
Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by
any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information
for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to create or
refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All
rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. You must follow the
ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Proprietary Notice

Page 1

http://www.arm.com/about/trademarks/guidelines/index.php

A64 -- Base Instructions (alphabetic order)

ADC: Add with Carry.

ADCS: Add with Carry, setting flags.

ADD (extended register): Add (extended register).

ADD (immediate): Add (immediate).

ADD (shifted register): Add (shifted register).

ADDS (extended register): Add (extended register), setting flags.

ADDS (immediate): Add (immediate), setting flags.

ADDS (shifted register): Add (shifted register), setting flags.

ADR: Form PC-relative address.

ADRP: Form PC-relative address to 4KB page.

AND (immediate): Bitwise AND (immediate).

AND (shifted register): Bitwise AND (shifted register).

ANDS (immediate): Bitwise AND (immediate), setting flags.

ANDS (shifted register): Bitwise AND (shifted register), setting flags.

ASR (immediate): Arithmetic Shift Right (immediate): an alias of SBFM.

ASR (register): Arithmetic Shift Right (register): an alias of ASRV.

ASRV: Arithmetic Shift Right Variable.

AT: Address Translate: an alias of SYS.

AUTDA, AUTDZA: Authenticate Data address, using key A.

AUTDB, AUTDZB: Authenticate Data address, using key B.

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA: Authenticate Instruction address, using key A.

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB: Authenticate Instruction address, using key B.

B: Branch.

B.cond: Branch conditionally.

BFC: Bitfield Clear, leaving other bits unchanged: an alias of BFM.

BFI: Bitfield Insert: an alias of BFM.

BFM: Bitfield Move.

BFXIL: Bitfield extract and insert at low end: an alias of BFM.

BIC (shifted register): Bitwise Bit Clear (shifted register).

BICS (shifted register): Bitwise Bit Clear (shifted register), setting flags.

BL: Branch with Link.

BLR: Branch with Link to Register.

BLRAA, BLRAAZ, BLRAB, BLRABZ: Branch with Link to Register, with pointer authentication.

BR: Branch to Register.

A64 -- Base Instructions (alphabetic order)

Page 2

BRAA, BRAAZ, BRAB, BRABZ: Branch to Register, with pointer authentication.

BRK: Breakpoint instruction.

CAS, CASA, CASAL, CASL: Compare and Swap word or doubleword in memory.

CASB, CASAB, CASALB, CASLB: Compare and Swap byte in memory.

CASH, CASAH, CASALH, CASLH: Compare and Swap halfword in memory.

CASP, CASPA, CASPAL, CASPL: Compare and Swap Pair of words or doublewords in memory.

CBNZ: Compare and Branch on Nonzero.

CBZ: Compare and Branch on Zero.

CCMN (immediate): Conditional Compare Negative (immediate).

CCMN (register): Conditional Compare Negative (register).

CCMP (immediate): Conditional Compare (immediate).

CCMP (register): Conditional Compare (register).

CINC: Conditional Increment: an alias of CSINC.

CINV: Conditional Invert: an alias of CSINV.

CLREX: Clear Exclusive.

CLS: Count leading sign bits.

CLZ: Count leading zero bits.

CMN (extended register): Compare Negative (extended register): an alias of ADDS (extended register).

CMN (immediate): Compare Negative (immediate): an alias of ADDS (immediate).

CMN (shifted register): Compare Negative (shifted register): an alias of ADDS (shifted register).

CMP (extended register): Compare (extended register): an alias of SUBS (extended register).

CMP (immediate): Compare (immediate): an alias of SUBS (immediate).

CMP (shifted register): Compare (shifted register): an alias of SUBS (shifted register).

CNEG: Conditional Negate: an alias of CSNEG.

CRC32B, CRC32H, CRC32W, CRC32X: CRC32 checksum.

CRC32CB, CRC32CH, CRC32CW, CRC32CX: CRC32C checksum.

CSEL: Conditional Select.

CSET: Conditional Set: an alias of CSINC.

CSETM: Conditional Set Mask: an alias of CSINV.

CSINC: Conditional Select Increment.

CSINV: Conditional Select Invert.

CSNEG: Conditional Select Negation.

DC: Data Cache operation: an alias of SYS.

DCPS1: Debug Change PE State to EL1..

DCPS2: Debug Change PE State to EL2..

DCPS3: Debug Change PE State to EL3.

A64 -- Base Instructions (alphabetic order)

Page 3

DMB: Data Memory Barrier.

DRPS: Debug restore process state.

DSB: Data Synchronization Barrier.

EON (shifted register): Bitwise Exclusive OR NOT (shifted register).

EOR (immediate): Bitwise Exclusive OR (immediate).

EOR (shifted register): Bitwise Exclusive OR (shifted register).

ERET: Exception Return.

ERETAA, ERETAB: Exception Return, with pointer authentication.

ESB: Error Synchronization Barrier.

EXTR: Extract register.

HINT: Hint instruction.

HLT: Halt instruction.

HVC: Hypervisor Call.

IC: Instruction Cache operation: an alias of SYS.

ISB: Instruction Synchronization Barrier.

LDADD, LDADDA, LDADDAL, LDADDL: Atomic add on word or doubleword in memory.

LDADDB, LDADDAB, LDADDALB, LDADDLB: Atomic add on byte in memory.

LDADDH, LDADDAH, LDADDALH, LDADDLH: Atomic add on halfword in memory.

LDAPR: Load-Acquire RCpc Register.

LDAPRB: Load-Acquire RCpc Register Byte.

LDAPRH: Load-Acquire RCpc Register Halfword.

LDAR: Load-Acquire Register.

LDARB: Load-Acquire Register Byte.

LDARH: Load-Acquire Register Halfword.

LDAXP: Load-Acquire Exclusive Pair of Registers.

LDAXR: Load-Acquire Exclusive Register.

LDAXRB: Load-Acquire Exclusive Register Byte.

LDAXRH: Load-Acquire Exclusive Register Halfword.

LDCLR, LDCLRA, LDCLRAL, LDCLRL: Atomic bit clear on word or doubleword in memory.

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB: Atomic bit clear on byte in memory.

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH: Atomic bit clear on halfword in memory.

LDEOR, LDEORA, LDEORAL, LDEORL: Atomic exclusive OR on word or doubleword in memory.

LDEORB, LDEORAB, LDEORALB, LDEORLB: Atomic exclusive OR on byte in memory.

LDEORH, LDEORAH, LDEORALH, LDEORLH: Atomic exclusive OR on halfword in memory.

LDLAR: Load LOAcquire Register.

LDLARB: Load LOAcquire Register Byte.

A64 -- Base Instructions (alphabetic order)

Page 4

LDLARH: Load LOAcquire Register Halfword.

LDNP: Load Pair of Registers, with non-temporal hint.

LDP: Load Pair of Registers.

LDPSW: Load Pair of Registers Signed Word.

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRAA, LDRAB: Load Register, with pointer authentication.

LDRB (immediate): Load Register Byte (immediate).

LDRB (register): Load Register Byte (register).

LDRH (immediate): Load Register Halfword (immediate).

LDRH (register): Load Register Halfword (register).

LDRSB (immediate): Load Register Signed Byte (immediate).

LDRSB (register): Load Register Signed Byte (register).

LDRSH (immediate): Load Register Signed Halfword (immediate).

LDRSH (register): Load Register Signed Halfword (register).

LDRSW (immediate): Load Register Signed Word (immediate).

LDRSW (literal): Load Register Signed Word (literal).

LDRSW (register): Load Register Signed Word (register).

LDSET, LDSETA, LDSETAL, LDSETL: Atomic bit set on word or doubleword in memory.

LDSETB, LDSETAB, LDSETALB, LDSETLB: Atomic bit set on byte in memory.

LDSETH, LDSETAH, LDSETALH, LDSETLH: Atomic bit set on halfword in memory.

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL: Atomic signed maximum on word or doubleword in memory.

LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB: Atomic signed maximum on byte in memory.

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH: Atomic signed maximum on halfword in memory.

LDSMIN, LDSMINA, LDSMINAL, LDSMINL: Atomic signed minimum on word or doubleword in memory.

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB: Atomic signed minimum on byte in memory.

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH: Atomic signed minimum on halfword in memory.

LDTR: Load Register (unprivileged).

LDTRB: Load Register Byte (unprivileged).

LDTRH: Load Register Halfword (unprivileged).

LDTRSB: Load Register Signed Byte (unprivileged).

LDTRSH: Load Register Signed Halfword (unprivileged).

LDTRSW: Load Register Signed Word (unprivileged).

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL: Atomic unsigned maximum on word or doubleword in memory.

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB: Atomic unsigned maximum on byte in memory.

A64 -- Base Instructions (alphabetic order)

Page 5

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH: Atomic unsigned maximum on halfword in memory.

LDUMIN, LDUMINA, LDUMINAL, LDUMINL: Atomic unsigned minimum on word or doubleword in memory.

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB: Atomic unsigned minimum on byte in memory.

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH: Atomic unsigned minimum on halfword in memory.

LDUR: Load Register (unscaled).

LDURB: Load Register Byte (unscaled).

LDURH: Load Register Halfword (unscaled).

LDURSB: Load Register Signed Byte (unscaled).

LDURSH: Load Register Signed Halfword (unscaled).

LDURSW: Load Register Signed Word (unscaled).

LDXP: Load Exclusive Pair of Registers.

LDXR: Load Exclusive Register.

LDXRB: Load Exclusive Register Byte.

LDXRH: Load Exclusive Register Halfword.

LSL (immediate): Logical Shift Left (immediate): an alias of UBFM.

LSL (register): Logical Shift Left (register): an alias of LSLV.

LSLV: Logical Shift Left Variable.

LSR (immediate): Logical Shift Right (immediate): an alias of UBFM.

LSR (register): Logical Shift Right (register): an alias of LSRV.

LSRV: Logical Shift Right Variable.

MADD: Multiply-Add.

MNEG: Multiply-Negate: an alias of MSUB.

MOV (bitmask immediate): Move (bitmask immediate): an alias of ORR (immediate).

MOV (inverted wide immediate): Move (inverted wide immediate): an alias of MOVN.

MOV (register): Move (register): an alias of ORR (shifted register).

MOV (to/from SP): Move between register and stack pointer: an alias of ADD (immediate).

MOV (wide immediate): Move (wide immediate): an alias of MOVZ.

MOVK: Move wide with keep.

MOVN: Move wide with NOT.

MOVZ: Move wide with zero.

MRS: Move System Register.

MSR (immediate): Move immediate value to Special Register.

MSR (register): Move general-purpose register to System Register.

MSUB: Multiply-Subtract.

MUL: Multiply: an alias of MADD.

MVN: Bitwise NOT: an alias of ORN (shifted register).

A64 -- Base Instructions (alphabetic order)

Page 6

NEG (shifted register): Negate (shifted register): an alias of SUB (shifted register).

NEGS: Negate, setting flags: an alias of SUBS (shifted register).

NGC: Negate with Carry: an alias of SBC.

NGCS: Negate with Carry, setting flags: an alias of SBCS.

NOP: No Operation.

ORN (shifted register): Bitwise OR NOT (shifted register).

ORR (immediate): Bitwise OR (immediate).

ORR (shifted register): Bitwise OR (shifted register).

PACDA, PACDZA: Pointer Authentication Code for Data address, using key A.

PACDB, PACDZB: Pointer Authentication Code for Data address, using key B.

PACGA: Pointer Authentication Code, using Generic key.

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA: Pointer Authentication Code for Instruction address, using key A.

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB: Pointer Authentication Code for Instruction address, using key B.

PRFM (immediate): Prefetch Memory (immediate).

PRFM (literal): Prefetch Memory (literal).

PRFM (register): Prefetch Memory (register).

PRFM (unscaled offset): Prefetch Memory (unscaled offset).

PSB CSYNC: Profiling Synchronization Barrier.

RBIT: Reverse Bits.

RET: Return from subroutine.

RETAA, RETAB: Return from subroutine, with pointer authentication.

REV: Reverse Bytes.

REV16: Reverse bytes in 16-bit halfwords.

REV32: Reverse bytes in 32-bit words.

REV64: Reverse Bytes: an alias of REV.

ROR (immediate): Rotate right (immediate): an alias of EXTR.

ROR (register): Rotate Right (register): an alias of RORV.

RORV: Rotate Right Variable.

SBC: Subtract with Carry.

SBCS: Subtract with Carry, setting flags.

SBFIZ: Signed Bitfield Insert in Zero: an alias of SBFM.

SBFM: Signed Bitfield Move.

SBFX: Signed Bitfield Extract: an alias of SBFM.

SDIV: Signed Divide.

SEV: Send Event.

SEVL: Send Event Local.

A64 -- Base Instructions (alphabetic order)

Page 7

SMADDL: Signed Multiply-Add Long.

SMC: Secure Monitor Call.

SMNEGL: Signed Multiply-Negate Long: an alias of SMSUBL.

SMSUBL: Signed Multiply-Subtract Long.

SMULH: Signed Multiply High.

SMULL: Signed Multiply Long: an alias of SMADDL.

STADD, STADDL: Atomic add on word or doubleword in memory, without return.

STADDB, STADDLB: Atomic add on byte in memory, without return.

STADDH, STADDLH: Atomic add on halfword in memory, without return.

STCLR, STCLRL: Atomic bit clear on word or doubleword in memory, without return.

STCLRB, STCLRLB: Atomic bit clear on byte in memory, without return.

STCLRH, STCLRLH: Atomic bit clear on halfword in memory, without return.

STEOR, STEORL: Atomic exclusive OR on word or doubleword in memory, without return.

STEORB, STEORLB: Atomic exclusive OR on byte in memory, without return.

STEORH, STEORLH: Atomic exclusive OR on halfword in memory, without return.

STLLR: Store LORelease Register.

STLLRB: Store LORelease Register Byte.

STLLRH: Store LORelease Register Halfword.

STLR: Store-Release Register.

STLRB: Store-Release Register Byte.

STLRH: Store-Release Register Halfword.

STLXP: Store-Release Exclusive Pair of registers.

STLXR: Store-Release Exclusive Register.

STLXRB: Store-Release Exclusive Register Byte.

STLXRH: Store-Release Exclusive Register Halfword.

STNP: Store Pair of Registers, with non-temporal hint.

STP: Store Pair of Registers.

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).

STRB (register): Store Register Byte (register).

STRH (immediate): Store Register Halfword (immediate).

STRH (register): Store Register Halfword (register).

STSET, STSETL: Atomic bit set on word or doubleword in memory, without return.

STSETB, STSETLB: Atomic bit set on byte in memory, without return.

STSETH, STSETLH: Atomic bit set on halfword in memory, without return.

A64 -- Base Instructions (alphabetic order)

Page 8

STSMAX, STSMAXL: Atomic signed maximum on word or doubleword in memory, without return.

STSMAXB, STSMAXLB: Atomic signed maximum on byte in memory, without return.

STSMAXH, STSMAXLH: Atomic signed maximum on halfword in memory, without return.

STSMIN, STSMINL: Atomic signed minimum on word or doubleword in memory, without return.

STSMINB, STSMINLB: Atomic signed minimum on byte in memory, without return.

STSMINH, STSMINLH: Atomic signed minimum on halfword in memory, without return.

STTR: Store Register (unprivileged).

STTRB: Store Register Byte (unprivileged).

STTRH: Store Register Halfword (unprivileged).

STUMAX, STUMAXL: Atomic unsigned maximum on word or doubleword in memory, without return.

STUMAXB, STUMAXLB: Atomic unsigned maximum on byte in memory, without return.

STUMAXH, STUMAXLH: Atomic unsigned maximum on halfword in memory, without return.

STUMIN, STUMINL: Atomic unsigned minimum on word or doubleword in memory, without return.

STUMINB, STUMINLB: Atomic unsigned minimum on byte in memory, without return.

STUMINH, STUMINLH: Atomic unsigned minimum on halfword in memory, without return.

STUR: Store Register (unscaled).

STURB: Store Register Byte (unscaled).

STURH: Store Register Halfword (unscaled).

STXP: Store Exclusive Pair of registers.

STXR: Store Exclusive Register.

STXRB: Store Exclusive Register Byte.

STXRH: Store Exclusive Register Halfword.

SUB (extended register): Subtract (extended register).

SUB (immediate): Subtract (immediate).

SUB (shifted register): Subtract (shifted register).

SUBS (extended register): Subtract (extended register), setting flags.

SUBS (immediate): Subtract (immediate), setting flags.

SUBS (shifted register): Subtract (shifted register), setting flags.

SVC: Supervisor Call.

SWP, SWPA, SWPAL, SWPL: Swap word or doubleword in memory.

SWPB, SWPAB, SWPALB, SWPLB: Swap byte in memory.

SWPH, SWPAH, SWPALH, SWPLH: Swap halfword in memory.

SXTB: Signed Extend Byte: an alias of SBFM.

SXTH: Sign Extend Halfword: an alias of SBFM.

SXTW: Sign Extend Word: an alias of SBFM.

SYS: System instruction.

A64 -- Base Instructions (alphabetic order)

Page 9

SYSL: System instruction with result.

TBNZ: Test bit and Branch if Nonzero.

TBZ: Test bit and Branch if Zero.

TLBI: TLB Invalidate operation: an alias of SYS.

TST (immediate): Test bits (immediate): an alias of ANDS (immediate).

TST (shifted register): Test (shifted register): an alias of ANDS (shifted register).

UBFIZ: Unsigned Bitfield Insert in Zero: an alias of UBFM.

UBFM: Unsigned Bitfield Move.

UBFX: Unsigned Bitfield Extract: an alias of UBFM.

UDIV: Unsigned Divide.

UMADDL: Unsigned Multiply-Add Long.

UMNEGL: Unsigned Multiply-Negate Long: an alias of UMSUBL.

UMSUBL: Unsigned Multiply-Subtract Long.

UMULH: Unsigned Multiply High.

UMULL: Unsigned Multiply Long: an alias of UMADDL.

UXTB: Unsigned Extend Byte: an alias of UBFM.

UXTH: Unsigned Extend Halfword: an alias of UBFM.

WFE: Wait For Event.

WFI: Wait For Interrupt.

XPACD, XPACI, XPACLRI: Strip Pointer Authentication Code.

YIELD: YIELD.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

A64 -- Base Instructions (alphabetic order)

Page 10

A64 -- SIMD and Floating-point Instructions (alphabetic order)

ABS: Absolute value (vector).

ADD (vector): Add (vector).

ADDHN, ADDHN2: Add returning High Narrow.

ADDP (scalar): Add Pair of elements (scalar).

ADDP (vector): Add Pairwise (vector).

ADDV: Add across Vector.

AESD: AES single round decryption.

AESE: AES single round encryption.

AESIMC: AES inverse mix columns.

AESMC: AES mix columns.

AND (vector): Bitwise AND (vector).

BCAX: Bit Clear and XOR.

BIC (vector, immediate): Bitwise bit Clear (vector, immediate).

BIC (vector, register): Bitwise bit Clear (vector, register).

BIF: Bitwise Insert if False.

BIT: Bitwise Insert if True.

BSL: Bitwise Select.

CLS (vector): Count Leading Sign bits (vector).

CLZ (vector): Count Leading Zero bits (vector).

CMEQ (register): Compare bitwise Equal (vector).

CMEQ (zero): Compare bitwise Equal to zero (vector).

CMGE (register): Compare signed Greater than or Equal (vector).

CMGE (zero): Compare signed Greater than or Equal to zero (vector).

CMGT (register): Compare signed Greater than (vector).

CMGT (zero): Compare signed Greater than zero (vector).

CMHI (register): Compare unsigned Higher (vector).

CMHS (register): Compare unsigned Higher or Same (vector).

CMLE (zero): Compare signed Less than or Equal to zero (vector).

CMLT (zero): Compare signed Less than zero (vector).

CMTST: Compare bitwise Test bits nonzero (vector).

CNT: Population Count per byte.

DUP (element): Duplicate vector element to vector or scalar.

DUP (general): Duplicate general-purpose register to vector.

EOR (vector): Bitwise Exclusive OR (vector).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 11

EOR3: Three-way Exclusive OR.

EXT: Extract vector from pair of vectors.

FABD: Floating-point Absolute Difference (vector).

FABS (scalar): Floating-point Absolute value (scalar).

FABS (vector): Floating-point Absolute value (vector).

FACGE: Floating-point Absolute Compare Greater than or Equal (vector).

FACGT: Floating-point Absolute Compare Greater than (vector).

FADD (scalar): Floating-point Add (scalar).

FADD (vector): Floating-point Add (vector).

FADDP (scalar): Floating-point Add Pair of elements (scalar).

FADDP (vector): Floating-point Add Pairwise (vector).

FCADD: Floating-point Complex Add.

FCCMP: Floating-point Conditional quiet Compare (scalar).

FCCMPE: Floating-point Conditional signaling Compare (scalar).

FCMEQ (register): Floating-point Compare Equal (vector).

FCMEQ (zero): Floating-point Compare Equal to zero (vector).

FCMGE (register): Floating-point Compare Greater than or Equal (vector).

FCMGE (zero): Floating-point Compare Greater than or Equal to zero (vector).

FCMGT (register): Floating-point Compare Greater than (vector).

FCMGT (zero): Floating-point Compare Greater than zero (vector).

FCMLA: Floating-point Complex Multiply Accumulate.

FCMLA (by element): Floating-point Complex Multiply Accumulate (by element).

FCMLE (zero): Floating-point Compare Less than or Equal to zero (vector).

FCMLT (zero): Floating-point Compare Less than zero (vector).

FCMP: Floating-point quiet Compare (scalar).

FCMPE: Floating-point signaling Compare (scalar).

FCSEL: Floating-point Conditional Select (scalar).

FCVT: Floating-point Convert precision (scalar).

FCVTAS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar).

FCVTAS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector).

FCVTAU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar).

FCVTAU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector).

FCVTL, FCVTL2: Floating-point Convert to higher precision Long (vector).

FCVTMS (scalar): Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar).

FCVTMS (vector): Floating-point Convert to Signed integer, rounding toward Minus infinity (vector).

FCVTMU (scalar): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 12

FCVTMU (vector): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector).

FCVTN, FCVTN2: Floating-point Convert to lower precision Narrow (vector).

FCVTNS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar).

FCVTNS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector).

FCVTNU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar).

FCVTNU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector).

FCVTPS (scalar): Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar).

FCVTPS (vector): Floating-point Convert to Signed integer, rounding toward Plus infinity (vector).

FCVTPU (scalar): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar).

FCVTPU (vector): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector).

FCVTXN, FCVTXN2: Floating-point Convert to lower precision Narrow, rounding to odd (vector).

FCVTZS (scalar, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar).

FCVTZS (scalar, integer): Floating-point Convert to Signed integer, rounding toward Zero (scalar).

FCVTZS (vector, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (vector).

FCVTZS (vector, integer): Floating-point Convert to Signed integer, rounding toward Zero (vector).

FCVTZU (scalar, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar).

FCVTZU (scalar, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (scalar).

FCVTZU (vector, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector).

FCVTZU (vector, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (vector).

FDIV (scalar): Floating-point Divide (scalar).

FDIV (vector): Floating-point Divide (vector).

FJCVTZS: Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero.

FMADD: Floating-point fused Multiply-Add (scalar).

FMAX (scalar): Floating-point Maximum (scalar).

FMAX (vector): Floating-point Maximum (vector).

FMAXNM (scalar): Floating-point Maximum Number (scalar).

FMAXNM (vector): Floating-point Maximum Number (vector).

FMAXNMP (scalar): Floating-point Maximum Number of Pair of elements (scalar).

FMAXNMP (vector): Floating-point Maximum Number Pairwise (vector).

FMAXNMV: Floating-point Maximum Number across Vector.

FMAXP (scalar): Floating-point Maximum of Pair of elements (scalar).

FMAXP (vector): Floating-point Maximum Pairwise (vector).

FMAXV: Floating-point Maximum across Vector.

FMIN (scalar): Floating-point Minimum (scalar).

FMIN (vector): Floating-point minimum (vector).

FMINNM (scalar): Floating-point Minimum Number (scalar).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 13

FMINNM (vector): Floating-point Minimum Number (vector).

FMINNMP (scalar): Floating-point Minimum Number of Pair of elements (scalar).

FMINNMP (vector): Floating-point Minimum Number Pairwise (vector).

FMINNMV: Floating-point Minimum Number across Vector.

FMINP (scalar): Floating-point Minimum of Pair of elements (scalar).

FMINP (vector): Floating-point Minimum Pairwise (vector).

FMINV: Floating-point Minimum across Vector.

FMLA (by element): Floating-point fused Multiply-Add to accumulator (by element).

FMLA (vector): Floating-point fused Multiply-Add to accumulator (vector).

FMLS (by element): Floating-point fused Multiply-Subtract from accumulator (by element).

FMLS (vector): Floating-point fused Multiply-Subtract from accumulator (vector).

FMOV (general): Floating-point Move to or from general-purpose register without conversion.

FMOV (register): Floating-point Move register without conversion.

FMOV (scalar, immediate): Floating-point move immediate (scalar).

FMOV (vector, immediate): Floating-point move immediate (vector).

FMSUB: Floating-point Fused Multiply-Subtract (scalar).

FMUL (by element): Floating-point Multiply (by element).

FMUL (scalar): Floating-point Multiply (scalar).

FMUL (vector): Floating-point Multiply (vector).

FMULX: Floating-point Multiply extended.

FMULX (by element): Floating-point Multiply extended (by element).

FNEG (scalar): Floating-point Negate (scalar).

FNEG (vector): Floating-point Negate (vector).

FNMADD: Floating-point Negated fused Multiply-Add (scalar).

FNMSUB: Floating-point Negated fused Multiply-Subtract (scalar).

FNMUL (scalar): Floating-point Multiply-Negate (scalar).

FRECPE: Floating-point Reciprocal Estimate.

FRECPS: Floating-point Reciprocal Step.

FRECPX: Floating-point Reciprocal exponent (scalar).

FRINTA (scalar): Floating-point Round to Integral, to nearest with ties to Away (scalar).

FRINTA (vector): Floating-point Round to Integral, to nearest with ties to Away (vector).

FRINTI (scalar): Floating-point Round to Integral, using current rounding mode (scalar).

FRINTI (vector): Floating-point Round to Integral, using current rounding mode (vector).

FRINTM (scalar): Floating-point Round to Integral, toward Minus infinity (scalar).

FRINTM (vector): Floating-point Round to Integral, toward Minus infinity (vector).

FRINTN (scalar): Floating-point Round to Integral, to nearest with ties to even (scalar).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 14

FRINTN (vector): Floating-point Round to Integral, to nearest with ties to even (vector).

FRINTP (scalar): Floating-point Round to Integral, toward Plus infinity (scalar).

FRINTP (vector): Floating-point Round to Integral, toward Plus infinity (vector).

FRINTX (scalar): Floating-point Round to Integral exact, using current rounding mode (scalar).

FRINTX (vector): Floating-point Round to Integral exact, using current rounding mode (vector).

FRINTZ (scalar): Floating-point Round to Integral, toward Zero (scalar).

FRINTZ (vector): Floating-point Round to Integral, toward Zero (vector).

FRSQRTE: Floating-point Reciprocal Square Root Estimate.

FRSQRTS: Floating-point Reciprocal Square Root Step.

FSQRT (scalar): Floating-point Square Root (scalar).

FSQRT (vector): Floating-point Square Root (vector).

FSUB (scalar): Floating-point Subtract (scalar).

FSUB (vector): Floating-point Subtract (vector).

INS (element): Insert vector element from another vector element.

INS (general): Insert vector element from general-purpose register.

LD1 (multiple structures): Load multiple single-element structures to one, two, three, or four registers.

LD1 (single structure): Load one single-element structure to one lane of one register.

LD1R: Load one single-element structure and Replicate to all lanes (of one register).

LD2 (multiple structures): Load multiple 2-element structures to two registers.

LD2 (single structure): Load single 2-element structure to one lane of two registers.

LD2R: Load single 2-element structure and Replicate to all lanes of two registers.

LD3 (multiple structures): Load multiple 3-element structures to three registers.

LD3 (single structure): Load single 3-element structure to one lane of three registers).

LD3R: Load single 3-element structure and Replicate to all lanes of three registers.

LD4 (multiple structures): Load multiple 4-element structures to four registers.

LD4 (single structure): Load single 4-element structure to one lane of four registers.

LD4R: Load single 4-element structure and Replicate to all lanes of four registers.

LDNP (SIMD&FP): Load Pair of SIMD&FP registers, with Non-temporal hint.

LDP (SIMD&FP): Load Pair of SIMD&FP registers.

LDR (immediate, SIMD&FP): Load SIMD&FP Register (immediate offset).

LDR (literal, SIMD&FP): Load SIMD&FP Register (PC-relative literal).

LDR (register, SIMD&FP): Load SIMD&FP Register (register offset).

LDUR (SIMD&FP): Load SIMD&FP Register (unscaled offset).

MLA (by element): Multiply-Add to accumulator (vector, by element).

MLA (vector): Multiply-Add to accumulator (vector).

MLS (by element): Multiply-Subtract from accumulator (vector, by element).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 15

MLS (vector): Multiply-Subtract from accumulator (vector).

MOV (element): Move vector element to another vector element: an alias of INS (element).

MOV (from general): Move general-purpose register to a vector element: an alias of INS (general).

MOV (scalar): Move vector element to scalar: an alias of DUP (element).

MOV (to general): Move vector element to general-purpose register: an alias of UMOV.

MOV (vector): Move vector: an alias of ORR (vector, register).

MOVI: Move Immediate (vector).

MUL (by element): Multiply (vector, by element).

MUL (vector): Multiply (vector).

MVN: Bitwise NOT (vector): an alias of NOT.

MVNI: Move inverted Immediate (vector).

NEG (vector): Negate (vector).

NOT: Bitwise NOT (vector).

ORN (vector): Bitwise inclusive OR NOT (vector).

ORR (vector, immediate): Bitwise inclusive OR (vector, immediate).

ORR (vector, register): Bitwise inclusive OR (vector, register).

PMUL: Polynomial Multiply.

PMULL, PMULL2: Polynomial Multiply Long.

RADDHN, RADDHN2: Rounding Add returning High Narrow.

RAX1: Rotate and Exclusive OR.

RBIT (vector): Reverse Bit order (vector).

REV16 (vector): Reverse elements in 16-bit halfwords (vector).

REV32 (vector): Reverse elements in 32-bit words (vector).

REV64: Reverse elements in 64-bit doublewords (vector).

RSHRN, RSHRN2: Rounding Shift Right Narrow (immediate).

RSUBHN, RSUBHN2: Rounding Subtract returning High Narrow.

SABA: Signed Absolute difference and Accumulate.

SABAL, SABAL2: Signed Absolute difference and Accumulate Long.

SABD: Signed Absolute Difference.

SABDL, SABDL2: Signed Absolute Difference Long.

SADALP: Signed Add and Accumulate Long Pairwise.

SADDL, SADDL2: Signed Add Long (vector).

SADDLP: Signed Add Long Pairwise.

SADDLV: Signed Add Long across Vector.

SADDW, SADDW2: Signed Add Wide.

SCVTF (scalar, fixed-point): Signed fixed-point Convert to Floating-point (scalar).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 16

SCVTF (scalar, integer): Signed integer Convert to Floating-point (scalar).

SCVTF (vector, fixed-point): Signed fixed-point Convert to Floating-point (vector).

SCVTF (vector, integer): Signed integer Convert to Floating-point (vector).

SDOT (by element): Dot Product signed arithmetic (vector, by element).

SDOT (vector): Dot Product signed arithmetic (vector).

SHA1C: SHA1 hash update (choose).

SHA1H: SHA1 fixed rotate.

SHA1M: SHA1 hash update (majority).

SHA1P: SHA1 hash update (parity).

SHA1SU0: SHA1 schedule update 0.

SHA1SU1: SHA1 schedule update 1.

SHA256H: SHA256 hash update (part 1).

SHA256H2: SHA256 hash update (part 2).

SHA256SU0: SHA256 schedule update 0.

SHA256SU1: SHA256 schedule update 1.

SHA512H: SHA512 Hash update part 1.

SHA512H2: SHA512 Hash update part 2.

SHA512SU0: SHA512 Schedule Update 0.

SHA512SU1: SHA512 Schedule Update 1.

SHADD: Signed Halving Add.

SHL: Shift Left (immediate).

SHLL, SHLL2: Shift Left Long (by element size).

SHRN, SHRN2: Shift Right Narrow (immediate).

SHSUB: Signed Halving Subtract.

SLI: Shift Left and Insert (immediate).

SM3PARTW1: SM3PARTW1.

SM3PARTW2: SM3PARTW2.

SM3SS1: SM3SS1.

SM3TT1A: SM3TT1A.

SM3TT1B: SM3TT1B.

SM3TT2A: SM3TT2A.

SM3TT2B: SM3TT2B.

SM4E: SM4 Encode.

SM4EKEY: SM4 Key.

SMAX: Signed Maximum (vector).

SMAXP: Signed Maximum Pairwise.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 17

SMAXV: Signed Maximum across Vector.

SMIN: Signed Minimum (vector).

SMINP: Signed Minimum Pairwise.

SMINV: Signed Minimum across Vector.

SMLAL, SMLAL2 (by element): Signed Multiply-Add Long (vector, by element).

SMLAL, SMLAL2 (vector): Signed Multiply-Add Long (vector).

SMLSL, SMLSL2 (by element): Signed Multiply-Subtract Long (vector, by element).

SMLSL, SMLSL2 (vector): Signed Multiply-Subtract Long (vector).

SMOV: Signed Move vector element to general-purpose register.

SMULL, SMULL2 (by element): Signed Multiply Long (vector, by element).

SMULL, SMULL2 (vector): Signed Multiply Long (vector).

SQABS: Signed saturating Absolute value.

SQADD: Signed saturating Add.

SQDMLAL, SQDMLAL2 (by element): Signed saturating Doubling Multiply-Add Long (by element).

SQDMLAL, SQDMLAL2 (vector): Signed saturating Doubling Multiply-Add Long.

SQDMLSL, SQDMLSL2 (by element): Signed saturating Doubling Multiply-Subtract Long (by element).

SQDMLSL, SQDMLSL2 (vector): Signed saturating Doubling Multiply-Subtract Long.

SQDMULH (by element): Signed saturating Doubling Multiply returning High half (by element).

SQDMULH (vector): Signed saturating Doubling Multiply returning High half.

SQDMULL, SQDMULL2 (by element): Signed saturating Doubling Multiply Long (by element).

SQDMULL, SQDMULL2 (vector): Signed saturating Doubling Multiply Long.

SQNEG: Signed saturating Negate.

SQRDMLAH (by element): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element).

SQRDMLAH (vector): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector).

SQRDMLSH (by element): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element).

SQRDMLSH (vector): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector).

SQRDMULH (by element): Signed saturating Rounding Doubling Multiply returning High half (by element).

SQRDMULH (vector): Signed saturating Rounding Doubling Multiply returning High half.

SQRSHL: Signed saturating Rounding Shift Left (register).

SQRSHRN, SQRSHRN2: Signed saturating Rounded Shift Right Narrow (immediate).

SQRSHRUN, SQRSHRUN2: Signed saturating Rounded Shift Right Unsigned Narrow (immediate).

SQSHL (immediate): Signed saturating Shift Left (immediate).

SQSHL (register): Signed saturating Shift Left (register).

SQSHLU: Signed saturating Shift Left Unsigned (immediate).

SQSHRN, SQSHRN2: Signed saturating Shift Right Narrow (immediate).

SQSHRUN, SQSHRUN2: Signed saturating Shift Right Unsigned Narrow (immediate).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 18

SQSUB: Signed saturating Subtract.

SQXTN, SQXTN2: Signed saturating extract Narrow.

SQXTUN, SQXTUN2: Signed saturating extract Unsigned Narrow.

SRHADD: Signed Rounding Halving Add.

SRI: Shift Right and Insert (immediate).

SRSHL: Signed Rounding Shift Left (register).

SRSHR: Signed Rounding Shift Right (immediate).

SRSRA: Signed Rounding Shift Right and Accumulate (immediate).

SSHL: Signed Shift Left (register).

SSHLL, SSHLL2: Signed Shift Left Long (immediate).

SSHR: Signed Shift Right (immediate).

SSRA: Signed Shift Right and Accumulate (immediate).

SSUBL, SSUBL2: Signed Subtract Long.

SSUBW, SSUBW2: Signed Subtract Wide.

ST1 (multiple structures): Store multiple single-element structures from one, two, three, or four registers.

ST1 (single structure): Store a single-element structure from one lane of one register.

ST2 (multiple structures): Store multiple 2-element structures from two registers.

ST2 (single structure): Store single 2-element structure from one lane of two registers.

ST3 (multiple structures): Store multiple 3-element structures from three registers.

ST3 (single structure): Store single 3-element structure from one lane of three registers.

ST4 (multiple structures): Store multiple 4-element structures from four registers.

ST4 (single structure): Store single 4-element structure from one lane of four registers.

STNP (SIMD&FP): Store Pair of SIMD&FP registers, with Non-temporal hint.

STP (SIMD&FP): Store Pair of SIMD&FP registers.

STR (immediate, SIMD&FP): Store SIMD&FP register (immediate offset).

STR (register, SIMD&FP): Store SIMD&FP register (register offset).

STUR (SIMD&FP): Store SIMD&FP register (unscaled offset).

SUB (vector): Subtract (vector).

SUBHN, SUBHN2: Subtract returning High Narrow.

SUQADD: Signed saturating Accumulate of Unsigned value.

SXTL, SXTL2: Signed extend Long: an alias of SSHLL, SSHLL2.

TBL: Table vector Lookup.

TBX: Table vector lookup extension.

TRN1: Transpose vectors (primary).

TRN2: Transpose vectors (secondary).

UABA: Unsigned Absolute difference and Accumulate.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 19

UABAL, UABAL2: Unsigned Absolute difference and Accumulate Long.

UABD: Unsigned Absolute Difference (vector).

UABDL, UABDL2: Unsigned Absolute Difference Long.

UADALP: Unsigned Add and Accumulate Long Pairwise.

UADDL, UADDL2: Unsigned Add Long (vector).

UADDLP: Unsigned Add Long Pairwise.

UADDLV: Unsigned sum Long across Vector.

UADDW, UADDW2: Unsigned Add Wide.

UCVTF (scalar, fixed-point): Unsigned fixed-point Convert to Floating-point (scalar).

UCVTF (scalar, integer): Unsigned integer Convert to Floating-point (scalar).

UCVTF (vector, fixed-point): Unsigned fixed-point Convert to Floating-point (vector).

UCVTF (vector, integer): Unsigned integer Convert to Floating-point (vector).

