MemHint_RA;
memattrs.outer.transient = FALSE;
memattrs.inner.attrs = MemAttr_WT;
memattrs.inner.hints = MemHint_RA;
memattrs.inner.transient = FALSE;
memattrs.xs = '0';

when '11110000' // Tagged memory
assert s1aarch64 && HaveMTE2Ext();
memattrs.memtype = MemType_Normal;
memattrs.tagged = TRUE;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RWA;
memattrs.outer.transient = FALSE;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RWA;
memattrs.inner.transient = FALSE;
memattrs.xs = '0';

otherwise
memattrs.memtype = MemType_Normal;
memattrs.outer = DecodeLDFAttr(attr<7:4>);
memattrs.inner = DecodeLDFAttr(attr<3:0>);
memattrs.tagged = FALSE;

if (memattrs.inner.attrs == MemAttr_WB &&
memattrs.outer.attrs == MemAttr_WB) then

memattrs.xs = '0';
else

memattrs.xs = '1';

memattrs.shareability = DecodeShareability(sh);

return memattrs;

Shared Pseudocode Functions Page 3173

Library pseudocode for shared/translation/attrs/S2CombineS1AttrHints

// S2CombineS1AttrHints()
// ======================
// Determine resultant Normal memory cacheability and allocation hints from
// combining stage 1 Normal memory attributes and stage 2 cacheability attributes.

MemAttrHints S2CombineS1AttrHints(MemAttrHints s1_attrhints, MemAttrHints s2_attrhints)
MemAttrHints attrhints;

if s1_attrhints.attrs == MemAttr_NC || s2_attrhints.attrs == MemAttr_NC then
attrhints.attrs = MemAttr_NC;

elsif s1_attrhints.attrs == MemAttr_WT || s2_attrhints.attrs == MemAttr_WT then
attrhints.attrs = MemAttr_WT;

else
attrhints.attrs = MemAttr_WB;

// Stage 2 does not assign any allocation hints
// Instead, they are inherited from stage 1
if attrhints.attrs != MemAttr_NC then

attrhints.hints = s1_attrhints.hints;
attrhints.transient = s1_attrhints.transient;

return attrhints;

Library pseudocode for shared/translation/attrs/S2CombineS1Device

// S2CombineS1Device()
// ===================
// Determine resultant Device type from combining output memory attributes
// in stage 1 and Device attributes in stage 2

DeviceType S2CombineS1Device(DeviceType s1_device, DeviceType s2_device)
if s1_device == DeviceType_nGnRnE || s2_device == DeviceType_nGnRnE then

return DeviceType_nGnRnE;
elsif s1_device == DeviceType_nGnRE || s2_device == DeviceType_nGnRE then

return DeviceType_nGnRE;
elsif s1_device == DeviceType_nGRE || s2_device == DeviceType_nGRE then

return DeviceType_nGRE;
else

return DeviceType_GRE;

Shared Pseudocode Functions Page 3174

Library pseudocode for shared/translation/attrs/S2CombineS1MemAttrs

// S2CombineS1MemAttrs()
// =====================
// Combine stage 2 with stage 1 memory attributes

MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs,
MemoryAttributes s2_memattrs)

MemoryAttributes memattrs;

if s1_memattrs.memtype == MemType_Device && s2_memattrs.memtype == MemType_Device then
memattrs.memtype = MemType_Device;
memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_memattrs.device);

elsif s1_memattrs.memtype == MemType_Device then // S2 Normal, S1 Device
memattrs = s1_memattrs;

elsif s2_memattrs.memtype == MemType_Device then // S2 Device, S1 Normal
memattrs = s2_memattrs;

else // S2 Normal, S1 Normal
memattrs.memtype = MemType_Normal;
memattrs.inner = S2CombineS1AttrHints(s1_memattrs.inner, s2_memattrs.inner);
memattrs.outer = S2CombineS1AttrHints(s1_memattrs.outer, s2_memattrs.outer);

if ELUsingAArch32(EL2) || !HaveMTE2Ext() then
memattrs.tagged = FALSE;

else
memattrs.tagged = AArch64.IsS2ResultTagged(memattrs, s1_memattrs.tagged);

memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability,
s2_memattrs.shareability);

memattrs.xs = s2_memattrs.xs;

memattrs.shareability = NormaliseShareability(memattrs);
return memattrs;

Library pseudocode for shared/translation/attrs/S2CombineS1Shareability

// S2CombineS1Shareability()
// =========================
// Combine stage 2 shareability with stage 1

Shareability S2CombineS1Shareability(Shareability s1_shareability,
Shareability s2_shareability)

if (s1_shareability == Shareability_OSH ||
s2_shareability == Shareability_OSH) then

return Shareability_OSH;
elsif (s1_shareability == Shareability_ISH ||

s2_shareability == Shareability_ISH) then
return Shareability_ISH;

else
return Shareability_NSH;

Shared Pseudocode Functions Page 3175

Library pseudocode for shared/translation/attrs/S2DecodeCacheability

// S2DecodeCacheability()
// ======================
// Determine the stage 2 cacheability for Normal memory

MemAttrHints S2DecodeCacheability(bits(2) attr)
MemAttrHints s2attr;

case attr of
when '01' s2attr.attrs = MemAttr_NC; // Non-cacheable
when '10' s2attr.attrs = MemAttr_WT; // Write-through
when '11' s2attr.attrs = MemAttr_WB; // Write-back
otherwise // Constrained unpredictable

case ConstrainUnpredictable(Unpredictable_S2RESMEMATTR) of
when Constraint_NC s2attr.attrs = MemAttr_NC;
when Constraint_WT s2attr.attrs = MemAttr_WT;
when Constraint_WB s2attr.attrs = MemAttr_WB;

// Stage 2 does not assign hints or the transient property
// They are inherited from stage 1 if the result of the combination allows it
s2attr.hints = bits(2) UNKNOWN;
s2attr.transient = boolean UNKNOWN;

return s2attr;

Library pseudocode for shared/translation/attrs/S2DecodeMemAttrs

// S2DecodeMemAttrs()
// ==================
// Decode stage 2 memory attributes

MemoryAttributes S2DecodeMemAttrs(bits(4) attr, bits(2) sh)
MemoryAttributes memattrs;

case attr of
when '00xx' // Device memory

memattrs.memtype = MemType_Device;
memattrs.device = DecodeDevice(attr<1:0>);

otherwise // Normal memory
memattrs.memtype = MemType_Normal;
memattrs.outer = S2DecodeCacheability(attr<3:2>);
memattrs.inner = S2DecodeCacheability(attr<1:0>);

memattrs.shareability = DecodeShareability(sh);

return memattrs;

Shared Pseudocode Functions Page 3176

Library pseudocode for shared/translation/attrs/WalkMemAttrs

// WalkMemAttrs()
// ==============
// Retrieve memory attributes of translation table walk

