The MVFR2 characteristics are:
Describes the features provided by the AArch32 Advanced SIMD and Floating-point implementation.
Must be interpreted with MVFR0 and MVFR1.
For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID registers'.
AArch32 System register MVFR2 bits [31:0] are architecturally mapped to AArch64 System register MVFR2_EL1[31:0].
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVFR2 are UNDEFINED.
Implemented only if the implementation includes Advanced SIMD and floating-point instructions.
MVFR2 is a 32-bit register.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | FPMisc | SIMDMisc |
Reserved, RES0.
Indicates whether the floating-point implementation provides support for miscellaneous VFP features.
FPMisc | Meaning |
---|---|
0b0000 |
Not implemented, or no support for miscellaneous features. |
0b0001 |
Support for Floating-point selection. |
0b0010 |
As 0b0001, and Floating-point Conversion to Integer with Directed Rounding modes. |
0b0011 |
As 0b0010, and Floating-point Round to Integer Floating-point. |
0b0100 |
As 0b0011, and Floating-point MaxNum and MinNum. |
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0100.
Indicates whether the Advanced SIMD implementation provides support for miscellaneous Advanced SIMD features.
SIMDMisc | Meaning |
---|---|
0b0000 |
Not implemented, or no support for miscellaneous features. |
0b0001 |
Floating-point Conversion to Integer with Directed Rounding modes. |
0b0010 |
As 0b0001, and Floating-point Round to Integer Floating-point. |
0b0011 |
As 0b0010, and Floating-point MaxNum and MinNum. |
All other values are reserved.
In Armv8-A, the permitted values are 0b0000 and 0b0011.
Accesses to this register use the following encodings in the System register encoding space:
reg |
---|
0b0101 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then AArch64.AArch32SystemAccessTrap(EL2, 0x07); elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then AArch32.TakeHypTrapException(0x08); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x08); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then AArch32.TakeHypTrapException(0x08); else return MVFR2; elsif PSTATE.EL == EL2 then if EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then AArch32.TakeHypTrapException(0x00); else return MVFR2; elsif PSTATE.EL == EL3 then if CPACR.cp10 == '00' then UNDEFINED; else return MVFR2;
30/06/2021 09:39; 4f5dd962f4e34e1ac282f76da4d6e7fc4cab087e
Copyright © 2010-2021 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.