UDOT (by element): Dot Product unsigned arithmetic (vector, by element).

UDOT (vector): Dot Product unsigned arithmetic (vector).

UHADD: Unsigned Halving Add.

UHSUB: Unsigned Halving Subtract.

UMAX: Unsigned Maximum (vector).

UMAXP: Unsigned Maximum Pairwise.

UMAXV: Unsigned Maximum across Vector.

UMIN: Unsigned Minimum (vector).

UMINP: Unsigned Minimum Pairwise.

UMINV: Unsigned Minimum across Vector.

UMLAL, UMLAL2 (by element): Unsigned Multiply-Add Long (vector, by element).

UMLAL, UMLAL2 (vector): Unsigned Multiply-Add Long (vector).

UMLSL, UMLSL2 (by element): Unsigned Multiply-Subtract Long (vector, by element).

UMLSL, UMLSL2 (vector): Unsigned Multiply-Subtract Long (vector).

UMOV: Unsigned Move vector element to general-purpose register.

UMULL, UMULL2 (by element): Unsigned Multiply Long (vector, by element).

UMULL, UMULL2 (vector): Unsigned Multiply long (vector).

UQADD: Unsigned saturating Add.

UQRSHL: Unsigned saturating Rounding Shift Left (register).

UQRSHRN, UQRSHRN2: Unsigned saturating Rounded Shift Right Narrow (immediate).

UQSHL (immediate): Unsigned saturating Shift Left (immediate).

UQSHL (register): Unsigned saturating Shift Left (register).

UQSHRN, UQSHRN2: Unsigned saturating Shift Right Narrow (immediate).

UQSUB: Unsigned saturating Subtract.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 20

UQXTN, UQXTN2: Unsigned saturating extract Narrow.

URECPE: Unsigned Reciprocal Estimate.

URHADD: Unsigned Rounding Halving Add.

URSHL: Unsigned Rounding Shift Left (register).

URSHR: Unsigned Rounding Shift Right (immediate).

URSQRTE: Unsigned Reciprocal Square Root Estimate.

URSRA: Unsigned Rounding Shift Right and Accumulate (immediate).

USHL: Unsigned Shift Left (register).

USHLL, USHLL2: Unsigned Shift Left Long (immediate).

USHR: Unsigned Shift Right (immediate).

USQADD: Unsigned saturating Accumulate of Signed value.

USRA: Unsigned Shift Right and Accumulate (immediate).

USUBL, USUBL2: Unsigned Subtract Long.

USUBW, USUBW2: Unsigned Subtract Wide.

UXTL, UXTL2: Unsigned extend Long: an alias of USHLL, USHLL2.

UZP1: Unzip vectors (primary).

UZP2: Unzip vectors (secondary).

XAR: Exclusive OR and Rotate.

XTN, XTN2: Extract Narrow.

ZIP1: Zip vectors (primary).

ZIP2: Zip vectors (secondary).

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

A64 -- SIMD and Floating-point Instructions (alphabetic order)

Page 21

ABS

Absolute value (vector). This instruction calculates the absolute value of each vector element in the source SIMD&FP register, puts the result
into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
U

Scalar

ABS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
U

Vector

ABS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

ABS Page 22

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ABS Page 23

ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
op S

32-bit (sf == 0)

ADC <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ADC <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

(result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC Page 24

ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the destination register. It updates the
condition flags based on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
op S

32-bit (sf == 0)

ADCS <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ADCS <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADCS Page 25

ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left shift amount, and writes the
result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
op S

32-bit (sf == 0)

ADD <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then ReservedValue();

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other
cases <extend> is required and must be UXTW when "option" is '010'.
For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

ADD (extended register) Page 26

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other
cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);

(result, -) = AddWithCarry(operand1, operand2, '0');

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (extended register) Page 27

ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the destination register.

This instruction is used by the alias MOV (to/from SP).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 0 1 shift imm12 Rn Rd
op S

32-bit (sf == 0)

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;

case shift of
when '00' imm = ZeroExtend(imm12, datasize);
when '01' imm = ZeroExtend(imm12:Zeros(12), datasize);
when '1x' ReservedValue();

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:

shift <shift>
00 LSL #0
01 LSL #12
1x RESERVED

Alias Conditions

Alias Is preferred when

MOV (to/
from SP)

shift == '00' && imm12 == '000000000000' && (Rd == '11111' || Rn == '11111')

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];

(result, -) = AddWithCarry(operand1, imm, '0');

if d == 31 then
SP[] = result;

else
X[d] = result;

ADD (immediate) Page 28

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate) Page 29

ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
op S

32-bit (sf == 0)

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

if shift == '11' then ReservedValue();
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

(result, -) = AddWithCarry(operand1, operand2, '0');

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (shifted register) Page 30

ADD (vector)

Add (vector). This instruction adds corresponding elements in the two source SIMD&FP registers, places the results into a vector, and writes the
vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
U

Scalar

ADD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
U

Vector

ADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

ADD (vector) Page 31

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then

Elem[result, e, esize] = element1 - element2;
else

Elem[result, e, esize] = element1 + element2;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (vector) Page 32

ADDHN, ADDHN2

Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the corresponding vector element
in the second source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the lower or upper
half of the destination SIMD&FP register.

The results are truncated. For rounded results, see RADDHN.

The ADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

ADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd
U o1

Three registers, not all the same type

ADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

ADDHN, ADDHN2 Page 33

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDHN, ADDHN2 Page 34

ADDP (scalar)

Add Pair of elements (scalar). This instruction adds two vector elements in the source SIMD&FP register and writes the scalar result into the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd

Advanced SIMD

ADDP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();

integer esize = 8 << UInt(size);
integer datasize = esize * 2;
integer elements = 2;

ReduceOp op = ReduceOp_ADD;

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the source arrangement specifier, encoded in “size”:

size <T>
0x RESERVED
10 RESERVED
11 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(op, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDP (scalar) Page 35

ADDP (vector)

Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the
vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated vector, adds each
pair of values together, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 1 1 Rn Rd

Three registers of the same type

ADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];
Elem[result, e, esize] = element1 + element2;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDP (vector) Page 36

ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by an optional left shift amount,
and writes the result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or
doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMN (extended register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
op S

32-bit (sf == 0)

ADDS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then ReservedValue();

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTW when "option" is '010'.
For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

ADDS (extended register) Page 37

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Alias Conditions

Alias Is preferred when

CMN (extended register) Rd == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, operand2, '0');

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (extended register) Page 38

ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result to the destination register. It
updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 0 1 shift imm12 Rn Rd
op S

32-bit (sf == 0)

ADDS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;

case shift of
when '00' imm = ZeroExtend(imm12, datasize);
when '01' imm = ZeroExtend(imm12:Zeros(12), datasize);
when '1x' ReservedValue();

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:

shift <shift>
00 LSL #0
01 LSL #12
1x RESERVED

Alias Conditions

Alias Is preferred when

CMN (immediate) Rd == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, imm, '0');

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

ADDS (immediate) Page 39

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (immediate) Page 40

ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the result to the destination register.
It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
op S

32-bit (sf == 0)

ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

if shift == '11' then ReservedValue();
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Alias Conditions

Alias Is preferred when

CMN (shifted register) Rd == '11111'

ADDS (shifted register) Page 41

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;

(result, nzcv) = AddWithCarry(operand1, operand2, '0');

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (shifted register) Page 42

ADDV

Add across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the scalar result to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 1 1 0 Rn Rd

Advanced SIMD

ADDV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then ReservedValue();
if size == '11' then ReservedValue();

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

ReduceOp op = ReduceOp_ADD;

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(op, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDV Page 43

ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 immlo 1 0 0 0 0 immhi Rd
op

Literal

ADR <Xd>, <label>

integer d = UInt(Rd);
bits(64) imm;

imm = SignExtend(immhi:immlo, 64);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction, in the range +/-1MB, is
encoded in "immhi:immlo".

Operation

bits(64) base = PC[];

X[d] = base + imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 44

ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to form a PC-relative address, with
the bottom 12 bits masked out, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 immlo 1 0 0 0 0 immhi Rd
op

Literal

ADRP <Xd>, <label>

integer d = UInt(Rd);
bits(64) imm;

imm = SignExtend(immhi:immlo:Zeros(12), 64);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of this instruction, in the
range +/-4GB, is encoded as "immhi:immlo" times 4096.

Operation

bits(64) base = PC[];

base<11:0> = Zeros(12);

X[d] = base + imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADRP Page 45

AESD

AES single round decryption.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 Rn Rd
D

Advanced SIMD

AESD <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckCryptoEnabled64();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
result = operand1 EOR operand2;
result = AESInvSubBytes(AESInvShiftRows(result));
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESD Page 46

AESE

AES single round encryption.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 Rn Rd
D

Advanced SIMD

AESE <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckCryptoEnabled64();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
result = operand1 EOR operand2;
result = AESSubBytes(AESShiftRows(result));

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESE Page 47

AESIMC

AES inverse mix columns.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 Rn Rd
D

Advanced SIMD

AESIMC <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckCryptoEnabled64();

bits(128) operand = V[n];
bits(128) result;
result = AESInvMixColumns(operand);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESIMC Page 48

AESMC

AES mix columns.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 Rn Rd
D

Advanced SIMD

AESMC <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckCryptoEnabled64();

bits(128) operand = V[n];
bits(128) result;
result = AESMixColumns(operand);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESMC Page 49

AND (vector)

Bitwise AND (vector). This instruction performs a bitwise AND between the two source SIMD&FP registers, and writes the result to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd
size

Three registers of the same type

AND <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = operand1 AND operand2;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (vector) Page 50

AND (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 0 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

AND <Wd|WSP>, <Wn>, #<imm>

64-bit (sf == 1)

AND <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;
if sf == '0' && N != '0' then ReservedValue();
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];

result = operand1 AND imm;
if d == 31 then

SP[] = result;
else

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (immediate) Page 51

AND (shifted register)

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the result to the
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

AND <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

AND <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

result = operand1 AND operand2;
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (shifted register) Page 52

ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and writes the result to the
destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 0 0 1 0 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

ANDS <Wd>, <Wn>, #<imm>

64-bit (sf == 1)

ANDS <Xd>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

bits(datasize) imm;
if sf == '0' && N != '0' then ReservedValue();
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias Conditions

Alias Is preferred when

TST (immediate) Rd == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];

result = operand1 AND imm;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (immediate) Page 53

ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted register value, and writes the
result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

ANDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ANDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Alias Conditions

Alias Is preferred when

TST (shifted register) Rd == '11111'

ANDS (shifted register) Page 54

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

result = operand1 AND operand2;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (shifted register) Page 55

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign bit, and writes the result to
the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the
first source register is right-shifted.

This is an alias of ASRV. This means:

• The encodings in this description are named to match the encodings of ASRV.
• The description of ASRV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd
op2

32-bit (sf == 0)

ASR <Wd>, <Wn>, <Wm>

is equivalent to

ASRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

ASR <Xd>, <Xn>, <Xm>

is equivalent to

ASRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

The description of ASRV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (register) Page 56

ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of the sign bit in the upper bits
and zeros in the lower bits, and writes the result to the destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd
opc imms

32-bit (sf == 0 && N == 0 && imms == 011111)

ASR <Wd>, <Wn>, #<shift>

is equivalent to

SBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1 && imms == 111111)

ASR <Xd>, <Xn>, #<shift>

is equivalent to

SBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate) Page 57

ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign bit, and writes the result to
the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the
first source register is right-shifted.

This instruction is used by the alias ASR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 0 Rn Rd
op2

32-bit (sf == 0)

ASRV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ASRV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRV Page 58

AT

Address Translate. For more information, see A64 system instructions for address translation.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 1 0 0 x op2 Rt
L CRn CRm

System

AT <at_op>, <Xt>

is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_AT.

Assembler Symbols

<at_op> Is an AT instruction name, as listed for the AT system instruction group, encoded in “op1:CRm<0>:op2”:

op1 CRm<0> op2 <at_op> Architectural Feature
000 0 000 S1E1R -
000 0 001 S1E1W -
000 0 010 S1E0R -
000 0 011 S1E0W -
000 1 000 S1E1RP ARMv8.2-ATS1E1
000 1 001 S1E1WP ARMv8.2-ATS1E1
100 0 000 S1E2R -
100 0 001 S1E2W -
100 0 100 S12E1R -
100 0 101 S12E1W -
100 0 110 S12E0R -
100 0 111 S12E0W -
110 0 000 S1E3R -
110 0 001 S1E3W -

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT Page 59

AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDA.

• The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the
upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 0 Rn Rd

AUTDA (Z == 0)

AUTDA <Xd>, <Xn|SP>

AUTDZA (Z == 1 && Rn == 11111)

AUTDZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // AUTDA
if n == 31 then source_is_sp = TRUE;

else // AUTDZA
if n != 31 then UnallocatedEncoding();

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if source_is_sp then
X[d] = AuthDA(X[d], SP[]);

else
X[d] = AuthDA(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDA, AUTDZA Page 60

AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDB.

• The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the
upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 1 1 Rn Rd

AUTDB (Z == 0)

AUTDB <Xd>, <Xn|SP>

AUTDZB (Z == 1 && Rn == 11111)

AUTDZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // AUTDB
if n == 31 then source_is_sp = TRUE;

else // AUTDZB
if n != 31 then UnallocatedEncoding();

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if source_is_sp then
X[d] = AuthDB(X[d], SP[]);

else
X[d] = AuthDB(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDB, AUTDZB Page 61

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier and key A.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIA and AUTIZA.

• In X17, for AUTIA1716.

• In X30, for AUTIASP and AUTIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIA.

• The value zero, for AUTIZA and AUTIAZ.

• In X16, for AUTIA1716.

• In SP, for AUTIASP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the
upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 0 Rn Rd

AUTIA (Z == 0)

AUTIA <Xd>, <Xn|SP>

AUTIZA (Z == 1 && Rn == 11111)

AUTIZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // AUTIA
if n == 31 then source_is_sp = TRUE;

else // AUTIZA
if n != 31 then UnallocatedEncoding();

System
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 0 x 1 1 1 1 1
CRm op2

AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA

Page 62

AUTIA1716 (CRm == 0001 && op2 == 100)

AUTIA1716

AUTIASP (CRm == 0011 && op2 == 101)

AUTIASP

AUTIAZ (CRm == 0011 && op2 == 100)

AUTIAZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 100' // AUTIAZ

d = 30;
n = 31;

when '0011 101' // AUTIASP
d = 30;
source_is_sp = TRUE;

when '0001 100' // AUTIA1716
d = 17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 110' SEE "AUTIB";
when '0011 00x' SEE "PACIA";
when '0011 01x' SEE "PACIB";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";
otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if HavePACExt() then
if source_is_sp then

X[d] = AuthIA(X[d], SP[]);
else

X[d] = AuthIA(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA

Page 63

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier and key B.

The address is:

• In the general-purpose register that is specified by <Xd> for AUTIB and AUTIZB.

• In X17, for AUTIB1716.

• In X30, for AUTIBSP and AUTIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTIB.

• The value zero, for AUTIZB and AUTIBZ.

• In X16, for AUTIB1716.

• In SP, for AUTIBSP.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the
upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 1 0 1 Rn Rd

AUTIB (Z == 0)

AUTIB <Xd>, <Xn|SP>

AUTIZB (Z == 1 && Rn == 11111)

AUTIZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // AUTIB
if n == 31 then source_is_sp = TRUE;

else // AUTIZB
if n != 31 then UnallocatedEncoding();

System
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 1 1 x 1 1 1 1 1
CRm op2

AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB

Page 64

AUTIB1716 (CRm == 0001 && op2 == 110)

AUTIB1716

AUTIBSP (CRm == 0011 && op2 == 111)

AUTIBSP

AUTIBZ (CRm == 0011 && op2 == 110)

AUTIBZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 110' // AUTIBZ

d = 30;
n = 31;

when '0011 111' // AUTIBSP
d = 30;
source_is_sp = TRUE;

when '0001 110' // AUTIB1716
d = 17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 100' SEE "AUTIA";
when '0011 00x' SEE "PACIA";
when '0011 01x' SEE "PACIB";
when '0011 10x' SEE "AUTIA";
when '0000 111' SEE "XPACLRI";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if HavePACExt() then
if source_is_sp then

X[d] = AuthIB(X[d], SP[]);
else

X[d] = AuthIB(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB

Page 65

B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 imm19 0 cond

19-bit signed PC-relative branch offset

B.<cond> <label>

bits(64) offset = SignExtend(imm19:'00', 64);
bits(4) condition = cond;

Assembler Symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is
encoded as "imm19" times 4.

Operation

if ConditionHolds(condition) then
BranchTo(PC[] + offset, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B.cond Page 66

B

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 imm26
op

26-bit signed PC-relative branch offset

B <label>

bits(64) offset = SignExtend(imm26:'00', 64);

Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in the range +/-128MB,
is encoded as "imm26" times 4.

Operation

BranchTo(PC[] + offset, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B Page 67

BCAX

Bit Clear and Exclusive OR performs a bitwise AND of the 128-bit vector in a source SIMD&FP register and the complement of the vector in
another source SIMD&FP register, then performs a bitwise exclusive OR of the resulting vector and the vector in a third source SIMD&FP
register, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 0 1 Rm 0 Ra Rn Rd

Advanced SIMD

BCAX <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer a = UInt(Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Va = V[a];
V[d] = Vn EOR (Vm AND NOT(Va));

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BCAX Page 68

BFC

Bitfield Clear, leaving other bits unchanged.

This is an alias of BFM. This means:

• The encodings in this description are named to match the encodings of BFM.
• The description of BFM gives the operational pseudocode for this instruction.

Leaving other bits unchanged
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 1 1 0 N immr imms 1 1 1 1 1 Rd
opc Rn

32-bit (sf == 0 && N == 0)

BFC <Wd>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, WZR, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

BFC <Xd>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, XZR, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFC Page 69

BFI

Bitfield Insert copies any number of low-order bits from a source register into the same number of adjacent bits at any position in the destination
register, leaving other bits unchanged.

This is an alias of BFM. This means:

• The encodings in this description are named to match the encodings of BFM.
• The description of BFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 1 1 0 N immr imms != 11111 Rd
opc Rn

32-bit (sf == 0 && N == 0)

BFI <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

BFI <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFI Page 70

BFM

Bitfield Move copies any number of low-order bits from a source register into the same number of adjacent bits at any position in the destination
register, leaving other bits unchanged.

This instruction is used by the aliases BFC, BFI, and BFXIL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

BFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit (sf == 1 && N == 1)

BFM <Xd>, <Xn>, #<immr>, #<imms>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

integer R;
bits(datasize) wmask;
bits(datasize) tmask;

if sf == '1' && N != '1' then ReservedValue();
if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then ReservedValue();

R = UInt(immr);
(wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31, encoded in the "imms"
field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63, encoded in the "imms"
field.

Alias Conditions

Alias Is preferred when

BFC Rn == '11111' && UInt(imms) < UInt(immr)

BFI Rn != '11111' && UInt(imms) < UInt(immr)

BFXIL UInt(imms) >= UInt(immr)

BFM Page 71

Operation

bits(datasize) dst = X[d];
bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = (dst AND NOT(wmask)) OR (ROR(src, R) AND wmask);

// combine extension bits and result bits
X[d] = (dst AND NOT(tmask)) OR (bot AND tmask);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFM Page 72

BFXIL

Bitfield extract and insert at low end copies any number of low-order bits from a source register into the same number of adjacent bits at the low
end in the destination register, leaving other bits unchanged.

This is an alias of BFM. This means:

• The encodings in this description are named to match the encodings of BFM.
• The description of BFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

BFXIL <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

64-bit (sf == 1 && N == 1)

BFXIL <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when UInt(imms) >= UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFXIL Page 73

BIC (vector, immediate)

Bitwise bit Clear (vector, immediate). This instruction reads each vector element from the destination SIMD&FP register, performs a bitwise
AND between each result and the complement of an immediate constant, places the result into a vector, and writes the vector to the destination
SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd
op cmode

16-bit (cmode == 10x1)

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit (cmode == 0xx1)

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx01' operation = ImmediateOp_MVNI;
when '0xx11' operation = ImmediateOp_BIC;
when '10x01' operation = ImmediateOp_MVNI;
when '10x11' operation = ImmediateOp_BIC;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UnallocatedEncoding();
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in “cmode<1>”:

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.

BIC (vector, immediate) Page 74

For the 32-bit variant: is the shift amount encoded in “cmode<2:1>”:

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vector, immediate) Page 75

BIC (vector, register)

Bitwise bit Clear (vector, register). This instruction performs a bitwise AND between the first source SIMD&FP register and the complement of
the second source SIMD&FP register, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd
size

Three registers of the same type

BIC <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

operand2 = NOT(operand2);

result = operand1 AND operand2;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vector, register) Page 76

BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an optionally-shifted register value, and
writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

BIC <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

BIC <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

operand2 = NOT(operand2);

result = operand1 AND operand2;
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (shifted register) Page 77

BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement of an optionally-shifted
register value, and writes the result to the destination register. It updates the condition flags based on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

BICS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

BICS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

operand2 = NOT(operand2);

result = operand1 AND operand2;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit(result):'00';

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

BICS (shifted register) Page 78

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BICS (shifted register) Page 79

BIF

Bitwise Insert if False. This instruction inserts each bit from the first source SIMD&FP register into the destination SIMD&FP register if the
corresponding bit of the second source SIMD&FP register is 0, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd
opc2

Three registers of the same type

BIF <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

operand1 = V[d];
operand3 = NOT(V[m]);

V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIF Page 80

BIT

Bitwise Insert if True. This instruction inserts each bit from the first source SIMD&FP register into the SIMD&FP destination register if the
corresponding bit of the second source SIMD&FP register is 1, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd
opc2

Three registers of the same type

BIT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

operand1 = V[d];
operand3 = V[m];
V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIT Page 81

BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a subroutine call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 1 imm26
op

26-bit signed PC-relative branch offset

BL <label>

bits(64) offset = SignExtend(imm26:'00', 64);

Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in the range +/-128MB,
is encoded as "imm26" times 4.

Operation

X[30] = PC[] + 4;

BranchTo(PC[] + offset, BranchType_CALL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BL Page 82

BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0
Z op A M Rm

Integer

BLR <Xn>

integer n = UInt(Rn);

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

Operation

bits(64) target = X[n];
X[30] = PC[] + 4;
BranchTo(target, BranchType_CALL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLR Page 83

BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the general-purpose register that is
specified by <Xn>, using a modifier and the specified key, and calls a subroutine at the authenticated address, setting register X30 to PC+4.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP> for BLRAA and BLRAB.

• The value zero, for BLRAAZ and BLRABZ.

Key A is used for BLRAA and BLRAAZ, and key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 Z 0 0 1 1 1 1 1 1 0 0 0 0 1 M Rn Rm
op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)

BLRAAZ <Xn>

Key A, register modifier (Z == 1 && M == 0)

BLRAA <Xn>, <Xm|SP>

Key B, zero modifier (Z == 0 && M == 1 && Rm == 11111)

BLRABZ <Xn>

Key B, register modifier (Z == 1 && M == 1)

BLRAB <Xn>, <Xm|SP>

integer n = UInt(Rn);
integer m = UInt(Rm);
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' && m != 31 then
UnallocatedEncoding();

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded in the "Rm" field.

BLRAA, BLRAAZ, BLRAB,
BLRABZ

Page 84

Operation

bits(64) target = X[n];
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier);

else
target = AuthIB(target, modifier);

X[30] = PC[] + 4;
BranchTo(target, BranchType_CALL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLRAA, BLRAAZ, BLRAB,
BLRABZ

Page 85

BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0
Z op A M Rm

Integer

BR <Xn>

integer n = UInt(Rn);

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

Operation

bits(64) target = X[n];
BranchTo(target, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BR Page 86

BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose register that is specified by
<Xn>, using a modifier and the specified key, and branches to the authenticated address.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xm|SP> for BRAA and BRAB.

• The value zero, for BRAAZ and BRABZ.

Key A is used for BRAA and BRAAZ, and key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 Z 0 0 0 1 1 1 1 1 0 0 0 0 1 M Rn Rm
op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)

BRAAZ <Xn>

Key A, register modifier (Z == 1 && M == 0)

BRAA <Xn>, <Xm|SP>

Key B, zero modifier (Z == 0 && M == 1 && Rm == 11111)

BRABZ <Xn>

Key B, register modifier (Z == 1 && M == 1)

BRAB <Xn>, <Xm|SP>

integer n = UInt(Rn);
integer m = UInt(Rm);
boolean use_key_a = (M == '0');
boolean source_is_sp = ((Z == '1') && (m == 31));

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' && m != 31 then
UnallocatedEncoding();

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded in the "Rm" field.

BRAA, BRAAZ, BRAB, BRABZ Page 87

Operation

bits(64) target = X[n];
bits(64) modifier = if source_is_sp then SP[] else X[m];

if use_key_a then
target = AuthIA(target, modifier);

else
target = AuthIB(target, modifier);

BranchTo(target, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRAA, BRAAZ, BRAB, BRABZ Page 88

BRK

Breakpoint instruction generates a Breakpoint Instruction exception. The PE records the exception in ESR_ELx, using the EC value 0x3c, and
captures the value of the immediate argument in ESR_ELx.ISS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 0 0 1 imm16 0 0 0 0 0

System

BRK #<imm>

bits(16) comment = imm16;

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.SoftwareBreakpoint(comment);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRK Page 89

BSL

Bitwise Select. This instruction sets each bit in the destination SIMD&FP register to the corresponding bit from the first source SIMD&FP
register when the original destination bit was 1, otherwise from the second source SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 Rm 0 0 0 1 1 1 Rn Rd
opc2

Three registers of the same type

BSL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

operand1 = V[m];
operand3 = V[d];
V[d] = operand1 EOR ((operand1 EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BSL Page 90

CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed, the read and write
occur atomically such that no other modification of the memory location can take place between the read and write.

• CASA and CASAL load from memory with acquire semantics.

• CASL and CASAL store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, or <Xs>, is restored to the value
held in the register before the instruction was executed.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
size

CAS, CASA, CASAL, CASL Page 91

32-bit, acquire (size == 10 && L == 1 && o0 == 0)

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, acquire and release (size == 10 && L == 1 && o0 == 1)

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, no memory ordering (size == 10 && L == 0 && o0 == 0)

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, release (size == 10 && L == 0 && o0 == 1)

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit, acquire (size == 11 && L == 1 && o0 == 0)

CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, acquire and release (size == 11 && L == 1 && o0 == 1)

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, no memory ordering (size == 11 && L == 0 && o0 == 0)

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, release (size == 11 && L == 0 && o0 == 1)

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UnallocatedEncoding();

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CAS, CASA, CASAL, CASL Page 92

Operation

bits(64) address;
bits(datasize) comparevalue;
bits(datasize) newvalue;
bits(datasize) data;

comparevalue = X[s];
newvalue = X[t];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, datasize DIV 8, ldacctype];
if data == comparevalue then

// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, datasize DIV 8, stacctype] = newvalue;

X[s] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CAS, CASA, CASAL, CASL Page 93

CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a first register. If the comparison
is equal, the value in a second register is written to memory. If the write is performed, the read and write occur atomically such that no other
modification of the memory location can take place between the read and write.

• CASAB and CASALB load from memory with acquire semantics.

• CASLB and CASALB store to memory with release semantics.

• CASB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is restored to the values held in
the register before the instruction was executed.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
size

Acquire (L == 1 && o0 == 0)

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Acquire and release (L == 1 && o0 == 1)

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]

No memory ordering (L == 0 && o0 == 0)

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]

Release (L == 0 && o0 == 1)

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UnallocatedEncoding();

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASB, CASAB, CASALB, CASLB Page 94

Operation

bits(64) address;
bits(8) comparevalue;
bits(8) newvalue;
bits(8) data;

comparevalue = X[s];
newvalue = X[t];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 1, ldacctype];
if data == comparevalue then

// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, 1, stacctype] = newvalue;

X[s] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASB, CASAB, CASALB, CASLB Page 95

CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value held in a first register. If the
comparison is equal, the value in a second register is written to memory. If the write is performed, the read and write occur atomically such that
no other modification of the memory location can take place between the read and write.

• CASAH and CASALH load from memory with acquire semantics.

• CASLH and CASALH store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is restored to the values held in
the register before the instruction was executed.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 1 L 1 Rs o0 1 1 1 1 1 Rn Rt
size

Acquire (L == 1 && o0 == 0)

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Acquire and release (L == 1 && o0 == 1)

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]

No memory ordering (L == 0 && o0 == 0)

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]

Release (L == 0 && o0 == 1)

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UnallocatedEncoding();

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASH, CASAH, CASALH, CASLH Page 96

Operation

bits(64) address;
bits(16) comparevalue;
bits(16) newvalue;
bits(16) data;

comparevalue = X[s];
newvalue = X[t];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 2, ldacctype];
if data == comparevalue then

// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, 2, stacctype] = newvalue;

X[s] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASH, CASAH, CASALH, CASLH Page 97

CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords from memory, and compares
them against the values held in the first pair of registers. If the comparison is equal, the values in the second pair of registers are written to
memory. If the writes are performed, the reads and writes occur atomically such that no other modification of the memory location can take place
between the reads and writes.

• CASPA and CASPAL load from memory with acquire semantics.

• CASPL and CASPAL store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws> and <W(s+1)>, or <Xs> and
<X(s+1)>, are restored to the values held in the registers before the instruction was executed.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 sz 0 0 1 0 0 0 0 L 1 Rs o0 1 1 1 1 1 Rn Rt
Rt2

CASP, CASPA, CASPAL, CASPL Page 98

32-bit, acquire (sz == 0 && L == 1 && o0 == 0)

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit, acquire and release (sz == 0 && L == 1 && o0 == 1)

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit, no memory ordering (sz == 0 && L == 0 && o0 == 0)

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit, release (sz == 0 && L == 0 && o0 == 1)

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

64-bit, acquire (sz == 1 && L == 1 && o0 == 0)

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit, acquire and release (sz == 1 && L == 1 && o0 == 1)

CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit, no memory ordering (sz == 1 && L == 0 && o0 == 0)

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

64-bit, release (sz == 1 && L == 0 && o0 == 1)

CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}]

if !HaveAtomicExt() then UnallocatedEncoding();
if Rs<0> == '1' then UnallocatedEncoding();
if Rt<0> == '1' then UnallocatedEncoding();

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs);

integer datasize = 32 << UInt(sz);
AccType ldacctype = if L == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if o0 == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs" field.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt" field.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs" field.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt" field.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASP, CASPA, CASPAL, CASPL Page 99

Operation

bits(64) address;
bits(2*datasize) comparevalue;
bits(2*datasize) newvalue;
bits(2*datasize) data;

bits(datasize) s1 = X[s];
bits(datasize) s2 = X[s+1];
bits(datasize) t1 = X[t];
bits(datasize) t2 = X[t+1];
comparevalue = if BigEndian() then s1:s2 else s2:s1;
newvalue = if BigEndian() then t1:t2 else t2:t1;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, (2*datasize) DIV 8, ldacctype];
if data == comparevalue then

// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, (2*datasize) DIV 8, stacctype] = newvalue;

if BigEndian() then
X[s] = ZeroExtend(data<2*datasize-1:datasize>, datasize);
X[s+1] = ZeroExtend(data<datasize-1:0>, datasize);

else
X[s] = ZeroExtend(data<datasize-1:0>, datasize);
X[s+1] = ZeroExtend(data<2*datasize-1:datasize>, datasize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASP, CASPA, CASPAL, CASPL Page 100

CBNZ

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label at a PC-relative offset if the
comparison is not equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 1 0 1 imm19 Rt
op

32-bit (sf == 0)

CBNZ <Wt>, <label>

64-bit (sf == 1)

CBNZ <Xt>, <label>

integer t = UInt(Rt);
integer datasize = if sf == '1' then 64 else 32;
bits(64) offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is
encoded as "imm19" times 4.

Operation

bits(datasize) operand1 = X[t];

if IsZero(operand1) == FALSE then
BranchTo(PC[] + offset, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBNZ Page 101

CBZ

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a PC-relative offset if the
comparison is equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 1 0 0 imm19 Rt
op

32-bit (sf == 0)

CBZ <Wt>, <label>

64-bit (sf == 1)

CBZ <Xt>, <label>

integer t = UInt(Rt);
integer datasize = if sf == '1' then 64 else 32;
bits(64) offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is
encoded as "imm19" times 4.

Operation

bits(datasize) operand1 = X[t];

if IsZero(operand1) == TRUE then
BranchTo(PC[] + offset, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBZ Page 102

CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of a register value and a negated
immediate value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv
op

32-bit (sf == 0)

CCMN <Wn>, #<imm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMN <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) operand1 = X[n];

if ConditionHolds(cond) then
(-, flags) = AddWithCarry(operand1, imm, '0');

PSTATE.<N,Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (immediate) Page 103

CCMN (register)

Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a register value and the inverse of
another register value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv
op

32-bit (sf == 0)

CCMN <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMN <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
(-, flags) = AddWithCarry(operand1, operand2, '0');

PSTATE.<N,Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (register) Page 104

CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register value and an immediate value
if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 1 0 1 0 0 1 0 imm5 cond 1 0 Rn 0 nzcv
op

32-bit (sf == 0)

CCMP <Wn>, #<imm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMP <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend(imm5, datasize);

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<imm> Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2;

if ConditionHolds(cond) then
operand2 = NOT(imm);
(-, flags) = AddWithCarry(operand1, operand2, '1');

PSTATE.<N,Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (immediate) Page 105

CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers if the condition is TRUE, and
an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 1 0 1 0 0 1 0 Rm cond 0 0 Rn 0 nzcv
op

32-bit (sf == 0)

CCMP <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMP <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
operand2 = NOT(operand2);
(-, flags) = AddWithCarry(operand1, operand2, '1');

PSTATE.<N,Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (register) Page 106

CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the condition is TRUE, and
otherwise returns the value of the source register.

This is an alias of CSINC. This means:

• The encodings in this description are named to match the encodings of CSINC.
• The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 0 0 != 11111 != 111x 0 1 != 11111 Rd
op Rm cond o2 Rn

32-bit (sf == 0)

CINC <Wd>, <Wn>, <cond>

is equivalent to

CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1)

CINC <Xd>, <Xn>, <cond>

is equivalent to

CSINC <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINC Page 107

CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the condition is TRUE, and
otherwise returns the value of the source register.

This is an alias of CSINV. This means:

• The encodings in this description are named to match the encodings of CSINV.
• The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 0 0 != 11111 != 111x 0 0 != 11111 Rd
op Rm cond o2 Rn

32-bit (sf == 0)

CINV <Wd>, <Wn>, <cond>

is equivalent to

CSINV <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1)

CINV <Xd>, <Xn>, <cond>

is equivalent to

CSINV <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINV Page 108

CLREX

Clear Exclusive clears the local monitor of the executing PE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 0 1 0 1 1 1 1 1

System

CLREX {#<imm>}

// CRm field is ignored

Assembler Symbols

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the "CRm" field.

Operation

ClearExclusiveLocal(ProcessorID());

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLREX Page 109

CLS (vector)

Count Leading Sign bits (vector). This instruction counts the number of consecutive bits following the most significant bit that are the same as
the most significant bit in each vector element in the source SIMD&FP register, places the result into a vector, and writes the vector to the
destination SIMD&FP register. The count does not include the most significant bit itself.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd
U

Vector

CLS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1

if countop == CountOp_CLS then
count = CountLeadingSignBits(Elem[operand, e, esize]);

else
count = CountLeadingZeroBits(Elem[operand, e, esize]);

Elem[result, e, esize] = count<esize-1:0>;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS (vector) Page 110

CLS

Count leading sign bits: Rd = CLS(Rn).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 Rn Rd
op

32-bit (sf == 0)

CLS <Wd>, <Wn>

64-bit (sf == 1)

CLS <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

integer result;
bits(datasize) operand1 = X[n];

result = CountLeadingSignBits(operand1);

X[d] = result<datasize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS Page 111

CLZ (vector)

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from the most significant bit, in each vector
element in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 0 1 0 Rn Rd
U

Vector

CLZ <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = if U == '1' then CountOp_CLZ else CountOp_CLS;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1

if countop == CountOp_CLS then
count = CountLeadingSignBits(Elem[operand, e, esize]);

else
count = CountLeadingZeroBits(Elem[operand, e, esize]);

Elem[result, e, esize] = count<esize-1:0>;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ (vector) Page 112

CLZ

Count leading zero bits: Rd = CLZ(Rn).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 Rn Rd
op

32-bit (sf == 0)

CLZ <Wd>, <Wn>

64-bit (sf == 1)

CLZ <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

integer result;
bits(datasize) operand1 = X[n];

result = CountLeadingZeroBits(operand1);
X[d] = result<datasize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ Page 113

CMEQ (register)

Compare bitwise Equal (vector). This instruction compares each vector element from the first source SIMD&FP register with the corresponding
vector element from the second source SIMD&FP register, and if the comparison is equal sets every bit of the corresponding vector element in
the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to
zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
U

Scalar

CMEQ <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean and_test = (U == '0');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
U

Vector

CMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean and_test = (U == '0');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

CMEQ (register) Page 114

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if and_test then

test_passed = !IsZero(element1 AND element2);
else

test_passed = (element1 == element2);
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMEQ (register) Page 115

CMEQ (zero)

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the value is equal to
zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
U op

Scalar

CMEQ <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
U op

Vector

CMEQ <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMEQ (zero) Page 116

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMEQ (zero) Page 117

CMGE (register)

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the first source SIMD&FP register with the
corresponding vector element in the second source SIMD&FP register and if the first signed integer value is greater than or equal to the second
signed integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of
the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
U eq

Scalar

CMGE <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
U eq

Vector

CMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMGE (register) Page 118

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGE (register) Page 119

CMGE (zero)

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the
signed integer value is greater than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to
one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
U op

Scalar

CMGE <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
U op

Vector

CMGE <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMGE (zero) Page 120

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGE (zero) Page 121

CMGT (register)

Compare signed Greater than (vector). This instruction compares each vector element in the first source SIMD&FP register with the
corresponding vector element in the second source SIMD&FP register and if the first signed integer value is greater than the second signed
integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
U eq

Scalar

CMGT <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
U eq

Vector

CMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMGT (register) Page 122

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGT (register) Page 123

CMGT (zero)

Compare signed Greater than zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed integer
value is greater than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
U op

Scalar

CMGT <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 0 1 0 Rn Rd
U op

Vector

CMGT <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMGT (zero) Page 124

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGT (zero) Page 125

CMHI (register)

Compare unsigned Higher (vector). This instruction compares each vector element in the first source SIMD&FP register with the corresponding
vector element in the second source SIMD&FP register and if the first unsigned integer value is greater than the second unsigned integer value
sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
U eq

Scalar

CMHI <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 1 Rn Rd
U eq

Vector

CMHI <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMHI (register) Page 126

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMHI (register) Page 127

CMHS (register)

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first source SIMD&FP register with the
corresponding vector element in the second source SIMD&FP register and if the first unsigned integer value is greater than or equal to the
second unsigned integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets
every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
U eq

Scalar

CMHS <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 1 1 Rn Rd
U eq

Vector

CMHS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean cmp_eq = (eq == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMHS (register) Page 128

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
test_passed = if cmp_eq then element1 >= element2 else element1 > element2;
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMHS (register) Page 129

CMLE (zero)

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed
integer value is less than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
U op

Scalar

CMLE <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 0 1 1 0 Rn Rd
U op

Vector

CMLE <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMLE (zero) Page 130

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMLE (zero) Page 131

CMLT (zero)

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed integer
value is less than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of
the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd

Scalar

CMLT <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 0 1 0 Rn Rd

Vector

CMLT <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

CMLT (zero) Page 132

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean test_passed;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
case comparison of

when CompareOp_GT test_passed = element > 0;
when CompareOp_GE test_passed = element >= 0;
when CompareOp_EQ test_passed = element == 0;
when CompareOp_LE test_passed = element <= 0;
when CompareOp_LT test_passed = element < 0;

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMLT (zero) Page 133

CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left shift amount.
The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the
result, and discards the result.