MemoryAttributes WalkMemAttrs(bits(2) sh, bits(2) irgn, bits(2) orgn)
MemoryAttributes walkmemattrs;

walkmemattrs.memtype = MemType_Normal;
walkmemattrs.shareability = DecodeShareability(sh);
walkmemattrs.inner = DecodeSDFAttr(irgn);
walkmemattrs.outer = DecodeSDFAttr(orgn);
walkmemattrs.tagged = FALSE;
if (walkmemattrs.inner.attrs == MemAttr_WB &&

walkmemattrs.outer.attrs == MemAttr_WB) then
walkmemattrs.xs = '0';

else
walkmemattrs.xs = '1';

return walkmemattrs;

Library pseudocode for shared/translation/faults/AlignmentFault

// AlignmentFault()
// ================

FaultRecord AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)
FaultRecord fault;

fault.statuscode = Fault_Alignment;
fault.acctype = acctype;
fault.write = iswrite;
fault.secondstage = secondstage;

return fault;

Library pseudocode for shared/translation/faults/AsyncExternalAbort

// AsyncExternalAbort()
// ====================
// Return a fault record indicating an asynchronous external abort

FaultRecord AsyncExternalAbort(boolean parity, bits(2) errortype, bit extflag)
FaultRecord fault;

fault.statuscode = if parity then Fault_AsyncParity else Fault_AsyncExternal;
fault.extflag = extflag;
fault.errortype = errortype;
fault.acctype = AccType_NORMAL;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

return fault;

Shared Pseudocode Functions Page 3177

Library pseudocode for shared/translation/faults/NoFault

// NoFault()
// =========
// Return a clear fault record indicating no faults have occured

FaultRecord NoFault()
FaultRecord fault;

fault.statuscode = Fault_None;
fault.acctype = AccType_NORMAL;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

return fault;

Library pseudocode for shared/translation/translation/HasS2Translation

// HasS2Translation()
// ==================
// Returns TRUE if stage 2 translation is present for the current translation regime

boolean HasS2Translation()
return (EL2Enabled() && !IsInHost() && PSTATE.EL IN {EL0,EL1});

Library pseudocode for shared/translation/translation/Have16bitVMID

// Have16bitVMID()
// ===============
// Returns TRUE if EL2 and support for a 16-bit VMID are implemented.

boolean Have16bitVMID()
return HaveEL(EL2) && boolean IMPLEMENTATION_DEFINED "Has 16-bit VMID";

Library pseudocode for shared/translation/translation/S1TranslationRegime

// S1TranslationRegime()
// =====================
// Stage 1 translation regime for the given Exception level

bits(2) S1TranslationRegime(bits(2) el)
if el != EL0 then

return el;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' then

return EL3;
elsif HaveVirtHostExt() && ELIsInHost(el) then

return EL2;
else

return EL1;

// S1TranslationRegime()
// =====================
// Returns the Exception level controlling the current Stage 1 translation regime. For the most
// part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
// return the correct value.

bits(2) S1TranslationRegime()
return S1TranslationRegime(PSTATE.EL);

Shared Pseudocode Functions Page 3178

Library pseudocode for shared/translation/vmsa/CreateAddressDescriptor

// CreateAddressDescriptor()
// =========================
// Set internal members for address descriptor type to valid values

AddressDescriptor CreateAddressDescriptor(bits(64) va, FullAddress pa,
MemoryAttributes memattrs)

AddressDescriptor addrdesc;

addrdesc.paddress = pa;
addrdesc.vaddress = va;
addrdesc.memattrs = memattrs;
addrdesc.fault = NoFault();

return addrdesc;

Library pseudocode for shared/translation/vmsa/CreateFaultyAddressDescriptor

// CreateFaultyAddressDescriptor()
// ===============================
// Set internal members for address descriptor type with values indicating error

AddressDescriptor CreateFaultyAddressDescriptor(bits(64) va, FaultRecord fault)
AddressDescriptor addrdesc;

addrdesc.vaddress = va;
addrdesc.fault = fault;

return addrdesc;

Library pseudocode for shared/translation/vmsa/DescriptorType

enumeration DescriptorType {
DescriptorType_Table,
DescriptorType_Block,
DescriptorType_Page,
DescriptorType_Invalid

};

Library pseudocode for shared/translation/vmsa/Domains

constant bits(2) Domain_NoAccess = '00';
constant bits(2) Domain_Client = '01';
constant bits(2) Domain_Manager = '11';

Shared Pseudocode Functions Page 3179

Library pseudocode for shared/translation/vmsa/FetchDescriptor

// FetchDescriptor()
// =================
// Fetch a translation table descriptor

(FaultRecord, bits(N)) FetchDescriptor(bit ee, AddressDescriptor walkaddress,
FaultRecord fault)

// 32-bit descriptors for AArch32 Short-descriptor format
// 64-bit descriptors for AArch64 or AArch32 Long-descriptor format
assert N == 32 || N == 64;
bits(N) descriptor;

walkacc = CreateAccessDescriptor(AccType_TTW);
(memstatus, descriptor) = PhysMemRead(walkaddress, N DIV 8, walkacc);
if IsFault(memstatus) then

fault = HandleExternalTTWAbort(memstatus, fault.write, walkaddress,
walkacc, N DIV 8, fault);

if IsFault(fault.statuscode) then
return (fault, bits(N) UNKNOWN);

if ee == '1' then
descriptor = BigEndianReverse(descriptor);

return (fault, descriptor);

Library pseudocode for shared/translation/vmsa/HasUnprivileged

// HasUnprivileged()
// =================
// Returns whether a translation regime serves EL0 as well as a higher EL

boolean HasUnprivileged(Regime regime)
return (regime IN {

Regime_EL20,
Regime_EL30,
Regime_EL10

});

Library pseudocode for shared/translation/vmsa/IsAtomicRW

// IsAtomicRW()
// ============
// Is the access an atomic operation?

boolean IsAtomicRW(AccType acctype)
return acctype IN {

AccType_ATOMICRW,
AccType_ORDEREDRW,
AccType_ORDEREDATOMICRW

};

Library pseudocode for shared/translation/vmsa/Regime

enumeration Regime {
Regime_EL3, // EL3
Regime_EL30, // EL3&0 (PL1&0 when EL3 is AArch32)
Regime_EL2, // EL2
Regime_EL20, // EL2&0
Regime_EL10 // EL1&0

};

Shared Pseudocode Functions Page 3180

Library pseudocode for shared/translation/vmsa/RegimeUsingAArch32

// RegimeUsingAArch32()
// ====================
// Determine if the EL controlling the regime executes in AArch32 state

boolean RegimeUsingAArch32(Regime regime)
case regime of

when Regime_EL10 return ELUsingAArch32(EL1);
when Regime_EL30 return TRUE;
when Regime_EL20 return FALSE;
when Regime_EL2 return ELUsingAArch32(EL2);
when Regime_EL3 return FALSE;