This is an alias of ADDS (extended register). This means:

• The encodings in this description are named to match the encodings of ADDS (extended register).
• The description of ADDS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1
op S Rd

32-bit (sf == 0)

CMN <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

is equivalent to

ADDS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit (sf == 1)

CMN <Xn|SP>, <R><m>{, <extend> {#<amount>}}

is equivalent to

ADDS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTW when "option" is '010'.

CMN (extended register) Page 134

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Operation

The description of ADDS (extended register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (extended register) Page 135

CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the condition flags based on the
result, and discards the result.

This is an alias of ADDS (immediate). This means:

• The encodings in this description are named to match the encodings of ADDS (immediate).
• The description of ADDS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 0 1 shift imm12 Rn 1 1 1 1 1
op S Rd

32-bit (sf == 0)

CMN <Wn|WSP>, #<imm>{, <shift>}

is equivalent to

ADDS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMN <Xn|SP>, #<imm>{, <shift>}

is equivalent to

ADDS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:

shift <shift>
00 LSL #0
01 LSL #12
1x RESERVED

Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (immediate) Page 136

CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the condition flags based on the
result, and discards the result.

This is an alias of ADDS (shifted register). This means:

• The encodings in this description are named to match the encodings of ADDS (shifted register).
• The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1
op S Rd

32-bit (sf == 0)

CMN <Wn>, <Wm>{, <shift> #<amount>}

is equivalent to

ADDS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMN <Xn>, <Xm>{, <shift> #<amount>}

is equivalent to

ADDS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (shifted register) Page 137

CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift amount, from a register value.
The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the
result, and discards the result.

This is an alias of SUBS (extended register). This means:

• The encodings in this description are named to match the encodings of SUBS (extended register).
• The description of SUBS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn 1 1 1 1 1
op S Rd

32-bit (sf == 0)

CMP <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

is equivalent to

SUBS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.

64-bit (sf == 1)

CMP <Xn|SP>, <R><m>{, <extend> {#<amount>}}

is equivalent to

SUBS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTW when "option" is '010'.

CMP (extended register) Page 138

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Operation

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (extended register) Page 139

CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition flags based on the result,
and discards the result.

This is an alias of SUBS (immediate). This means:

• The encodings in this description are named to match the encodings of SUBS (immediate).
• The description of SUBS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 0 0 0 1 shift imm12 Rn 1 1 1 1 1
op S Rd

32-bit (sf == 0)

CMP <Wn|WSP>, #<imm>{, <shift>}

is equivalent to

SUBS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMP <Xn|SP>, #<imm>{, <shift>}

is equivalent to

SUBS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:

shift <shift>
00 LSL #0
01 LSL #12
1x RESERVED

Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (immediate) Page 140

CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the condition flags based on the result,
and discards the result.

This is an alias of SUBS (shifted register). This means:

• The encodings in this description are named to match the encodings of SUBS (shifted register).
• The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn 1 1 1 1 1
op S Rd

32-bit (sf == 0)

CMP <Wn>, <Wm>{, <shift> #<amount>}

is equivalent to

SUBS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

CMP <Xn>, <Xm>{, <shift> #<amount>}

is equivalent to

SUBS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (shifted register) Page 141

CMTST

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source SIMD&FP register, performs an AND
with the corresponding vector element in the second source SIMD&FP register, and if the result is not zero, sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
U

Scalar

CMTST <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean and_test = (U == '0');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 1 1 Rn Rd
U

Vector

CMTST <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean and_test = (U == '0');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

CMTST Page 142

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if and_test then

test_passed = !IsZero(element1 AND element2);
else

test_passed = (element1 == element2);
Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMTST Page 143

CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is TRUE, and otherwise returns
the value of the source register.

This is an alias of CSNEG. This means:

• The encodings in this description are named to match the encodings of CSNEG.
• The description of CSNEG gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 0 0 Rm != 111x 0 1 Rn Rd
op cond o2

32-bit (sf == 0)

CNEG <Wd>, <Wn>, <cond>

is equivalent to

CSNEG <Wd>, <Wn>, <Wn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1)

CNEG <Xd>, <Xn>, <cond>

is equivalent to

CSNEG <Xd>, <Xn>, <Xn>, invert(<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSNEG gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNEG Page 144

CNT

Population Count per byte. This instruction counts the number of bits that have a value of one in each vector element in the source SIMD&FP
register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

Vector

CNT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '00' then ReservedValue();
integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 x RESERVED
1x x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

integer count;
for e = 0 to elements-1

count = BitCount(Elem[operand, e, esize]);
Elem[result, e, esize] = count<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNT Page 145

CRC32B, CRC32H, CRC32W, CRC32X

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an
input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value.
The second source operand can be 8, 16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the
operation, and the polynomial 0x04C11DB7 is used for the CRC calculation.

In ARMv8-A, this is an OPTIONAL instruction, and in ARMv8.1 it is mandatory for all implementations to implement it.

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 0 sz Rn Rd
C

CRC32B (sf == 0 && sz == 00)

CRC32B <Wd>, <Wn>, <Wm>

CRC32H (sf == 0 && sz == 01)

CRC32H <Wd>, <Wn>, <Wm>

CRC32W (sf == 0 && sz == 10)

CRC32W <Wd>, <Wn>, <Wm>

CRC32X (sf == 1 && sz == 11)

CRC32X <Wd>, <Wn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sf == '1' && sz != '11' then UnallocatedEncoding();
if sf == '0' && sz == '11' then UnallocatedEncoding();
integer size = 8 << UInt(sz);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

if !HaveCRCExt() then
UnallocatedEncoding();

bits(32) acc = X[n]; // accumulator
bits(size) val = X[m]; // input value
bits(32) poly = 0x04C11DB7<31:0>;

bits(32+size) tempacc = BitReverse(acc):Zeros(size);
bits(size+32) tempval = BitReverse(val):Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

CRC32B, CRC32H, CRC32W,
CRC32X

Page 146

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32B, CRC32H, CRC32W,
CRC32X

Page 147

CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an
input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value.
The second source operand can be 8, 16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the
operation, and the polynomial 0x1EDC6F41 is used for the CRC calculation.

In ARMv8-A, this is an OPTIONAL instruction, and in ARMv8.1 it is mandatory for all implementations to implement it.

ID_AA64ISAR0_EL1.CRC32 indicates whether this instruction is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 1 0 1 sz Rn Rd
C

CRC32CB (sf == 0 && sz == 00)

CRC32CB <Wd>, <Wn>, <Wm>

CRC32CH (sf == 0 && sz == 01)

CRC32CH <Wd>, <Wn>, <Wm>

CRC32CW (sf == 0 && sz == 10)

CRC32CW <Wd>, <Wn>, <Wm>

CRC32CX (sf == 1 && sz == 11)

CRC32CX <Wd>, <Wn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sf == '1' && sz != '11' then UnallocatedEncoding();
if sf == '0' && sz == '11' then UnallocatedEncoding();
integer size = 8 << UInt(sz);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.

<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

if !HaveCRCExt() then
UnallocatedEncoding();

bits(32) acc = X[n]; // accumulator
bits(size) val = X[m]; // input value
bits(32) poly = 0x1EDC6F41<31:0>;

bits(32+size) tempacc = BitReverse(acc):Zeros(size);
bits(size+32) tempval = BitReverse(val):Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

CRC32CB, CRC32CH, CRC32CW,
CRC32CX

Page 148

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32CB, CRC32CH, CRC32CW,
CRC32CX

Page 149

CSEL

Conditional Select returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise returns the
value of the second source register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd
op o2

32-bit (sf == 0)

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSEL <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
result = operand1;

else
result = operand2;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSEL Page 150

CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.

This is an alias of CSINC. This means:

• The encodings in this description are named to match the encodings of CSINC.
• The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 != 111x 0 1 1 1 1 1 1 Rd
op Rm cond o2 Rn

32-bit (sf == 0)

CSET <Wd>, <cond>

is equivalent to

CSINC <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit (sf == 1)

CSET <Xd>, <cond>

is equivalent to

CSINC <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINC gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSET Page 151

CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits to 0.

This is an alias of CSINV. This means:

• The encodings in this description are named to match the encodings of CSINV.
• The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 != 111x 0 0 1 1 1 1 1 Rd
op Rm cond o2 Rn

32-bit (sf == 0)

CSETM <Wd>, <cond>

is equivalent to

CSINV <Wd>, WZR, WZR, invert(<cond>)

and is always the preferred disassembly.

64-bit (sf == 1)

CSETM <Xd>, <cond>

is equivalent to

CSINV <Xd>, XZR, XZR, invert(<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Operation

The description of CSINV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSETM Page 152

CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise
returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC, and CSET.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd
op o2

32-bit (sf == 0)

CSINC <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINC <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when

CINC Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

CSET Rm == '11111' && cond != '111x' && Rn == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
result = operand1;

else
result = operand2 + 1;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINC Page 153

CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise returns
the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV, and CSETM.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 0 Rn Rd
op o2

32-bit (sf == 0)

CSINV <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINV <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when

CINV Rm != '11111' && cond != '111x' && Rn != '11111' && Rn == Rm

CSETM Rm == '11111' && cond != '111x' && Rn == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
result = operand1;

else
result = NOT(operand2);

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINV Page 154

CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise
returns the negated value of the second source register.

This instruction is used by the alias CNEG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 0 0 Rm cond 0 1 Rn Rd
op o2

32-bit (sf == 0)

CSNEG <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSNEG <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Alias Conditions

Alias Is preferred when

CNEG cond != '111x' && Rn == Rm

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

if ConditionHolds(cond) then
result = operand1;

else
result = NOT(operand2);
result = result + 1;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSNEG Page 155

DC

Data Cache operation. For more information, see A64 system instructions for cache maintenance.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt
L CRn

System

DC <dc_op>, <Xt>

is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_DC.

Assembler Symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in “op1:CRm:op2”:

op1 CRm op2 <dc_op> Architectural Feature
000 0110 001 IVAC -
000 0110 010 ISW -
000 1010 010 CSW -
000 1110 010 CISW -
011 0100 001 ZVA -
011 1010 001 CVAC -
011 1011 001 CVAU -
011 1100 001 CVAP ARMv8.2-DCPoP
011 1110 001 CIVAC -

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC Page 156

DCPS1

Debug Change PE State to EL1, when executed in Debug state:

• If executed at EL0 changes the current Exception level and SP to EL1 using SP_EL1.
• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS1 instruction is:

• EL1 if the instruction is executed at EL0.
• Otherwise, the Exception level at which the instruction is executed.

When the target Exception level of a DCPS1 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.
• SPSR_ELx becomes UNKNOWN.
• ESR_ELx becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at EL0 in Non-secure state if EL2 is implemented and HCR_EL2.TGE == 1.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 0 1
LL

System

DCPS1 {#<imm>}

if !Halted() then AArch64.UndefinedFault();

Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction(LL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS1 Page 157

DCPS2

Debug Change PE State to EL2, when executed in Debug state:

• If executed at EL0 or EL1 changes the current Exception level and SP to EL2 using SP_EL2.
• Otherwise, if executed at ELx, selects SP_ELx.

The target exception level of a DCPS2 instruction is:

• EL2 if the instruction is executed at an exception level that is not EL3.
• EL3 if the instruction is executed at EL3.

When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:

• ELR_ELx becomes UNKNOWN.
• SPSR_ELx becomes UNKNOWN.
• ESR_ELx becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_ELx.EE.

This instruction is UNDEFINED at the following exception levels:

• All exception levels if EL2 is not implemented.
• At EL0 and EL1 in Secure state if EL2 is implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 0
LL

System

DCPS2 {#<imm>}

if !Halted() then AArch64.UndefinedFault();

Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction(LL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS2 Page 158

DCPS3

Debug Change PE State to EL3, when executed in Debug state:

• If executed at EL3 selects SP_EL3.
• Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.

On executing a DCPS3 instruction:

• ELR_EL3 becomes UNKNOWN.
• SPSR_EL3 becomes UNKNOWN.
• ESR_EL3 becomes UNKNOWN.
• DLR_EL0 and DSPSR_EL0 become UNKNOWN.
• The endianness is set according to SCTLR_EL3.EE.

This instruction is UNDEFINED at all exception levels if either:

• EDSCR.SDD == 1.
• EL3 is not implemented.

This instruction is always UNDEFINED in Non-debug state.

For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 1 0 1 imm16 0 0 0 1 1
LL

System

DCPS3 {#<imm>}

if !Halted() then AArch64.UndefinedFault();

Assembler Symbols

<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction(LL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS3 Page 159

DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data Memory Barrier.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 1 1 1 1 1 1
opc

System

DMB <option>|#<imm>

MBReqDomain domain;
MBReqTypes types;

case CRm<3:2> of
when '00' domain = MBReqDomain_OuterShareable;
when '01' domain = MBReqDomain_Nonshareable;
when '10' domain = MBReqDomain_InnerShareable;
when '11' domain = MBReqDomain_FullSystem;

case CRm<1:0> of
when '01' types = MBReqTypes_Reads;
when '10' types = MBReqTypes_Writes;
when '11' types = MBReqTypes_All;
otherwise

types = MBReqTypes_All;
domain = MBReqDomain_FullSystem;

Assembler Symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY
Full system is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. This option is referred to as the full system barrier. Encoded as CRm = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and
writes are the required access types after the barrier instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier
instruction. Encoded as CRm = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type before the barrier instruction, and reads
and writes are the required type after the barrier instruction. Encoded as CRm = 0b0110.

DMB Page 160

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm> syntax. It is
IMPLEMENTATION DEFINED whether options other than SY are implemented. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more information on whether an
access is before or after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier (DSB).

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

DataMemoryBarrier(domain, types);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DMB Page 161

DRPS

Debug restore process state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

System

DRPS

if !Halted() || PSTATE.EL == EL0 then UnallocatedEncoding();

Operation

DRPSInstruction();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DRPS Page 162

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data Synchronization Barrier.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 0 1 1 1 1 1
opc

System

DSB <option>|#<imm>

MBReqDomain domain;
MBReqTypes types;

case CRm<3:2> of
when '00' domain = MBReqDomain_OuterShareable;
when '01' domain = MBReqDomain_Nonshareable;
when '10' domain = MBReqDomain_InnerShareable;
when '11' domain = MBReqDomain_FullSystem;

case CRm<1:0> of
when '01' types = MBReqTypes_Reads;
when '10' types = MBReqTypes_Writes;
when '11' types = MBReqTypes_All;
otherwise

types = MBReqTypes_All;
domain = MBReqDomain_FullSystem;

Assembler Symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY
Full system is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. This option is referred to as the full system barrier. Encoded as CRm = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and
writes are the required access types after the barrier instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier
instruction. Encoded as CRm = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type before the barrier instruction, and reads
and writes are the required type after the barrier instruction. Encoded as CRm = 0b0110.

DSB Page 163

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm> syntax. It is
IMPLEMENTATION DEFINED whether options other than SY are implemented. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more information on whether an
access is before or after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier (DSB).

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

DataSynchronizationBarrier(domain, types);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSB Page 164

DUP (element)

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the specified element index in the source
SIMD&FP register into a scalar or each element in a vector, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (scalar).

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

Scalar

DUP <V><d>, <Vn>.<T>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UnallocatedEncoding();

integer index = UInt(imm5<4:size+1>);
integer idxdsize = if imm5<4> == '1' then 128 else 64;

integer esize = 8 << size;
integer datasize = esize;
integer elements = 1;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

Vector

DUP <Vd>.<T>, <Vn>.<Ts>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UnallocatedEncoding();

integer index = UInt(imm5<4:size+1>);
integer idxdsize = if imm5<4> == '1' then 128 else 64;

if size == 3 && Q == '0' then ReservedValue();
integer esize = 8 << size;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<T> For the scalar variant: is the element width specifier, encoded in “imm5”:

DUP (element) Page 165

imm5 <T>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

For the vector variant: is an arrangement specifier, encoded in “imm5:Q”:

imm5 Q <T>
x0000 x RESERVED
xxxx1 0 8B
xxxx1 1 16B
xxx10 0 4H
xxx10 1 8H
xx100 0 2S
xx100 1 4S
x1000 0 RESERVED
x1000 1 2D

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<V> Is the destination width specifier, encoded in “imm5”:

imm5 <V>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];
bits(datasize) result;
bits(esize) element;

element = Elem[operand, index, esize];
for e = 0 to elements-1

Elem[result, e, esize] = element;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (element) Page 166

DUP (general)

Duplicate general-purpose register to vector. This instruction duplicates the contents of the source general-purpose register into a scalar or each
element in a vector, and writes the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 0 0 1 1 Rn Rd

Advanced SIMD

DUP <Vd>.<T>, <R><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UnallocatedEncoding();

// imm5<4:size+1> is IGNORED

if size == 3 && Q == '0' then ReservedValue();
integer esize = 8 << size;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “imm5:Q”:

imm5 Q <T>
x0000 x RESERVED
xxxx1 0 8B
xxxx1 1 16B
xxx10 0 4H
xxx10 1 8H
xx100 0 2S
xx100 1 4S
x1000 0 RESERVED
x1000 1 2D

<R> Is the width specifier for the general-purpose source register, encoded in “imm5”:

imm5 <R>
x0000 RESERVED
xxxx1 W
xxx10 W
xx100 W
x1000 X

Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(esize) element = X[n];
bits(datasize) result;

for e = 0 to elements-1
Elem[result, e, esize] = element;

V[d] = result;

DUP (general) Page 167

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (general) Page 168

EON (shifted register)

Bitwise Exclusive OR NOT (shifted register) performs a bitwise Exclusive OR NOT of a register value and an optionally-shifted register value,
and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

EON <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

EON <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

operand2 = NOT(operand2);

result = operand1 EOR operand2;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EON (shifted register) Page 169

EOR3

Three-way Exclusive OR performs a three-way exclusive OR of the values in the three source SIMD&FP registers, and writes the result to the
destination SIMD&FP register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 0 0 Rm 0 Ra Rn Rd

Advanced SIMD

EOR3 <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.16B

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer a = UInt(Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Va = V[a];
V[d] = Vn EOR Vm EOR Va;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR3 Page 170

EOR (vector)

Bitwise Exclusive OR (vector). This instruction performs a bitwise Exclusive OR operation between the two source SIMD&FP registers, and
places the result in the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 0 1 Rm 0 0 0 1 1 1 Rn Rd
opc2

Three registers of the same type

EOR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1;
bits(datasize) operand2;
bits(datasize) operand3;
bits(datasize) operand4 = V[n];

operand1 = V[m];
operand2 = Zeros();
operand3 = Ones();
V[d] = operand1 EOR ((operand2 EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (vector) Page 171

EOR (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and writes the result to the
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 0 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

EOR <Wd|WSP>, <Wn>, #<imm>

64-bit (sf == 1)

EOR <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;
if sf == '0' && N != '0' then ReservedValue();
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];

result = operand1 EOR imm;

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (immediate) Page 172

EOR (shifted register)

Bitwise Exclusive OR (shifted register) performs a bitwise Exclusive OR of a register value and an optionally-shifted register value, and writes
the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

EOR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

EOR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

result = operand1 EOR operand2;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (shifted register) Page 173

ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE from the SPSR, and
branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from AArch64 state.

ERET is UNDEFINED at EL0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
A M Rn op4

System

ERET

if PSTATE.EL == EL0 then UnallocatedEncoding();

Operation

AArch64.CheckForERetTrap(FALSE, TRUE);
bits(64) target = ELR[];

AArch64.ExceptionReturn(target, SPSR[]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERET Page 174

ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the modifier and the specified key,
the PE restores PSTATE from the SPSR for the current Exception level, and branches to the authenticated address.

Key A is used for ERETAA, and key B is used for ERETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from AArch64 state.

ERET is UNDEFINED at EL0.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1
A Rn op4

ERETAA (M == 0)

ERETAA

ERETAB (M == 1)

ERETAB

if PSTATE.EL == EL0 then UnallocatedEncoding();
boolean use_key_a = (M == '0');

if !HavePACExt() then
UnallocatedEncoding();

Operation

AArch64.CheckForERetTrap(TRUE, use_key_a);
bits(64) target;

if use_key_a then
target = AuthIA(ELR[], SP[]);

else
target = AuthIB(ELR[], SP[]);

AArch64.ExceptionReturn(target, SPSR[]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERETAA, ERETAB Page 175

ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR_EL1 and VDISR_EL2.

This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error Synchronization Barrier in the
ARM(R) Reliability, Availability, and Serviceability (RAS) Specification, ARMv8, for ARMv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

System
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1
CRm op2

System

ESB

if !HaveRASExt() then EndOfInstruction();

Operation

ErrorSynchronizationBarrier(MBReqDomain_FullSystem, MBReqTypes_All);
AArch64.ESBOperation();
if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1} then AArch64.vESBOperation();
TakeUnmaskedSErrorInterrupts();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESB Page 176

EXT

Extract vector from pair of vectors. This instruction extracts the lowest vector elements from the second source SIMD&FP register and the
highest vector elements from the first source SIMD&FP register, concatenates the results into a vector, and writes the vector to the destination
SIMD&FP register vector. The index value specifies the lowest vector element to extract from the first source register, and consecutive elements
are extracted from the first, then second, source registers until the destination vector is filled.

The following figure shows an example of the operation of EXT doubleword operation for Q = 0 and imm4<2:0> = 3.
7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

Vm Vn

Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 0 0 Rm 0 imm4 0 Rn Rd

Advanced SIMD

EXT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<index>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if Q == '0' && imm4<3> == '1' then UnallocatedEncoding();

integer datasize = if Q == '1' then 128 else 64;
integer position = UInt(imm4) << 3;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<index> Is the lowest numbered byte element to be extracted, encoded in “Q:imm4”:

Q imm4<3> <index>
0 0 imm4<2:0>
0 1 RESERVED
1 x imm4

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) hi = V[m];
bits(datasize) lo = V[n];
bits(datasize*2) concat = hi:lo;

V[d] = concat<position+datasize-1:position>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

EXT Page 177

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXT Page 178

EXTR

Extract register extracts a register from a pair of registers.

This instruction is used by the alias ROR (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

32-bit (sf == 0 && N == 0 && imms == 0xxxxx)

EXTR <Wd>, <Wn>, <Wm>, #<lsb>

64-bit (sf == 1 && N == 1)

EXTR <Xd>, <Xn>, <Xm>, #<lsb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
integer lsb;

if N != sf then UnallocatedEncoding();
if sf == '0' && imms<5> == '1' then ReservedValue();
lsb = UInt(imms);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<lsb> For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31, encoded in the "imms"
field.

For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63, encoded in the "imms"
field.

Alias Conditions

Alias Is preferred when

ROR (immediate) Rn == Rm

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(2*datasize) concat = operand1:operand2;

result = concat<lsb+datasize-1:lsb>;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

EXTR Page 179

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXTR Page 180

FABD

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the elements of the second source SIMD&FP
register, from the corresponding floating-point values in the elements of the first source SIMD&FP register, places the absolute value of each
result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd

Scalar half precision

FABD <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd

Scalar single-precision and double-precision

FABD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd
U

FABD Page 181

Vector half precision

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd
U

Vector single-precision and double-precision

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FABD Page 182

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) diff;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
diff = FPSub(element1, element2, FPCR);
Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABD Page 183

FABS (vector)

Floating-point Absolute value (vector). This instruction calculates the absolute value of each vector element in the source SIMD&FP register,
writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd
U

Half-precision

FABS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd
U

Single-precision and double-precision

FABS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FABS (vector) Page 184

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
if neg then

element = FPNeg(element);
else

element = FPAbs(element);
Elem[result, e, esize] = element;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABS (vector) Page 185

FABS (scalar)

Floating-point Absolute value (scalar). This instruction calculates the absolute value in the SIMD&FP source register and writes the result to the
SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 0 0 0 1 1 0 0 0 0 Rn Rd
opc

Half-precision (type == 11)
(ARMv8.2)

FABS <Hd>, <Hn>

Single-precision (type == 00)

FABS <Sd>, <Sn>

Double-precision (type == 01)

FABS <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPAbs(operand);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

FABS (scalar) Page 186

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABS (scalar) Page 187

FACGE

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute value of each floating-point value in the
first source SIMD&FP register with the absolute value of the corresponding floating-point value in the second source SIMD&FP register and if
the first value is greater than or equal to the second value sets every bit of the corresponding vector element in the destination SIMD&FP register
to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd
U E ac

Scalar half precision

FACGE <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd
U E ac

FACGE Page 188

Scalar single-precision and double-precision

FACGE <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 1 1 Rn Rd
U E ac

Vector half precision

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 1 1 Rn Rd
U E ac

FACGE Page 189

Vector single-precision and double-precision

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FACGE Page 190

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACGE Page 191

FACGT

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of each vector element in the first source
SIMD&FP register with the absolute value of the corresponding vector element in the second source SIMD&FP register and if the first value is
greater than the second value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets
every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
U E ac

Scalar half precision

FACGT <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd
U E ac

FACGT Page 192

Scalar single-precision and double-precision

FACGT <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
U E ac

Vector half precision

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 1 1 Rn Rd
U E ac

FACGT Page 193

Vector single-precision and double-precision

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FACGT Page 194

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACGT Page 195

FADD (vector)

Floating-point Add (vector). This instruction adds corresponding vector elements in the two source SIMD&FP registers, writes the result into a
vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd
U

Half-precision

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd
U

Single-precision and double-precision

FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FADD (vector) Page 196

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPAdd(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (vector) Page 197

FADD (scalar)

Floating-point Add (scalar). This instruction adds the floating-point values of the two source SIMD&FP registers, and writes the result to the
destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 0 1 0 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FADD <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FADD <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FADD <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FADD (scalar) Page 198

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPAdd(operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (scalar) Page 199

FADDP (scalar)

Floating-point Add Pair of elements (scalar). This instruction adds two floating-point vector elements in the source SIMD&FP register and
writes the scalar result into the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd
sz

Half-precision

FADDP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 1 1 0 Rn Rd

Single-precision and double-precision

FADDP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FADDP (scalar) Page 200

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FADD, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDP (scalar) Page 201

FADDP (vector)

Floating-point Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP
register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated
vector, adds each pair of values together, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 0 1 Rn Rd
U

Half-precision

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 0 1 Rn Rd
U

Single-precision and double-precision

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FADDP (vector) Page 202

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPAdd(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDP (vector) Page 203

FCADD

Floating-point Complex Add.

This instruction adds corresponding complex numbers from the two source vector registers and writes the resulting complex numbers into the
destination vector register. The number of complex numbers that can be stored in the source and the destination vector registers is calculated as
the vector register size divided by the length of each complex number. Each complex number is represented in a SIMD&FP register as a pair of
elements with the imaginary part of the number being placed in the more significant element, and the real part of the number being placed in the
less significant element. Both real and imaginary parts of the source and the resulting complex number are represented as floating-point values.

One of the two vector elements that are read from each of the numbers in the second source SIMD&FP register can be optionally negated based
on the rotation value:

• If the rotation is 90, the odd-numbered vector elements are negated.
• If the rotation is 270, the even-numbered vector elements are negated.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Three registers of the same type
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 0 Rm 1 1 1 rot 0 1 Rn Rd

Three registers of the same type

FCADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

if !HaveFCADDExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' then ReservedValue();
if Q == '0' && size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then ReservedValue();
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in “rot”:

rot <rotate>
0 90
1 270

FCADD Page 204

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element3;

for e = 0 to (elements DIV 2)-1
case rot of

when '0'
element1 = FPNeg(Elem[operand2, e*2+1, esize]);
element3 = Elem[operand2, e*2, esize];

when '1'
element1 = Elem[operand2, e*2+1, esize];
element3 = FPNeg(Elem[operand2, e*2, esize]);

Elem[result, e*2, esize] = FPAdd(Elem[operand1, e*2, esize], element1, FPCR);
Elem[result, e*2+1, esize] = FPAdd(Elem[operand1, e*2+1, esize], element3, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCADD Page 205

FCCMP

Floating-point Conditional quiet Compare (scalar). This instruction compares the two SIMD&FP source register values and writes the result to
the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm cond 0 1 Rn 0 nzcv
op

Half-precision (type == 11)
(ARMv8.2)

FCCMP <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision (type == 00)

FCCMP <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision (type == 01)

FCCMP <Dn>, <Dm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

bits(4) flags = nzcv;

Assembler Symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

NaNs

FCCMP Page 206

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are
NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This case
results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = V[m];

if ConditionHolds(cond) then
flags = FPCompare(operand1, operand2, FALSE, FPCR);

PSTATE.<N,Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCCMP Page 207

FCCMPE

Floating-point Conditional signaling Compare (scalar). This instruction compares the two SIMD&FP source register values and writes the result
to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm cond 0 1 Rn 1 nzcv
op

Half-precision (type == 11)
(ARMv8.2)

FCCMPE <Hn>, <Hm>, #<nzcv>, <cond>

Single-precision (type == 00)

FCCMPE <Sn>, <Sm>, #<nzcv>, <cond>

Double-precision (type == 01)

FCCMPE <Dn>, <Dm>, #<nzcv>, <cond>

integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

bits(4) flags = nzcv;

Assembler Symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

NaNs

FCCMPE Page 208

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are
NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This case
results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

FCCMPE raises an Invalid Operation exception if either operand is any type of NaN, and is suitable for testing for <, <=, >, >=, and
other predicates that raise an exception when the operands are unordered.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = V[m];

if ConditionHolds(cond) then
flags = FPCompare(operand1, operand2, TRUE, FPCR);

PSTATE.<N,Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCCMPE Page 209

FCMEQ (register)

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the first source SIMD&FP register, with the
corresponding floating-point value from the second source SIMD&FP register, and if the comparison is equal sets every bit of the corresponding
vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination
SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
U E ac

Scalar half precision

FCMEQ <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
U E ac

FCMEQ (register) Page 210

Scalar single-precision and double-precision

FCMEQ <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
U E ac

Vector half precision

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
U E ac

FCMEQ (register) Page 211

Vector single-precision and double-precision

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FCMEQ (register) Page 212

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMEQ (register) Page 213

FCMEQ (zero)

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value
is equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Scalar half precision

FCMEQ <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Scalar single-precision and double-precision

FCMEQ <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMEQ (zero) Page 214

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Vector half precision

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Vector single-precision and double-precision

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMEQ (zero) Page 215

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMEQ (zero) Page 216

FCMGE (register)

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value in the first source SIMD&FP register and
if the value is greater than or equal to the corresponding floating-point value in the second source SIMD&FP register sets every bit of the
corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
U E ac

Scalar half precision

FCMGE <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
U E ac

FCMGE (register) Page 217

Scalar single-precision and double-precision

FCMGE <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 0 0 1 Rn Rd
U E ac

Vector half precision

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 0 0 1 Rn Rd
U E ac

FCMGE (register) Page 218

Vector single-precision and double-precision

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FCMGE (register) Page 219

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGE (register) Page 220

FCMGE (zero)

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register
and if the value is greater than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one,
otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Scalar half precision

FCMGE <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Scalar single-precision and double-precision

FCMGE <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMGE (zero) Page 221

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Vector half precision

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Vector single-precision and double-precision

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMGE (zero) Page 222

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGE (zero) Page 223

FCMGT (register)

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first source SIMD&FP register and if the
value is greater than the corresponding floating-point value in the second source SIMD&FP register sets every bit of the corresponding vector
element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP
register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
U E ac

Scalar half precision

FCMGT <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd
U E ac

FCMGT (register) Page 224

Scalar single-precision and double-precision

FCMGT <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
U E ac

Vector half precision

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 0 0 1 Rn Rd
U E ac

FCMGT (register) Page 225

Vector single-precision and double-precision

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp_EQ; abs = FALSE;
when '010' cmp = CompareOp_GE; abs = FALSE;
when '011' cmp = CompareOp_GE; abs = TRUE;
when '110' cmp = CompareOp_GT; abs = FALSE;
when '111' cmp = CompareOp_GT; abs = TRUE;
otherwise UnallocatedEncoding();

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FCMGT (register) Page 226

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
boolean test_passed;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if abs then

element1 = FPAbs(element1);
element2 = FPAbs(element2);

case cmp of
when CompareOp_EQ test_passed = FPCompareEQ(element1, element2, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element1, element2, FPCR);
when CompareOp_GT test_passed = FPCompareGT(element1, element2, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGT (register) Page 227

FCMGT (zero)

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the
value is greater than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit
of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Scalar half precision

FCMGT <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Scalar single-precision and double-precision

FCMGT <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMGT (zero) Page 228

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Vector half precision

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 0 1 0 Rn Rd
U op

Vector single-precision and double-precision

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMGT (zero) Page 229

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGT (zero) Page 230

FCMLA (by element)

Floating-point Complex Multiply Accumulate (by element).

This instruction multiplies the complex numbers in the first source vector register by the specified complex number in the second source vector
register, and adds the results to the corresponding complex numbers in the destination vector register. The number of complex numbers that can
be stored in the source and the destination vector registers is calculated as the vector register size divided by the length of each complex number.
Each complex number is represented in a SIMD&FP register as a pair of elements with the imaginary part of the number being placed in the
more significant element, and the real part of the number being placed in the less significant element. Both real and imaginary parts of the source
and the resulting complex number are represented as floating-point values.

None, one, or both of the two vector elements that are read from each of the numbers in the second source SIMD&FP register can be negated
based on the rotation value:

• If the rotation is 0, none of the vector elements are negated.
• If the rotation is 90, the odd-numbered vector elements are negated.
• If the rotation is 180, both vector elements are negated.
• If the rotation is 270, the even-numbered vector elements are negated.

The indexed element variant of this instruction is available for half-precision and single-precision number values. For this variant, the index
value determines the position in the specified element of the second source vector register of the single source value that is multiplied with each
of the complex numbers in the first source vector register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Vector
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 0 rot 1 H 0 Rn Rd

(size == 01)

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

(size == 10)

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

if !HaveFCADDExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
if size == '00' || size == '11' then ReservedValue();
if size == '01' then index = UInt(H:L);
if size == '10' then index = UInt(H);
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then ReservedValue();
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
if size == '10' && (L == '1' || Q == '0') then ReservedValue();
if size == '01' && H == '1' && Q == '0' then ReservedValue();

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

FCMLA (by element) Page 231

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:H:L”:

size <index>
00 RESERVED
01 H:L
10 H
11 RESERVED

<rotate> Is the rotation, encoded in “rot”:

rot <rotate>
00 0
01 90
10 180
11 270

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[m];
bits(datasize) operand2 = V[n];
bits(datasize) operand3 = V[d];
bits(datasize) result;

for e = 0 to (elements DIV 2)-1
case rot of

when '00'
element1 = Elem[operand1, index*2, esize];
element2 = Elem[operand2, e*2, esize];
element3 = Elem[operand1, index*2+1, esize];
element4 = Elem[operand2, e*2, esize];

when '01'
element1 = FPNeg(Elem[operand1, index*2+1, esize]);
element2 = Elem[operand2, e*2+1, esize];
element3 = Elem[operand1, index*2, esize];
element4 = Elem[operand2, e*2+1, esize];

when '10'
element1 = FPNeg(Elem[operand1, index*2, esize]);
element2 = Elem[operand2, e*2, esize];
element3 = FPNeg(Elem[operand1, index*2+1, esize]);
element4 = Elem[operand2, e*2, esize];

when '11'
element1 = Elem[operand1, index*2+1, esize];
element2 = Elem[operand2, e*2+1, esize];
element3 = FPNeg(Elem[operand1, index*2, esize]);
element4 = Elem[operand2, e*2+1, esize];

Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, FPCR);
Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, FPCR);

V[d] = result;

FCMLA (by element) Page 232

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA (by element) Page 233

FCMLA

Floating-point Complex Multiply Accumulate.

This instruction multiplies corresponding complex numbers from the two source vector registers and adds the results to the corresponding
complex numbers in the destination vector register. The number of complex numbers that can be stored in the source and the destination vector
registers is calculated as the vector register size divided by the length of each complex number. Each complex number is represented in a
SIMD&FP register as a pair of elements with the imaginary part of the number being placed in the more significant element, and the real part of
the number being placed in the less significant element. Both real and imaginary parts of the source and the resulting complex number are
represented as floating-point values.

None, one, or both of the two vector elements that are read from each of the numbers in the second source SIMD&FP register can be negated
based on the rotation value:

• If the rotation is 0, none of the vector elements are negated.
• If the rotation is 90, the odd-numbered vector elements are negated.
• If the rotation is 180, both vector elements are negated.
• If the rotation is 270, the even-numbered vector elements are negated.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Three registers of the same type
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 0 Rm 1 1 0 rot 1 Rn Rd

Three registers of the same type

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

if !HaveFCADDExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '00' then ReservedValue();
if Q == '0' && size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
if !HaveFP16Ext() && esize == 16 then ReservedValue();
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<rotate> Is the rotation, encoded in “rot”:

FCMLA Page 234

rot <rotate>
00 0
01 90
10 180
11 270

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) element3;
bits(esize) element4;

for e = 0 to (elements DIV 2)-1
case rot of

when '00'
element1 = Elem[operand2, e*2, esize];
element2 = Elem[operand1, e*2, esize];
element3 = Elem[operand2, e*2+1, esize];
element4 = Elem[operand1, e*2, esize];

when '01'
element1 = FPNeg(Elem[operand2, e*2+1, esize]);
element2 = Elem[operand1, e*2+1, esize];
element3 = Elem[operand2, e*2, esize];
element4 = Elem[operand1, e*2+1, esize];

when '10'
element1 = FPNeg(Elem[operand2, e*2, esize]);
element2 = Elem[operand1, e*2, esize];
element3 = FPNeg(Elem[operand2, e*2+1, esize]);
element4 = Elem[operand1, e*2, esize];

when '11'
element1 = Elem[operand2, e*2+1, esize];
element2 = Elem[operand1, e*2+1, esize];
element3 = FPNeg(Elem[operand2, e*2, esize]);
element4 = Elem[operand1, e*2+1, esize];

Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize], element2, element1, FPCR);
Elem[result, e*2+1, esize] = FPMulAdd(Elem[operand3, e*2+1, esize], element4, element3, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA Page 235

FCMLE (zero)

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and
if the value is less than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise
sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Scalar half precision

FCMLE <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Scalar single-precision and double-precision

FCMLE <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

FCMLE (zero) Page 236

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Vector half precision

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 0 1 1 0 Rn Rd
U op

Vector single-precision and double-precision

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of

when '00' comparison = CompareOp_GT;
when '01' comparison = CompareOp_GE;
when '10' comparison = CompareOp_EQ;
when '11' comparison = CompareOp_LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMLE (zero) Page 237

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLE (zero) Page 238

FCMLT (zero)

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value
is less than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd

Scalar half precision

FCMLT <Hd>, <Hn>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd

Scalar single-precision and double-precision

FCMLT <V><d>, <V><n>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison = CompareOp_LT;

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 Rn Rd

FCMLT (zero) Page 239

Vector half precision

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 0 1 0 Rn Rd

Vector single-precision and double-precision

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp_LT;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCMLT (zero) Page 240

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) zero = FPZero('0');
bits(esize) element;
boolean test_passed;

for e = 0 to elements-1
element = Elem[operand, e, esize];
case comparison of

when CompareOp_GT test_passed = FPCompareGT(element, zero, FPCR);
when CompareOp_GE test_passed = FPCompareGE(element, zero, FPCR);
when CompareOp_EQ test_passed = FPCompareEQ(element, zero, FPCR);
when CompareOp_LE test_passed = FPCompareGE(zero, element, FPCR);
when CompareOp_LT test_passed = FPCompareGT(zero, element, FPCR);

Elem[result, e, esize] = if test_passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLT (zero) Page 241

FCMP

Floating-point quiet Compare (scalar). This instruction compares the two SIMD&FP source register values, or the first SIMD&FP source register
value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 0 1 0 0 0 Rn 0 x 0 0 0
opc

Half-precision (type == 11 && opc == 00)
(ARMv8.2)

FCMP <Hn>, <Hm>

Half-precision, zero (type == 11 && Rm == (00000) && opc == 01)
(ARMv8.2)

FCMP <Hn>, #0.0

Single-precision (type == 00 && opc == 00)

FCMP <Sn>, <Sm>

Single-precision, zero (type == 00 && Rm == (00000) && opc == 01)

FCMP <Sn>, #0.0

Double-precision (type == 01 && opc == 00)

FCMP <Dn>, <Dm>

Double-precision, zero (type == 01 && Rm == (00000) && opc == 01)

FCMP <Dn>, #0.0

integer n = UInt(Rn);
integer m = UInt(Rm); // ignored when opc<0> == '1'

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

boolean signal_all_nans = (opc<1> == '1');
boolean cmp_with_zero = (opc<0> == '1');

Assembler Symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

FCMP Page 242

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are
NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This case
results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = if cmp_with_zero then FPZero('0') else V[m];

PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMP Page 243

FCMPE

Floating-point signaling Compare (scalar). This instruction compares the two SIMD&FP source register values, or the first SIMD&FP source
register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 0 1 0 0 0 Rn 1 x 0 0 0
opc

Half-precision (type == 11 && opc == 10)
(ARMv8.2)

FCMPE <Hn>, <Hm>

Half-precision, zero (type == 11 && Rm == (00000) && opc == 11)
(ARMv8.2)

FCMPE <Hn>, #0.0

Single-precision (type == 00 && opc == 10)

FCMPE <Sn>, <Sm>

Single-precision, zero (type == 00 && Rm == (00000) && opc == 11)

FCMPE <Sn>, #0.0

Double-precision (type == 01 && opc == 10)

FCMPE <Dn>, <Dm>

Double-precision, zero (type == 01 && Rm == (00000) && opc == 11)

FCMPE <Dn>, #0.0

integer n = UInt(Rn);
integer m = UInt(Rm); // ignored when opc<0> == '1'

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

boolean signal_all_nans = (opc<1> == '1');
boolean cmp_with_zero = (opc<0> == '1');

Assembler Symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

FCMPE Page 244

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

NaNs

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are
NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand2) are false. This case
results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

FCMPE raises an Invalid Operation exception if either operand is any type of NaN, and is suitable for testing for <, <=, >, >=, and
other predicates that raise an exception when the operands are unordered.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = V[n];
bits(datasize) operand2;

operand2 = if cmp_with_zero then FPZero('0') else V[m];

PSTATE.<N,Z,C,V> = FPCompare(operand1, operand2, signal_all_nans, FPCR);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMPE Page 245

FCSEL

Floating-point Conditional Select (scalar). This instruction allows the SIMD&FP destination register to take the value from either one or the
other of two SIMD&FP source registers. If the condition passes, the first SIMD&FP source register value is taken, otherwise the second
SIMD&FP source register value is taken.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm cond 1 1 Rn Rd

Half-precision (type == 11)
(ARMv8.2)

FCSEL <Hd>, <Hn>, <Hm>, <cond>

Single-precision (type == 00)

FCSEL <Sd>, <Sn>, <Sm>, <cond>

Double-precision (type == 01)

FCSEL <Dd>, <Dn>, <Dm>, <cond>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

bits(4) condition = cond;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

FCSEL Page 246

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;

result = if ConditionHolds(condition) then V[n] else V[m];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCSEL Page 247

FCVT

Floating-point Convert precision (scalar). This instruction converts the floating-point value in the SIMD&FP source register to the precision for
the destination register data type using the rounding mode that is determined by the FPCR and writes the result to the SIMD&FP destination
register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 0 1 opc 1 0 0 0 0 Rn Rd

Half-precision to single-precision (type == 11 && opc == 00)

FCVT <Sd>, <Hn>

Half-precision to double-precision (type == 11 && opc == 01)

FCVT <Dd>, <Hn>

Single-precision to half-precision (type == 00 && opc == 11)

FCVT <Hd>, <Sn>

Single-precision to double-precision (type == 00 && opc == 01)

FCVT <Dd>, <Sn>

Double-precision to half-precision (type == 01 && opc == 11)

FCVT <Hd>, <Dn>

Double-precision to single-precision (type == 01 && opc == 00)

FCVT <Sd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

if type == opc then UnallocatedEncoding();

integer srcsize;
case type of

when '00' srcsize = 32;
when '01' srcsize = 64;
when '10' UnallocatedEncoding();
when '11' srcsize = 16;

integer dstsize;
case opc of

when '00' dstsize = 32;
when '01' dstsize = 64;
when '10' UnallocatedEncoding();
when '11' dstsize = 16;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVT Page 248

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(dstsize) result;
bits(srcsize) operand = V[n];

result = FPConvert(operand, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVT Page 249

FCVTAS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction converts each element in a vector from
a floating-point value to a signed integer value using the Round to Nearest with Ties to Away rounding mode and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
U

Scalar half precision

FCVTAS <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
U

Scalar single-precision and double-precision

FCVTAS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
U

FCVTAS (vector) Page 250

Vector half precision

FCVTAS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
U

Vector single-precision and double-precision

FCVTAS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAS (vector) Page 251

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAS (vector) Page 252

FCVTAS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest with Ties to Away rounding mode, and writes the result
to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 0 1 0 0 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTAS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTAS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTAS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTAS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTAS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTAS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

FCVTAS (scalar) Page 253

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, FPRounding_TIEAWAY);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAS (scalar) Page 254

FCVTAU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This instruction converts each element in a vector
from a floating-point value to an unsigned integer value using the Round to Nearest with Ties to Away rounding mode and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
U

Scalar half precision

FCVTAU <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
U

Scalar single-precision and double-precision

FCVTAU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 Rn Rd
U

FCVTAU (vector) Page 255

Vector half precision

FCVTAU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd
U

Vector single-precision and double-precision

FCVTAU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding_TIEAWAY;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAU (vector) Page 256

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAU (vector) Page 257

FCVTAU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar). This instruction converts the floating-point value in
the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to Nearest with Ties to Away rounding mode, and writes the
result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 0 1 0 1 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTAU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTAU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTAU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTAU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTAU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTAU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

FCVTAU (scalar) Page 258

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, FPRounding_TIEAWAY);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAU (scalar) Page 259

FCVTL, FCVTL2

Floating-point Convert to higher precision Long (vector). This instruction reads each element in a vector in the SIMD&FP source register,
converts each value to double the precision of the source element using the rounding mode that is determined by the FPCR, and writes each
result to the equivalent element of the vector in the SIMD&FP destination register.

Where the operation lengthens a 64-bit vector to a 128-bit vector, the FCVTL2 variant operates on the elements in the top 64 bits of
the source register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 1 1 0 Rn Rd

Vector single-precision and double-precision

FCVTL{2} <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16 << UInt(sz);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “sz”:

sz <Ta>
0 4S
1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <Tb>
0 0 4H
0 1 8H
1 0 2S
1 1 4S

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(2*datasize) result;

for e = 0 to elements-1
Elem[result, e, 2*esize] = FPConvert(Elem[operand, e, esize], FPCR);

V[d] = result;

FCVTL, FCVTL2 Page 260

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTL, FCVTL2 Page 261

FCVTMS (vector)

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction converts a scalar or each element in a vector
from a floating-point value to a signed integer value using the Round towards Minus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTMS <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTMS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

FCVTMS (vector) Page 262

Vector half precision

FCVTMS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTMS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMS (vector) Page 263

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMS (vector) Page 264

FCVTMS (scalar)

Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Minus Infinity rounding mode, and writes the result to the
general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 1 0 0 0 0 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTMS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTMS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTMS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTMS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTMS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTMS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTMS (scalar) Page 265

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMS (scalar) Page 266

FCVTMU (vector)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction converts a scalar or each element in a
vector from a floating-point value to an unsigned integer value using the Round towards Minus Infinity rounding mode, and writes the result to
the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTMU <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTMU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

FCVTMU (vector) Page 267

Vector half precision

FCVTMU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTMU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMU (vector) Page 268

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMU (vector) Page 269

FCVTMU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Minus Infinity rounding mode, and writes the result to
the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 1 0 0 0 1 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTMU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTMU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTMU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTMU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTMU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTMU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTMU (scalar) Page 270

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMU (scalar) Page 271

FCVTN, FCVTN2

Floating-point Convert to lower precision Narrow (vector). This instruction reads each vector element in the SIMD&FP source register, converts
each result to half the precision of the source element, writes the final result to a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. The destination vector elements are half as long as the source vector elements. The rounding mode is determined
by the FPCR.

The FCVTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

FCVTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

Vector single-precision and double-precision

FCVTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16 << UInt(sz);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <Tb>
0 0 4H
0 1 8H
1 0 2S
1 1 4S

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “sz”:

sz <Ta>
0 4S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;

for e = 0 to elements-1
Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR);

Vpart[d, part] = result;

FCVTN, FCVTN2 Page 272

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTN, FCVTN2 Page 273

FCVTNS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction converts a scalar or each element in a
vector from a floating-point value to a signed integer value using the Round to Nearest rounding mode, and writes the result to the SIMD&FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTNS <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTNS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

FCVTNS (vector) Page 274

Vector half precision

FCVTNS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTNS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNS (vector) Page 275

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNS (vector) Page 276

FCVTNS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest rounding mode, and writes the result to the general-
purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 0 0 0 0 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTNS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTNS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTNS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTNS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTNS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTNS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTNS (scalar) Page 277

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNS (scalar) Page 278

FCVTNU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This instruction converts a scalar or each element in a
vector from a floating-point value to an unsigned integer value using the Round to Nearest rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTNU <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTNU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

FCVTNU (vector) Page 279

Vector half precision

FCVTNU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTNU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNU (vector) Page 280

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNU (vector) Page 281

FCVTNU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to Nearest rounding mode, and writes the result to the general-
purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 0 0 0 1 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTNU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTNU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTNU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTNU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTNU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTNU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTNU (scalar) Page 282

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNU (scalar) Page 283

FCVTPS (vector)

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction converts a scalar or each element in a vector
from a floating-point value to a signed integer value using the Round towards Plus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTPS <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTPS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

FCVTPS (vector) Page 284

Vector half precision

FCVTPS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTPS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPS (vector) Page 285

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPS (vector) Page 286

FCVTPS (scalar)

Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Plus Infinity rounding mode, and writes the result to the
general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 1 0 0 0 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTPS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTPS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTPS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTPS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTPS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTPS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTPS (scalar) Page 287

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPS (scalar) Page 288

FCVTPU (vector)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction converts a scalar or each element in a vector
from a floating-point value to an unsigned integer value using the Round towards Plus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTPU <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTPU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

FCVTPU (vector) Page 289

Vector half precision

FCVTPU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 0 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTPU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPU (vector) Page 290

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPU (vector) Page 291

FCVTPU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Plus Infinity rounding mode, and writes the result to
the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 1 0 0 1 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTPU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTPU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTPU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTPU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTPU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTPU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTPU (scalar) Page 292

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPU (scalar) Page 293

FCVTXN, FCVTXN2

Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each vector element in the source SIMD&FP
register, narrows each value to half the precision of the source element using the Round to Odd rounding mode, writes the result to a vector, and
writes the vector to the destination SIMD&FP register.

This instruction uses the Round to Odd rounding mode which is not defined by the IEEE 754-2008 standard. This rounding mode ensures that if
the result of the conversion is inexact the least significant bit of the mantissa is forced to 1. This rounding mode enables a floating-point value to
be converted to a lower precision format via an intermediate precision format while avoiding double rounding errors. For example, a 64-bit
floating-point value can be converted to a correctly rounded 16-bit floating-point value by first using this instruction to produce a 32-bit value
and then using another instruction with the wanted rounding mode to convert the 32-bit value to the final 16-bit floating-point value.

The FCVTXN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

FCVTXN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

Scalar

FCVTXN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '0' then ReservedValue();
integer esize = 32;
integer datasize = esize;
integer elements = 1;
integer part = 0;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 0 1 1 0 1 0 Rn Rd

Vector

FCVTXN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '0' then ReservedValue();
integer esize = 32;
integer datasize = 64;
integer elements = 2;
integer part = UInt(Q);

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

FCVTXN, FCVTXN2 Page 294

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <Tb>
0 x RESERVED
1 0 2S
1 1 4S

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “sz”:

sz <Ta>
0 RESERVED
1 2D

<Vb> Is the destination width specifier, encoded in “sz”:

sz <Vb>
0 RESERVED
1 S

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “sz”:

sz <Va>
0 RESERVED
1 D

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;

for e = 0 to elements-1
Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize], FPCR, FPRounding_ODD);

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTXN, FCVTXN2 Page 295

FCVTZS (vector, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from
floating-point to fixed-point signed integer using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd
U immh

Scalar

FCVTZS <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd
U immh

Vector

FCVTZS <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
if immh<3>:Q == '10' then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

FCVTZS (vector, fixed-point) Page 296

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in “immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in “immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (vector, fixed-point) Page 297

FCVTZS (vector, integer)

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from a
floating-point value to a signed integer value using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTZS <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTZS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

FCVTZS (vector, integer) Page 298

Vector half precision

FCVTZS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTZS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZS (vector, integer) Page 299

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (vector, integer) Page 300

FCVTZS (scalar, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP
source register to a 32-bit or 64-bit fixed-point signed integer using the Round towards Zero rounding mode, and writes the result to the general-
purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 0 1 1 0 0 0 scale Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTZS <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTZS <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTZS <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTZS <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTZS <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZS <Xd>, <Dn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;

case type of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

if sf == '0' && scale<5> == '0' then UnallocatedEncoding();
integer fracbits = 64 - UInt(scale);

FCVTZS (scalar, fixed-point) Page 301

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after
the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after
the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, fracbits, FALSE, FPCR, FPRounding_ZERO);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (scalar, fixed-point) Page 302

FCVTZS (scalar, integer)

Floating-point Convert to Signed integer, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP
source register to a 32-bit or 64-bit signed integer using the Round towards Zero rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 1 1 0 0 0 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTZS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTZS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTZS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTZS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTZS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTZS (scalar, integer) Page 303

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (scalar, integer) Page 304

FCVTZU (vector, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector
from floating-point to fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd
U immh

Scalar

FCVTZU <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 1 1 1 1 1 1 Rn Rd
U immh

Vector

FCVTZU <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
if immh<3>:Q == '10' then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

FCVTZU (vector, fixed-point) Page 305

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in “immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in “immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (vector, fixed-point) Page 306

FCVTZU (vector, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from a
floating-point value to an unsigned integer value using the Round towards Zero rounding mode, and writes the result to the SIMD&FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar half precision

FCVTZU <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Scalar single-precision and double-precision

FCVTZU <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

FCVTZU (vector, integer) Page 307

Vector half precision

FCVTZU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 1 1 1 0 Rn Rd
U o2 o1

Vector single-precision and double-precision

FCVTZU <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding(o1:o2);
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZU (vector, integer) Page 308

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (vector, integer) Page 309

FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result
to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 0 1 1 0 0 1 scale Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTZU <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTZU <Xd>, <Hn>, #<fbits>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTZU <Wd>, <Sn>, #<fbits>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTZU <Xd>, <Sn>, #<fbits>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTZU <Wd>, <Dn>, #<fbits>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZU <Xd>, <Dn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;

case type of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

if sf == '0' && scale<5> == '0' then UnallocatedEncoding();
integer fracbits = 64 - UInt(scale);

FCVTZU (scalar, fixed-point) Page 310

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after
the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after
the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, fracbits, TRUE, FPCR, FPRounding_ZERO);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (scalar, fixed-point) Page 311

FCVTZU (scalar, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP
source register to a 32-bit or 64-bit unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 1 1 0 0 1 0 0 0 0 0 0 Rn Rd
rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTZU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMv8.2)

FCVTZU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)

FCVTZU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)

FCVTZU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTZU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPDecodeRounding(rmode);

FCVTZU (scalar, integer) Page 312

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (scalar, integer) Page 313

FDIV (vector)

Floating-point Divide (vector). This instruction divides the floating-point values in the elements in the first source SIMD&FP register, by the
floating-point values in the corresponding elements in the second source SIMD&FP register, places the results in a vector, and writes the vector
to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

Half-precision

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

Single-precision and double-precision

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FDIV (vector) Page 314

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPDiv(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIV (vector) Page 315

FDIV (scalar)

Floating-point Divide (scalar). This instruction divides the floating-point value of the first source SIMD&FP register by the floating-point value
of the second source SIMD&FP register, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 0 0 1 1 0 Rn Rd

Half-precision (type == 11)
(ARMv8.2)

FDIV <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FDIV <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FDIV <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FDIV (scalar) Page 316

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPDiv(operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIV (scalar) Page 317

FJCVTZS

Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero. This instruction converts the double-precision floating-point
value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero rounding mode, and writes the result to the
general-purpose destination register. If the result is too large to be accommodated as a signed 32-bit integer, then the result is the integer modulo

232, as held in a 32-bit signed integer.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Double-precision to 32-bit
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 Rn Rd
sf type rmode opcode

Double-precision to 32-bit

FJCVTZS <Wd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

if !HaveFJCVTZSExt() then UnallocatedEncoding();

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(64) fltval;
bits(32) intval;

fltval = V[n];
intval = FPToFixedJS(fltval, FPCR, TRUE);
X[d] = ZeroExtend(intval<31:0>, 64);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FJCVTZS Page 318

FMADD

Floating-point fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, adds the product to
the value of the third SIMD&FP source register, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 type 0 Rm 0 Ra Rn Rd
o1 o0

Half-precision (type == 11)
(ARMv8.2)

FMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (type == 00)

FMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (type == 01)

FMADD <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

FMADD Page 319

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operanda = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMulAdd(operanda, operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMADD Page 320

FMAX (vector)

Floating-point Maximum (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers, places the
larger of each of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd
U o1

Half-precision

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd
U o1

Single-precision and double-precision

FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAX (vector) Page 321

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (vector) Page 322

FMAX (scalar)

Floating-point Maximum (scalar). This instruction compares the two source SIMD&FP registers, and writes the larger of the two floating-point
values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 1 0 0 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FMAX <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FMAX <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FMAX <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMAX (scalar) Page 323

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMax(operand1, operand2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (scalar) Page 324

FMAXNM (vector)

Floating-point Maximum Number (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers,
writes the larger of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result placed in
the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd
U a

Half-precision

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd
U o1

Single-precision and double-precision

FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAXNM (vector) Page 325

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (vector) Page 326

FMAXNM (scalar)

Floating-point Maximum Number (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the larger
of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result that is
placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 1 1 0 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FMAXNM <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FMAXNM <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FMAXNM <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMAXNM (scalar) Page 327

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMaxNum(operand1, operand2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (scalar) Page 328

FMAXNMP (scalar)

Floating-point Maximum Number of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register
and writes the largest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1 sz

Half-precision

FMAXNMP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1

Single-precision and double-precision

FMAXNMP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMAXNMP (scalar) Page 329

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAXNUM, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMP (scalar) Page 330

FMAXNMP (vector)

Floating-point Maximum Number Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two
source SIMD&FP registers, writes the largest of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All
the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result is the
numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 0 0 1 Rn Rd
U a

Half-precision

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 0 1 Rn Rd
U o1

Single-precision and double-precision

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMAXNMP (vector) Page 331

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMP (vector) Page 332

FMAXNMV

Floating-point Maximum Number across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes
the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result of the
comparison is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1

Half-precision

FMAXNMV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1

Single-precision and double-precision

FMAXNMV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then ReservedValue(); // .4S only

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FMAXNMV Page 333

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAXNUM, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMV Page 334

FMAXP (scalar)

Floating-point Maximum of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes
the largest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1 sz

Half-precision

FMAXP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1

Single-precision and double-precision

FMAXP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMAXP (scalar) Page 335

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAX, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXP (scalar) Page 336

FMAXP (vector)

Floating-point Maximum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP
register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated
vector, writes the larger of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this
instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 1 1 0 1 Rn Rd
U o1

Half-precision

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 0 1 Rn Rd
U o1

Single-precision and double-precision

FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAXP (vector) Page 337

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXP (vector) Page 338

FMAXV

Floating-point Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest
of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1

Half-precision

FMAXV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1

Single-precision and double-precision

FMAXV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then ReservedValue();

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAXV Page 339

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMAX, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXV Page 340

FMIN (vector)

Floating-point minimum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places
the smaller of each of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd
U o1

Half-precision

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd
U o1

Single-precision and double-precision

FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMIN (vector) Page 341

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (vector) Page 342

FMIN (scalar)

Floating-point Minimum (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the smaller of the
two floating-point values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 1 0 1 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FMIN <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FMIN <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FMIN <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMIN (scalar) Page 343

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMin(operand1, operand2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (scalar) Page 344

FMINNM (vector)

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers,
writes the smaller of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result placed in
the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd
U a

Half-precision

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd
U o1

Single-precision and double-precision

FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMINNM (vector) Page 345

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (vector) Page 346

FMINNM (scalar)

Floating-point Minimum Number (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the
smaller of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result that is
placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 1 1 1 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FMINNM <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FMINNM <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FMINNM <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMINNM (scalar) Page 347

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMinNum(operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (scalar) Page 348

FMINNMP (scalar)

Floating-point Minimum Number of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register
and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1 sz

Half-precision

FMINNMP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1

Single-precision and double-precision

FMINNMP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMINNMP (scalar) Page 349

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMINNUM, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMP (scalar) Page 350

FMINNMP (vector)

Floating-point Minimum Number Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two
source SIMD&FP registers, writes the smallest of each pair of floating-point values into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result is the
numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 0 0 0 1 Rn Rd
U a

Half-precision

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 0 1 Rn Rd
U o1

Single-precision and double-precision

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMINNMP (vector) Page 351

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMinNum(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMaxNum(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMP (vector) Page 352

FMINNMV

Floating-point Minimum Number across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes
the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result of the
comparison is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1

Half-precision

FMINNMV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 0 0 1 0 Rn Rd
o1

Single-precision and double-precision

FMINNMV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then ReservedValue(); // .4S only

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FMINNMV Page 353

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMINNUM, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMV Page 354

FMINP (scalar)

Floating-point Minimum of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes
the smallest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1 sz

Half-precision

FMINP <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1

Single-precision and double-precision

FMINP <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 H
1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMINP (scalar) Page 355

sz <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

sz <T>
0 2S
1 2D

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMIN, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINP (scalar) Page 356

FMINP (vector)

Floating-point Minimum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP
register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated
vector, writes the smaller of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this
instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 0 Rm 0 0 1 1 0 1 Rn Rd
U o1

Half-precision

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 0 1 Rn Rd
U o1

Single-precision and double-precision

FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMINP (vector) Page 357

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
if pair then

element1 = Elem[concat, 2*e, esize];
element2 = Elem[concat, (2*e)+1, esize];

else
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then
Elem[result, e, esize] = FPMin(element1, element2, FPCR);

else
Elem[result, e, esize] = FPMax(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINP (vector) Page 358

FMINV

Floating-point Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the
smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1

Half-precision

FMINV <V><d>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 1 0 0 0 0 1 1 1 1 1 0 Rn Rd
o1

Single-precision and double-precision

FMINV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q != '01' then ReservedValue();

integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMINV Page 359

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 x RESERVED
1 0 4S
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
V[d] = Reduce(ReduceOp_FMIN, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINV Page 360

FMLA (by element)

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector elements in the first source SIMD&FP
register by the specified value in the second source SIMD&FP register, and accumulates the results in the vector elements of the destination
SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-
precision and double-precision

Scalar, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd
o2

Scalar, half-precision

FMLA <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd
o2

FMLA (by element) Page 361

Scalar, single-precision and double-precision

FMLA <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Vector, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 0 L M Rm 0 0 0 1 H 0 Rn Rd
o2

Vector, half-precision

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 1 sz L M Rm 0 0 0 1 H 0 Rn Rd
o2

FMLA (by element) Page 362

Vector, single-precision and double-precision

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMLA (by element) Page 363

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (by element) Page 364

FMLA (vector)

Floating-point fused Multiply-Add to accumulator (vector). This instruction multiplies corresponding floating-point values in the vectors in the
two source SIMD&FP registers, adds the product to the corresponding vector element of the destination SIMD&FP register, and writes the result
to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 0 1 1 Rn Rd
a

Half-precision

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 0 1 1 Rn Rd
op

Single-precision and double-precision

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (op == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

FMLA (vector) Page 365

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (vector) Page 366

FMLS (by element)

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the vector elements in the first source
SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the results from the vector elements of the
destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-
precision and double-precision

Scalar, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd
o2

Scalar, half-precision

FMLS <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd
o2

FMLS (by element) Page 367

Scalar, single-precision and double-precision

FMLS <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (o2 == '1');

Vector, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 0 L M Rm 0 1 0 1 H 0 Rn Rd
o2

Vector, half-precision

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 1 sz L M Rm 0 1 0 1 H 0 Rn Rd
o2

FMLS (by element) Page 368

Vector, single-precision and double-precision

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (o2 == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMLS (by element) Page 369

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (by element) Page 370

FMLS (vector)

Floating-point fused Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding floating-point values in the vectors
in the two source SIMD&FP registers, negates the product, adds the result to the corresponding vector element of the destination SIMD&FP
register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd
a

Half-precision

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (a == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 0 1 1 Rn Rd
op

Single-precision and double-precision

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (op == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

FMLS (vector) Page 371

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (vector) Page 372

FMOV (vector, immediate)

Floating-point move immediate (vector). This instruction copies an immediate floating-point constant into every element of the SIMD&FP
destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 1 1 d e f g h Rd

Half-precision

FMOV <Vd>.<T>, #<imm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;

imm8 = a:b:c:d:e:f:g:h;
imm16 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>, 2):imm8<5:0>:Zeros(6);

imm = Replicate(imm16, datasize DIV 16);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c 1 1 1 1 0 1 d e f g h Rd
cmode

Single-precision (op == 0)

FMOV <Vd>.<T>, #<imm>

Double-precision (Q == 1 && op == 1)

FMOV <Vd>.2D, #<imm>

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

if cmode:op == '11111' then
// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UnallocatedEncoding();

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMOV (vector, immediate) Page 373

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h". For
details of the range of constants available and the encoding of <imm>, see Modified immediate constants in A64 floating-
point instructions.

Operation

CheckFPAdvSIMDEnabled64();

V[rd] = imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (vector, immediate) Page 374

FMOV (register)

Floating-point Move register without conversion. This instruction copies the floating-point value in the SIMD&FP source register to the
SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 0 0 0 0 1 0 0 0 0 Rn Rd
opc

Half-precision (type == 11)
(ARMv8.2)

FMOV <Hd>, <Hn>

Single-precision (type == 00)

FMOV <Sd>, <Sn>

Double-precision (type == 01)

FMOV <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand = V[n];

V[d] = operand;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (register) Page 375

FMOV (general)

Floating-point Move to or from general-purpose register without conversion. This instruction transfers the contents of a SIMD&FP register to a
general-purpose register, or the contents of a general-purpose register to a SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 x 1 1 x 0 0 0 0 0 0 Rn Rd
rmode opcode

FMOV (general) Page 376

Half-precision to 32-bit (sf == 0 && type == 11 && rmode == 00 && opcode == 110)
(ARMv8.2)

FMOV <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11 && rmode == 00 && opcode == 110)
(ARMv8.2)

FMOV <Xd>, <Hn>

32-bit to half-precision (sf == 0 && type == 11 && rmode == 00 && opcode == 111)
(ARMv8.2)

FMOV <Hd>, <Wn>

32-bit to single-precision (sf == 0 && type == 00 && rmode == 00 && opcode == 111)

FMOV <Sd>, <Wn>

Single-precision to 32-bit (sf == 0 && type == 00 && rmode == 00 && opcode == 110)

FMOV <Wd>, <Sn>

64-bit to half-precision (sf == 1 && type == 11 && rmode == 00 && opcode == 111)
(ARMv8.2)

FMOV <Hd>, <Xn>

64-bit to double-precision (sf == 1 && type == 01 && rmode == 00 && opcode == 111)

FMOV <Dd>, <Xn>

64-bit to top half of 128-bit (sf == 1 && type == 10 && rmode == 01 && opcode == 111)

FMOV <Vd>.D[1], <Xn>

Double-precision to 64-bit (sf == 1 && type == 01 && rmode == 00 && opcode == 110)

FMOV <Xd>, <Dn>

Top half of 128-bit to 64-bit (sf == 1 && type == 10 && rmode == 01 && opcode == 110)

FMOV <Xd>, <Vn>.D[1]

FMOV (general) Page 377

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPConvOp op;
FPRounding rounding;
boolean unsigned;
integer part;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

if opcode<2:1>:rmode != '11 01' then UnallocatedEncoding();
fltsize = 128;

when '11'
if HaveFP16Ext() then

fltsize = 16;
else

UnallocatedEncoding();

case opcode<2:1>:rmode of
when '00 xx' // FCVT[NPMZ][US]

rounding = FPDecodeRounding(rmode);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '01 00' // [US]CVTF
rounding = FPRoundingMode(FPCR);
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_ItoF;

when '10 00' // FCVTA[US]
rounding = FPRounding_TIEAWAY;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI;

when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UnallocatedEncoding();
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 0;

when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UnallocatedEncoding();
op = if opcode<0> == '1' then FPConvOp_MOV_ItoF else FPConvOp_MOV_FtoI;
part = 1;
fltsize = 64; // size of D[1] is 64

when '11 11' // FJCVTZS
if !HaveFJCVTZSExt() then UnallocatedEncoding();
rounding = FPRounding_ZERO;
unsigned = (opcode<0> == '1');
op = FPConvOp_CVT_FtoI_JS;

otherwise
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FMOV (general) Page 378

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

case op of
when FPConvOp_CVT_FtoI

fltval = V[n];
intval = FPToFixed(fltval, 0, unsigned, FPCR, rounding);
X[d] = intval;

when FPConvOp_CVT_ItoF
intval = X[n];
fltval = FixedToFP(intval, 0, unsigned, FPCR, rounding);
V[d] = fltval;

when FPConvOp_MOV_FtoI
fltval = Vpart[n, part];
intval = ZeroExtend(fltval, intsize);
X[d] = intval;

when FPConvOp_MOV_ItoF
intval = X[n];
fltval = intval<fltsize-1:0>;
Vpart[d, part] = fltval;

when FPConvOp_CVT_FtoI_JS
fltval = V[n];
intval = FPToFixedJS(fltval, FPCR, TRUE);
X[d] = ZeroExtend(intval<31:0>, 64);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (general) Page 379

FMOV (scalar, immediate)

Floating-point move immediate (scalar). This instruction copies a floating-point immediate constant into the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 imm8 1 0 0 0 0 0 0 0 Rd

Half-precision (type == 11)
(ARMv8.2)

FMOV <Hd>, #<imm>

Single-precision (type == 00)

FMOV <Sd>, #<imm>

Double-precision (type == 01)

FMOV <Dd>, #<imm>

integer d = UInt(Rd);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

bits(datasize) imm = VFPExpandImm(imm8);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in the "imm8" field. For
details of the range of constants available and the encoding of <imm>, see Modified immediate constants in A64 floating-
point instructions.

Operation

CheckFPAdvSIMDEnabled64();

V[d] = imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (scalar, immediate) Page 380

FMSUB

Floating-point Fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, negates the
product, adds that to the value of the third SIMD&FP source register, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 type 0 Rm 1 Ra Rn Rd
o1 o0

Half-precision (type == 11)
(ARMv8.2)

FMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (type == 00)

FMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (type == 01)

FMSUB <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

FMSUB Page 381

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operanda = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

operand1 = FPNeg(operand1);
result = FPMulAdd(operanda, operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMSUB Page 382

FMUL (by element)

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value
in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-
precision and double-precision

Scalar, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
U

Scalar, half-precision

FMUL <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
U

FMUL (by element) Page 383

Scalar, single-precision and double-precision

FMUL <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Vector, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
U

Vector, half-precision

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
U

FMUL (by element) Page 384

Vector, single-precision and double-precision

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMUL (by element) Page 385

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if mulx_op then

Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
else

Elem[result, e, esize] = FPMul(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (by element) Page 386

FMUL (vector)

Floating-point Multiply (vector). This instruction multiplies corresponding floating-point values in the vectors in the two source SIMD&FP
registers, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

Half-precision

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

Single-precision and double-precision

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

FMUL (vector) Page 387

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMul(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (vector) Page 388

FMUL (scalar)

Floating-point Multiply (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP registers, and writes the result
to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 0 0 0 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FMUL <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FMUL <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FMUL <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMUL (scalar) Page 389

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMul(operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (scalar) Page 390

FMULX (by element)

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in the vector elements in the first source
SIMD&FP register by the specified floating-point value in the second source SIMD&FP register, places the results in a vector, and writes the
vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the values is negative,
otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-
precision and double-precision

Scalar, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
U

Scalar, half-precision

FMULX <Hd>, <Hn>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
U

FMULX (by element) Page 391

Scalar, single-precision and double-precision

FMULX <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean mulx_op = (U == '1');

Vector, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 0 L M Rm 1 0 0 1 H 0 Rn Rd
U

Vector, half-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP16Ext() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
index = UInt(H:L:M);

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 1 sz L M Rm 1 0 0 1 H 0 Rn Rd
U

FMULX (by element) Page 392

Vector, single-precision and double-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of

when '0x' index = UInt(H:L);
when '10' index = UInt(H);
when '11' UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx_op = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q sz <T>
0 0 2S
0 1 RESERVED
1 0 4S
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

<Ts> Is an element size specifier, encoded in “sz”:

sz <Ts>
0 S
1 D

<index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMULX (by element) Page 393

sz L <index>
0 x H:L
1 0 H
1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2 = Elem[operand2, index, esize];

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
if mulx_op then

Elem[result, e, esize] = FPMulX(element1, element2, FPCR);
else

Elem[result, e, esize] = FPMul(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMULX (by element) Page 394

FMULX

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the vectors of the two source SIMD&FP
registers, places the resulting floating-point values in a vector, and writes the vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the values is negative,
otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

Scalar half precision

FMULX <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

Scalar single-precision and double-precision

FMULX <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 0 1 1 1 Rn Rd

FMULX Page 395

Vector half precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 0 1 1 1 Rn Rd

Vector single-precision and double-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FMULX Page 396

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPMulX(element1, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMULX Page 397

FNEG (vector)

Floating-point Negate (vector). This instruction negates the value of each vector element in the source SIMD&FP register, writes the result to a
vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 Rn Rd
U

Half-precision

FNEG <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 0 1 1 1 1 1 0 Rn Rd
U

Single-precision and double-precision

FNEG <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FNEG (vector) Page 398

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
if neg then

element = FPNeg(element);
else

element = FPAbs(element);
Elem[result, e, esize] = element;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNEG (vector) Page 399

FNEG (scalar)

Floating-point Negate (scalar). This instruction negates the value in the SIMD&FP source register and writes the result to the SIMD&FP
destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 0 0 1 0 1 0 0 0 0 Rn Rd
opc

Half-precision (type == 11)
(ARMv8.2)

FNEG <Hd>, <Hn>

Single-precision (type == 00)

FNEG <Sd>, <Sn>

Double-precision (type == 01)

FNEG <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPNeg(operand);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

FNEG (scalar) Page 400

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNEG (scalar) Page 401

FNMADD

Floating-point Negated fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, negates
the product, subtracts the value of the third SIMD&FP source register, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 type 1 Rm 0 Ra Rn Rd
o1 o0

Half-precision (type == 11)
(ARMv8.2)

FNMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (type == 00)

FNMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (type == 01)

FNMADD <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

FNMADD Page 402

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operanda = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

operanda = FPNeg(operanda);
operand1 = FPNeg(operand1);
result = FPMulAdd(operanda, operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMADD Page 403

FNMSUB

Floating-point Negated fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP source registers,
subtracts the value of the third SIMD&FP source register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 type 1 Rm 1 Ra Rn Rd
o1 o0

Half-precision (type == 11)
(ARMv8.2)

FNMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (type == 00)

FNMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (type == 01)

FNMSUB <Dd>, <Dn>, <Dm>, <Da>

integer d = UInt(Rd);
integer a = UInt(Ra);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.