Library pseudocode for shared/translation/vmsa/S1TTWParams

type S1TTWParams is (
// A64-VMSA exclusive parameters

bit ha, // TCR_ELx.HA
bit hd, // TCR_ELx.HD
bit tbi, // TCR_ELx.TBI{x}
bit tbid, // TCR_ELx.TBID{x}
bit nfd, // TCR_EL1.NFDx or TCR_EL2.NFDx when HCR_EL2.E2H == '1'
bit e0pd, // TCR_EL1.E0PDx or TCR_EL2.E0PDx when HCR_EL2.E2H == '1'
bit ds, // TCR_ELx.DS
bits(3) ps, // TCR_ELx.{I}PS
bits(6) txsz, // TCR_ELx.TxSZ
bit epan, // SCTLR_EL1.EPAN or SCTLR_EL2.EPAN when HCR_EL2.E2H == '1'
bit dct, // HCR_EL2.DCT
bit nv1, // HCR_EL2.NV1

// A32-VMSA exclusive parameters
bits(3) t0sz, // TTBCR.T0SZ
bits(3) t1sz, // TTBCR.T1SZ
bit uwxn, // SCTLR.UWXN

// Parameters common to both A64-VMSA & A32-VMSA (A64/A32)
TGx tgx, // TCR_ELx.TGx / Always TGx_4KB
bits(2) irgn, // TCR_ELx.IRGNx / TTBCR.IRGNx or HTCR.IRGN0
bits(2) orgn, // TCR_ELx.ORGNx / TTBCR.ORGNx or HTCR.ORGN0
bits(2) sh, // TCR_ELx.SHx / TTBCR.SHx or HTCR.SH0
bit hpd, // TCR_ELx.HPD{x} / TTBCR2.HPDx or HTCR.HPD
bit ee, // SCTLR_ELx.EE / SCTLR.EE or HSCTLR.EE
bit wxn, // SCTLR_ELx.WXN / SCTLR.WXN or HSCTLR.WXN
bit ntlsmd, // SCTLR_ELx.nTLSMD / SCTLR.nTLSMD or HSCTLR.nTLSMD
bit dc, // HCR_EL2.DC / HCR.DC
bit sif, // SCR_EL3.SIF / SCR.SIF
MAIRType mair // MAIR_ELx / MAIR1:MAIR0 or HMAIR1:HMAIR0

)

Shared Pseudocode Functions Page 3181

Library pseudocode for shared/translation/vmsa/S2TTWParams

type S2TTWParams is (
// A64-VMSA exclusive parameters

bit ha, // VTCR_EL2.HA
bit hd, // VTCR_EL2.HD
bit sl2, // V{S}TCR_EL2.SL2
bit ds, // VTCR_EL2.DS
bit sw, // VSTCR_EL2.SW
bit nsw, // VTCR_EL2.NSW
bit sa, // VSTCR_EL2.SA
bit nsa, // VTCR_EL2.NSA
bits(3) ps, // VTCR_EL2.PS
bits(6) txsz, // V{S}TCR_EL2.T0SZ
bit fwb, // HCR_EL2.PTW

// A32-VMSA exclusive parameters
bit s, // VTCR.S
bits(4) t0sz, // VTCR.T0SZ

// Parameters common to both A64-VMSA & A32-VMSA if implemented (A64/A32)
TGx tgx, // V{S}TCR_EL2.TG0 / Always TGx_4KB
bits(2) sl0, // V{S}TCR_EL2.SL0 / VTCR.SL0
bits(2) irgn, // VTCR_EL2.IRGN0 / VTCR.IRGN0
bits(2) orgn, // VTCR_EL2.ORGN0 / VTCR.ORGN0
bits(2) sh, // VTCR_EL2.SH0 / VTCR.SH0
bit ee, // SCTLR_EL2.EE / HSCTLR.EE
bit ptw, // HCR_EL2.PTW / HCR.PTW
bit vm // HCR_EL2.VM / HCR.VM

)

constant integer FINAL_LEVEL = 3;

Library pseudocode for shared/translation/vmsa/SDFType

enumeration SDFType {
SDFType_Table,
SDFType_Invalid,
SDFType_Supersection,
SDFType_Section,
SDFType_LargePage,
SDFType_SmallPage

};

Library pseudocode for shared/translation/vmsa/SecurityStateForRegime

// SecurityStateForRegime()
// ========================
// Return the Security State of the given translation regime

SecurityState SecurityStateForRegime(Regime regime)
case regime of

when Regime_EL3 return SecurityStateAtEL(EL3);
when Regime_EL30 return SS_Secure; // A32 EL3 is always Secure
when Regime_EL2 return SecurityStateAtEL(EL2);
when Regime_EL20 return SecurityStateAtEL(EL2);
when Regime_EL10 return SecurityStateAtEL(EL1);

Shared Pseudocode Functions Page 3182

Library pseudocode for shared/translation/vmsa/StageOA

// StageOA()
// =========
// Given the final walk state (a page or block descriptor), map the untranslated
// input address bits to the output address

FullAddress StageOA(FullAddress outputbase, bits(64) ia, TGx tgx, integer level)
// Output Address
FullAddress oa;

tsize = TranslationSize(tgx, level);

oa.paspace = outputbase.paspace;
oa.address = outputbase.address<51:tsize>:ia<tsize-1:0>;

return oa;

Library pseudocode for shared/translation/vmsa/TGx

enumeration TGx {
TGx_4KB,
TGx_16KB,
TGx_64KB

};

Library pseudocode for shared/translation/vmsa/TGxGranuleBits

// TGxGranuleBits()
// ================
// Retrieve the address size, in bits, of a granule

integer TGxGranuleBits(TGx tgx)
case tgx of

when TGx_4KB return 12;
when TGx_16KB return 14;
when TGx_64KB return 16;

Library pseudocode for shared/translation/vmsa/TTWState

type TTWState is (
boolean istable,
integer level,
FullAddress baseaddress,
bit contiguous,
bit guardedpage,
SDFType sdftype, // AArch32 Short-descriptor format walk only
bits(4) domain, // AArch32 Short-descriptor format walk only
MemoryAttributes memattrs,
Permissions permissions

)

Shared Pseudocode Functions Page 3183

Library pseudocode for shared/translation/vmsa/TranslationRegime

// TranslationRegime()
// ===================
// Select the translation regime given the target EL and PE state

Regime TranslationRegime(bits(2) el, AccType acctype)
if el == EL3 then

return if ELUsingAArch32(EL3) then Regime_EL30 else Regime_EL3;
elsif el == EL2 then

return if ELIsInHost(EL2) then Regime_EL20 else Regime_EL2;
elsif el == EL1 then

if acctype == AccType_NV2REGISTER then
assert EL2Enabled();
return if ELIsInHost(EL2) then Regime_EL20 else Regime_EL2;

else
return Regime_EL10;

elsif el == EL0 then
if IsSecure() && ELUsingAArch32(EL3) then

return Regime_EL30;
elsif ELIsInHost(EL0) then

return Regime_EL20;
else

return Regime_EL10;
else

Unreachable();

Library pseudocode for shared/translation/vmsa/TranslationSize

// TranslationSize()
// =================
// Compute the number of bits directly mapped from the input address
// to the output address

integer TranslationSize(TGx tgx, integer level)
granulebits = TGxGranuleBits(tgx);
blockbits = (FINAL_LEVEL - level) * (granulebits - 3);

return granulebits + blockbits;