<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

FNMSUB Page 404

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operanda = V[a];
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

operanda = FPNeg(operanda);
result = FPMulAdd(operanda, operand1, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMSUB Page 405

FNMUL (scalar)

Floating-point Multiply-Negate (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP registers, and writes
the negation of the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 1 0 0 0 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FNMUL <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FNMUL <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FNMUL <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FNMUL (scalar) Page 406

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPMul(operand1, operand2, FPCR);

result = FPNeg(result);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMUL (scalar) Page 407

FRECPE

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each vector element in the source SIMD&FP
register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

Scalar half precision

FRECPE <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

Scalar single-precision and double-precision

FRECPE <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

FRECPE Page 408

Vector half precision

FRECPE <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

Vector single-precision and double-precision

FRECPE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FRECPE Page 409

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRecipEstimate(element, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPE Page 410

FRECPS

Floating-point Reciprocal Step. This instruction multiplies the corresponding floating-point values in the vectors of the two source SIMD&FP
registers, subtracts each of the products from 2.0, places the resulting floating-point values in a vector, and writes the vector to the destination
SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

Scalar half precision

FRECPS <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

Scalar single-precision and double-precision

FRECPS <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 0 Rm 0 0 1 1 1 1 Rn Rd

FRECPS Page 411

Vector half precision

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 Rm 1 1 1 1 1 1 Rn Rd

Vector single-precision and double-precision

FRECPS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FRECPS Page 412

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPRecipStepFused(element1, element2);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPS Page 413

FRECPX

Floating-point Reciprocal exponent (scalar). This instruction finds an approximate reciprocal exponent for each vector element in the source
SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd

Half-precision

FRECPX <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

Single-precision and double-precision

FRECPX <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FRECPX Page 414

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRecpX(element, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRECPX Page 415

FRINTA (vector)

Floating-point Round to Integral, to nearest with ties to Away (vector). This instruction rounds a vector of floating-point values in the SIMD&FP
source register to integral floating-point values of the same size using the Round to Nearest with Ties to Away rounding mode, and writes the
result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd
U o2 o1

Half-precision

FRINTA <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd
U o2 o1

FRINTA (vector) Page 416

Single-precision and double-precision

FRINTA <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTA (vector) Page 417

FRINTA (scalar)

Floating-point Round to Integral, to nearest with ties to Away (scalar). This instruction rounds a floating-point value in the SIMD&FP source
register to an integral floating-point value of the same size using the Round to Nearest with Ties to Away rounding mode, and writes the result to
the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 1 1 0 0 1 0 0 0 0 Rn Rd
rmode

Half-precision (type == 11)
(ARMv8.2)

FRINTA <Hd>, <Hn>

Single-precision (type == 00)

FRINTA <Sd>, <Sn>

Double-precision (type == 01)

FRINTA <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTA (scalar) Page 418

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, FPRounding_TIEAWAY, FALSE);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTA (scalar) Page 419

FRINTI (vector)

Floating-point Round to Integral, using current rounding mode (vector). This instruction rounds a vector of floating-point values in the
SIMD&FP source register to integral floating-point values of the same size using the rounding mode that is determined by the FPCR, and writes
the result to the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

Half-precision

FRINTI <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

FRINTI (vector) Page 420

Single-precision and double-precision

FRINTI <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTI (vector) Page 421

FRINTI (scalar)

Floating-point Round to Integral, using current rounding mode (scalar). This instruction rounds a floating-point value in the SIMD&FP source
register to an integral floating-point value of the same size using the rounding mode that is determined by the FPCR, and writes the result to the
SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 1 1 1 1 1 0 0 0 0 Rn Rd
rmode

Half-precision (type == 11)
(ARMv8.2)

FRINTI <Hd>, <Hn>

Single-precision (type == 00)

FRINTI <Sd>, <Sn>

Double-precision (type == 01)

FRINTI <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

FPRounding rounding;
rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTI (scalar) Page 422

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTI (scalar) Page 423

FRINTM (vector)

Floating-point Round to Integral, toward Minus infinity (vector). This instruction rounds a vector of floating-point values in the SIMD&FP
source register to integral floating-point values of the same size using the Round towards Minus Infinity rounding mode, and writes the result to
the SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

Half-precision

FRINTM <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

FRINTM (vector) Page 424

Single-precision and double-precision

FRINTM <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTM (vector) Page 425

FRINTM (scalar)

Floating-point Round to Integral, toward Minus infinity (scalar). This instruction rounds a floating-point value in the SIMD&FP source register
to an integral floating-point value of the same size using the Round towards Minus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 1 0 1 0 1 0 0 0 0 Rn Rd
rmode

Half-precision (type == 11)
(ARMv8.2)

FRINTM <Hd>, <Hn>

Single-precision (type == 00)

FRINTM <Sd>, <Sn>

Double-precision (type == 01)

FRINTM <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

FPRounding rounding;
rounding = FPDecodeRounding('10');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTM (scalar) Page 426

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTM (scalar) Page 427

FRINTN (vector)

Floating-point Round to Integral, to nearest with ties to even (vector). This instruction rounds a vector of floating-point values in the SIMD&FP
source register to integral floating-point values of the same size using the Round to Nearest rounding mode, and writes the result to the
SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd
U o2 o1

Half-precision

FRINTN <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd
U o2 o1

FRINTN (vector) Page 428

Single-precision and double-precision

FRINTN <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTN (vector) Page 429

FRINTN (scalar)

Floating-point Round to Integral, to nearest with ties to even (scalar). This instruction rounds a floating-point value in the SIMD&FP source
register to an integral floating-point value of the same size using the Round to Nearest rounding mode, and writes the result to the SIMD&FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 1 0 0 0 1 0 0 0 0 Rn Rd
rmode

Half-precision (type == 11)
(ARMv8.2)

FRINTN <Hd>, <Hn>

Single-precision (type == 00)

FRINTN <Sd>, <Sn>

Double-precision (type == 01)

FRINTN <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

FPRounding rounding;
rounding = FPDecodeRounding('00');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTN (scalar) Page 430

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTN (scalar) Page 431

FRINTP (vector)

Floating-point Round to Integral, toward Plus infinity (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source
register to integral floating-point values of the same size using the Round towards Plus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 Rn Rd
U o2 o1

Half-precision

FRINTP <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 0 1 0 Rn Rd
U o2 o1

FRINTP (vector) Page 432

Single-precision and double-precision

FRINTP <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTP (vector) Page 433

FRINTP (scalar)

Floating-point Round to Integral, toward Plus infinity (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to
an integral floating-point value of the same size using the Round towards Plus Infinity rounding mode, and writes the result to the SIMD&FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 1 0 0 1 1 0 0 0 0 Rn Rd
rmode

Half-precision (type == 11)
(ARMv8.2)

FRINTP <Hd>, <Hn>

Single-precision (type == 00)

FRINTP <Sd>, <Sn>

Double-precision (type == 01)

FRINTP <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

FPRounding rounding;
rounding = FPDecodeRounding('01');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTP (scalar) Page 434

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTP (scalar) Page 435

FRINTX (vector)

Floating-point Round to Integral exact, using current rounding mode (vector). This instruction rounds a vector of floating-point values in the
SIMD&FP source register to integral floating-point values of the same size using the rounding mode that is determined by the FPCR, and writes
the result to the SIMD&FP destination register.

An Inexact exception is raised when the result value is not numerically equal to the input value. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

Half-precision

FRINTX <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

FRINTX (vector) Page 436

Single-precision and double-precision

FRINTX <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTX (vector) Page 437

FRINTX (scalar)

Floating-point Round to Integral exact, using current rounding mode (scalar). This instruction rounds a floating-point value in the SIMD&FP
source register to an integral floating-point value of the same size using the rounding mode that is determined by the FPCR, and writes the result
to the SIMD&FP destination register.

An Inexact exception is raised when the result value is not numerically equal to the input value. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 1 1 1 0 1 0 0 0 0 Rn Rd
rmode

Half-precision (type == 11)
(ARMv8.2)

FRINTX <Hd>, <Hn>

Single-precision (type == 00)

FRINTX <Sd>, <Sn>

Double-precision (type == 01)

FRINTX <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

FPRounding rounding;
rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTX (scalar) Page 438

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, TRUE);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTX (scalar) Page 439

FRINTZ (vector)

Floating-point Round to Integral, toward Zero (vector). This instruction rounds a vector of floating-point values in the SIMD&FP source register
to integral floating-point values of the same size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP
destination register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

Half-precision

FRINTZ <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 0 0 1 1 0 Rn Rd
U o2 o1

FRINTZ (vector) Page 440

Single-precision and double-precision

FRINTZ <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean exact = FALSE;
FPRounding rounding;
case U:o1:o2 of

when '0xx' rounding = FPDecodeRounding(o1:o2);
when '100' rounding = FPRounding_TIEAWAY;
when '101' UnallocatedEncoding();
when '110' rounding = FPRoundingMode(FPCR); exact = TRUE;
when '111' rounding = FPRoundingMode(FPCR);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRoundInt(element, FPCR, rounding, exact);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTZ (vector) Page 441

FRINTZ (scalar)

Floating-point Round to Integral, toward Zero (scalar). This instruction rounds a floating-point value in the SIMD&FP source register to an
integral floating-point value of the same size using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination
register.

A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for
normal arithmetic.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 1 0 1 1 1 0 0 0 0 Rn Rd
rmode

Half-precision (type == 11)
(ARMv8.2)

FRINTZ <Hd>, <Hn>

Single-precision (type == 00)

FRINTZ <Sd>, <Sn>

Double-precision (type == 01)

FRINTZ <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

FPRounding rounding;
rounding = FPDecodeRounding('11');

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FRINTZ (scalar) Page 442

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPRoundInt(operand, FPCR, rounding, FALSE);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRINTZ (scalar) Page 443

FRSQRTE

Floating-point Reciprocal Square Root Estimate. This instruction calculates an approximate square root for each vector element in the source
SIMD&FP register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

Scalar half precision

FRSQRTE <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

Scalar single-precision and double-precision

FRSQRTE <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd

FRSQRTE Page 444

Vector half precision

FRSQRTE <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd

Vector single-precision and double-precision

FRSQRTE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FRSQRTE Page 445

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPRSqrtEstimate(element, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRSQRTE Page 446

FRSQRTS

Floating-point Reciprocal Square Root Step. This instruction multiplies corresponding floating-point values in the vectors of the two source
SIMD&FP registers, subtracts each of the products from 3.0, divides these results by 2.0, places the results into a vector, and writes the vector to
the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd

Scalar half precision

FRSQRTS <Hd>, <Hn>, <Hm>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd

Scalar single-precision and double-precision

FRSQRTS <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 1 1 1 1 Rn Rd

FRSQRTS Page 447

Vector half precision

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 1 1 1 1 Rn Rd

Vector single-precision and double-precision

FRSQRTS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FRSQRTS Page 448

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPRSqrtStepFused(element1, element2);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FRSQRTS Page 449

FSQRT (vector)

Floating-point Square Root (vector). This instruction calculates the square root for each vector element in the source SIMD&FP register, places
the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 Rn Rd

Half-precision

FSQRT <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 1 1 1 0 Rn Rd

Single-precision and double-precision

FSQRT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

FSQRT (vector) Page 450

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPSqrt(element, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSQRT (vector) Page 451

FSQRT (scalar)

Floating-point Square Root (scalar). This instruction calculates the square root of the value in the SIMD&FP source register and writes the result
to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 0 0 0 0 1 1 1 0 0 0 0 Rn Rd
opc

Half-precision (type == 11)
(ARMv8.2)

FSQRT <Hd>, <Hn>

Single-precision (type == 00)

FSQRT <Sd>, <Sn>

Double-precision (type == 01)

FSQRT <Dd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) result;
bits(datasize) operand = V[n];

result = FPSqrt(operand, FPCR);

V[d] = result;

FSQRT (scalar) Page 452

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSQRT (scalar) Page 453

FSUB (vector)

Floating-point Subtract (vector). This instruction subtracts the elements in the vector in the second source SIMD&FP register, from the
corresponding elements in the vector in the first source SIMD&FP register, places each result into elements of a vector, and writes the vector to
the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 0 Rm 0 0 0 1 0 1 Rn Rd
U

Half-precision

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 Rm 1 1 0 1 0 1 Rn Rd
U

Single-precision and double-precision

FSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean abs = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FSUB (vector) Page 454

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) diff;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
diff = FPSub(element1, element2, FPCR);
Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUB (vector) Page 455

FSUB (scalar)

Floating-point Subtract (scalar). This instruction subtracts the floating-point value of the second source SIMD&FP register from the floating-
point value of the first source SIMD&FP register, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 type 1 Rm 0 0 1 1 1 0 Rn Rd
op

Half-precision (type == 11)
(ARMv8.2)

FSUB <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FSUB <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FSUB <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
datasize = 16;

else
UnallocatedEncoding();

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FSUB (scalar) Page 456

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) result;
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];

result = FPSub(operand1, operand2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSUB (scalar) Page 457

HINT

Hint instruction is for the instruction set space that is reserved for architectural hint instructions.

Some encodings described here are unallocated in this revision of the architecture, and behave as NOPs. These encodings might be allocated to
other hint functionality in future revisions of the architecture.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 CRm op2 1 1 1 1 1

Hints 6 and 7 (CRm == 0000 && op2 == 11x)

HINT #<imm>

Hints 8 to 15, and 24 to 127 (CRm != 00x0)

HINT #<imm>

Hints 17 to 23 (CRm == 0010 && op2 != 00x)

HINT #<imm>

Assembler Symbols

<imm> Is a 7-bit unsigned immediate, in the range 0 to 127, excluding the allocated encodings described below, encoded in
"CRm:op2".

The following encodings of "CRm:op2" are allocated:

0000000

NOP

0000001

YIELD

0000010

WFE

0000011

WFI

0000100

SEV

0000101

SEVL

For allocated encodings of "CRm:op2":

• A disassembler will disassemble the allocated instruction, rather than the HINT instruction.

• An assembler may support assembly of allocated encodings using HINT with the corresponding <imm>
value, but it is not required to do so.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HINT Page 458

HLT

Halt instruction generates a Halt Instruction debug event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 0 1 0 imm16 0 0 0 0 0

System

HLT #<imm>

if EDSCR.HDE == '0' || !HaltingAllowed() then UndefinedFault();

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

Halt(DebugHalt_HaltInstruction);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HLT Page 459

HVC

Hypervisor Call causes an exception to EL2. Non-secure software executing at EL1 can use this instruction to call the hypervisor to request a
service.

The HVC instruction is UNDEFINED:

• At EL0, and Secure EL1.
• When SCR_EL3.HCE is set to 0.

On executing an HVC instruction, the PE records the exception as a Hypervisor Call exception in ESR_ELx, using the EC value 0x16,
and the value of the immediate argument.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 0

System

HVC #<imm>

bits(16) imm = imm16;

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

if !HaveEL(EL2) || PSTATE.EL == EL0 || (PSTATE.EL == EL1 && IsSecure()) then
UnallocatedEncoding();

hvc_enable = if HaveEL(EL3) then SCR_EL3.HCE else NOT(HCR_EL2.HCD);
if hvc_enable == '0' then

AArch64.UndefinedFault();
else

AArch64.CallHypervisor(imm);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVC Page 460

IC

Instruction Cache operation. For more information, see A64 system instructions for cache maintenance.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 0 1 1 1 CRm op2 Rt
L CRn

System

IC <ic_op>{, <Xt>}

is equivalent to

SYS #<op1>, C7, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'0111',CRm,op2) == Sys_IC.

Assembler Symbols

<ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded in “op1:CRm:op2”:

op1 CRm op2 <ic_op>
000 0001 000 IALLUIS
000 0101 000 IALLU
011 0101 001 IVAU

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IC Page 461

INS (element)

Insert vector element from another vector element. This instruction copies the vector element of the source SIMD&FP register to the specified
vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (element).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

Advanced SIMD

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);
if size > 3 then UnallocatedEncoding();

integer dst_index = UInt(imm5<4:size+1>);
integer src_index = UInt(imm4<3:size>);
integer idxdsize = if imm4<3> == '1' then 128 else 64;
// imm4<size-1:0> is IGNORED

integer esize = 8 << size;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index1> Is the destination element index encoded in “imm5”:

imm5 <index1>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index2> Is the source element index encoded in “imm5:imm4”:

imm5 <index2>
x0000 RESERVED
xxxx1 imm4<3:0>
xxx10 imm4<3:1>
xx100 imm4<3:2>
x1000 imm4<3>

Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

INS (element) Page 462

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];
bits(128) result;

result = V[d];
Elem[result, dst_index, esize] = Elem[operand, src_index, esize];
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INS (element) Page 463

INS (general)

Insert vector element from general-purpose register. This instruction copies the contents of the source general-purpose register to the specified
vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (from general).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd

Advanced SIMD

INS <Vd>.<Ts>[<index>], <R><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size = LowestSetBit(imm5);

if size > 3 then UnallocatedEncoding();
integer index = UInt(imm5<4:size+1>);

integer esize = 8 << size;
integer datasize = 128;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<R> Is the width specifier for the general-purpose source register, encoded in “imm5”:

imm5 <R>
x0000 RESERVED
xxxx1 W
xxx10 W
xx100 W
x1000 X

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

INS (general) Page 464

Operation

CheckFPAdvSIMDEnabled64();
bits(esize) element = X[n];
bits(datasize) result;

result = V[d];
Elem[result, index, esize] = element;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

INS (general) Page 465

ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more information, see Instruction
Synchronization Barrier (ISB).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 1 0 1 1 1 1 1
opc

System

ISB {<option>|#<imm>}

// Empty.

Assembler Symbols

<option> Specifies an optional limitation on the barrier operation. Values are:

SY
Full system barrier operation, encoded as CRm = 0b1111. Can be omitted.

All other encodings of CRm are reserved. The corresponding instructions execute as full system barrier operations, but must
not be relied upon by software.

<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the "CRm" field.

Operation

InstructionSynchronizationBarrier();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISB Page 466

LD1 (multiple structures)

Load multiple single-element structures to one, two, three, or four registers. This instruction loads multiple single-element structures from
memory and writes the result to one, two, three, or four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 x x 1 x size Rn Rt
L opcode

One register (opcode == 0111)

LD1 { <Vt>.<T> }, [<Xn|SP>]

Two registers (opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers (opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers (opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 1 0 Rm x x 1 x size Rn Rt
L opcode

LD1 (multiple structures) Page 467

One register, immediate offset (Rm == 11111 && opcode == 0111)

LD1 { <Vt>.<T> }, [<Xn|SP>], <imm>

One register, register offset (Rm != 11111 && opcode == 0111)

LD1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset (Rm == 11111 && opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset (Rm != 11111 && opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset (Rm == 11111 && opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset (Rm != 11111 && opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset (Rm == 11111 && opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset (Rm != 11111 && opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

LD1 (multiple structures) Page 468

Q <imm>
0 #8
1 #16

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

LD1 (multiple structures) Page 469

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1 (multiple structures) Page 470

LD1 (single structure)

Load one single-element structure to one lane of one register. This instruction loads a single-element structure from memory and writes the result
to the specified lane of the SIMD&FP register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 0 S size Rn Rt
L R opcode

8-bit (opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 0 Rm x x 0 S size Rn Rt
L R opcode

LD1 (single structure) Page 471

8-bit, immediate offset (Rm == 11111 && opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>], #1

8-bit, register offset (Rm != 11111 && opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD1 (single structure) Page 472

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD1 (single structure) Page 473

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1 (single structure) Page 474

LD1R

Load one single-element structure and Replicate to all lanes (of one register). This instruction loads a single-element structure from memory and
replicates the structure to all the lanes of the SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 size Rn Rt
L R opcode S

No offset

LD1R { <Vt>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 0 0 size Rn Rt
L R opcode S

Immediate offset (Rm == 11111)

LD1R { <Vt>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD1R { <Vt>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “size”:

LD1R Page 475

size <imm>
00 #1
01 #2
10 #4
11 #8

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD1R Page 476

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD1R Page 477

LD2 (multiple structures)

Load multiple 2-element structures to two registers. This instruction loads multiple 2-element structures from memory and writes the result to the
two SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 size Rn Rt
L opcode

No offset

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 1 0 Rm 1 0 0 0 size Rn Rt
L opcode

Immediate offset (Rm == 11111)

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

LD2 (multiple structures) Page 478

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

LD2 (multiple structures) Page 479

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2 (multiple structures) Page 480

LD2 (single structure)

Load single 2-element structure to one lane of two registers. This instruction loads a 2-element structure from memory and writes the result to
the corresponding elements of the two SIMD&FP registers without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 0 S size Rn Rt
L R opcode

8-bit (opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 1 Rm x x 0 S size Rn Rt
L R opcode

LD2 (single structure) Page 481

8-bit, immediate offset (Rm == 11111 && opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

8-bit, register offset (Rm != 11111 && opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD2 (single structure) Page 482

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD2 (single structure) Page 483

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2 (single structure) Page 484

LD2R

Load single 2-element structure and Replicate to all lanes of two registers. This instruction loads a 2-element structure from memory and
replicates the structure to all the lanes of the two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 size Rn Rt
L R opcode S

No offset

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 0 0 size Rn Rt
L R opcode S

Immediate offset (Rm == 11111)

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD2R { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LD2R Page 485

<imm> Is the post-index immediate offset, encoded in “size”:

size <imm>
00 #2
01 #4
10 #8
11 #16

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD2R Page 486

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD2R Page 487

LD3 (multiple structures)

Load multiple 3-element structures to three registers. This instruction loads multiple 3-element structures from memory and writes the result to
the three SIMD&FP registers, with de-interleaving.

The following figure shows an example of the operation of de-interleaving of a LD3.16 (multiple 3-element structures) instruction:.

A[0].x
A[0].y
A[0].z
A[1].x
A[1].y
A[1].z
A[2].x
A[2].y
A[2].z
A[3].x
A[3].y
A[3].z

Memory

Z3Z2Z1Z0D2
Y3 Y1 D1

X3X2X1 D0
Y2 Y0

X0

Registers

A is a packed array of
3-element structures.
Each element is a 16-bit
halfword.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 size Rn Rt
L opcode

No offset

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 1 0 Rm 0 1 0 0 size Rn Rt
L opcode

Immediate offset (Rm == 11111)

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

LD3 (multiple structures) Page 488

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

LD3 (multiple structures) Page 489

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3 (multiple structures) Page 490

LD3 (single structure)

Load single 3-element structure to one lane of three registers). This instruction loads a 3-element structure from memory and writes the result to
the corresponding elements of the three SIMD&FP registers without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 x x 1 S size Rn Rt
L R opcode

8-bit (opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 0 Rm x x 1 S size Rn Rt
L R opcode

LD3 (single structure) Page 491

8-bit, immediate offset (Rm == 11111 && opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

8-bit, register offset (Rm != 11111 && opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD3 (single structure) Page 492

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD3 (single structure) Page 493

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3 (single structure) Page 494

LD3R

Load single 3-element structure and Replicate to all lanes of three registers. This instruction loads a 3-element structure from memory and
replicates the structure to all the lanes of the three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 size Rn Rt
L R opcode S

No offset

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 0 Rm 1 1 1 0 size Rn Rt
L R opcode S

Immediate offset (Rm == 11111)

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

LD3R Page 495

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “size”:

size <imm>
00 #3
01 #6
10 #12
11 #24

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD3R Page 496

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD3R Page 497

LD4 (multiple structures)

Load multiple 4-element structures to four registers. This instruction loads multiple 4-element structures from memory and writes the result to
the four SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 size Rn Rt
L opcode

No offset

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 1 0 Rm 0 0 0 0 size Rn Rt
L opcode

Immediate offset (Rm == 11111)

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

LD4 (multiple structures) Page 498

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

LD4 (multiple structures) Page 499

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4 (multiple structures) Page 500

LD4 (single structure)

Load single 4-element structure to one lane of four registers. This instruction loads a 4-element structure from memory and writes the result to
the corresponding elements of the four SIMD&FP registers without affecting the other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 x x 1 S size Rn Rt
L R opcode

8-bit (opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 1 Rm x x 1 S size Rn Rt
L R opcode

LD4 (single structure) Page 501

8-bit, immediate offset (Rm == 11111 && opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

8-bit, register offset (Rm != 11111 && opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

LD4 (single structure) Page 502

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD4 (single structure) Page 503

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4 (single structure) Page 504

LD4R

Load single 4-element structure and Replicate to all lanes of four registers. This instruction loads a 4-element structure from memory and
replicates the structure to all the lanes of the four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 size Rn Rt
L R opcode S

No offset

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 1 1 Rm 1 1 1 0 size Rn Rt
L R opcode S

Immediate offset (Rm == 11111)

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

LD4R Page 505

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “size”:

size <imm>
00 #4
01 #8
10 #16
11 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

LD4R Page 506

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LD4R Page 507

LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, adds the value held in a
register to it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

• LDADDL and LDADDAL store to memory with release semantics.

• LDADD has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
size opc

LDADD, LDADDA, LDADDAL,
LDADDL

Page 508

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDADDA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDADDAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDADD <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDADDL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDADDA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDADDAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDADD <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDADDL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDADD, LDADDA, LDADDAL,
LDADDL

Page 509

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = data + value;
Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADD, LDADDA, LDADDAL,
LDADDL

Page 510

LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to it, and stores the result back to
memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.

• LDADDLB and LDADDALB store to memory with release semantics.

• LDADDB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDADDAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDADDALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDADDB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDADDLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDADDB, LDADDAB,
LDADDALB, LDADDLB

Page 511

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = data + value;
Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADDB, LDADDAB,
LDADDALB, LDADDLB

Page 512

LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a register to it, and stores the result
back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.

• LDADDLH and LDADDALH store to memory with release semantics.

• LDADDH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDADDAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDADDALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDADDH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDADDLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDADDH, LDADDAH,
LDADDALH, LDADDLH

Page 513

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = data + value;
Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDADDH, LDADDAH,
LDADDALH, LDADDLH

Page 514

LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from the derived address in
memory, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Store-Release, except that:

• There is no ordering requirement, separate from the requirements of a Load-Acquirepc or a Store-Release, created by having a Store-
Release followed by a Load-Acquirepc instruction.

• The reading of a value written by a Store-Release by a Load-Acquirepc instruction by the same observer does not make the write of the
Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
size Rs

32-bit (size == 10)

LDAPR <Wt>, [<Xn|SP> {,#0}]

64-bit (size == 11)

LDAPR <Xt>, [<Xn|SP> {,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

AccType acctype = AccType_ORDERED;
integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;
integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, dbytes, acctype];
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPR Page 515

LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived address in memory, zero-extends
it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Store-Release, except that:

• There is no ordering requirement, separate from the requirements of a Load-Acquirepc or a Store-Release, created by having a Store-
Release followed by a Load-Acquirepc instruction.

• The reading of a value written by a Store-Release by a Load-Acquirepc instruction by the same observer does not make the write of the
Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
size Rs

Integer

LDAPRB <Wt>, [<Xn|SP> {,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 1, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPRB Page 516

LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the derived address in memory,
zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Store-Release, except that:

• There is no ordering requirement, separate from the requirements of a Load-Acquirepc or a Store-Release, created by having a Store-
Release followed by a Load-Acquirepc instruction.

• The reading of a value written by a Store-Release by a Load-Acquirepc instruction by the same observer does not make the write of the
Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 1 0 1 (1) (1) (1) (1) (1) 1 1 0 0 0 0 Rn Rt
size Rs

Integer

LDAPRH <Wt>, [<Xn|SP> {,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 2, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAPRH Page 517

LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from memory, and writes it to a
register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory
accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the acquire semantic other than its
effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDAR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDAR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, dbytes, AccType_ORDERED];
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAR Page 518

LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it and writes it to a register.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses, see
Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the acquire semantic other than its
effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDARB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 1, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDARB Page 519

LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it, and writes it to a
register. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory
accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the acquire semantic other than its
effect on the arrival at endpoints.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDARH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 2, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDARH Page 520

LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit doublewords from
memory, and writes them to two registers. A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword
granularity. A 64-bit pair requires the address to be quadword aligned and is single-copy atomic for each doubleword at doubleword granularity.
The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions.
See Synchronization and semaphores. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For
information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 1 Rt2 Rn Rt
L Rs o0

32-bit (sz == 0)

LDAXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

LDAXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDAXP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDAXP Page 521

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if rt_unknown then
// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN;

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, AccType_ORDERED];
if BigEndian() then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

AArch64.Abort(address, AArch64.AlignmentFault(AccType_ORDERED, FALSE, FALSE));
X[t] = Mem[address, 8, AccType_ORDERED];
X[t2] = Mem[address+8, 8, AccType_ORDERED];

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXP Page 522

LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword from memory, and
writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive
access mark is checked by Store Exclusive instructions. See Synchronization and semaphores. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDAXR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDAXR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

data = Mem[address, dbytes, AccType_ORDERED];
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXR Page 523

LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it and writes it to a
register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is
checked by Store Exclusive instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics as described
in Load-Acquire, Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDAXRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 1);

data = Mem[address, 1, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXRB Page 524

LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it and
writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive
access mark is checked by Store Exclusive instructions. See Synchronization and semaphores. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDAXRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 2);

data = Mem[address, 2, AccType_ORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAXRH Page 525

LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, performs a bitwise AND
with the complement of the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

• LDCLRL and LDCLRAL store to memory with release semantics.

• LDCLR has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
size opc

LDCLR, LDCLRA, LDCLRAL,
LDCLRL

Page 526

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDCLRA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDCLRAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDCLR <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDCLRL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDCLRA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDCLRAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDCLR <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDCLRL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDCLR, LDCLRA, LDCLRAL,
LDCLRL

Page 527

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = data AND NOT(value);
Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLR, LDCLRA, LDCLRAL,
LDCLRL

Page 528

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the complement of the value held
in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.

• LDCLRLB and LDCLRALB store to memory with release semantics.

• LDCLRB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDCLRAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDCLRALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDCLRB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDCLRLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB

Page 529

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = data AND NOT(value);
Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB

Page 530

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise AND with the complement of the
value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.

• LDCLRLH and LDCLRALH store to memory with release semantics.

• LDCLRH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 0 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDCLRAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDCLRALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDCLRH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDCLRLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH

Page 531

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = data AND NOT(value);
Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH

Page 532

LDEOR, LDEORA, LDEORAL, LDEORL

Atomic exclusive OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in
the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

• LDEORL and LDEORAL store to memory with release semantics.

• LDEOR has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
size opc

LDEOR, LDEORA, LDEORAL,
LDEORL

Page 533

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDEORA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDEORAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDEOR <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDEORL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDEORA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDEORAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDEOR <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDEORL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDEOR, LDEORA, LDEORAL,
LDEORL

Page 534

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = data EOR value;
Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEOR, LDEORA, LDEORAL,
LDEORL

Page 535

LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic exclusive OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive OR with the value held in a register
on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.

• LDEORLB and LDEORALB store to memory with release semantics.

• LDEORB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDEORAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDEORALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDEORB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDEORLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDEORB, LDEORAB, LDEORALB,
LDEORLB

Page 536

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = data EOR value;
Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEORB, LDEORAB, LDEORALB,
LDEORLB

Page 537

LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic exclusive OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an exclusive OR with the value held in
a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.

• LDEORLH and LDEORALH store to memory with release semantics.

• LDEORH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDEORAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDEORALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDEORH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDEORLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDEORH, LDEORAH,
LDEORALH, LDEORLH

Page 538

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = data EOR value;
Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDEORH, LDEORAH,
LDEORALH, LDEORLH

Page 539

LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register. The instruction also has memory
ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory accesses, see Load/Store addressing
modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the acquire semantic other than its
effect on the arrival at endpoints.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDLAR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDLAR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, dbytes, AccType_LIMITEDORDERED];
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLAR Page 540

LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction also has memory ordering
semantics as described in Load LOAcquire, Store LORelease. For information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the acquire semantic other than its
effect on the arrival at endpoints.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDLARB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 1, AccType_LIMITEDORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLARB Page 541

LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register. The instruction also has memory
ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory accesses, see Load/Store addressing
modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the acquire semantic other than its
effect on the arrival at endpoints.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 1 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDLARH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 2, AccType_LIMITEDORDERED];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDLARH Page 542

LDNP (SIMD&FP)

Load Pair of SIMD&FP registers, with Non-temporal hint. This instruction loads a pair of SIMD&FP registers from memory, issuing a hint to
the memory system that the access is non-temporal. The address that is used for the load is calculated from a base register value and an optional
immediate offset.

For information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 0 0 1 imm7 Rt2 Rn Rt
L

32-bit (opc == 00)

LDNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

LDNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

LDNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

// Empty.

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDNP (SIMD&FP).

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0
and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0
and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, defaulting
to 0 and encoded in the "imm7" field as <imm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc == '11' then UnallocatedEncoding();
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

LDNP (SIMD&FP) Page 543

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data1 = Mem[address, dbytes, AccType_VECSTREAM];
data2 = Mem[address+dbytes, dbytes, AccType_VECSTREAM];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

V[t] = data1;
V[t2] = data2;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNP (SIMD&FP) Page 544

LDNP

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate offset, loads two 32-bit words
or two 64-bit doublewords from memory, and writes them to two registers.

For information about memory accesses, see Load/Store addressing modes. For information about Non-temporal pair instructions, see Load/
Store Non-temporal pair.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 0 0 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

LDNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

// Empty.

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDNP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0
and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0
and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc<0> == '1' then UnallocatedEncoding();
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

LDNP Page 545

Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data1 = Mem[address, dbytes, AccType_STREAM];
data2 = Mem[address+dbytes, dbytes, AccType_STREAM];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

X[t] = data1;
X[t2] = data2;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDNP Page 546

LDP (SIMD&FP)

Load Pair of SIMD&FP registers. This instruction loads a pair of SIMD&FP registers from memory. The address that is used for the load is
calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 0 1 1 imm7 Rt2 Rn Rt
L

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 1 1 1 imm7 Rt2 Rn Rt
L

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 1 0 1 imm7 Rt2 Rn Rt
L

LDP (SIMD&FP) Page 547

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDP (SIMD&FP).

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256
to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512
to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a multiple of 16 in the range
-1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to
1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc == '11' then UnallocatedEncoding();
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

LDP (SIMD&FP) Page 548

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data1 = Mem[address, dbytes, AccType_VEC];
data2 = Mem[address+dbytes, dbytes, AccType_VEC];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

V[t] = data1;
V[t2] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDP (SIMD&FP) Page 549

LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit words or two 64-bit
doublewords from memory, and writes them to two registers. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

LDP Page 550

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256
to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512
to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if L:opc<0> == '01' || opc == '11' then UnallocatedEncoding();
boolean signed = (opc<0> != '0');
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

LDP Page 551

Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;
boolean wb_unknown = FALSE;

if wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data1 = Mem[address, dbytes, AccType_NORMAL];
data2 = Mem[address+dbytes, dbytes, AccType_NORMAL];
if rt_unknown then

data1 = bits(datasize) UNKNOWN;
data2 = bits(datasize) UNKNOWN;

if signed then
X[t] = SignExtend(data1, 64);
X[t2] = SignExtend(data2, 64);

else
X[t] = data1;
X[t2] = data2;

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDP Page 552

LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset, loads two 32-bit words from
memory, sign-extends them, and writes them to two registers. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 1 1 imm7 Rt2 Rn Rt
opc L

Post-index

LDPSW <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 1 1 imm7 Rt2 Rn Rt
opc L

Pre-index

LDPSW <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 0 1 imm7 Rt2 Rn Rt
opc L

Signed offset

LDPSW <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDPSW.

Assembler Symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256 to 252,
encoded in the "imm7" field as <imm>/4.

For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting
to 0 and encoded in the "imm7" field as <imm>/4.

LDPSW Page 553

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
bits(64) offset = LSL(SignExtend(imm7, 64), 2);

Operation

bits(64) address;
bits(32) data1;
bits(32) data2;
boolean rt_unknown = FALSE;
boolean wb_unknown = FALSE;

if wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data1 = Mem[address, 4, AccType_NORMAL];
data2 = Mem[address+4, 4, AccType_NORMAL];
if rt_unknown then

data1 = bits(32) UNKNOWN;
data2 = bits(32) UNKNOWN;

X[t] = SignExtend(data1, 64);
X[t2] = SignExtend(data2, 64);
if wback then

if wb_unknown then
address = bits(64) UNKNOWN;

elsif postindex then
address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDPSW Page 554

LDR (immediate, SIMD&FP)

Load SIMD&FP Register (immediate offset). This instruction loads an element from memory, and writes the result as a scalar to the SIMD&FP
register. The address that is used for the load is calculated from a base register value, a signed immediate offset, and an optional offset that is a
multiple of the element size.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 1 0 imm9 0 1 Rn Rt
opc

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>], #<simm>

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>], #<simm>

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>], #<simm>

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>], #<simm>

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 1 0 imm9 1 1 Rn Rt
opc

LDR (immediate, SIMD&FP) Page 555

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>, #<simm>]!

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>, #<simm>]!

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>, #<simm>]!

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>, #<simm>]!

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 1 x 1 imm12 Rn Rt
opc

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>{, #<pimm>}]

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

LDR (immediate, SIMD&FP) Page 556

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0
and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0
and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range 0 to 65520, defaulting to
0 and encoded in the "imm12" field as <pimm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

LDR (immediate, SIMD&FP) Page 557

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate, SIMD&FP) Page 558

LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that is used for the load is
calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes. The
Unsigned offset variant scales the immediate offset value by the size of the value accessed before adding it to the base register value.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>], #<simm>

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>, #<simm>]!

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 1 0 1 imm12 Rn Rt
size opc

LDR (immediate) Page 559

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDR (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0
and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0
and encoded in the "imm12" field as <pimm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;

regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;

LDR (immediate) Page 560

Operation

bits(64) address;
bits(datasize) data;
boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data = Mem[address, datasize DIV 8, AccType_NORMAL];
X[t] = ZeroExtend(data, regsize);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate) Page 561

LDR (literal, SIMD&FP)

Load SIMD&FP Register (PC-relative literal). This instruction loads a SIMD&FP register from memory. The address that is used for the load is
calculated from the PC value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 0 1 1 1 0 0 imm19 Rt

32-bit (opc == 00)

LDR <St>, <label>

64-bit (opc == 01)

LDR <Dt>, <label>

128-bit (opc == 10)

LDR <Qt>, <label>

integer t = UInt(Rt);
integer size;
bits(64) offset;

case opc of
when '00'

size = 4;
when '01'

size = 8;
when '10'

size = 16;
when '11'

UnallocatedEncoding();

offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Dt> Is the 64-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB,
is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(size*8) data;

CheckFPAdvSIMDEnabled64();

data = Mem[address, size, AccType_VEC];
V[t] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal, SIMD&FP) Page 562

LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to a register.
For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 x 0 1 1 0 0 0 imm19 Rt
opc

32-bit (opc == 00)

LDR <Wt>, <label>

64-bit (opc == 01)

LDR <Xt>, <label>

integer t = UInt(Rt);
MemOp memop = MemOp_LOAD;
boolean signed = FALSE;
integer size;
bits(64) offset;

case opc of
when '00'

size = 4;
when '01'

size = 8;
when '10'

size = 4;
signed = TRUE;

when '11'
memop = MemOp_PREFETCH;

offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB,
is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(size*8) data;

case memop of
when MemOp_LOAD

data = Mem[address, size, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, 64);
else

X[t] = data;

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal) Page 563

LDR (register, SIMD&FP)

Load SIMD&FP Register (register offset). This instruction loads a SIMD&FP register from memory. The address that is used for the load is
calculated from a base register value and an offset register value. The offset can be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 1 1 Rm option S 1 0 Rn Rt
opc

8-bit (size == 00 && opc == 01 && option != 011)

LDR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-bit (size == 00 && opc == 01 && option == 011)

LDR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in “option”:

LDR (register, SIMD&FP) Page 564

option <extend>
010 UXTW
110 SXTW
111 SXTX

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to LSL, and which must be omitted
for the LSL option when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #4

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;

LDR (register, SIMD&FP) Page 565

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register, SIMD&FP) Page 566

LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word from memory, and writes it to
a register. The offset register value can optionally be shifted and extended. For information about memory accesses, see Load/Store addressing
modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

integer scale = UInt(size);
if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted.
encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
integer regsize;

regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;

LDR (register) Page 567

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, datasize DIV 8, AccType_NORMAL];
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register) Page 568

LDRAA, LDRAB

Load Register, with pointer authentication. This instruction authenticates an address from a base register using a modifier of zero and the
specified key, adds an immediate offset to the authenticated address, and loads a 64-bit doubleword from memory at this resulting address into a
register.

Key A is used for LDRAA, and key B is used for LDRAB.

If the authentication passes, the PE behaves the same as for an LDR instruction. If the authentication fails, a Translation fault is
generated.

The authenticated address is not written back to the base register, unless the pre-indexed variant of the instruction is used. In this case, the
address that is written back to the base register does not include the pointer authentication code.

For information about memory accesses, see Load/Store addressing modes.

Unscaled offset
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 M S 1 imm9 W 1 Rn Rt
size

Key A, offset (M == 0 && W == 0)

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]

Key A, pre-indexed (M == 0 && W == 1)

LDRAA <Xt>, [<Xn|SP>{, #<simm>}]!

Key B, offset (M == 1 && W == 0)

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]

Key B, pre-indexed (M == 1 && W == 1)

LDRAB <Xt>, [<Xn|SP>{, #<simm>}]!

if !HavePACExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
boolean wback = (W == '1');
boolean use_key_a = (M == '0');
bits(10) S10 = S:imm9;
bits(64) offset = LSL(SignExtend(S10, 64), 3);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, a multiple of 8 in the range -4096 to 4088, defaulting to 0 and encoded in the
"S:imm9" field as <simm>/8.

LDRAA, LDRAB Page 569

Operation

bits(64) address;
bits(64) data;
boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if use_key_a then
address = AuthDA(address, X[31]);

else
address = AuthDB(address, X[31]);

address = address + offset;
data = Mem[address, 8, AccType_NORMAL];
X[t] = data;

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRAA, LDRAB Page 570

LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The address that is used for the
load is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
size opc

Post-index

LDRB <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
size opc

Pre-index

LDRB <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 0 1 imm12 Rn Rt
size opc

Unsigned offset

LDRB <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

LDRB (immediate) Page 571

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(8) data;
boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data = Mem[address, 1, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (immediate) Page 572

LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory, zero-
extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
size opc

Extended register (option != 011)

LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register (option == 011)

LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

Operation

bits(64) offset = ExtendReg(m, extend_type, 0);
bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 1, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (register) Page 573

LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a register. The address that is used
for the load is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing
modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 1 0 imm9 0 1 Rn Rt
size opc

Post-index

LDRH <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 1 0 imm9 1 1 Rn Rt
size opc

Pre-index

LDRH <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1 0 1 imm12 Rn Rt
size opc

Unsigned offset

LDRH <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

LDRH (immediate) Page 574

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the
"imm12" field as <pimm>/2.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(16) data;
boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data = Mem[address, 2, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (immediate) Page 575

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a halfword from memory,
zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 1 1 Rm option S 1 0 Rn Rt
size opc

32-bit

LDRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted.
encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is
encoded in “S”:

S <amount>
0 #0
1 #1

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

LDRH (register) Page 576

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 2, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (register) Page 577

LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits, and writes the result to a register.
The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see
Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSB <Wt>, [<Xn|SP>], #<simm>

64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSB <Wt>, [<Xn|SP>, #<simm>]!

64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 1 x imm12 Rn Rt
size opc

LDRSB (immediate) Page 578

32-bit (opc == 11)

LDRSB <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (opc == 10)

LDRSB <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDRSB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

LDRSB (immediate) Page 579

Operation

bits(64) address;
bits(8) data;
boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(8) UNKNOWN;

else
data = X[t];

Mem[address, 1, AccType_NORMAL] = data;

when MemOp_LOAD
data = Mem[address, 1, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (immediate) Page 580

LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory,
sign-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt
size opc

32-bit with extended register offset (opc == 11 && option != 011)

LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

32-bit with shifted register offset (opc == 11 && option == 011)

LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

64-bit with extended register offset (opc == 10 && option != 011)

LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

64-bit with shifted register offset (opc == 10 && option == 011)

LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

LDRSB (register) Page 581

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

Operation

bits(64) offset = ExtendReg(m, extend_type, 0);
bits(64) address;
bits(8) data;

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of
when MemOp_STORE

data = X[t];
Mem[address, 1, AccType_NORMAL] = data;

when MemOp_LOAD
data = Mem[address, 1, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (register) Page 582

LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset. For information about memory accesses,
see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 1 x 0 imm9 0 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>], #<simm>

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 1 x 0 imm9 1 1 Rn Rt
size opc

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>, #<simm>]!

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1 1 x imm12 Rn Rt
size opc

LDRSH (immediate) Page 583

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDRSH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the
"imm12" field as <pimm>/2.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

LDRSH (immediate) Page 584

Operation

bits(64) address;
bits(16) data;
boolean wb_unknown = FALSE;
boolean rt_unknown = FALSE;

if memop == MemOp_LOAD && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if memop == MemOp_STORE && wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

if rt_unknown then
data = bits(16) UNKNOWN;

else
data = X[t];

Mem[address, 2, AccType_NORMAL] = data;

when MemOp_LOAD
data = Mem[address, 2, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

if wback then
if wb_unknown then

address = bits(64) UNKNOWN;
elsif postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (immediate) Page 585

LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register value, loads a halfword from
memory, sign-extends it, and writes it to a register. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 1 x 1 Rm option S 1 0 Rn Rt
size opc

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted.
encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is
encoded in “S”:

S <amount>
0 #0
1 #1

LDRSH (register) Page 586

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(16) data;

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of
when MemOp_STORE

data = X[t];
Mem[address, 2, AccType_NORMAL] = data;

when MemOp_LOAD
data = Mem[address, 2, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (register) Page 587

LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the result to a register. The address that
is used for the load is calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store
addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 1 0 0 imm9 0 1 Rn Rt
size opc

Post-index

LDRSW <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 1 0 0 imm9 1 1 Rn Rt
size opc

Pre-index

LDRSW <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 1 1 0 imm12 Rn Rt
size opc

Unsigned offset

LDRSW <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 2);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDRSW (immediate).

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

LDRSW (immediate) Page 588

<pimm> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0 and encoded in the
"imm12" field as <pimm>/4.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(32) data;
boolean wb_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);
if wback then

if wb_unknown then
address = bits(64) UNKNOWN;

elsif postindex then
address = address + offset;

if n == 31 then
SP[] = address;

else
X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (immediate) Page 589

LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to
a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 0 0 imm19 Rt
opc

Literal

LDRSW <Xt>, <label>

integer t = UInt(Rt);
bits(64) offset;

offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB,
is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;
bits(32) data;

data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (literal) Page 590

LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value, loads a word from memory,
sign-extends it to form a 64-bit value, and writes it to a register. The offset register value can be shifted left by 0 or 2 bits. For information about
memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt
size opc

64-bit

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 2 else 0;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted.
encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is
encoded in “S”:

S <amount>
0 #0
1 #2

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);

LDRSW (register) Page 591

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSW (register) Page 592

LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, performs a bitwise OR
with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire
semantics.

• LDSETL and LDSETAL store to memory with release semantics.

• LDSET has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
size opc

LDSET, LDSETA, LDSETAL,
LDSETL

Page 593

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDSETA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDSETAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDSET <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDSETL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDSETA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDSETAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDSET <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDSETL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSET, LDSETA, LDSETAL,
LDSETL

Page 594

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = data OR value;
Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSET, LDSETA, LDSETAL,
LDSETL

Page 595

LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the value held in a register on it, and
stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.

• LDSETLB and LDSETALB store to memory with release semantics.

• LDSETB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDSETAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDSETALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDSETB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDSETLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSETB, LDSETAB, LDSETALB,
LDSETLB

Page 596

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = data OR value;
Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSETB, LDSETAB, LDSETALB,
LDSETLB

Page 597

LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR with the value held in a register
on it, and stores the result back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.

• LDSETLH and LDSETALH store to memory with release semantics.

• LDSETH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 0 1 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDSETAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDSETALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDSETH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDSETLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSETH, LDSETAH, LDSETALH,
LDSETLH

Page 598

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = data OR value;
Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSETH, LDSETAH, LDSETALH,
LDSETLH

Page 599

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with
acquire semantics.

• LDSMAXL and LDSMAXAL store to memory with release semantics.

• LDSMAX has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
size opc

LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL

Page 600

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDSMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDSMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDSMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDSMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDSMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDSMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDSMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDSMAXL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL

Page 601

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = if SInt(data) > SInt(value) then data else value;
Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL

Page 602

LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value held in a register, and
stores the larger value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire
semantics.

• LDSMAXLB and LDSMAXALB store to memory with release semantics.

• LDSMAXB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDSMAXAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDSMAXALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDSMAXB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB

Page 603

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = if SInt(data) > SInt(value) then data else value;
Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB

Page 604

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a
register, and stores the larger value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in
the destination register.

• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire
semantics.

• LDSMAXLH and LDSMAXALH store to memory with release semantics.

• LDSMAXH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDSMAXAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDSMAXALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDSMAXH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH

Page 605

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = if SInt(data) > SInt(value) then data else value;
Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH

Page 606

LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with
acquire semantics.

• LDSMINL and LDSMINAL store to memory with release semantics.

• LDSMIN has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
size opc

LDSMIN, LDSMINA, LDSMINAL,
LDSMINL

Page 607

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDSMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDSMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDSMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDSMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDSMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDSMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDSMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDSMINL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSMIN, LDSMINA, LDSMINAL,
LDSMINL

Page 608

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = if SInt(data) > SInt(value) then value else data;
Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMIN, LDSMINA, LDSMINAL,
LDSMINL

Page 609

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value held in a register, and
stores the smaller value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire
semantics.

• LDSMINLB and LDSMINALB store to memory with release semantics.

• LDSMINB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDSMINAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDSMINALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDSMINB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDSMINLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB

Page 610

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = if SInt(data) > SInt(value) then value else data;
Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB

Page 611

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a
register, and stores the smaller value back to memory, treating the values as signed numbers. The value initially loaded from memory is returned
in the destination register.

• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire
semantics.

• LDSMINLH and LDSMINALH store to memory with release semantics.

• LDSMINH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 0 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDSMINAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDSMINALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDSMINH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDSMINLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH

Page 612

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = if SInt(data) > SInt(value) then value else data;
Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH

Page 613

LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address that is used for the load is
calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
size opc

32-bit (size == 10)

LDTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

LDTR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;
integer regsize;

regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;

Operation

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, datasize DIV 8, acctype];
X[t] = ZeroExtend(data, regsize);

LDTR Page 614

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTR Page 615

LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register. The address that is used for the
load is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
size opc

Unscaled offset

LDTRB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 1, acctype];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRB Page 616

LDTRH

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a register. The address that is
used for the load is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 1 0 imm9 1 0 Rn Rt
size opc

Unscaled offset

LDTRH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 2, acctype];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRH Page 617

LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt
size opc

32-bit (opc == 11)

LDTRSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDTRSB <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

LDTRSB Page 618

Operation

bits(64) address;
bits(8) data;

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of
when MemOp_STORE

data = X[t];
Mem[address, 1, acctype] = data;

when MemOp_LOAD
data = Mem[address, 1, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSB Page 619

LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 1 x 0 imm9 1 0 Rn Rt
size opc

32-bit (opc == 11)

LDTRSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

LDTRSH Page 620

Operation

bits(64) address;
bits(16) data;

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of
when MemOp_STORE

data = X[t];
Mem[address, 2, acctype] = data;

when MemOp_LOAD
data = Mem[address, 2, acctype];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSH Page 621

LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the result to a register. The address
that is used for the load is calculated from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 1 0 0 imm9 1 0 Rn Rt
size opc

Unscaled offset

LDTRSW <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;

Operation

bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 4, acctype];
X[t] = SignExtend(data, 64);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDTRSW Page 622

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with
acquire semantics.

• LDUMAXL and LDUMAXAL store to memory with release semantics.

• LDUMAX has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
size opc

LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL

Page 623

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDUMAXA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDUMAXAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDUMAX <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDUMAXL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDUMAXA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDUMAXAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDUMAX <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDUMAXL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL

Page 624

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = if UInt(data) > UInt(value) then data else value;
Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL

Page 625

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value held in a register, and
stores the larger value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire
semantics.

• LDUMAXLB and LDUMAXALB store to memory with release semantics.

• LDUMAXB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDUMAXAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDUMAXALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDUMAXB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB

Page 626

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = if UInt(data) > UInt(value) then data else value;
Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB

Page 627

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a
register, and stores the larger value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is returned
in the destination register.

• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire
semantics.

• LDUMAXLH and LDUMAXALH store to memory with release semantics.

• LDUMAXH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 0 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDUMAXAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDUMAXALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDUMAXH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH

Page 628

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = if UInt(data) > UInt(value) then data else value;
Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH

Page 629

LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers. The value initially
loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with
acquire semantics.

• LDUMINL and LDUMINAL store to memory with release semantics.

• LDUMIN has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
size opc

LDUMIN, LDUMINA, LDUMINAL,
LDUMINL

Page 630

32-bit, acquire (size == 10 && A == 1 && R == 0)

LDUMINA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

LDUMINAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0 && Rt != 11111)

LDUMIN <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1 && Rt != 11111)

LDUMINL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

LDUMINA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

LDUMINAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0 && Rt != 11111)

LDUMIN <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1 && Rt != 11111)

LDUMINL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDUMIN, LDUMINA, LDUMINAL,
LDUMINL

Page 631

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, ldacctype];

result = if UInt(data) > UInt(value) then value else data;

Mem[address, datasize DIV 8, stacctype] = result;

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMIN, LDUMINA, LDUMINAL,
LDUMINL

Page 632

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the value held in a register, and
stores the smaller value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire
semantics.

• LDUMINLB and LDUMINALB store to memory with release semantics.

• LDUMINB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDUMINAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDUMINALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDUMINB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDUMINLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB

Page 633

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, ldacctype];

result = if UInt(data) > UInt(value) then value else data;

Mem[address, 1, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB

Page 634

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it against the value held in a
register, and stores the smaller value back to memory, treating the values as unsigned numbers. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire
semantics.

• LDUMINLH and LDUMINALH store to memory with release semantics.

• LDUMINH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 0 1 1 1 0 0 Rn Rt
size opc

Acquire (A == 1 && R == 0)

LDUMINAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

LDUMINALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0 && Rt != 11111)

LDUMINH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1 && Rt != 11111)

LDUMINLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH

Page 635

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, ldacctype];

result = if UInt(data) > UInt(value) then value else data;

Mem[address, 2, stacctype] = result;

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH

Page 636

LDUR (SIMD&FP)

Load SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from memory. The address that is used for the load is
calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 1 0 imm9 0 0 Rn Rt
opc

8-bit (size == 00 && opc == 01)

LDUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit (size == 01 && opc == 01)

LDUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit (size == 10 && opc == 01)

LDUR <St>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11 && opc == 01)

LDUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit (size == 00 && opc == 11)

LDUR <Qt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;

LDUR (SIMD&FP) Page 637

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUR (SIMD&FP) Page 638

LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word or 64-bit doubleword from
memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
size opc

32-bit (size == 10)

LDUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

LDUR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer regsize;

regsize = if size == '11' then 64 else 32;
integer datasize = 8 << scale;

Operation

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, datasize DIV 8, AccType_NORMAL];
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDUR Page 639

LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte from memory, zero-extends it, and
writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
size opc

Unscaled offset

LDURB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 1, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURB Page 640

LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a halfword from memory, zero-
extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 1 0 imm9 0 0 Rn Rt
size opc

Unscaled offset

LDURH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 2, AccType_NORMAL];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURH Page 641

LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a signed byte from memory,
sign-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt
size opc

32-bit (opc == 11)

LDURSB <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDURSB <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

LDURSB Page 642

Operation

bits(64) address;
bits(8) data;

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of
when MemOp_STORE

data = X[t];
Mem[address, 1, AccType_NORMAL] = data;

when MemOp_LOAD
data = Mem[address, 1, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSB Page 643

LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a signed halfword from
memory, sign-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 1 x 0 imm9 0 0 Rn Rt
size opc

32-bit (opc == 11)

LDURSH <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (opc == 10)

LDURSH <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
MemOp memop;
boolean signed;
integer regsize;

if opc<1> == '0' then
// store or zero-extending load
memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
regsize = 32;
signed = FALSE;

else
// sign-extending load
memop = MemOp_LOAD;
regsize = if opc<0> == '1' then 32 else 64;
signed = TRUE;

LDURSH Page 644

Operation

bits(64) address;
bits(16) data;

if n == 31 then
if memop != MemOp_PREFETCH then CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

case memop of
when MemOp_STORE

data = X[t];
Mem[address, 2, AccType_NORMAL] = data;

when MemOp_LOAD
data = Mem[address, 2, AccType_NORMAL];
if signed then

X[t] = SignExtend(data, regsize);
else

X[t] = ZeroExtend(data, regsize);

when MemOp_PREFETCH
Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSH Page 645

LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a signed word from memory,
sign-extends it, and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt
size opc

Unscaled offset

LDURSW <Xt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(32) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = Mem[address, 4, AccType_NORMAL];
X[t] = SignExtend(data, 64);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDURSW Page 646

LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two 64-bit doublewords from memory,
and writes them to two registers. A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword
granularity. A 64-bit pair requires the address to be quadword aligned and is single-copy atomic for each doubleword at doubleword granularity.
The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions.
See Synchronization and semaphores. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 sz 0 0 1 0 0 0 0 1 1 (1) (1) (1) (1) (1) 0 Rt2 Rn Rt
L Rs o0

32-bit (sz == 0)

LDXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

LDXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly LDXP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

LDXP Page 647

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if t == t2 then
Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

if rt_unknown then
// ConstrainedUNPREDICTABLE case
X[t] = bits(datasize) UNKNOWN;

elsif elsize == 32 then
// 32-bit load exclusive pair (atomic)
data = Mem[address, dbytes, AccType_ATOMIC];
if BigEndian() then

X[t] = data<datasize-1:elsize>;
X[t2] = data<elsize-1:0>;

else
X[t] = data<elsize-1:0>;
X[t2] = data<datasize-1:elsize>;

else // elsize == 64
// 64-bit load exclusive pair (not atomic),
// but must be 128-bit aligned
if address != Align(address, dbytes) then

AArch64.Abort(address, AArch64.AlignmentFault(AccType_ATOMIC, FALSE, FALSE));
X[t] = Mem[address, 8, AccType_ATOMIC];
X[t2] = Mem[address+8, 8, AccType_ATOMIC];

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXP Page 648

LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword from memory, and writes it to
a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is
checked by Store Exclusive instructions. See Synchronization and semaphores. For information about memory accesses see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

LDXR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

LDXR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);
integer regsize = if elsize == 64 then 64 else 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, dbytes);

data = Mem[address, dbytes, AccType_ATOMIC];
X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXR Page 649

LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends it and writes it to a register.
The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is checked
by Store Exclusive instructions. See Synchronization and semaphores. For information about memory accesses see Load/Store addressing
modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDXRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 1);

data = Mem[address, 1, AccType_ATOMIC];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXRB Page 650

LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it and writes it to
a register. The memory access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access mark is
checked by Store Exclusive instructions. See Synchronization and semaphores. For information about memory accesses see Load/Store
addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

LDXRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

// Tell the Exclusives monitors to record a sequence of one or more atomic
// memory reads from virtual address range [address, address+dbytes-1].
// The Exclusives monitor will only be set if all the reads are from the
// same dbytes-aligned physical address, to allow for the possibility of
// an atomicity break if the translation is changed between reads.
AArch64.SetExclusiveMonitors(address, 2);

data = Mem[address, 2, AccType_ATOMIC];
X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDXRH Page 651

LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the result to the destination
register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source
register is left-shifted.

This is an alias of LSLV. This means:

• The encodings in this description are named to match the encodings of LSLV.
• The description of LSLV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd
op2

32-bit (sf == 0)

LSL <Wd>, <Wn>, <Wm>

is equivalent to

LSLV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

LSL <Xd>, <Xn>, <Xm>

is equivalent to

LSLV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

The description of LSLV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (register) Page 652

LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes the result to the
destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 1 0 N immr != x11111 Rn Rd
opc imms

32-bit (sf == 0 && N == 0 && imms != 011111)

LSL <Wd>, <Wn>, #<shift>

is equivalent to

UBFM <Wd>, <Wn>, #(-<shift> MOD 32), #(31-<shift>)

and is the preferred disassembly when imms + 1 == immr.

64-bit (sf == 1 && N == 1 && imms != 111111)

LSL <Xd>, <Xn>, #<shift>

is equivalent to

UBFM <Xd>, <Xn>, #(-<shift> MOD 64), #(63-<shift>)

and is the preferred disassembly when imms + 1 == immr.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31.

For the 64-bit variant: is the shift amount, in the range 0 to 63.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (immediate) Page 653

LSLV

Logical Shift Left Variable shifts a register value left by a variable number of bits, shifting in zeros, and writes the result to the destination
register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source
register is left-shifted.

This instruction is used by the alias LSL (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 0 Rn Rd
op2

32-bit (sf == 0)

LSLV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

LSLV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLV Page 654

LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes the result to the destination
register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source
register is right-shifted.

This is an alias of LSRV. This means:

• The encodings in this description are named to match the encodings of LSRV.
• The description of LSRV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
op2

32-bit (sf == 0)

LSR <Wd>, <Wn>, <Wm>

is equivalent to

LSRV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

LSR <Xd>, <Xn>, <Xm>

is equivalent to

LSRV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

The description of LSRV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (register) Page 655

LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and writes the result to the
destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 1 0 N immr x 1 1 1 1 1 Rn Rd
opc imms

32-bit (sf == 0 && N == 0 && imms == 011111)

LSR <Wd>, <Wn>, #<shift>

is equivalent to

UBFM <Wd>, <Wn>, #<shift>, #31

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1 && imms == 111111)

LSR <Xd>, <Xn>, #<shift>

is equivalent to

UBFM <Xd>, <Xn>, #<shift>, #63

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (immediate) Page 656

LSRV

Logical Shift Right Variable shifts a register value right by a variable number of bits, shifting in zeros, and writes the result to the destination
register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the first source
register is right-shifted.

This instruction is used by the alias LSR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 0 1 Rn Rd
op2

32-bit (sf == 0)

LSRV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

LSRV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRV Page 657

MADD

Multiply-Add multiplies two register values, adds a third register value, and writes the result to the destination register.

This instruction is used by the alias MUL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 Ra Rn Rd
o0

32-bit (sf == 0)

MADD <Wd>, <Wn>, <Wm>, <Wa>

64-bit (sf == 1)

MADD <Xd>, <Xn>, <Xm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.

Alias Conditions

Alias Is preferred when

MUL Ra == '11111'

Operation

bits(destsize) operand1 = X[n];
bits(destsize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

result = UInt(operand3) + (UInt(operand1) * UInt(operand2));

X[d] = result<destsize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MADD Page 658

MLA (by element)

Multiply-Add to accumulator (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the
specified value in the second source SIMD&FP register, and accumulates the results with the vector elements of the destination SIMD&FP
register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 0 0 0 0 H 0 Rn Rd
o2

Vector

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

MLA (by element) Page 659

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = UInt(Elem[operand1, e, esize]);
product = (element1*element2)<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLA (by element) Page 660

MLA (vector)

Multiply-Add to accumulator (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP registers,
and accumulates the results with the vector elements of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd
U

Three registers of the same type

MLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
product = (UInt(element1)*UInt(element2))<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;

V[d] = result;

MLA (vector) Page 661

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLA (vector) Page 662

MLS (by element)

Multiply-Subtract from accumulator (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register
by the specified value in the second source SIMD&FP register, and subtracts the results from the vector elements of the destination SIMD&FP
register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 0 1 0 0 H 0 Rn Rd
o2

Vector

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

MLS (by element) Page 663

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = UInt(Elem[operand1, e, esize]);
product = (element1*element2)<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLS (by element) Page 664

MLS (vector)

Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP
registers, and subtracts the results from the vector elements of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 0 1 Rn Rd
U

Three registers of the same type

MLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub_op = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
product = (UInt(element1)*UInt(element2))<esize-1:0>;
if sub_op then

Elem[result, e, esize] = Elem[operand3, e, esize] - product;
else

Elem[result, e, esize] = Elem[operand3, e, esize] + product;

V[d] = result;

MLS (vector) Page 665

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLS (vector) Page 666

MNEG

Multiply-Negate multiplies two register values, negates the product, and writes the result to the destination register.

This is an alias of MSUB. This means:

• The encodings in this description are named to match the encodings of MSUB.
• The description of MSUB gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 1 1 1 1 1 Rn Rd
o0 Ra

32-bit (sf == 0)

MNEG <Wd>, <Wn>, <Wm>

is equivalent to

MSUB <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit (sf == 1)

MNEG <Xd>, <Xn>, <Xm>

is equivalent to

MSUB <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of MSUB gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MNEG Page 667

MOV (to/from SP)

Move between register and stack pointer: Rd = Rn.

This is an alias of ADD (immediate). This means:

• The encodings in this description are named to match the encodings of ADD (immediate).
• The description of ADD (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd
op S shift imm12

32-bit (sf == 0)

MOV <Wd|WSP>, <Wn|WSP>

is equivalent to

ADD <Wd|WSP>, <Wn|WSP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

64-bit (sf == 1)

MOV <Xd|SP>, <Xn|SP>

is equivalent to

ADD <Xd|SP>, <Xn|SP>, #0

and is the preferred disassembly when (Rd == '11111' || Rn == '11111').

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

Operation

The description of ADD (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (to/from SP) Page 668

MOV (scalar)

Move vector element to scalar. This instruction duplicates the specified vector element in the SIMD&FP source register into a scalar, and writes
the result to the SIMD&FP destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of DUP (element). This means:

• The encodings in this description are named to match the encodings of DUP (element).
• The description of DUP (element) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 imm5 0 0 0 0 0 1 Rn Rd

Scalar

MOV <V><d>, <Vn>.<T>[<index>]

is equivalent to

DUP <V><d>, <Vn>.<T>[<index>]

and is always the preferred disassembly.

Assembler Symbols

<V> Is the destination width specifier, encoded in “imm5”:

imm5 <V>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is the element width specifier, encoded in “imm5”:

imm5 <T>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

Operation

The description of DUP (element) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (scalar) Page 669

MOV (element)

Move vector element to another vector element. This instruction copies the vector element of the source SIMD&FP register to the specified
vector element of the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of INS (element). This means:

• The encodings in this description are named to match the encodings of INS (element).
• The description of INS (element) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

Advanced SIMD

MOV <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

is equivalent to

INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]

and is always the preferred disassembly.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index1> Is the destination element index encoded in “imm5”:

imm5 <index1>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index2> Is the source element index encoded in “imm5:imm4”:

imm5 <index2>
x0000 RESERVED
xxxx1 imm4<3:0>
xxx10 imm4<3:1>
xx100 imm4<3:2>
x1000 imm4<3>

Unspecified bits in "imm4" are ignored but should be set to zero by an assembler.

Operation

The description of INS (element) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

MOV (element) Page 670

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (element) Page 671

MOV (from general)

Move general-purpose register to a vector element. This instruction copies the contents of the source general-purpose register to the specified
vector element in the destination SIMD&FP register.

This instruction can insert data into individual elements within a SIMD&FP register without clearing the remaining bits to zero.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of INS (general). This means:

• The encodings in this description are named to match the encodings of INS (general).
• The description of INS (general) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 0 imm5 0 0 0 1 1 1 Rn Rd

Advanced SIMD

MOV <Vd>.<Ts>[<index>], <R><n>

is equivalent to

INS <Vd>.<Ts>[<index>], <R><n>

and is always the preferred disassembly.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ts> Is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
x1000 D

<index> Is the element index encoded in “imm5”:

imm5 <index>
x0000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
x1000 imm5<4>

<R> Is the width specifier for the general-purpose source register, encoded in “imm5”:

imm5 <R>
x0000 RESERVED
xxxx1 W
xxx10 W
xx100 W
x1000 X

<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.

Operation

The description of INS (general) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (from general) Page 672

MOV (inverted wide immediate)

Move (inverted wide immediate) moves an inverted 16-bit immediate value to a register.

This is an alias of MOVN. This means:

• The encodings in this description are named to match the encodings of MOVN.
• The description of MOVN gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 0 1 hw imm16 Rd
opc

32-bit (sf == 0)

MOV <Wd>, #<imm>

is equivalent to

MOVN <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16).

64-bit (sf == 1)

MOV <Xd>, #<imm>

is equivalent to

MOVN <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate, the bitwise inverse of which can be encoded in "imm16:hw", but excluding
0xffff0000 and 0x0000ffff

For the 64-bit variant: is a 64-bit immediate, the bitwise inverse of which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw"
field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the
"hw" field as <shift>/16.

Operation

The description of MOVN gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (inverted wide immediate) Page 673

MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This is an alias of MOVZ. This means:

• The encodings in this description are named to match the encodings of MOVZ.
• The description of MOVZ gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 0 1 hw imm16 Rd
opc

32-bit (sf == 0)

MOV <Wd>, #<imm>

is equivalent to

MOVZ <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

64-bit (sf == 1)

MOV <Xd>, #<imm>

is equivalent to

MOVZ <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".

For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw"
field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the
"hw" field as <shift>/16.

Operation

The description of MOVZ gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (wide immediate) Page 674

MOV (vector)

Move vector. This instruction copies the vector in the source SIMD&FP register into the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of ORR (vector, register). This means:

• The encodings in this description are named to match the encodings of ORR (vector, register).
• The description of ORR (vector, register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd
size

Three registers of the same type

MOV <Vd>.<T>, <Vn>.<T>

is equivalent to

ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>

and is the preferred disassembly when Rm == Rn.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of ORR (vector, register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (vector) Page 675

MOV (bitmask immediate)

Move (bitmask immediate) writes a bitmask immediate value to a register.

This is an alias of ORR (immediate). This means:

• The encodings in this description are named to match the encodings of ORR (immediate).
• The description of ORR (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 1 0 0 N immr imms 1 1 1 1 1 Rd
opc Rn

32-bit (sf == 0 && N == 0)

MOV <Wd|WSP>, #<imm>

is equivalent to

ORR <Wd|WSP>, WZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

64-bit (sf == 1)

MOV <Xd|SP>, #<imm>

is equivalent to

ORR <Xd|SP>, XZR, #<imm>

and is the preferred disassembly when ! MoveWidePreferred(sf, N, imms, immr).

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr", but excluding values which could be encoded by
MOVZ or MOVN.

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr", but excluding values which could be encoded
by MOVZ or MOVN.

Operation

The description of ORR (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (bitmask immediate) Page 676

MOV (register)

Move (register) copies the value in a source register to the destination register.

This is an alias of ORR (shifted register). This means:

• The encodings in this description are named to match the encodings of ORR (shifted register).
• The description of ORR (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd
opc shift N imm6 Rn

32-bit (sf == 0)

MOV <Wd>, <Wm>

is equivalent to

ORR <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

MOV <Xd>, <Xm>

is equivalent to

ORR <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of ORR (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (register) Page 677

MOV (to general)

Move vector element to general-purpose register. This instruction reads the unsigned integer from the source SIMD&FP register, zero-extends it
to form a 32-bit or 64-bit value, and writes the result to the destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of UMOV. This means:

• The encodings in this description are named to match the encodings of UMOV.
• The description of UMOV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 0 x x x 0 0 0 0 1 1 1 1 Rn Rd
imm5

32-bit (Q == 0 && imm5 == xx100)

MOV <Wd>, <Vn>.S[<index>]

is equivalent to

UMOV <Wd>, <Vn>.S[<index>]

and is always the preferred disassembly.

64-bit (Q == 1 && imm5 == x1000)

MOV <Xd>, <Vn>.D[<index>]

is equivalent to

UMOV <Xd>, <Vn>.D[<index>]

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<index> For the 32-bit variant: is the element index encoded in "imm5<4:3>".

For the 64-bit variant: is the element index encoded in "imm5<4>".

Operation

The description of UMOV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV (to general) Page 678

MOVI

Move Immediate (vector). This instruction places an immediate constant into every vector element of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd

8-bit (op == 0 && cmode == 1110)

MOVI <Vd>.<T>, #<imm8>{, LSL #0}

16-bit shifted immediate (op == 0 && cmode == 10x0)

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate (op == 0 && cmode == 0xx0)

MOVI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones (op == 0 && cmode == 110x)

MOVI <Vd>.<T>, #<imm8>, MSL #<amount>

64-bit scalar (Q == 0 && op == 1 && cmode == 1110)

MOVI <Dd>, #<imm>

64-bit vector (Q == 1 && op == 1 && cmode == 1110)

MOVI <Vd>.2D, #<imm>

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx00' operation = ImmediateOp_MOVI;
when '0xx01' operation = ImmediateOp_MVNI;
when '0xx10' operation = ImmediateOp_ORR;
when '0xx11' operation = ImmediateOp_BIC;
when '10x00' operation = ImmediateOp_MOVI;
when '10x01' operation = ImmediateOp_MVNI;
when '10x10' operation = ImmediateOp_ORR;
when '10x11' operation = ImmediateOp_BIC;
when '110x0' operation = ImmediateOp_MOVI;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UnallocatedEncoding();
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

MOVI Page 679

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<imm> Is a 64-bit immediate 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh', encoded in
"a:b:c:d:e:f:g:h".

<T> For the 8-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in “cmode<1>”:

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.
For the 32-bit shifted immediate variant: is the shift amount encoded in “cmode<2:1>”:

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.
For the 32-bit shifting ones variant: is the shift amount encoded in “cmode<0>”:

cmode<0> <amount>
0 8
1 16

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVI Page 680

MOVK

Move wide with keep moves an optionally-shifted 16-bit immediate value into a register, keeping other bits unchanged.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 0 0 1 0 1 hw imm16 Rd
opc

32-bit (sf == 0)

MOVK <Wd>, #<imm>{, LSL #<shift>}

64-bit (sf == 1)

MOVK <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
integer pos;

if sf == '0' && hw<1> == '1' then UnallocatedEncoding();
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw"
field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the
"hw" field as <shift>/16.

Operation

bits(datasize) result;

result = X[d];
result<pos+15:pos> = imm16;
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVK Page 681

MOVN

Move wide with NOT moves the inverse of an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (inverted wide immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 0 1 hw imm16 Rd
opc

32-bit (sf == 0)

MOVN <Wd>, #<imm>{, LSL #<shift>}

64-bit (sf == 1)

MOVN <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
integer pos;

if sf == '0' && hw<1> == '1' then UnallocatedEncoding();
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw"
field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the
"hw" field as <shift>/16.

Alias Conditions

Alias Of variant Is preferred when

MOV (inverted wide immediate) 64-bit ! (IsZero(imm16) && hw != '00')

MOV (inverted wide immediate) 32-bit ! (IsZero(imm16) && hw != '00') && ! IsOnes(imm16)

Operation

bits(datasize) result;

result = Zeros();

result<pos+15:pos> = imm16;
result = NOT(result);
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVN Page 682

MOVZ

Move wide with zero moves an optionally-shifted 16-bit immediate value to a register.

This instruction is used by the alias MOV (wide immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 0 1 hw imm16 Rd
opc

32-bit (sf == 0)

MOVZ <Wd>, #<imm>{, LSL #<shift>}

64-bit (sf == 1)

MOVZ <Xd>, #<imm>{, LSL #<shift>}

integer d = UInt(Rd);
integer datasize = if sf == '1' then 64 else 32;
integer pos;

if sf == '0' && hw<1> == '1' then UnallocatedEncoding();
pos = UInt(hw:'0000');

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or 16, encoded in the "hw"
field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16, 32 or 48, encoded in the
"hw" field as <shift>/16.

Alias Conditions

Alias Is preferred when

MOV (wide immediate) ! (IsZero(imm16) && hw != '00')

Operation

bits(datasize) result;

result = Zeros();

result<pos+15:pos> = imm16;
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVZ Page 683

MRS

Move System Register allows the PE to read an AArch64 System register into a general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 1 1 o0 op1 CRn CRm op2 Rt
L

System

MRS <Xt>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op0 = 2 + UInt(o0);
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in 'AArch64 System Registers' in the System Register XML.

<op0> Is an unsigned immediate, encoded in “o0”:

o0 <op0>
0 2
1 3

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

X[t] = AArch64.SysRegRead(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRS Page 684

MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more information, see Process state,
PSTATE.