Library pseudocode for shared/translation/vmsa/VARange

enumeration VARange {
VARange_LOWER,
VARange_UPPER

};

Internal version only: isa v32.21, AdvSIMD v29.05, pseudocode v2021-06_xml, sve v2021-06_rc2b ; Build timestamp: 2021-06-28T16:41

Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Shared Pseudocode Functions Page 3184

	Proprietary Notice
	A64 -- Base Instructions (alphabetic order)
	ADC
	ADCS
	ADD (extended register)
	ADD (immediate)
	ADD (shifted register)
	ADDG
	ADDS (extended register)
	ADDS (immediate)
	ADDS (shifted register)
	ADR
	ADRP
	AND (immediate)
	AND (shifted register)
	ANDS (immediate)
	ANDS (shifted register)
	ASR (register)
	ASR (immediate)
	ASRV
	AT
	AUTDA, AUTDZA
	AUTDB, AUTDZB
	AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA
	AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB
	AXFLAG
	B.cond
	B
	BFC
	BFI
	BFM
	BFXIL
	BIC (shifted register)
	BICS (shifted register)
	BL
	BLR
	BLRAA, BLRAAZ, BLRAB, BLRABZ
	BR
	BRAA, BRAAZ, BRAB, BRABZ
	BRK
	BTI
	CAS, CASA, CASAL, CASL
	CASB, CASAB, CASALB, CASLB
	CASH, CASAH, CASALH, CASLH
	CASP, CASPA, CASPAL, CASPL
	CBNZ
	CBZ
	CCMN (immediate)
	CCMN (register)
	CCMP (immediate)
	CCMP (register)
	CFINV
	CFP
	CINC
	CINV
	CLREX
	CLS
	CLZ
	CMN (extended register)
	CMN (immediate)
	CMN (shifted register)
	CMP (extended register)
	CMP (immediate)
	CMP (shifted register)
	CMPP
	CNEG
	CPP
	CRC32B, CRC32H, CRC32W, CRC32X
	CRC32CB, CRC32CH, CRC32CW, CRC32CX
	CSDB
	CSEL
	CSET
	CSETM
	CSINC
	CSINV
	CSNEG
	DC
	DCPS1
	DCPS2
	DCPS3
	DGH
	DMB
	DRPS
	DSB
	DVP
	EON (shifted register)
	EOR (immediate)
	EOR (shifted register)
	ERET
	ERETAA, ERETAB
	ESB
	EXTR
	GMI
	HINT
	HLT
	HVC
	IC
	IRG
	ISB
	LD64B
	LDADD, LDADDA, LDADDAL, LDADDL
	LDADDB, LDADDAB, LDADDALB, LDADDLB
	LDADDH, LDADDAH, LDADDALH, LDADDLH
	LDAPR
	LDAPRB
	LDAPRH
	LDAPUR
	LDAPURB
	LDAPURH
	LDAPURSB
	LDAPURSH
	LDAPURSW
	LDAR
	LDARB
	LDARH
	LDAXP
	LDAXR
	LDAXRB
	LDAXRH
	LDCLR, LDCLRA, LDCLRAL, LDCLRL
	LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB
	LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH
	LDEOR, LDEORA, LDEORAL, LDEORL
	LDEORB, LDEORAB, LDEORALB, LDEORLB
	LDEORH, LDEORAH, LDEORALH, LDEORLH
	LDG
	LDGM
	LDLAR
	LDLARB
	LDLARH
	LDNP
	LDP
	LDPSW
	LDR (immediate)
	LDR (literal)
	LDR (register)
	LDRAA, LDRAB
	LDRB (immediate)
	LDRB (register)
	LDRH (immediate)
	LDRH (register)
	LDRSB (immediate)
	LDRSB (register)
	LDRSH (immediate)
	LDRSH (register)
	LDRSW (immediate)
	LDRSW (literal)
	LDRSW (register)
	LDSET, LDSETA, LDSETAL, LDSETL
	LDSETB, LDSETAB, LDSETALB, LDSETLB
	LDSETH, LDSETAH, LDSETALH, LDSETLH
	LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL
	LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB
	LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH
	LDSMIN, LDSMINA, LDSMINAL, LDSMINL
	LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB
	LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH
	LDTR
	LDTRB
	LDTRH
	LDTRSB
	LDTRSH
	LDTRSW
	LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL
	LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB
	LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
	LDUMIN, LDUMINA, LDUMINAL, LDUMINL
	LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB
	LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH
	LDUR
	LDURB
	LDURH
	LDURSB
	LDURSH
	LDURSW
	LDXP
	LDXR
	LDXRB
	LDXRH
	LSL (register)
	LSL (immediate)
	LSLV
	LSR (register)
	LSR (immediate)
	LSRV
	MADD
	MNEG
	MOV (to/from SP)
	MOV (inverted wide immediate)
	MOV (wide immediate)
	MOV (bitmask immediate)
	MOV (register)
	MOVK
	MOVN
	MOVZ
	MRS
	MSR (immediate)
	MSR (register)
	MSUB
	MUL
	MVN
	NEG (shifted register)
	NEGS
	NGC
	NGCS
	NOP
	ORN (shifted register)
	ORR (immediate)
	ORR (shifted register)
	PACDA, PACDZA
	PACDB, PACDZB
	PACGA
	PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA
	PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB
	PRFM (immediate)
	PRFM (literal)
	PRFM (register)
	PRFUM
	PSB CSYNC
	PSSBB
	RBIT
	RET
	RETAA, RETAB
	REV
	REV16
	REV32
	REV64
	RMIF
	ROR (immediate)
	ROR (register)
	RORV
	SB
	SBC
	SBCS
	SBFIZ
	SBFM
	SBFX
	SDIV
	SETF8, SETF16
	SEV
	SEVL
	SMADDL
	SMC
	SMNEGL
	SMSUBL
	SMULH
	SMULL
	SSBB
	ST2G
	ST64B
	ST64BV
	ST64BV0
	STADD, STADDL
	STADDB, STADDLB
	STADDH, STADDLH
	STCLR, STCLRL
	STCLRB, STCLRLB
	STCLRH, STCLRLH
	STEOR, STEORL
	STEORB, STEORLB
	STEORH, STEORLH
	STG
	STGM
	STGP
	STLLR
	STLLRB
	STLLRH
	STLR
	STLRB
	STLRH
	STLUR
	STLURB
	STLURH
	STLXP
	STLXR
	STLXRB
	STLXRH
	STNP
	STP
	STR (immediate)
	STR (register)
	STRB (immediate)
	STRB (register)
	STRH (immediate)
	STRH (register)
	STSET, STSETL
	STSETB, STSETLB
	STSETH, STSETLH
	STSMAX, STSMAXL
	STSMAXB, STSMAXLB
	STSMAXH, STSMAXLH
	STSMIN, STSMINL
	STSMINB, STSMINLB
	STSMINH, STSMINLH
	STTR
	STTRB
	STTRH
	STUMAX, STUMAXL
	STUMAXB, STUMAXLB
	STUMAXH, STUMAXLH
	STUMIN, STUMINL
	STUMINB, STUMINLB
	STUMINH, STUMINLH
	STUR
	STURB
	STURH
	STXP
	STXR
	STXRB
	STXRH
	STZ2G
	STZG
	STZGM
	SUB (extended register)
	SUB (immediate)
	SUB (shifted register)
	SUBG
	SUBP
	SUBPS
	SUBS (extended register)
	SUBS (immediate)
	SUBS (shifted register)
	SVC
	SWP, SWPA, SWPAL, SWPL
	SWPB, SWPAB, SWPALB, SWPLB
	SWPH, SWPAH, SWPALH, SWPLH
	SXTB
	SXTH
	SXTW
	SYS
	SYSL
	TBNZ
	TBZ
	TLBI
	TSB CSYNC
	TST (immediate)
	TST (shifted register)
	UBFIZ
	UBFM
	UBFX
	UDF
	UDIV
	UMADDL
	UMNEGL
	UMSUBL
	UMULH
	UMULL
	UXTB
	UXTH
	WFE
	WFET
	WFI
	WFIT
	XAFLAG
	XPACD, XPACI, XPACLRI
	YIELD