The bits that can be written are D, A, I, F, and SP. This set of bits is expanded in extensions to the architecture as follows:

• ARMv8.1 adds the PAN bit.
• ARMv8.2 adds the UAO bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 op1 0 1 0 0 CRm op2 1 1 1 1 1

System

MSR <pstatefield>, #<imm>

AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');

bits(4) operand = CRm;
PSTATEField field;
case op1:op2 of

when '000 011'
if !HaveUAOExt() then

UnallocatedEncoding();
field = PSTATEField_UAO;

when '000 100'
if !HavePANExt() then

UnallocatedEncoding();
field = PSTATEField_PAN;

when '000 101' field = PSTATEField_SP;
when '011 110' field = PSTATEField_DAIFSet;
when '011 111' field = PSTATEField_DAIFClr;
otherwise UnallocatedEncoding();

// Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
if op1 == '011' && PSTATE.EL == EL0 && (IsInHost() || SCTLR_EL1.UMA == '0') then

AArch64.SystemRegisterTrap(EL1, '00', op2, op1, '0100', '11111', CRm, '0');

Assembler Symbols

<pstatefield> Is a PSTATE field name, encoded in “op1:op2”:

op1 op2 <pstatefield> Architectural Feature
000 00x RESERVED -
000 010 RESERVED -
000 011 UAO ARMv8.2-UAO
000 100 PAN ARMv8.1-PAN
000 101 SPSel -
000 11x RESERVED -
001 xxx RESERVED -
010 xxx RESERVED -
011 0xx RESERVED -
011 10x RESERVED -
011 110 DAIFSet -
011 111 DAIFClr -
1xx xxx RESERVED -

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

MSR (immediate) Page 685

Operation

case field of
when PSTATEField_SP

PSTATE.SP = operand<0>;
when PSTATEField_DAIFSet

PSTATE.D = PSTATE.D OR operand<3>;
PSTATE.A = PSTATE.A OR operand<2>;
PSTATE.I = PSTATE.I OR operand<1>;
PSTATE.F = PSTATE.F OR operand<0>;

when PSTATEField_DAIFClr
PSTATE.D = PSTATE.D AND NOT(operand<3>);
PSTATE.A = PSTATE.A AND NOT(operand<2>);
PSTATE.I = PSTATE.I AND NOT(operand<1>);
PSTATE.F = PSTATE.F AND NOT(operand<0>);

when PSTATEField_PAN
PSTATE.PAN = operand<0>;

when PSTATEField_UAO
PSTATE.UAO = operand<0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (immediate) Page 686

MSR (register)

Move general-purpose register to System Register allows the PE to write an AArch64 System register from a general-purpose register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 1 o0 op1 CRn CRm op2 Rt
L

System

MSR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Xt>

AArch64.CheckSystemAccess('1':o0, op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op0 = 2 + UInt(o0);
integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);

Assembler Symbols

<systemreg> Is a System register name, encoded in the "o0:op1:CRn:CRm:op2".

The System register names are defined in 'AArch64 System Registers' in the System Register XML.

<op0> Is an unsigned immediate, encoded in “o0”:

o0 <op0>
0 2
1 3

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

AArch64.SysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (register) Page 687

MSUB

Multiply-Subtract multiplies two register values, subtracts the product from a third register value, and writes the result to the destination register.

This instruction is used by the alias MNEG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 1 0 0 0 Rm 1 Ra Rn Rd
o0

32-bit (sf == 0)

MSUB <Wd>, <Wn>, <Wm>, <Wa>

64-bit (sf == 1)

MSUB <Xd>, <Xn>, <Xm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);
integer destsize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Wa> Is the 32-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Alias Conditions

Alias Is preferred when

MNEG Ra == '11111'

Operation

bits(destsize) operand1 = X[n];
bits(destsize) operand2 = X[m];
bits(destsize) operand3 = X[a];

integer result;

result = UInt(operand3) - (UInt(operand1) * UInt(operand2));
X[d] = result<destsize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSUB Page 688

MUL (by element)

Multiply (vector, by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the
second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register. All the values in this
instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 1 0 0 0 H 0 Rn Rd

Vector

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

MUL (by element) Page 689

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) product;

element2 = UInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = UInt(Elem[operand1, e, esize]);
product = (element1*element2)<esize-1:0>;
Elem[result, e, esize] = product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL (by element) Page 690

MUL (vector)

Multiply (vector). This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP registers, places the results in a
vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd
U

Three registers of the same type

MUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if U == '1' && size != '00' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean poly = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if poly then

product = PolynomialMult(element1, element2)<esize-1:0>;
else

product = (UInt(element1)*UInt(element2))<esize-1:0>;
Elem[result, e, esize] = product;

V[d] = result;

MUL (vector) Page 691

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL (vector) Page 692

MUL

Multiply: Rd = Rn * Rm.

This is an alias of MADD. This means:

• The encodings in this description are named to match the encodings of MADD.
• The description of MADD gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 1 0 0 0 Rm 0 1 1 1 1 1 Rn Rd
o0 Ra

32-bit (sf == 0)

MUL <Wd>, <Wn>, <Wm>

is equivalent to

MADD <Wd>, <Wn>, <Wm>, WZR

and is always the preferred disassembly.

64-bit (sf == 1)

MUL <Xd>, <Xn>, <Xm>

is equivalent to

MADD <Xd>, <Xn>, <Xm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of MADD gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL Page 693

MVN

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the inverse of each value into a
vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of NOT. This means:

• The encodings in this description are named to match the encodings of NOT.
• The description of NOT gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

Vector

MVN <Vd>.<T>, <Vn>.<T>

is equivalent to

NOT <Vd>.<T>, <Vn>.<T>

and is always the preferred disassembly.

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

The description of NOT gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN Page 694

MVN

Bitwise NOT writes the bitwise inverse of a register value to the destination register.

This is an alias of ORN (shifted register). This means:

• The encodings in this description are named to match the encodings of ORN (shifted register).
• The description of ORN (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 1 1 1 1 1 Rd
opc N Rn

32-bit (sf == 0)

MVN <Wd>, <Wm>{, <shift> #<amount>}

is equivalent to

ORN <Wd>, WZR, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

MVN <Xd>, <Xm>{, <shift> #<amount>}

is equivalent to

ORN <Xd>, XZR, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

The description of ORN (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN Page 695

MVNI

Move inverted Immediate (vector). This instruction places the inverse of an immediate constant into every vector element of the destination
SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 0 0 0 0 a b c cmode 0 1 d e f g h Rd
op

16-bit shifted immediate (cmode == 10x0)

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifted immediate (cmode == 0xx0)

MVNI <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit shifting ones (cmode == 110x)

MVNI <Vd>.<T>, #<imm8>, MSL #<amount>

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx01' operation = ImmediateOp_MVNI;
when '0xx11' operation = ImmediateOp_BIC;
when '10x01' operation = ImmediateOp_MVNI;
when '10x11' operation = ImmediateOp_BIC;
when '110x1' operation = ImmediateOp_MVNI;
when '1110x' operation = ImmediateOp_MOVI;
when '11111'

// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UnallocatedEncoding();
operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit shifted immediate variant: is the shift amount encoded in “cmode<1>”:

MVNI Page 696

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.
For the 32-bit shifted immediate variant: is the shift amount encoded in “cmode<2:1>”:

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.
For the 32-bit shifting ones variant: is the shift amount encoded in “cmode<0>”:

cmode<0> <amount>
0 8
1 16

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVNI Page 697

NEG (vector)

Negate (vector). This instruction reads each vector element from the source SIMD&FP register, negates each value, puts the result into a vector,
and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
U

Scalar

NEG <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 1 0 1 1 1 0 Rn Rd
U

Vector

NEG <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

NEG (vector) Page 698

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEG (vector) Page 699

NEG (shifted register)

Negate (shifted register) negates an optionally-shifted register value, and writes the result to the destination register.

This is an alias of SUB (shifted register). This means:

• The encodings in this description are named to match the encodings of SUB (shifted register).
• The description of SUB (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 Rd
op S Rn

32-bit (sf == 0)

NEG <Wd>, <Wm>{, <shift> #<amount>}

is equivalent to

SUB <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

NEG <Xd>, <Xm>{, <shift> #<amount>}

is equivalent to

SUB <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

The description of SUB (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEG (shifted register) Page 700

NEGS

Negate, setting flags, negates an optionally-shifted register value, and writes the result to the destination register. It updates the condition flags
based on the result.

This is an alias of SUBS (shifted register). This means:

• The encodings in this description are named to match the encodings of SUBS (shifted register).
• The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 1 1 1 1 1 Rd
op S Rn

32-bit (sf == 0)

NEGS <Wd>, <Wm>{, <shift> #<amount>}

is equivalent to

SUBS <Wd>, WZR, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

NEGS <Xd>, <Xm>{, <shift> #<amount>}

is equivalent to

SUBS <Xd>, XZR, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NEGS Page 701

NGC

Negate with Carry negates the sum of a register value and the value of NOT (Carry flag), and writes the result to the destination register.

This is an alias of SBC. This means:

• The encodings in this description are named to match the encodings of SBC.
• The description of SBC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd
op S Rn

32-bit (sf == 0)

NGC <Wd>, <Wm>

is equivalent to

SBC <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

NGC <Xd>, <Xm>

is equivalent to

SBC <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBC gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NGC Page 702

NGCS

Negate with Carry, setting flags, negates the sum of a register value and the value of NOT (Carry flag), and writes the result to the destination
register. It updates the condition flags based on the result.

This is an alias of SBCS. This means:

• The encodings in this description are named to match the encodings of SBCS.
• The description of SBCS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 1 1 1 1 1 Rd
op S Rn

32-bit (sf == 0)

NGCS <Wd>, <Wm>

is equivalent to

SBCS <Wd>, WZR, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

NGCS <Xd>, <Xm>

is equivalent to

SBCS <Xd>, XZR, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wm> Is the 32-bit name of the general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xm> Is the 64-bit name of the general-purpose source register, encoded in the "Rm" field.

Operation

The description of SBCS gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NGCS Page 703

NOP

No Operation does nothing, other than advance the value of the program counter by 4. This instruction can be used for instruction alignment
purposes.

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time, leave it unchanged,

or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1
CRm op2

System

NOP

// Empty.

Operation

// do nothing

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOP Page 704

NOT

Bitwise NOT (vector). This instruction reads each vector element from the source SIMD&FP register, places the inverse of each value into a
vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias MVN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

Vector

NOT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = NOT(element);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOT Page 705

ORN (vector)

Bitwise inclusive OR NOT (vector). This instruction performs a bitwise OR NOT between the two source SIMD&FP registers, and writes the
result to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 1 1 Rm 0 0 0 1 1 1 Rn Rd
size

Three registers of the same type

ORN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

operand2 = NOT(operand2);

result = operand1 OR operand2;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN (vector) Page 706

ORN (shifted register)

Bitwise OR NOT (shifted register) performs a bitwise (inclusive) OR of a register value and the complement of an optionally-shifted register
value, and writes the result to the destination register.

This instruction is used by the alias MVN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 0 shift 1 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

ORN <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ORN <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Alias Conditions

Alias Is preferred when

MVN Rn == '11111'

ORN (shifted register) Page 707

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

operand2 = NOT(operand2);

result = operand1 OR operand2;
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN (shifted register) Page 708

ORR (vector, immediate)

Bitwise inclusive OR (vector, immediate). This instruction reads each vector element from the destination SIMD&FP register, performs a bitwise
OR between each result and an immediate constant, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 0 0 0 0 a b c x x x 1 0 1 d e f g h Rd
op cmode

16-bit (cmode == 10x1)

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit (cmode == 0xx1)

ORR <Vd>.<T>, #<imm8>{, LSL #<amount>}

integer rd = UInt(Rd);

integer datasize = if Q == '1' then 128 else 64;
bits(datasize) imm;
bits(64) imm64;

ImmediateOp operation;
case cmode:op of

when '0xx00' operation = ImmediateOp_MOVI;
when '0xx10' operation = ImmediateOp_ORR;
when '10x00' operation = ImmediateOp_MOVI;
when '10x10' operation = ImmediateOp_ORR;
when '110x0' operation = ImmediateOp_MOVI;
when '1110x' operation = ImmediateOp_MOVI;
when '11110' operation = ImmediateOp_MOVI;

imm64 = AdvSIMDExpandImm(op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate(imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP register, encoded in the "Rd" field.

<T> For the 16-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 2S
1 4S

<imm8> Is an 8-bit immediate encoded in "a:b:c:d:e:f:g:h".

<amount> For the 16-bit variant: is the shift amount encoded in “cmode<1>”:

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.
For the 32-bit variant: is the shift amount encoded in “cmode<2:1>”:

ORR (vector, immediate) Page 709

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand;
bits(datasize) result;

case operation of
when ImmediateOp_MOVI

result = imm;
when ImmediateOp_MVNI

result = NOT(imm);
when ImmediateOp_ORR

operand = V[rd];
result = operand OR imm;

when ImmediateOp_BIC
operand = V[rd];
result = operand AND NOT(imm);

V[rd] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (vector, immediate) Page 710

ORR (vector, register)

Bitwise inclusive OR (vector, register). This instruction performs a bitwise OR between the two source SIMD&FP registers, and writes the result
to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (vector).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 0 1 Rm 0 0 0 1 1 1 Rn Rd
size

Three registers of the same type

ORR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if Q == '1' then 128 else 64;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when

MOV (vector) Rm == Rn

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = operand1 OR operand2;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (vector, register) Page 711

ORR (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate register value, and writes the result to the
destination register.

This instruction is used by the alias MOV (bitmask immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 0 1 0 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

ORR <Wd|WSP>, <Wn>, #<imm>

64-bit (sf == 1)

ORR <Xd|SP>, <Xn>, #<imm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;
if sf == '0' && N != '0' then ReservedValue();
(imm, -) = DecodeBitMasks(N, imms, immr, TRUE);

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias Conditions

Alias Is preferred when

MOV (bitmask immediate) Rn == '11111' && ! MoveWidePreferred(sf, N, imms, immr)

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];

result = operand1 OR imm;
if d == 31 then

SP[] = result;
else

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (immediate) Page 712

ORR (shifted register)

Bitwise OR (shifted register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value, and writes the result
to the destination register.

This instruction is used by the alias MOV (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 0 1 0 1 0 shift 0 Rm imm6 Rn Rd
opc N

32-bit (sf == 0)

ORR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ORR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Alias Conditions

Alias Is preferred when

MOV (register) shift == '00' && imm6 == '000000' && Rn == '11111'

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

result = operand1 OR operand2;
X[d] = result;

ORR (shifted register) Page 713

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR (shifted register) Page 714

PACDA, PACDZA

Pointer Authentication Code for Data address, using key A. This instruction computes and inserts a pointer authentication code for a data
address, using a modifier and key A.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDA.

• The value zero, for PACDZA.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 0 Rn Rd

PACDA (Z == 0)

PACDA <Xd>, <Xn|SP>

PACDZA (Z == 1 && Rn == 11111)

PACDZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // PACDA
if n == 31 then source_is_sp = TRUE;

else // PACDZA
if n != 31 then UnallocatedEncoding();

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if source_is_sp then
X[d] = AddPACDA(X[d], SP[]);

else
X[d] = AddPACDA(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACDA, PACDZA Page 715

PACDB, PACDZB

Pointer Authentication Code for Data address, using key B. This instruction computes and inserts a pointer authentication code for a data
address, using a modifier and key B.

The address is in the general-purpose register that is specified by <Xd>.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACDB.

• The value zero, for PACDZB.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 1 1 Rn Rd

PACDB (Z == 0)

PACDB <Xd>, <Xn|SP>

PACDZB (Z == 1 && Rn == 11111)

PACDZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // PACDB
if n == 31 then source_is_sp = TRUE;

else // PACDZB
if n != 31 then UnallocatedEncoding();

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if source_is_sp then
X[d] = AddPACDB(X[d], SP[]);

else
X[d] = AddPACDB(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACDB, PACDZB Page 716

PACGA

Pointer Authentication Code, using Generic key. This instruction computes the pointer authentication code for an address in the first source
register, using a modifier in the second source register, and the Generic key. The computed pointer authentication code is returned in the upper 32
bits of the destination register.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 1 0 0 Rn Rd

Integer

PACGA <Xd>, <Xn>, <Xm|SP>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if !HavePACExt() then
UnallocatedEncoding();

if m == 31 then source_is_sp = TRUE;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm|SP> Is the 64-bit name of the second general-purpose source register or stack pointer, encoded in the "Rm" field.

Operation

if source_is_sp then
X[d] = AddPACGA(X[n], SP[]);

else
X[d] = AddPACGA(X[n], X[m]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACGA Page 717

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA

Pointer Authentication Code for Instruction address, using key A. This instruction computes and inserts a pointer authentication code for an
instruction address, using a modifier and key A.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIA and PACIZA.

• In X17, for PACIA1716.

• In X30, for PACIASP and PACIAZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIA.

• The value zero, for PACIZA and PACIAZ.

• In X16, for PACIA1716.

• In SP, for PACIASP.

It has encodings from 2 classes: Integer and System

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 0 Rn Rd

PACIA (Z == 0)

PACIA <Xd>, <Xn|SP>

PACIZA (Z == 1 && Rn == 11111)

PACIZA <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // PACIA
if n == 31 then source_is_sp = TRUE;

else // PACIZA
if n != 31 then UnallocatedEncoding();

System
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 0 x 1 1 1 1 1
CRm op2

PACIA, PACIA1716, PACIASP,
PACIAZ, PACIZA

Page 718

PACIA1716 (CRm == 0001 && op2 == 000)

PACIA1716

PACIASP (CRm == 0011 && op2 == 001)

PACIASP

PACIAZ (CRm == 0011 && op2 == 000)

PACIAZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 000' // PACIAZ

d = 30;
n = 31;

when '0011 001' // PACIASP
d = 30;
source_is_sp = TRUE;

when '0001 000' // PACIA1716
d = 17;
n = 16;

when '0001 010' SEE "PACIB";
when '0001 100' SEE "AUTIA";
when '0001 110' SEE "AUTIB";
when '0011 01x' SEE "PACIB";
when '0011 10x' SEE "AUTIA";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if HavePACExt() then
if source_is_sp then

X[d] = AddPACIA(X[d], SP[]);
else

X[d] = AddPACIA(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACIA, PACIA1716, PACIASP,
PACIAZ, PACIZA

Page 719

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB

Pointer Authentication Code for Instruction address, using key B. This instruction computes and inserts a pointer authentication code for an
instruction address, using a modifier and key B.

The address is:

• In the general-purpose register that is specified by <Xd> for PACIB and PACIZB.

• In X17, for PACIB1716.

• In X30, for PACIBSP and PACIBZ.

The modifier is:

• In the general-purpose register or stack pointer that is specified by <Xn|SP> for PACIB.

• The value zero, for PACIZB and PACIBZ.

• In X16, for PACIB1716.

• In SP, for PACIBSP.

It has encodings from 2 classes: Integer and System

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 Z 0 0 1 Rn Rd

PACIB (Z == 0)

PACIB <Xd>, <Xn|SP>

PACIZB (Z == 1 && Rn == 11111)

PACIZB <Xd>

boolean source_is_sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);

if !HavePACExt() then
UnallocatedEncoding();

if Z == '0' then // PACIB
if n == 31 then source_is_sp = TRUE;

else // PACIZB
if n != 31 then UnallocatedEncoding();

System
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 x 1 0 1 x 1 1 1 1 1
CRm op2

PACIB, PACIB1716, PACIBSP,
PACIBZ, PACIZB

Page 720

PACIB1716 (CRm == 0001 && op2 == 010)

PACIB1716

PACIBSP (CRm == 0011 && op2 == 011)

PACIBSP

PACIBZ (CRm == 0011 && op2 == 010)

PACIBZ

integer d;
integer n;
boolean source_is_sp = FALSE;

case CRm:op2 of
when '0011 010' // PACIBZ

d = 30;
n = 31;

when '0011 011' // PACIBSP
d = 30;
source_is_sp = TRUE;

when '0001 010' // PACIB1716
d = 17;
n = 16;

when '0001 000' SEE "PACIA";
when '0001 100' SEE "AUTIA";
when '0001 110' SEE "AUTIB";
when '0011 00x' SEE "PACIA";
when '0011 10x' SEE "AUTIA";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.

Operation

if HavePACExt() then
if source_is_sp then

X[d] = AddPACIB(X[d], SP[]);
else

X[d] = AddPACIB(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PACIB, PACIB1716, PACIBSP,
PACIBZ, PACIZB

Page 721

PMUL

Polynomial Multiply. This instruction multiplies corresponding elements in the vectors of the two source SIMD&FP registers, places the results
in a vector, and writes the vector to the destination SIMD&FP register.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1}.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 1 1 1 Rn Rd
U

Three registers of the same type

PMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if U == '1' && size != '00' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean poly = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 x RESERVED
1x x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;
bits(esize) product;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if poly then

product = PolynomialMult(element1, element2)<esize-1:0>;
else

product = (UInt(element1)*UInt(element2))<esize-1:0>;
Elem[result, e, esize] = product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

PMUL Page 722

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMUL Page 723

PMULL, PMULL2

Polynomial Multiply Long. This instruction multiplies corresponding elements in the lower or upper half of the vectors of the two source
SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements
are twice as long as the elements that are multiplied.

For information about multiplying polynomials see Polynomial arithmetic over {0, 1}.

The PMULL instruction extracts each source vector from the lower half of each source register, while the PMULL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 1 0 0 0 Rn Rd

Three registers, not all the same type

PMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '01' || size == '10' then ReservedValue();
if size == '11' && !HaveCryptoExt() then UnallocatedEncoding();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 RESERVED
10 RESERVED
11 1Q

The '1Q' arrangement is only allocated in an implementation that includes the Cryptographic Extension, and is otherwise
RESERVED.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 x RESERVED
10 x RESERVED
11 0 1D
11 1 2D

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

PMULL, PMULL2 Page 724

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, 2*esize] = PolynomialMult(element1, element2);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PMULL, PMULL2 Page 725

PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are likely to occur in the near
future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as
preloading the cache line containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 imm12 Rn Rt
size opc

Unsigned offset

PRFM (<prfop>|#<imm5>), [<Xn|SP>{, #<pimm>}]

bits(64) offset = LSL(ZeroExtend(imm12, 64), 3);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1
Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0 and encoded in the
"imm12" field as <pimm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

PRFM (immediate) Page 726

Operation

bits(64) address;

if n == 31 then
address = SP[];

else
address = X[n];

address = address + offset;

Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (immediate) Page 727

PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are likely to occur in the near future.
The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading
the cache line containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 0 0 imm19 Rt
opc

Literal

PRFM (<prfop>|#<imm5>), <label>

integer t = UInt(Rt);
bits(64) offset;

offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1
Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this instruction, in the range +/-1MB,
is encoded as "imm19" times 4.

Operation

bits(64) address = PC[] + offset;

Prefetch(address, t<4:0>);

PRFM (literal) Page 728

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (literal) Page 729

PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are likely to occur in the near future.
The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as preloading
the cache line containing the specified address into one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 Rm option S 1 0 Rn Rt
size opc

Integer

PRFM (<prfop>|#<imm5>), [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 3 else 0;

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1
Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted.
encoded in “option”:

PRFM (register) Page 730

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is
encoded in “S”:

S <amount>
0 #0
1 #3

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;

if n == 31 then
address = SP[];

else
address = X[n];

address = address + offset;

Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (register) Page 731

PRFM (unscaled offset)

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address are likely to occur in the near
future. The memory system can respond by taking actions that are expected to speed up the memory accesses when they do occur, such as
preloading the cache line containing the specified address into one or more caches.

The effect of an PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 imm9 0 0 Rn Rt
size opc

Unscaled offset

PRFUM (<prfop>|#<imm5>), [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>.

<type> is one of:

PLD
Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI
Preload instructions, encoded in the "Rt<4:3>" field as 0b01.

PST
Prefetch for store, encoded in the "Rt<4:3>" field as 0b10.

<target> is one of:

L1
Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2
Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3
Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.

<policy> is one of:

KEEP
Retained or temporal prefetch, allocated in the cache normally. Encoded in the "Rt<0>" field as 0.

STRM
Streaming or non-temporal prefetch, for data that is used only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory.

For other encodings of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt" field.

This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

PRFM (unscaled offset) Page 732

Operation

bits(64) address;

if n == 31 then
address = SP[];

else
address = X[n];

address = address + offset;

Prefetch(address, t<4:0>);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PRFM (unscaled offset) Page 733

PSB CSYNC

Profiling Synchronization Barrier. This instruction is a barrier that ensures that all existing profiling data for the current PE has been formatted,

and profiling buffer addresses have been translated such that all writes to the profiling buffer have been initiated. A following DSB
instruction completes when the writes to the profiling buffer have completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

System
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1
CRm op2

System

PSB CSYNC

if !HaveStatisticalProfiling() then EndOfInstruction();

Operation

ProfilingSynchronizationBarrier();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PSB CSYNC Page 734

RADDHN, RADDHN2

Rounding Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the corresponding
vector element in the second source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the
lower or upper half of the destination SIMD&FP register.

The results are rounded. For truncated results, see ADDHN.

The RADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

RADDHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 0 Rn Rd
U o1

Three registers, not all the same type

RADDHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

RADDHN, RADDHN2 Page 735

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RADDHN, RADDHN2 Page 736

RAX1

Rotate and Exclusive OR rotates each 64-bit element of the 128-bit vector in a source SIMD&FP register left by 1, performs a bitwise exclusive
OR of the resulting 128-bit vector and the vector in another source SIMD&FP register, and writes the result to the destination SIMD&FP
register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 1 Rn Rd

Advanced SIMD

RAX1 <Vd>.2D, <Vn>.2D, <Vm>.2D

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
V[d] = Vn EOR (ROL(Vm<127:64>, 1):ROL(Vm<63:0>, 1));

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RAX1 Page 737

RBIT (vector)

Reverse Bit order (vector). This instruction reads each vector element from the source SIMD&FP register, reverses the bits of the element, places
the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 Rn Rd

Vector

RBIT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “Q”:

Q <T>
0 8B
1 16B

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;
bits(esize) rev;

for e = 0 to elements-1
element = Elem[operand, e, esize];
for i = 0 to esize-1

rev<esize-1-i> = element<i>;
Elem[result, e, esize] = rev;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT (vector) Page 738

RBIT

Reverse Bits reverses the bit order in a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Rn Rd

32-bit (sf == 0)

RBIT <Wd>, <Wn>

64-bit (sf == 1)

RBIT <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

for i = 0 to datasize-1
result<datasize-1-i> = operand<i>;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT Page 739

RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 Rn 0 0 0 0 0
Z op A M Rm

Integer

RET {<Xn>}

integer n = UInt(Rn);

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field. Defaults
to X30 if absent.

Operation

bits(64) target = X[n];
BranchTo(target, BranchType_RET);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RET Page 740

RETAA, RETAB

Return from subroutine, with pointer authentication. This instruction authenticates the address that is held in LR, using SP as the modifier and
the specified key, branches to the authenticated address, with a hint that this instruction is a subroutine return.

Key A is used for RETAA, and key B is used for RETAB.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to LR.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 M 1 1 1 1 1 1 1 1 1 1
Z op A Rn Rm

RETAA (M == 0)

RETAA

RETAB (M == 1)

RETAB

boolean use_key_a = (M == '0');

if !HavePACExt() then
UnallocatedEncoding();

Operation

bits(64) target = X[30];
bits(64) modifier = SP[];

if use_key_a then
target = AuthIA(target, modifier);

else
target = AuthIB(target, modifier);

BranchTo(target, BranchType_RET);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RETAA, RETAB Page 741

REV

Reverse Bytes reverses the byte order in a register.

This instruction is used by the pseudo-instruction REV64.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 x Rn Rd
opc

32-bit (sf == 0 && opc == 10)

REV <Wd>, <Wn>

64-bit (sf == 1 && opc == 11)

REV <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;
case opc of

when '00'
Unreachable();

when '01'
container_size = 16;

when '10'
container_size = 32;

when '11'
if sf == '0' then UnallocatedEncoding();
container_size = 64;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1

rev_index = index + ((elements_per_container - 1) * 8);
for e = 0 to elements_per_container-1

result<rev_index+7:rev_index> = operand<index+7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

REV Page 742

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV Page 743

REV16 (vector)

Reverse elements in 16-bit halfwords (vector). This instruction reverses the order of 8-bit elements in each halfword of the vector in the source
SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 1 1 0 Rn Rd
U o0

Vector

REV16 <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=esize: B(0), H(1), S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
// 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
// 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
// 16+B = 2, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X
// => 3-(op+size) (index bits in group)
// 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
// 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
// 16+B = 1, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X

// index bits within group: 1, 2, 3
if UInt(op) + UInt(size) >= 3 then UnallocatedEncoding();

integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 x RESERVED
1x x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

REV16 (vector) Page 744

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1

rev_element = element + elements_per_container - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[operand, element, esize];
element = element + 1;
rev_element = rev_element - 1;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV16 (vector) Page 745

REV16

Reverse bytes in 16-bit halfwords reverses the byte order in each 16-bit halfword of a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 Rn Rd
opc

32-bit (sf == 0)

REV16 <Wd>, <Wn>

64-bit (sf == 1)

REV16 <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;
case opc of

when '00'
Unreachable();

when '01'
container_size = 16;

when '10'
container_size = 32;

when '11'
if sf == '0' then UnallocatedEncoding();
container_size = 64;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1

rev_index = index + ((elements_per_container - 1) * 8);
for e = 0 to elements_per_container-1

result<rev_index+7:rev_index> = operand<index+7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV16 Page 746

REV32 (vector)

Reverse elements in 32-bit words (vector). This instruction reverses the order of 8-bit or 16-bit elements in each word of the vector in the source
SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd
U o0

Vector

REV32 <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=esize: B(0), H(1), S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
// 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
// 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
// 16+B = 2, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X
// => 3-(op+size) (index bits in group)
// 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
// 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
// 16+B = 1, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X

// index bits within group: 1, 2, 3
if UInt(op) + UInt(size) >= 3 then UnallocatedEncoding();

integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
1x x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

REV32 (vector) Page 747

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1

rev_element = element + elements_per_container - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[operand, element, esize];
element = element + 1;
rev_element = rev_element - 1;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV32 (vector) Page 748

REV32

Reverse bytes in 32-bit words reverses the byte order in each 32-bit word of a register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 Rn Rd
sf opc

64-bit

REV32 <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer datasize = if sf == '1' then 64 else 32;

integer container_size;
case opc of

when '00'
Unreachable();

when '01'
container_size = 16;

when '10'
container_size = 32;

when '11'
if sf == '0' then UnallocatedEncoding();
container_size = 64;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

bits(datasize) operand = X[n];
bits(datasize) result;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV 8;
integer index = 0;
integer rev_index;
for c = 0 to containers-1

rev_index = index + ((elements_per_container - 1) * 8);
for e = 0 to elements_per_container-1

result<rev_index+7:rev_index> = operand<index+7:index>;
index = index + 8;
rev_index = rev_index - 8;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV32 Page 749

REV64

Reverse elements in 64-bit doublewords (vector). This instruction reverses the order of 8-bit, 16-bit, or 32-bit elements in each doubleword of
the vector in the source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 0 0 1 0 Rn Rd
U o0

Vector

REV64 <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

// size=esize: B(0), H(1), S(1), D(S)
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;

// op=REVx: 64(0), 32(1), 16(2)
bits(2) op = o0:U;

// => op+size:
// 64+B = 0, 64+H = 1, 64+S = 2, 64+D = X
// 32+B = 1, 32+H = 2, 32+S = X, 32+D = X
// 16+B = 2, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X
// => 3-(op+size) (index bits in group)
// 64/B = 3, 64+H = 2, 64+S = 1, 64+D = X
// 32+B = 2, 32+H = 1, 32+S = X, 32+D = X
// 16+B = 1, 16+H = X, 16+S = X, 16+D = X
// 8+B = X, 8+H = X, 8+S = X, 8+D = X

// index bits within group: 1, 2, 3
if UInt(op) + UInt(size) >= 3 then UnallocatedEncoding();

integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = datasize DIV container_size;
integer elements_per_container = container_size DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

REV64 Page 750

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element = 0;
integer rev_element;
for c = 0 to containers-1

rev_element = element + elements_per_container - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[operand, element, esize];
element = element + 1;
rev_element = rev_element - 1;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV64 Page 751

REV64

Reverse Bytes reverses the byte order in a 64-bit general-purpose register.

When assembling for ARMv8.2, an assembler must support this pseudo-instruction. It is OPTIONAL whether an assembler supports this pseudo-
instruction when assembling for an architecture earlier than ARMv8.2.

This is a pseudo-instruction of REV. This means:

• The encodings in this description are named to match the encodings of REV.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of REV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 Rn Rd
sf opc

64-bit

REV64 <Xd>, <Xn>

is equivalent to

REV <Xd>, <Xn>

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of REV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV64 Page 752

ROR (immediate)

Rotate right (immediate) provides the value of the contents of a register rotated by a variable number of bits. The bits that are rotated off the right
end are inserted into the vacated bit positions on the left.

This is an alias of EXTR. This means:

• The encodings in this description are named to match the encodings of EXTR.
• The description of EXTR gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 1 N 0 Rm imms Rn Rd

32-bit (sf == 0 && N == 0 && imms == 0xxxxx)

ROR <Wd>, <Ws>, #<shift>

is equivalent to

EXTR <Wd>, <Ws>, <Ws>, #<shift>

and is the preferred disassembly when Rn == Rm.

64-bit (sf == 1 && N == 1)

ROR <Xd>, <Xs>, #<shift>

is equivalent to

EXTR <Xd>, <Xs>, <Xs>, #<shift>

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Ws> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xs> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<shift> For the 32-bit variant: is the amount by which to rotate, in the range 0 to 31, encoded in the "imms" field.

For the 64-bit variant: is the amount by which to rotate, in the range 0 to 63, encoded in the "imms" field.

Operation

The description of EXTR gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (immediate) Page 753

ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits that are rotated off the right
end are inserted into the vacated bit positions on the left. The remainder obtained by dividing the second source register by the data size defines
the number of bits by which the first source register is right-shifted.

This is an alias of RORV. This means:

• The encodings in this description are named to match the encodings of RORV.
• The description of RORV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
op2

32-bit (sf == 0)

ROR <Wd>, <Wn>, <Wm>

is equivalent to

RORV <Wd>, <Wn>, <Wm>

and is always the preferred disassembly.

64-bit (sf == 1)

ROR <Xd>, <Xn>, <Xm>

is equivalent to

RORV <Xd>, <Xn>, <Xm>

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

The description of RORV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (register) Page 754

RORV

Rotate Right Variable provides the value of the contents of a register rotated by a variable number of bits. The bits that are rotated off the right
end are inserted into the vacated bit positions on the left. The remainder obtained by dividing the second source register by the data size defines
the number of bits by which the first source register is right-shifted.

This instruction is used by the alias ROR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 1 0 1 1 Rn Rd
op2

32-bit (sf == 0)

RORV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

RORV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ShiftType shift_type = DecodeShift(op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,
encoded in the "Rm" field.

Operation

bits(datasize) result;
bits(datasize) operand2 = X[m];

result = ShiftReg(n, shift_type, UInt(operand2) MOD datasize);
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RORV Page 755

RSHRN, RSHRN2

Rounding Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the vector in the source SIMD&FP register,
right shifts each result by an immediate value, writes the final result to a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register. The destination vector elements are half as long as the source vector elements. The results are rounded. For truncated results,
see SHRN.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 0 1 1 Rn Rd
immh op

Vector

RSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

RSHRN, RSHRN2 Page 756

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

for e = 0 to elements-1
element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
Elem[result, e, esize] = element<esize-1:0>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSHRN, RSHRN2 Page 757

RSUBHN, RSUBHN2

Rounding Subtract returning High Narrow. This instruction subtracts each vector element of the second source SIMD&FP register from the
corresponding vector element of the first source SIMD&FP register, places the most significant half of the result into a vector, and writes the
vector to the lower or upper half of the destination SIMD&FP register.

The results are rounded. For truncated results, see SUBHN.

The RSUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

RSUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd
U o1

Three registers, not all the same type

RSUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

RSUBHN, RSUBHN2 Page 758

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSUBHN, RSUBHN2 Page 759

SABA

Signed Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second source SIMD&FP register from
the corresponding elements of the first source SIMD&FP register, and accumulates the absolute values of the results into the elements of the
vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd
U ac

Three registers of the same type

SABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

SABA Page 760

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABA Page 761

SABAL, SABAL2

Signed Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or upper half of the second source
SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register, and accumulates the absolute values of the
results into the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector
elements.

The SABAL instruction extracts each source vector from the lower half of each source register, while the SABAL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd
U op

Three registers, not all the same type

SABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SABAL, SABAL2 Page 762

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABAL, SABAL2 Page 763

SABD

Signed Absolute Difference. This instruction subtracts the elements of the vector of the second source SIMD&FP register from the
corresponding elements of the first source SIMD&FP register, places the the absolute values of the results into a vector, and writes the vector to
the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd
U ac

Three registers of the same type

SABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

SABD Page 764

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABD Page 765

SABDL, SABDL2

Signed Absolute Difference Long. This instruction subtracts the vector elements of the second source SIMD&FP register from the corresponding
vector elements of the first source SIMD&FP register, places the absolute value of the results into a vector, and writes the vector to the lower or
upper half of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The SABDL instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SABDL2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd
U op

Three registers, not all the same type

SABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SABDL, SABDL2 Page 766

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SABDL, SABDL2 Page 767

SADALP

Signed Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector in the source
SIMD&FP register and accumulates the results into the vector elements of the destination SIMD&FP register. The destination vector elements
are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd
U op

Vector

SADALP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SADALP Page 768

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

result = if acc then V[d] else Zeros();
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1+op2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADALP Page 769

SADDL, SADDL2

Signed Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source SIMD&FP register to the
corresponding vector element of the second source SIMD&FP register, places the results into a vector, and writes the vector to the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are signed
integer values.

The SADDL instruction extracts each source vector from the lower half of each source register, while the SADDL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd
U o1

Three registers, not all the same type

SADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SADDL, SADDL2 Page 770

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDL, SADDL2 Page 771

SADDLP

Signed Add Long Pairwise. This instruction adds pairs of adjacent signed integer values from the vector in the source SIMD&FP register, places
the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the
source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd
U op

Vector

SADDLP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SADDLP Page 772

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

result = if acc then V[d] else Zeros();
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1+op2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDLP Page 773

SADDLV

Signed Add Long across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the scalar result
to the destination SIMD&FP register. The destination scalar is twice as long as the source vector elements. All the values in this instruction are
signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd
U

Advanced SIMD

SADDLV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 H
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer sum;

sum = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

sum = sum + Int(Elem[operand, e, esize], unsigned);

V[d] = sum<2*esize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

SADDLV Page 774

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDLV Page 775

SADDW, SADDW2

Signed Add Wide. This instruction adds vector elements of the first source SIMD&FP register to the corresponding vector elements in the lower
or upper half of the second source SIMD&FP register, places the results in a vector, and writes the vector to the SIMD&FP destination register.