	A64 -- SIMD and Floating-point Instructions (alphabetic order)
	ABS
	ADD (vector)
	ADDHN, ADDHN2
	ADDP (scalar)
	ADDP (vector)
	ADDV
	AESD
	AESE
	AESIMC
	AESMC
	AND (vector)
	BCAX
	BFCVT
	BFCVTN, BFCVTN2
	BFDOT (by element)
	BFDOT (vector)
	BFMLALB, BFMLALT (by element)
	BFMLALB, BFMLALT (vector)
	BFMMLA
	BIC (vector, immediate)
	BIC (vector, register)
	BIF
	BIT
	BSL
	CLS (vector)
	CLZ (vector)
	CMEQ (register)
	CMEQ (zero)
	CMGE (register)
	CMGE (zero)
	CMGT (register)
	CMGT (zero)
	CMHI (register)
	CMHS (register)
	CMLE (zero)
	CMLT (zero)
	CMTST
	CNT
	DUP (element)
	DUP (general)
	EOR3
	EOR (vector)
	EXT
	FABD
	FABS (vector)
	FABS (scalar)
	FACGE
	FACGT
	FADD (vector)
	FADD (scalar)
	FADDP (scalar)
	FADDP (vector)
	FCADD
	FCCMP
	FCCMPE
	FCMEQ (register)
	FCMEQ (zero)
	FCMGE (register)
	FCMGE (zero)
	FCMGT (register)
	FCMGT (zero)
	FCMLA (by element)
	FCMLA
	FCMLE (zero)
	FCMLT (zero)
	FCMP
	FCMPE
	FCSEL
	FCVT
	FCVTAS (vector)
	FCVTAS (scalar)
	FCVTAU (vector)
	FCVTAU (scalar)
	FCVTL, FCVTL2
	FCVTMS (vector)
	FCVTMS (scalar)
	FCVTMU (vector)
	FCVTMU (scalar)
	FCVTN, FCVTN2
	FCVTNS (vector)
	FCVTNS (scalar)
	FCVTNU (vector)
	FCVTNU (scalar)
	FCVTPS (vector)
	FCVTPS (scalar)
	FCVTPU (vector)
	FCVTPU (scalar)
	FCVTXN, FCVTXN2
	FCVTZS (vector, fixed-point)
	FCVTZS (vector, integer)
	FCVTZS (scalar, fixed-point)
	FCVTZS (scalar, integer)
	FCVTZU (vector, fixed-point)
	FCVTZU (vector, integer)
	FCVTZU (scalar, fixed-point)
	FCVTZU (scalar, integer)
	FDIV (vector)
	FDIV (scalar)
	FJCVTZS
	FMADD
	FMAX (vector)
	FMAX (scalar)
	FMAXNM (vector)
	FMAXNM (scalar)
	FMAXNMP (scalar)
	FMAXNMP (vector)
	FMAXNMV
	FMAXP (scalar)
	FMAXP (vector)
	FMAXV
	FMIN (vector)
	FMIN (scalar)
	FMINNM (vector)
	FMINNM (scalar)
	FMINNMP (scalar)
	FMINNMP (vector)
	FMINNMV
	FMINP (scalar)
	FMINP (vector)
	FMINV
	FMLA (by element)
	FMLA (vector)
	FMLAL, FMLAL2 (by element)
	FMLAL, FMLAL2 (vector)
	FMLS (by element)
	FMLS (vector)
	FMLSL, FMLSL2 (by element)
	FMLSL, FMLSL2 (vector)
	FMOV (vector, immediate)
	FMOV (register)
	FMOV (general)
	FMOV (scalar, immediate)
	FMSUB
	FMUL (by element)
	FMUL (vector)
	FMUL (scalar)
	FMULX (by element)
	FMULX
	FNEG (vector)
	FNEG (scalar)
	FNMADD
	FNMSUB
	FNMUL (scalar)
	FRECPE
	FRECPS
	FRECPX
	FRINT32X (vector)
	FRINT32X (scalar)
	FRINT32Z (vector)
	FRINT32Z (scalar)
	FRINT64X (vector)
	FRINT64X (scalar)
	FRINT64Z (vector)
	FRINT64Z (scalar)
	FRINTA (vector)
	FRINTA (scalar)
	FRINTI (vector)
	FRINTI (scalar)
	FRINTM (vector)
	FRINTM (scalar)
	FRINTN (vector)
	FRINTN (scalar)
	FRINTP (vector)
	FRINTP (scalar)
	FRINTX (vector)
	FRINTX (scalar)
	FRINTZ (vector)
	FRINTZ (scalar)
	FRSQRTE
	FRSQRTS
	FSQRT (vector)
	FSQRT (scalar)
	FSUB (vector)
	FSUB (scalar)
	INS (element)
	INS (general)
	LD1 (multiple structures)
	LD1 (single structure)
	LD1R
	LD2 (multiple structures)
	LD2 (single structure)
	LD2R
	LD3 (multiple structures)
	LD3 (single structure)
	LD3R
	LD4 (multiple structures)
	LD4 (single structure)
	LD4R
	LDNP (SIMD&FP)
	LDP (SIMD&FP)
	LDR (immediate, SIMD&FP)
	LDR (literal, SIMD&FP)
	LDR (register, SIMD&FP)
	LDUR (SIMD&FP)
	MLA (by element)
	MLA (vector)
	MLS (by element)
	MLS (vector)
	MOV (scalar)
	MOV (element)
	MOV (from general)
	MOV (vector)
	MOV (to general)
	MOVI
	MUL (by element)
	MUL (vector)
	MVN
	MVNI
	NEG (vector)
	NOT
	ORN (vector)
	ORR (vector, immediate)
	ORR (vector, register)
	PMUL
	PMULL, PMULL2
	RADDHN, RADDHN2
	RAX1
	RBIT (vector)
	REV16 (vector)
	REV32 (vector)
	REV64
	RSHRN, RSHRN2
	RSUBHN, RSUBHN2
	SABA
	SABAL, SABAL2
	SABD
	SABDL, SABDL2
	SADALP
	SADDL, SADDL2
	SADDLP
	SADDLV
	SADDW, SADDW2
	SCVTF (vector, fixed-point)
	SCVTF (vector, integer)
	SCVTF (scalar, fixed-point)
	SCVTF (scalar, integer)
	SDOT (by element)
	SDOT (vector)
	SHA1C
	SHA1H
	SHA1M
	SHA1P
	SHA1SU0
	SHA1SU1
	SHA256H2
	SHA256H
	SHA256SU0
	SHA256SU1
	SHA512H2
	SHA512H
	SHA512SU0
	SHA512SU1
	SHADD
	SHL
	SHLL, SHLL2
	SHRN, SHRN2
	SHSUB
	SLI
	SM3PARTW1
	SM3PARTW2
	SM3SS1
	SM3TT1A
	SM3TT1B
	SM3TT2A
	SM3TT2B
	SM4E
	SM4EKEY
	SMAX
	SMAXP
	SMAXV
	SMIN
	SMINP
	SMINV
	SMLAL, SMLAL2 (by element)
	SMLAL, SMLAL2 (vector)
	SMLSL, SMLSL2 (by element)
	SMLSL, SMLSL2 (vector)
	SMMLA (vector)
	SMOV
	SMULL, SMULL2 (by element)
	SMULL, SMULL2 (vector)
	SQABS
	SQADD
	SQDMLAL, SQDMLAL2 (by element)
	SQDMLAL, SQDMLAL2 (vector)
	SQDMLSL, SQDMLSL2 (by element)
	SQDMLSL, SQDMLSL2 (vector)
	SQDMULH (by element)
	SQDMULH (vector)
	SQDMULL, SQDMULL2 (by element)
	SQDMULL, SQDMULL2 (vector)
	SQNEG
	SQRDMLAH (by element)
	SQRDMLAH (vector)
	SQRDMLSH (by element)
	SQRDMLSH (vector)
	SQRDMULH (by element)
	SQRDMULH (vector)
	SQRSHL
	SQRSHRN, SQRSHRN2
	SQRSHRUN, SQRSHRUN2
	SQSHL (immediate)
	SQSHL (register)
	SQSHLU
	SQSHRN, SQSHRN2
	SQSHRUN, SQSHRUN2
	SQSUB
	SQXTN, SQXTN2
	SQXTUN, SQXTUN2
	SRHADD
	SRI
	SRSHL
	SRSHR
	SRSRA
	SSHL
	SSHLL, SSHLL2
	SSHR
	SSRA
	SSUBL, SSUBL2
	SSUBW, SSUBW2
	ST1 (multiple structures)
	ST1 (single structure)
	ST2 (multiple structures)
	ST2 (single structure)
	ST3 (multiple structures)
	ST3 (single structure)
	ST4 (multiple structures)
	ST4 (single structure)
	STNP (SIMD&FP)
	STP (SIMD&FP)
	STR (immediate, SIMD&FP)
	STR (register, SIMD&FP)
	STUR (SIMD&FP)
	SUB (vector)
	SUBHN, SUBHN2
	SUDOT (by element)
	SUQADD
	SXTL, SXTL2
	TBL
	TBX
	TRN1
	TRN2
	UABA
	UABAL, UABAL2
	UABD
	UABDL, UABDL2
	UADALP
	UADDL, UADDL2
	UADDLP
	UADDLV
	UADDW, UADDW2
	UCVTF (vector, fixed-point)
	UCVTF (vector, integer)
	UCVTF (scalar, fixed-point)
	UCVTF (scalar, integer)
	UDOT (by element)
	UDOT (vector)
	UHADD
	UHSUB
	UMAX
	UMAXP
	UMAXV
	UMIN
	UMINP
	UMINV
	UMLAL, UMLAL2 (by element)
	UMLAL, UMLAL2 (vector)
	UMLSL, UMLSL2 (by element)
	UMLSL, UMLSL2 (vector)
	UMMLA (vector)
	UMOV
	UMULL, UMULL2 (by element)
	UMULL, UMULL2 (vector)
	UQADD
	UQRSHL
	UQRSHRN, UQRSHRN2
	UQSHL (immediate)
	UQSHL (register)
	UQSHRN, UQSHRN2
	UQSUB
	UQXTN, UQXTN2
	URECPE
	URHADD
	URSHL
	URSHR
	URSQRTE
	URSRA
	USDOT (by element)
	USDOT (vector)
	USHL
	USHLL, USHLL2
	USHR
	USMMLA (vector)
	USQADD
	USRA
	USUBL, USUBL2
	USUBW, USUBW2
	UXTL, UXTL2
	UZP1
	UZP2
	XAR
	XTN, XTN2
	ZIP1
	ZIP2

	A64 -- SVE Instructions (alphabetic order)
	ABS
	ADD (vectors, predicated)
	ADD (immediate)
	ADD (vectors, unpredicated)
	ADDPL
	ADDVL
	ADR
	AND (predicates)
	AND (vectors, predicated)
	AND (immediate)
	AND (vectors, unpredicated)
	ANDS
	ANDV
	ASR (immediate, predicated)
	ASR (wide elements, predicated)
	ASR (vectors)
	ASR (immediate, unpredicated)
	ASR (wide elements, unpredicated)
	ASRD
	ASRR
	BFCVT
	BFCVTNT
	BFDOT (vectors)
	BFDOT (indexed)
	BFMLALB (vectors)
	BFMLALB (indexed)
	BFMLALT (vectors)
	BFMLALT (indexed)
	BFMMLA
	BIC (immediate)
	BIC (predicates)
	BIC (vectors, predicated)
	BIC (vectors, unpredicated)
	BICS
	BRKA
	BRKAS
	BRKB
	BRKBS
	BRKN
	BRKNS
	BRKPA
	BRKPAS
	BRKPB
	BRKPBS
	CLASTA (scalar)
	CLASTA (SIMD&FP scalar)
	CLASTA (vectors)
	CLASTB (scalar)
	CLASTB (SIMD&FP scalar)
	CLASTB (vectors)
	CLS
	CLZ
	CMP<cc> (immediate)
	CMP<cc> (wide elements)
	CMP<cc> (vectors)
	CMPLE (vectors)
	CMPLO (vectors)
	CMPLS (vectors)
	CMPLT (vectors)
	CNOT
	CNT
	CNTB, CNTD, CNTH, CNTW
	CNTP
	COMPACT
	CPY (immediate, zeroing)
	CPY (immediate, merging)
	CPY (scalar)
	CPY (SIMD&FP scalar)
	CTERMEQ, CTERMNE
	DECB, DECD, DECH, DECW (scalar)
	DECD, DECH, DECW (vector)
	DECP (scalar)
	DECP (vector)
	DUP (immediate)
	DUP (scalar)
	DUP (indexed)
	DUPM
	EON
	EOR (predicates)
	EOR (vectors, predicated)
	EOR (immediate)
	EOR (vectors, unpredicated)
	EORS
	EORV
	EXT
	FABD
	FABS
	FAC<cc>
	FACLE
	FACLT
	FADD (immediate)
	FADD (vectors, predicated)
	FADD (vectors, unpredicated)
	FADDA
	FADDV
	FCADD
	FCM<cc> (zero)
	FCM<cc> (vectors)
	FCMLA (vectors)
	FCMLA (indexed)
	FCMLE (vectors)
	FCMLT (vectors)
	FCPY
	FCVT
	FCVTZS
	FCVTZU
	FDIV
	FDIVR
	FDUP
	FEXPA
	FMAD
	FMAX (immediate)
	FMAX (vectors)
	FMAXNM (immediate)
	FMAXNM (vectors)
	FMAXNMV
	FMAXV
	FMIN (immediate)
	FMIN (vectors)
	FMINNM (immediate)
	FMINNM (vectors)
	FMINNMV
	FMINV
	FMLA (vectors)
	FMLA (indexed)
	FMLS (vectors)
	FMLS (indexed)
	FMMLA
	FMOV (zero, predicated)
	FMOV (zero, unpredicated)
	FMOV (immediate, predicated)
	FMOV (immediate, unpredicated)
	FMSB
	FMUL (immediate)
	FMUL (vectors, predicated)
	FMUL (vectors, unpredicated)
	FMUL (indexed)
	FMULX
	FNEG
	FNMAD
	FNMLA
	FNMLS
	FNMSB
	FRECPE
	FRECPS
	FRECPX
	FRINT<r>
	FRSQRTE
	FRSQRTS
	FSCALE
	FSQRT
	FSUB (immediate)
	FSUB (vectors, predicated)
	FSUB (vectors, unpredicated)
	FSUBR (immediate)
	FSUBR (vectors)
	FTMAD
	FTSMUL
	FTSSEL
	INCB, INCD, INCH, INCW (scalar)
	INCD, INCH, INCW (vector)
	INCP (scalar)
	INCP (vector)
	INDEX (immediates)
	INDEX (immediate, scalar)
	INDEX (scalar, immediate)
	INDEX (scalars)
	INSR (scalar)
	INSR (SIMD&FP scalar)
	LASTA (scalar)
	LASTA (SIMD&FP scalar)
	LASTB (scalar)
	LASTB (SIMD&FP scalar)
	LD1B (vector plus immediate)
	LD1B (scalar plus immediate)
	LD1B (scalar plus scalar)
	LD1B (scalar plus vector)
	LD1D (vector plus immediate)
	LD1D (scalar plus immediate)
	LD1D (scalar plus scalar)
	LD1D (scalar plus vector)
	LD1H (vector plus immediate)
	LD1H (scalar plus immediate)
	LD1H (scalar plus scalar)
	LD1H (scalar plus vector)
	LD1RB
	LD1RD
	LD1RH
	LD1ROB (scalar plus immediate)
	LD1ROB (scalar plus scalar)
	LD1ROD (scalar plus immediate)
	LD1ROD (scalar plus scalar)
	LD1ROH (scalar plus immediate)
	LD1ROH (scalar plus scalar)
	LD1ROW (scalar plus immediate)
	LD1ROW (scalar plus scalar)
	LD1RQB (scalar plus immediate)
	LD1RQB (scalar plus scalar)
	LD1RQD (scalar plus immediate)
	LD1RQD (scalar plus scalar)
	LD1RQH (scalar plus immediate)
	LD1RQH (scalar plus scalar)
	LD1RQW (scalar plus immediate)
	LD1RQW (scalar plus scalar)
	LD1RSB
	LD1RSH
	LD1RSW
	LD1RW
	LD1SB (vector plus immediate)
	LD1SB (scalar plus immediate)
	LD1SB (scalar plus scalar)
	LD1SB (scalar plus vector)
	LD1SH (vector plus immediate)
	LD1SH (scalar plus immediate)
	LD1SH (scalar plus scalar)
	LD1SH (scalar plus vector)
	LD1SW (vector plus immediate)
	LD1SW (scalar plus immediate)
	LD1SW (scalar plus scalar)
	LD1SW (scalar plus vector)
	LD1W (vector plus immediate)
	LD1W (scalar plus immediate)
	LD1W (scalar plus scalar)
	LD1W (scalar plus vector)
	LD2B (scalar plus immediate)
	LD2B (scalar plus scalar)
	LD2D (scalar plus immediate)
	LD2D (scalar plus scalar)
	LD2H (scalar plus immediate)
	LD2H (scalar plus scalar)
	LD2W (scalar plus immediate)
	LD2W (scalar plus scalar)
	LD3B (scalar plus immediate)
	LD3B (scalar plus scalar)
	LD3D (scalar plus immediate)
	LD3D (scalar plus scalar)
	LD3H (scalar plus immediate)
	LD3H (scalar plus scalar)
	LD3W (scalar plus immediate)
	LD3W (scalar plus scalar)
	LD4B (scalar plus immediate)
	LD4B (scalar plus scalar)
	LD4D (scalar plus immediate)
	LD4D (scalar plus scalar)
	LD4H (scalar plus immediate)
	LD4H (scalar plus scalar)
	LD4W (scalar plus immediate)
	LD4W (scalar plus scalar)
	LDFF1B (vector plus immediate)
	LDFF1B (scalar plus scalar)
	LDFF1B (scalar plus vector)
	LDFF1D (vector plus immediate)
	LDFF1D (scalar plus scalar)
	LDFF1D (scalar plus vector)
	LDFF1H (vector plus immediate)
	LDFF1H (scalar plus scalar)
	LDFF1H (scalar plus vector)
	LDFF1SB (vector plus immediate)
	LDFF1SB (scalar plus scalar)
	LDFF1SB (scalar plus vector)
	LDFF1SH (vector plus immediate)
	LDFF1SH (scalar plus scalar)
	LDFF1SH (scalar plus vector)
	LDFF1SW (vector plus immediate)
	LDFF1SW (scalar plus scalar)
	LDFF1SW (scalar plus vector)
	LDFF1W (vector plus immediate)
	LDFF1W (scalar plus scalar)
	LDFF1W (scalar plus vector)
	LDNF1B
	LDNF1D
	LDNF1H
	LDNF1SB
	LDNF1SH
	LDNF1SW
	LDNF1W
	LDNT1B (scalar plus immediate)
	LDNT1B (scalar plus scalar)
	LDNT1D (scalar plus immediate)
	LDNT1D (scalar plus scalar)
	LDNT1H (scalar plus immediate)
	LDNT1H (scalar plus scalar)
	LDNT1W (scalar plus immediate)
	LDNT1W (scalar plus scalar)
	LDR (predicate)
	LDR (vector)
	LSL (immediate, predicated)
	LSL (wide elements, predicated)
	LSL (vectors)
	LSL (immediate, unpredicated)
	LSL (wide elements, unpredicated)
	LSLR
	LSR (immediate, predicated)
	LSR (wide elements, predicated)
	LSR (vectors)
	LSR (immediate, unpredicated)
	LSR (wide elements, unpredicated)
	LSRR
	MAD
	MLA
	MLS
	MOV (predicate, predicated, zeroing)
	MOV (immediate, predicated, zeroing)
	MOV (immediate, predicated, merging)
	MOV (scalar, predicated)
	MOV (SIMD&FP scalar, predicated)
	MOV (immediate, unpredicated)
	MOV (scalar, unpredicated)
	MOV (SIMD&FP scalar, unpredicated)
	MOV (bitmask immediate)
	MOV (predicate, unpredicated)
	MOV (vector, unpredicated)
	MOV (predicate, predicated, merging)
	MOV (vector, predicated)
	MOVPRFX (predicated)
	MOVPRFX (unpredicated)
	MOVS (predicated)
	MOVS (unpredicated)
	MSB
	MUL (vectors)
	MUL (immediate)
	NAND
	NANDS
	NEG
	NOR
	NORS
	NOT (predicate)
	NOT (vector)
	NOTS
	ORN (immediate)
	ORN (predicates)
	ORNS
	ORR (predicates)
	ORR (vectors, predicated)
	ORR (immediate)
	ORR (vectors, unpredicated)
	ORRS
	ORV
	PFALSE
	PFIRST
	PNEXT
	PRFB (vector plus immediate)
	PRFB (scalar plus immediate)
	PRFB (scalar plus scalar)
	PRFB (scalar plus vector)
	PRFD (vector plus immediate)
	PRFD (scalar plus immediate)
	PRFD (scalar plus scalar)
	PRFD (scalar plus vector)
	PRFH (vector plus immediate)
	PRFH (scalar plus immediate)
	PRFH (scalar plus scalar)
	PRFH (scalar plus vector)
	PRFW (vector plus immediate)
	PRFW (scalar plus immediate)
	PRFW (scalar plus scalar)
	PRFW (scalar plus vector)
	PTEST
	PTRUE
	PTRUES
	PUNPKHI, PUNPKLO
	RBIT
	RDFFR (unpredicated)
	RDFFR (predicated)
	RDFFRS
	RDVL
	REV (predicate)
	REV (vector)
	REVB, REVH, REVW
	SABD
	SADDV
	SCVTF
	SDIV
	SDIVR
	SDOT (vectors)
	SDOT (indexed)
	SEL (predicates)
	SEL (vectors)
	SETFFR
	SMAX (vectors)
	SMAX (immediate)
	SMAXV
	SMIN (vectors)
	SMIN (immediate)
	SMINV
	SMMLA
	SMULH
	SPLICE
	SQADD (immediate)
	SQADD (vectors)
	SQDECB
	SQDECD (scalar)
	SQDECD (vector)
	SQDECH (scalar)
	SQDECH (vector)
	SQDECP (scalar)
	SQDECP (vector)
	SQDECW (scalar)
	SQDECW (vector)
	SQINCB
	SQINCD (scalar)
	SQINCD (vector)
	SQINCH (scalar)
	SQINCH (vector)
	SQINCP (scalar)
	SQINCP (vector)
	SQINCW (scalar)
	SQINCW (vector)
	SQSUB (immediate)
	SQSUB (vectors)
	ST1B (vector plus immediate)
	ST1B (scalar plus immediate)
	ST1B (scalar plus scalar)
	ST1B (scalar plus vector)
	ST1D (vector plus immediate)
	ST1D (scalar plus immediate)
	ST1D (scalar plus scalar)
	ST1D (scalar plus vector)
	ST1H (vector plus immediate)
	ST1H (scalar plus immediate)
	ST1H (scalar plus scalar)
	ST1H (scalar plus vector)
	ST1W (vector plus immediate)
	ST1W (scalar plus immediate)
	ST1W (scalar plus scalar)
	ST1W (scalar plus vector)
	ST2B (scalar plus immediate)
	ST2B (scalar plus scalar)
	ST2D (scalar plus immediate)
	ST2D (scalar plus scalar)
	ST2H (scalar plus immediate)
	ST2H (scalar plus scalar)
	ST2W (scalar plus immediate)
	ST2W (scalar plus scalar)
	ST3B (scalar plus immediate)
	ST3B (scalar plus scalar)
	ST3D (scalar plus immediate)
	ST3D (scalar plus scalar)
	ST3H (scalar plus immediate)
	ST3H (scalar plus scalar)
	ST3W (scalar plus immediate)
	ST3W (scalar plus scalar)
	ST4B (scalar plus immediate)
	ST4B (scalar plus scalar)
	ST4D (scalar plus immediate)
	ST4D (scalar plus scalar)
	ST4H (scalar plus immediate)
	ST4H (scalar plus scalar)
	ST4W (scalar plus immediate)
	ST4W (scalar plus scalar)
	STNT1B (scalar plus immediate)
	STNT1B (scalar plus scalar)
	STNT1D (scalar plus immediate)
	STNT1D (scalar plus scalar)
	STNT1H (scalar plus immediate)
	STNT1H (scalar plus scalar)
	STNT1W (scalar plus immediate)
	STNT1W (scalar plus scalar)
	STR (predicate)
	STR (vector)
	SUB (vectors, predicated)
	SUB (immediate)
	SUB (vectors, unpredicated)
	SUBR (vectors)
	SUBR (immediate)
	SUDOT
	SUNPKHI, SUNPKLO
	SXTB, SXTH, SXTW
	TBL
	TRN1, TRN2 (predicates)
	TRN1, TRN2 (vectors)
	UABD
	UADDV
	UCVTF
	UDIV
	UDIVR
	UDOT (vectors)
	UDOT (indexed)
	UMAX (vectors)
	UMAX (immediate)
	UMAXV
	UMIN (vectors)
	UMIN (immediate)
	UMINV
	UMMLA
	UMULH
	UQADD (immediate)
	UQADD (vectors)
	UQDECB
	UQDECD (scalar)
	UQDECD (vector)
	UQDECH (scalar)
	UQDECH (vector)
	UQDECP (scalar)
	UQDECP (vector)
	UQDECW (scalar)
	UQDECW (vector)
	UQINCB
	UQINCD (scalar)
	UQINCD (vector)
	UQINCH (scalar)
	UQINCH (vector)
	UQINCP (scalar)
	UQINCP (vector)
	UQINCW (scalar)
	UQINCW (vector)
	UQSUB (immediate)
	UQSUB (vectors)
	USDOT (vectors)
	USDOT (indexed)
	USMMLA
	UUNPKHI, UUNPKLO
	UXTB, UXTH, UXTW
	UZP1, UZP2 (predicates)
	UZP1, UZP2 (vectors)
	WHILELE
	WHILELO
	WHILELS
	WHILELT
	WRFFR
	ZIP1, ZIP2 (predicates)
	ZIP1, ZIP2 (vectors)

	Top-level encodings for A64
	Shared Pseudocode Functions