The SADDW instruction extracts the second source vector from the lower half of the second source register, while the

SADDW2 instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd
U o1

Three registers, not all the same type

SADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SADDW, SADDW2 Page 776

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDW, SADDW2 Page 777

SBC

Subtract with Carry subtracts a register value and the value of NOT (Carry flag) from a register value, and writes the result to the destination
register.

This instruction is used by the alias NGC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
op S

32-bit (sf == 0)

SBC <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SBC <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when

NGC Rn == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];

operand2 = NOT(operand2);

(result, -) = AddWithCarry(operand1, operand2, PSTATE.C);

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC Page 778

SBCS

Subtract with Carry, setting flags, subtracts a register value and the value of NOT (Carry flag) from a register value, and writes the result to the
destination register. It updates the condition flags based on the result.

This instruction is used by the alias NGCS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 1 0 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd
op S

32-bit (sf == 0)

SBCS <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SBCS <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Alias Conditions

Alias Is preferred when

NGCS Rn == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
bits(4) nzcv;

operand2 = NOT(operand2);

(result, nzcv) = AddWithCarry(operand1, operand2, PSTATE.C);

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBCS Page 779

SBFIZ

Signed Bitfield Insert in Zero zeroes the destination register and copies any number of contiguous bits from a source register into any position in
the destination register, sign-extending the most significant bit of the transferred value.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

SBFIZ <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

SBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

SBFIZ <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

SBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFIZ Page 780

SBFM

Signed Bitfield Move copies any number of low-order bits from a source register into the same number of adjacent bits at any position in the
destination register, shifting in copies of the sign bit in the upper bits and zeros in the lower bits.

This instruction is used by the aliases ASR (immediate), SBFIZ, SBFX, SXTB, SXTH, and SXTW.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

SBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit (sf == 1 && N == 1)

SBFM <Xd>, <Xn>, #<immr>, #<imms>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

integer R;
integer S;
bits(datasize) wmask;
bits(datasize) tmask;

if sf == '1' && N != '1' then ReservedValue();
if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then ReservedValue();

R = UInt(immr);
S = UInt(imms);
(wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31, encoded in the "imms"
field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63, encoded in the "imms"
field.

Alias Conditions

Alias Of variant Is preferred when

ASR (immediate) 32-bit imms == '011111'

ASR (immediate) 64-bit imms == '111111'

SBFIZ UInt(imms) < UInt(immr)

SBFX BFXPreferred(sf, opc<1>, imms, immr)

SXTB immr == '000000' && imms == '000111'

SXTH immr == '000000' && imms == '001111'

SBFM Page 781

Alias Of variant Is preferred when

SXTW immr == '000000' && imms == '011111'

Operation

bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = ROR(src, R) AND wmask;

// determine extension bits (sign, zero or dest register)
bits(datasize) top = Replicate(src<S>);

// combine extension bits and result bits
X[d] = (top AND NOT(tmask)) OR (bot AND tmask);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFM Page 782

SBFX

Signed Bitfield Extract extracts any number of adjacent bits at any position from a register, sign-extends them to the size of the register, and
writes the result to the destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

SBFX <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

SBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit (sf == 1 && N == 1)

SBFX <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFX Page 783

SCVTF (vector, fixed-point)

Signed fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from fixed-point to floating-point using
the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd
U immh

Scalar

SCVTF <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd
U immh

Vector

SCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
if immh<3>:Q == '10' then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

SCVTF (vector, fixed-point) Page 784

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in “immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in “immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (vector, fixed-point) Page 785

SCVTF (vector, integer)

Signed integer Convert to Floating-point (vector). This instruction converts each element in a vector from signed integer to floating-point using
the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
U

Scalar half precision

SCVTF <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
U

Scalar single-precision and double-precision

SCVTF <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
U

SCVTF (vector, integer) Page 786

Vector half precision

SCVTF <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
U

Vector single-precision and double-precision

SCVTF <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

SCVTF (vector, integer) Page 787

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
FPRounding rounding = FPRoundingMode(FPCR);
bits(esize) element;
for e = 0 to elements-1

element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (vector, integer) Page 788

SCVTF (scalar, fixed-point)

Signed fixed-point Convert to Floating-point (scalar). This instruction converts the signed value in the 32-bit or 64-bit general-purpose source
register to a floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 0 0 0 0 1 0 scale Rn Rd
rmode opcode

32-bit to half-precision (sf == 0 && type == 11)
(ARMv8.2)

SCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision (sf == 0 && type == 00)

SCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision (sf == 0 && type == 01)

SCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision (sf == 1 && type == 11)
(ARMv8.2)

SCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision (sf == 1 && type == 00)

SCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision (sf == 1 && type == 01)

SCVTF <Dd>, <Xn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

if sf == '0' && scale<5> == '0' then UnallocatedEncoding();
integer fracbits = 64 - UInt(scale);

rounding = FPRoundingMode(FPCR);

SCVTF (scalar, fixed-point) Page 789

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is the number of bits after
the binary point in the fixed-point source, in the range 1 to 32, encoded as 64 minus "scale".

For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is the number of bits after
the binary point in the fixed-point source, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

intval = X[n];
fltval = FixedToFP(intval, fracbits, FALSE, FPCR, rounding);
V[d] = fltval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (scalar, fixed-point) Page 790

SCVTF (scalar, integer)

Signed integer Convert to Floating-point (scalar). This instruction converts the signed integer value in the general-purpose source register to a
floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 0 0 1 0 0 0 0 0 0 0 Rn Rd
rmode opcode

32-bit to half-precision (sf == 0 && type == 11)
(ARMv8.2)

SCVTF <Hd>, <Wn>

32-bit to single-precision (sf == 0 && type == 00)

SCVTF <Sd>, <Wn>

32-bit to double-precision (sf == 0 && type == 01)

SCVTF <Dd>, <Wn>

64-bit to half-precision (sf == 1 && type == 11)
(ARMv8.2)

SCVTF <Hd>, <Xn>

64-bit to single-precision (sf == 1 && type == 00)

SCVTF <Sd>, <Xn>

64-bit to double-precision (sf == 1 && type == 01)

SCVTF <Dd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPRoundingMode(FPCR);

SCVTF (scalar, integer) Page 791

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

intval = X[n];
fltval = FixedToFP(intval, 0, FALSE, FPCR, rounding);
V[d] = fltval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SCVTF (scalar, integer) Page 792

SDIV

Signed Divide divides a signed integer register value by another signed integer register value, and writes the result to the destination register. The
condition flags are not affected.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 1 Rn Rd
o1

32-bit (sf == 0)

SDIV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

SDIV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
integer result;

if IsZero(operand2) then
result = 0;

else
result = RoundTowardsZero(Real(Int(operand1, FALSE)) / Real(Int(operand2, FALSE)));

X[d] = result<datasize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDIV Page 793

SDOT (by element)

Dot Product signed arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit elements in each 32-bit element of
the first source register with the four 8-bit elements of an indexed 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

From ARMv8.2, this is an OPTIONAL instruction.

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd
U

Vector

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then ReservedValue();
boolean signed = (U == '0');

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer index = UInt(H:L);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the element index, encoded in the "H:L" fields.

SDOT (by element) Page 794

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDOT (by element) Page 795

SDOT (vector)

Dot Product signed arithmetic (vector). This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first
source register with the four 8-bit elements of the corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

From ARMv8.2, this is an OPTIONAL instruction.

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Three registers of the same type
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd
U

Three registers of the same type

SDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then ReservedValue();
boolean signed = (U == '0');
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SDOT (vector) Page 796

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDOT (vector) Page 797

SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more information, see Wait for
Event mechanism and Send event.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1
CRm op2

System

SEV

// Empty.

Operation

SendEvent();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEV Page 798

SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be signaled to other PEs in the

multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1
CRm op2

System

SEVL

// Empty.

Operation

SendEventLocal();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEVL Page 799

SHA1C

SHA1 hash update (choose).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 0 0 0 Rn Rd

Advanced SIMD

SHA1C <Qd>, <Sn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckCryptoEnabled64();

bits(128) X = V[d];
bits(32) Y = V[n]; // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;

for e = 0 to 3
t = SHAchoose(X<63:32>, X<95:64>, X<127:96>);
Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
X<63:32> = ROL(X<63:32>, 30);
<Y, X> = ROL(Y:X, 32);

V[d] = X;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1C Page 800

SHA1H

SHA1 fixed rotate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 Rn Rd

Advanced SIMD

SHA1H <Sd>, <Sn>

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckCryptoEnabled64();

bits(32) operand = V[n]; // read element [0] only, [1-3] zeroed
V[d] = ROL(operand, 30);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1H Page 801

SHA1M

SHA1 hash update (majority).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 0 0 0 Rn Rd

Advanced SIMD

SHA1M <Qd>, <Sn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckCryptoEnabled64();

bits(128) X = V[d];
bits(32) Y = V[n]; // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;

for e = 0 to 3
t = SHAmajority(X<63:32>, X<95:64>, X<127:96>);
Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
X<63:32> = ROL(X<63:32>, 30);
<Y, X> = ROL(Y:X, 32);

V[d] = X;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1M Page 802

SHA1P

SHA1 hash update (parity).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 0 1 0 0 Rn Rd

Advanced SIMD

SHA1P <Qd>, <Sn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckCryptoEnabled64();

bits(128) X = V[d];
bits(32) Y = V[n]; // Note: 32 not 128 bits wide
bits(128) W = V[m];
bits(32) t;

for e = 0 to 3
t = SHAparity(X<63:32>, X<95:64>, X<127:96>);
Y = Y + ROL(X<31:0>, 5) + t + Elem[W, e, 32];
X<63:32> = ROL(X<63:32>, 30);
<Y, X> = ROL(Y:X, 32);

V[d] = X;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1P Page 803

SHA1SU0

SHA1 schedule update 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 Rm 0 0 1 1 0 0 Rn Rd

Advanced SIMD

SHA1SU0 <Vd>.4S, <Vn>.4S, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckCryptoEnabled64();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) operand3 = V[m];
bits(128) result;

result = operand2<63:0>:operand1<127:64>;
result = result EOR operand1 EOR operand3;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1SU0 Page 804

SHA1SU1

SHA1 schedule update 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 Rn Rd

Advanced SIMD

SHA1SU1 <Vd>.4S, <Vn>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckCryptoEnabled64();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
bits(128) T = operand1 EOR LSR(operand2, 32);
result<31:0> = ROL(T<31:0>, 1);
result<63:32> = ROL(T<63:32>, 1);
result<95:64> = ROL(T<95:64>, 1);
result<127:96> = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1SU1 Page 805

SHA256H2

SHA256 hash update (part 2).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 1 0 0 Rn Rd
P

Advanced SIMD

SHA256H2 <Qd>, <Qn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckCryptoEnabled64();

bits(128) result;
result = SHA256hash(V[n], V[d], V[m], FALSE);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256H2 Page 806

SHA256H

SHA256 hash update (part 1).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 0 0 0 0 Rn Rd
P

Advanced SIMD

SHA256H <Qd>, <Qn>, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckCryptoEnabled64();

bits(128) result;
result = SHA256hash(V[d], V[n], V[m], TRUE);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256H Page 807

SHA256SU0

SHA256 schedule update 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 Rn Rd

Advanced SIMD

SHA256SU0 <Vd>.4S, <Vn>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckCryptoEnabled64();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) result;
bits(128) T = operand2<31:0>:operand1<127:32>;
bits(32) elt;

for e = 0 to 3
elt = Elem[T, e, 32];
elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
Elem[result, e, 32] = elt + Elem[operand1, e, 32];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256SU0 Page 808

SHA256SU1

SHA256 schedule update 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 0 0 0 Rm 0 1 1 0 0 0 Rn Rd

Advanced SIMD

SHA256SU1 <Vd>.4S, <Vn>.4S, <Vm>.4S

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if !HaveCryptoExt() then UnallocatedEncoding();

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckCryptoEnabled64();

bits(128) operand1 = V[d];
bits(128) operand2 = V[n];
bits(128) operand3 = V[m];
bits(128) result;
bits(128) T0 = operand3<31:0>:operand2<127:32>;
bits(64) T1;
bits(32) elt;

T1 = operand3<127:64>;
for e = 0 to 1

elt = Elem[T1, e, 32];
elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
Elem[result, e, 32] = elt;

T1 = result<63:0>;
for e = 2 to 3

elt = Elem[T1, e-2, 32];
elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
elt = elt + Elem[operand1, e, 32] + Elem[T0, e, 32];
Elem[result, e, 32] = elt;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256SU1 Page 809

SHA512H2

SHA512 Hash update part 2 takes the values from the three 128-bit source SIMD&FP registers and produces a 128-bit output value that
combines the sigma0 and majority functions of two iterations of the SHA512 computation. It returns this value to the destination SIMD&FP
register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 1 Rn Rd

Advanced SIMD

SHA512H2 <Qd>, <Qn>, <Vm>.2D

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

bits(128) Vtmp;
bits(64) NSigma0;
bits(64) tmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];

NSigma0 = ROR(Y<63:0>, 28) EOR ROR(Y<63:0>, 34) EOR ROR(Y<63:0>, 39);
Vtmp<127:64> = (X<63:0> AND Y<127:64>) EOR (X<63:0> AND Y<63:0>) EOR (Y<127:64> AND Y<63:0>);
Vtmp<127:64> = (Vtmp<127:64> + NSigma0 + W<127:64>);
NSigma0 = ROR(Vtmp<127:64>, 28) EOR ROR(Vtmp<127:64>, 34) EOR ROR(Vtmp<127:64>, 39);
Vtmp<63:0> = (Vtmp<127:64> AND Y<63:0>) EOR (Vtmp<127:64> AND Y<127:64>) EOR (Y<127:64> AND Y<63:0>);
Vtmp<63:0> = (Vtmp<63:0> + NSigma0 + W<63:0>);

V[d] = Vtmp;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512H2 Page 810

SHA512H

SHA512 Hash update part 1 takes the values from the three 128-bit source SIMD&FP registers and produces a 128-bit output value that
combines the sigma1 and chi functions of two iterations of the SHA512 computation. It returns this value to the destination SIMD&FP register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 0 0 Rn Rd

Advanced SIMD

SHA512H <Qd>, <Qn>, <Vm>.2D

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Qn> Is the 128-bit name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

bits(128) Vtmp;
bits(64) MSigma1;
bits(64) tmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];

MSigma1 = ROR(Y<127:64>, 14) EOR ROR(Y<127:64>, 18) EOR ROR(Y<127:64>, 41);
Vtmp<127:64> = (Y<127:64> AND X<63:0>) EOR (NOT(Y<127:64>) AND X<127:64>);
Vtmp<127:64> = (Vtmp<127:64> + MSigma1 + W<127:64>);
tmp = Vtmp<127:64> + Y<63:0>;
MSigma1 = ROR(tmp, 14) EOR ROR(tmp, 18) EOR ROR(tmp, 41);
Vtmp<63:0> = (tmp AND Y<127:64>) EOR (NOT(tmp) AND X<63:0>);
Vtmp<63:0> = (Vtmp<63:0> + MSigma1 + W<63:0>);
V[d] = Vtmp;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512H Page 811

SHA512SU0

SHA512 Schedule Update 0 takes the values from the two 128-bit source SIMD&FP registers and produces a 128-bit output value that combines
the gamma0 functions of two iterations of the SHA512 schedule update that are performed after the first 16 iterations within a block. It returns
this value to the destination SIMD&FP register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 Rn Rd

Advanced SIMD

SHA512SU0 <Vd>.2D, <Vn>.2D

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

bits(64) sig0;
bits(128) Vtmp;
bits(128) X = V[n];
bits(128) W = V[d];
sig0 = ROR(W<127:64>, 1) EOR ROR(W<127:64>, 8) EOR '0000000':W<127:71>;
Vtmp<63:0> = W<63:0> + sig0;
sig0 = ROR(X<63:0>, 1) EOR ROR(X<63:0>, 8) EOR '0000000':X<63:7>;
Vtmp<127:64> = W<127:64> + sig0;
V[d] = Vtmp;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512SU0 Page 812

SHA512SU1

SHA512 Schedule Update 1 takes the values from the three source SIMD&FP registers and produces a 128-bit output value that combines the
gamma1 functions of two iterations of the SHA512 schedule update that are performed after the first 16 iterations within a block. It returns this
value to the destination SIMD&FP register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 0 0 0 1 0 Rn Rd

Advanced SIMD

SHA512SU1 <Vd>.2D, <Vn>.2D, <Vm>.2D

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

bits(64) sig1;
bits(128) Vtmp;
bits(128) X = V[n];
bits(128) Y = V[m];
bits(128) W = V[d];

sig1 = ROR(X<127:64>, 19) EOR ROR(X<127:64>, 61) EOR '000000':X<127:70>;
Vtmp<127:64> = W<127:64> + sig1 + Y<127:64>;
sig1 = ROR(X<63:0>, 19) EOR ROR(X<63:0>, 61) EOR '000000':X<63:6>;
Vtmp<63:0> = W<63:0> + sig1 + Y<63:0>;
V[d] = Vtmp;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA512SU1 Page 813

SHADD

Signed Halving Add. This instruction adds corresponding signed integer values from the two source SIMD&FP registers, shifts each result right
one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see SRHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd
U

Three registers of the same type

SHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
Elem[result, e, esize] = sum<esize:1>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHADD Page 814

SHL

Shift Left (immediate). This instruction reads each value from a vector, left shifts each result by an immediate value, writes the final result to a
vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd
immh

Scalar

SHL <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd
immh

Vector

SHL <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SHL Page 815

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

for e = 0 to elements-1
Elem[result, e, esize] = LSL(Elem[operand, e, esize], shift);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHL Page 816

SHLL, SHLL2

Shift Left Long (by element size). This instruction reads each vector element in the lower or upper half of the source SIMD&FP register, left
shifts each result by the element size, writes the final result to a vector, and writes the vector to the destination SIMD&FP register. The
destination vector elements are twice as long as the source vector elements.

The SHLL instruction extracts vector elements from the lower half of the source register, while the SHLL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 1 1 0 Rn Rd

Vector

SHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = esize;
boolean unsigned = FALSE; // Or TRUE without change of functionality

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<shift> Is the left shift amount, which must be equal to the source element width in bits, encoded in “size”:

size <shift>
00 8
01 16
10 32
11 RESERVED

SHLL, SHLL2 Page 817

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(2*datasize) result;
integer element;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], unsigned) << shift;
Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHLL, SHLL2 Page 818

SHRN, SHRN2

Shift Right Narrow (immediate). This instruction reads each unsigned integer value from the source SIMD&FP register, right shifts each result
by an immediate value, puts the final result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register.
The destination vector elements are half as long as the source vector elements. The results are truncated. For rounded results, see RSHRN.

The RSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

RSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 0 0 1 Rn Rd
immh op

Vector

SHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<shift> Is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

SHRN, SHRN2 Page 819

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

for e = 0 to elements-1
element = (UInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
Elem[result, e, esize] = element<esize-1:0>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHRN, SHRN2 Page 820

SHSUB

Signed Halving Subtract. This instruction subtracts the elements in the vector in the second source SIMD&FP register from the corresponding
elements in the vector in the first source SIMD&FP register, shifts each result right one bit, places each result into elements of a vector, and
writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd
U

Three registers of the same type

SHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
Elem[result, e, esize] = diff<esize:1>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSUB Page 821

SLI

Shift Left and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, left shifts each vector element by
an immediate value, and inserts the result into the corresponding vector element in the destination SIMD&FP register such that the new zero bits
created by the shift are not inserted but retain their existing value. Bits shifted out of the left of each vector element in the source register are lost.

The following figure shows an example of the operation of shift left by 3 for an 8-bit vector element.

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]
63 5655 0

63 5655 0

63 5655 0

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd
immh

Scalar

SLI <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 0 1 0 1 Rn Rd
immh

Vector

SLI <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

SLI Page 822

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to 63, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2 = V[d];
bits(datasize) result;
bits(esize) mask = LSL(Ones(esize), shift);
bits(esize) shifted;

for e = 0 to elements-1
shifted = LSL(Elem[operand, e, esize], shift);
Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SLI Page 823

SM3PARTW1

SM3PARTW1 takes three 128-bit vectors from the three source SIMD&FP registers and returns a 128-bit result in the destination SIMD&FP
register. The result is obtained by a three-way exclusive OR of the elements within the input vectors with some fixed rotations, see the Operation
pseudocode for more information.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 0 Rn Rd

Advanced SIMD

SM3PARTW1 <Vd>.4S, <Vn>.4S, <Vm>.4S

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) result;

result<95:0> = (Vd EOR Vn)<95:0> EOR (ROL(Vm<127:96>, 15):ROL(Vm<95:64>, 15):ROL(Vm<63:32>, 15));

for i = 0 to 3
if i == 3 then

result<127:96> = (Vd EOR Vn)<127:96> EOR (ROL(result<31:0>, 15));
result<(32*i)+31:(32*i)> = result<(32*i)+31:(32*i)> EOR ROL(result<(32*i)+31:(32*i)>, 15) EOR ROL(result<(32*i)+31:(32*i)>, 23);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3PARTW1 Page 824

SM3PARTW2

SM3PARTW2 takes three 128-bit vectors from three source SIMD&FP registers and returns a 128-bit result in the destination SIMD&FP
register. The result is obtained by a three-way exclusive OR of the elements within the input vectors with some fixed rotations, see the Operation
pseudocode for more information.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 0 1 Rn Rd

Advanced SIMD

SM3PARTW2 <Vd>.4S, <Vn>.4S, <Vm>.4S

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) result;
bits(128) tmp;
bits(32) tmp2;
tmp<127:0> = Vn EOR (ROL(Vm<127:96>, 7):ROL(Vm<95:64>, 7):ROL(Vm<63:32>, 7):ROL(Vm<31:0>, 7));
result<127:0> = Vd<127:0> EOR tmp<127:0>;
tmp2 = ROL(tmp<31:0>, 15);
tmp2 = tmp2 EOR ROL(tmp2, 15) EOR ROL(tmp2, 23);
result<127:96> = result<127:96> EOR tmp2;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3PARTW2 Page 825

SM3SS1

SM3SS1 rotates the top 32 bits of the 128-bit vector in the first source SIMD&FP register by 12, and adds that 32-bit value to the two other
32-bit values held in the top 32 bits of each of the 128-bit vectors in the second and third source SIMD&FP registers, rotating this result left by 7
and writing the final result into the top 32 bits of the vector in the destination SIMD&FP register, with the bottom 96 bits of the vector being
written to 0.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 0 Rm 0 Ra Rn Rd

Advanced SIMD

SM3SS1 <Vd>.4S, <Vn>.4S, <Vm>.4S, <Va>.4S

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer a = UInt(Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(128) Va = V[a];
Vd<127:96> = ROL((ROL(Vn<127:96>, 12) + Vm<127:96> + Va<127:96>), 7);
Vd<95:0> = Zeros();
V[d] = Vd;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3SS1 Page 826

SM3TT1A

SM3TT1A takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and returns a 128-bit result in
the destination SIMD&FP register. It performs a three-way exclusive OR of the three 32-bit fields held in the upper three elements of the first
source vector, and adds the resulting 32-bit value and the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.
• The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left by 12 of the top 32-bit element

of the first source vector.
• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from elements of the first source
vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 0 Rn Rd

Advanced SIMD

SM3TT1A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) WjPrime;
bits(128) result;
bits(32) TT1;
bits(32) SS2;

WjPrime = Elem[Vm, i, 32];
SS2 = Vn<127:96> EOR ROL(Vd<127:96>, 12);
TT1 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 9);
result<95:64> = Vd<127:96>;
result<127:96> = TT1;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT1A Page 827

SM3TT1B

SM3TT1B takes three 128-bit vectors from three source SIMD&FP registers and a 2-bit immediate index value, and returns a 128-bit result in
the destination SIMD&FP register. It performs a 32-bit majority function between the three 32-bit fields held in the upper three elements of the
first source vector, and adds the resulting 32-bit value and the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.
• The result of the exclusive OR of the top 32-bit element of the second source vector, Vn, with a rotation left by 12 of the top 32-bit element

of the first source vector.
• A 32-bit element indexed out of the third source vector, Vm.

The result of this addition is returned as the top element of the result. The other elements of the result are taken from elements of the first source
vector, with the element returned in bits<63:32> being rotated left by 9.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 0 1 Rn Rd

Advanced SIMD

SM3TT1B <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) WjPrime;
bits(128) result;
bits(32) TT1;
bits(32) SS2;

WjPrime = Elem[Vm, i, 32];
SS2 = Vn<127:96> EOR ROL(Vd<127:96>, 12);
TT1 = (Vd<127:96> AND Vd<63:32>) OR (Vd<127:96> AND Vd<95:64>) OR (Vd<63:32> AND Vd<95:64>);
TT1 = (TT1+Vd<31:0>+SS2+WjPrime)<31:0>;
result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 9);
result<95:64> = Vd<127:96>;
result<127:96> = TT1;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT1B Page 828

SM3TT2A

SM3TT2A takes three 128-bit vectors from three source SIMD&FP register and a 2-bit immediate index value, and returns a 128-bit result in the
destination SIMD&FP register. It performs a three-way exclusive OR of the three 32-bit fields held in the upper three elements of the first source
vector, and adds the resulting 32-bit value and the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the three-way exclusive OR.
• The 32-bit element held in the top 32 bits of the second source vector, Vn.
• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and the result of the addition
rotated left by 17. The result of this exclusive OR is returned as the top element of the returned result. The other elements of this result are taken
from elements of the first source vector, with the element returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 0 Rn Rd

Advanced SIMD

SM3TT2A <Vd>.4S, <Vn>.4S, <Vm>.S[<imm2>]

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) Wj;
bits(128) result;
bits(32) TT1;

Wj = Elem[Vm, i, 32];
TT2 = Vd<63:32> EOR (Vd<127:96> EOR Vd<95:64>);
TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 19);
result<95:64> = Vd<127:96>;
result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT2A Page 829

SM3TT2B

SM3TT2B takes three 128-bit vectors from three source SIMD&FP registers, and a 2-bit immediate index value, and returns a 128-bit result in
the destination SIMD&FP register. It performs a 32-bit majority function between the three 32-bit fields held in the upper three elements of the
first source vector, and adds the resulting 32-bit value and the following three other 32-bit values:

• The bottom 32-bit element of the first source vector, Vd, that was used for the 32-bit majority function.
• The 32-bit element held in the top 32 bits of the second source vector, Vn.
• A 32-bit element indexed out of the third source vector, Vm.

A three-way exclusive OR is performed of the result of this addition, the result of the addition rotated left by 9, and the result of the addition
rotated left by 17. The result of this exclusive OR is returned as the top element of the returned result. The other elements of this result are taken
from elements of the first source vector, with the element returned in bits<63:32> being rotated left by 19.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 1 1 Rn Rd

Advanced SIMD

SM3TT2B <Vd>.S, <Vn>.S, <Vm>.S[<imm2>]

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer i = UInt(imm2);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the third SIMD&FP source register, encoded in the "Rm" field.

<imm2> Is a 32-bit element indexed out of <Vm>, encoded in "imm2".

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) Vd = V[d];
bits(32) Wj;
bits(128) result;
bits(32) TT2;

Wj = Elem[Vm, i, 32];
TT2 = (Vd<127:96> AND Vd<95:64>) OR (NOT(Vd<127:96>) AND Vd<63:32>);
TT2 = (TT2+Vd<31:0>+Vn<127:96>+Wj)<31:0>;

result<31:0> = Vd<63:32>;
result<63:32> = ROL(Vd<95:64>, 19);
result<95:64> = Vd<127:96>;
result<127:96> = TT2 EOR ROL(TT2, 9) EOR ROL(TT2, 17);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM3TT2B Page 830

SM4E

SM4 Encode takes input data as a 128-bit vector from the first source SIMD&FP register, and four iterations of the round key held as the
elements of the 128-bit vector in the second source SIMD&FP register. It encrypts the data by four rounds, in accordance with the SM4 standard,
returning the 128-bit result to the destination SIMD&FP register.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Rn Rd

Advanced SIMD

SM4E <Vd>.4S, <Vn>.4S

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.

<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.

Operation

bits(128) Vn = V[n];
bits(32) intval;
bits(8) sboxout;
bits(128) roundresult;
bits(32) roundkey;
integer index;

roundresult = V[d];
for index = 0 to 3

roundkey = Elem[Vn, index, 32];

intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR roundkey;

for i = 0 to 3
Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);

intval = intval EOR ROL(intval, 2) EOR ROL(intval, 10) EOR ROL(intval, 18) EOR ROL(intval, 24);
intval = intval EOR roundresult<31:0>;

roundresult<31:0> = roundresult<63:32>;
roundresult<63:32> = roundresult<95:64>;
roundresult<95:64> = roundresult<127:96>;
roundresult<127:96> = intval;

V[d] = roundresult;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM4E Page 831

SM4EKEY

SM4 Key takes an input as a 128-bit vector from the first source SIMD&FP register and a 128-bit constant from the second SIMD&FP register.
It derives four iterations of the output key, in accordance with the SM4 standard, returning the 128-bit result to the destination SIMD&FP
register.

This instruction is implemented only when ARMv8.2-SM is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 1 0 0 1 0 Rn Rd

Advanced SIMD

SM4EKEY <Vd>.4S, <Vn>.4S, <Vm>.4S

if !HaveChCryptoExt() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

bits(128) Vm = V[m];
bits(32) intval;
bits(8) sboxout;
bits(128) result;
bits(32) const;
bits(128) roundresult;
integer index;

roundresult = V[n];
for index = 0 to 3

const = Elem[Vm, index, 32];

intval = roundresult<127:96> EOR roundresult<95:64> EOR roundresult<63:32> EOR const;

for i = 0 to 3
Elem[intval, i, 8] = Sbox(Elem[intval, i, 8]);

intval = intval EOR ROL(intval, 13) EOR ROL(intval, 23);
intval = intval EOR roundresult<31:0>;

roundresult<31:0> = roundresult<63:32>;
roundresult<63:32> = roundresult<95:64>;
roundresult<95:64> = roundresult<127:96>;
roundresult<127:96> = intval;

V[d] = roundresult;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SM4EKEY Page 832

SMADDL

Signed Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result to the 64-bit destination
register.

This instruction is used by the alias SMULL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 0 0 1 Rm 0 Ra Rn Rd
U o0

64-bit

SMADDL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.

Alias Conditions

Alias Is preferred when

SMULL Ra == '11111'

Operation

bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;

result = Int(operand3, FALSE) + (Int(operand1, FALSE) * Int(operand2, FALSE));

X[d] = result<63:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMADDL Page 833

SMAX

Signed Maximum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places the
larger of each pair of signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd
U o1

Three registers of the same type

SMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

SMAX Page 834

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAX Page 835

SMAXP

Signed Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the
vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers,
writes the largest of each pair of signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd
U o1

Three registers of the same type

SMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

SMAXP Page 836

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAXP Page 837

SMAXV

Signed Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest of the
values as a scalar to the destination SIMD&FP register. All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd
U op

Advanced SIMD

SMAXV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

SMAXV Page 838

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMAXV Page 839

SMC

Secure Monitor Call causes an exception to EL3.

SMC is available only for software executing at EL1 or higher. It is UNDEFINED in EL0.

If the values of HCR_EL2.TSC and SCR_EL3.SMD are both 0, execution of an SMC instruction at EL1 or higher generates a Secure
Monitor Call exception, recording it in ESR_ELx, using the EC value 0x17, that is taken to EL3.

If the value of HCR_EL2.TSC is 1, execution of an SMC instruction in a Non-secure EL1 state generates an exception that is taken to
EL2, regardless of the value of SCR_EL3.SMD. For more information, see Traps to EL2 of Non-secure EL1 execution of SMC instructions.

If the value of HCR_EL2.TSC is 0 and the value of SCR_EL3.SMD is 1, the SMC instruction is UNDEFINED.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 1 1

System

SMC #<imm>

bits(16) imm = imm16;

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.CheckForSMCUndefOrTrap(imm);

if SCR_EL3.SMD == '1' then
// SMC disabled
AArch64.UndefinedFault();

else
AArch64.CallSecureMonitor(imm);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMC Page 840

SMIN

Signed Minimum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places the
smaller of each of the two signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd
U o1

Three registers of the same type

SMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

SMIN Page 841

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMIN Page 842

SMINP

Signed Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the
vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers,
writes the smallest of each pair of signed integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd
U o1

Three registers of the same type

SMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

SMINP Page 843

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMINP Page 844

SMINV

Signed Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the smallest of the
values as a scalar to the destination SIMD&FP register. All the values in this instruction are signed integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd
U op

Advanced SIMD

SMINV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

SMINV Page 845

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMINV Page 846

SMLAL, SMLAL2 (by element)

Signed Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source
SIMD&FP register by the specified vector element in the second source SIMD&FP register, and accumulates the results with the vector elements
of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied. All the values in this
instruction are signed integer values.

The SMLAL instruction extracts vector elements from the lower half of the first source register, while the SMLAL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd
U o2

Vector

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

SMLAL, SMLAL2 (by element) Page 847

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAL, SMLAL2 (by element) Page 848

SMLAL, SMLAL2 (vector)

Signed Multiply-Add Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors of
the two source SIMD&FP registers, and accumulates the results with the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The SMLAL instruction extracts each source vector from the lower half of each source register, while the SMLAL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd
U o1

Three registers, not all the same type

SMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SMLAL, SMLAL2 (vector) Page 849

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAL, SMLAL2 (vector) Page 850

SMLSL, SMLSL2 (by element)

Signed Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source
SIMD&FP register by the specified vector element of the second source SIMD&FP register and subtracts the results from the vector elements of
the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The SMLSL instruction extracts vector elements from the lower half of the first source register, while the SMLSL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd
U o2

Vector

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

SMLSL, SMLSL2 (by element) Page 851

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSL, SMLSL2 (by element) Page 852

SMLSL, SMLSL2 (vector)

Signed Multiply-Subtract Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors
of the two source SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP register. The destination
vector elements are twice as long as the elements that are multiplied.

The SMLSL instruction extracts each source vector from the lower half of each source register, while the SMLSL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd
U o1

Three registers, not all the same type

SMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SMLSL, SMLSL2 (vector) Page 853

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSL, SMLSL2 (vector) Page 854

SMNEGL

Signed Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the 64-bit destination register.

This is an alias of SMSUBL. This means:

• The encodings in this description are named to match the encodings of SMSUBL.
• The description of SMSUBL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 0 0 1 Rm 1 1 1 1 1 1 Rn Rd
U o0 Ra

64-bit

SMNEGL <Xd>, <Wn>, <Wm>

is equivalent to

SMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of SMSUBL gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMNEGL Page 855

SMOV

Signed Move vector element to general-purpose register. This instruction reads the signed integer from the source SIMD&FP register, sign-
extends it to form a 32-bit or 64-bit value, and writes the result to destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 0 1 1 Rn Rd

32-bit (Q == 0)

SMOV <Wd>, <Vn>.<Ts>[<index>]

64-bit (Q == 1)

SMOV <Xd>, <Vn>.<Ts>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size;
case Q:imm5 of

when 'xxxxx1' size = 0; // SMOV [WX]d, Vn.B
when 'xxxx10' size = 1; // SMOV [WX]d, Vn.H
when '1xx100' size = 2; // SMOV Xd, Vn.S
otherwise UnallocatedEncoding();

integer idxdsize = if imm5<4> == '1' then 128 else 64;
integer index = UInt(imm5<4:size+1>);
integer esize = 8 << size;
integer datasize = if Q == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
xxx00 RESERVED
xxxx1 B
xxx10 H

For the 64-bit variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
xx000 RESERVED
xxxx1 B
xxx10 H
xx100 S

<index> For the 32-bit variant: is the element index encoded in “imm5”:

imm5 <index>
xxx00 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>

For the 64-bit variant: is the element index encoded in “imm5”:

SMOV Page 856

imm5 <index>
xx000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];

X[d] = SignExtend(Elem[operand, index, esize], datasize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMOV Page 857

SMSUBL

Signed Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register value, and writes the result to
the 64-bit destination register.

This instruction is used by the alias SMNEGL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 0 0 1 Rm 1 Ra Rn Rd
U o0

64-bit

SMSUBL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Alias Conditions

Alias Is preferred when

SMNEGL Ra == '11111'

Operation

bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;

result = Int(operand3, FALSE) - (Int(operand1, FALSE) * Int(operand2, FALSE));
X[d] = result<63:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMSUBL Page 858

SMULH

Signed Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 0 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd
U Ra

64-bit

SMULH <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

bits(64) operand1 = X[n];
bits(64) operand2 = X[m];

integer result;

result = Int(operand1, FALSE) * Int(operand2, FALSE);

X[d] = result<127:64>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULH Page 859

SMULL, SMULL2 (by element)

Signed Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source
SIMD&FP register by the specified vector element of the second source SIMD&FP register, places the result in a vector, and writes the vector to
the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts vector elements from the lower half of the first source register, while the SMULL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd
U

Vector

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

SMULL, SMULL2 (by element) Page 860

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL, SMULL2 (by element) Page 861

SMULL, SMULL2 (vector)

Signed Multiply Long (vector). This instruction multiplies corresponding signed integer values in the lower or upper half of the vectors of the
two source SIMD&FP registers, places the results in a vector, and writes the vector to the destination SIMD&FP register.

The destination vector elements are twice as long as the elements that are multiplied.

The SMULL instruction extracts each source vector from the lower half of each source register, while the SMULL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd
U

Three registers, not all the same type

SMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SMULL, SMULL2 (vector) Page 862

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, 2*esize] = (element1*element2)<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL, SMULL2 (vector) Page 863

SMULL

Signed Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This is an alias of SMADDL. This means:

• The encodings in this description are named to match the encodings of SMADDL.
• The description of SMADDL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 0 0 1 Rm 0 1 1 1 1 1 Rn Rd
U o0 Ra

64-bit

SMULL <Xd>, <Wn>, <Wm>

is equivalent to

SMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of SMADDL gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL Page 864

SQABS

Signed saturating Absolute value. This instruction reads each vector element from the source SIMD&FP register, puts the absolute value of the
result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
U

Scalar

SQABS <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
U

Vector

SQABS <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

SQABS Page 865

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
(Elem[result, e, esize], sat) = SignedSatQ(element, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQABS Page 866

SQADD

Signed saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP registers, places the results into
a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
U

Scalar

SQADD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
U

Vector

SQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SQADD Page 867

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
(Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQADD Page 868

SQDMLAL, SQDMLAL2 (by element)

Signed saturating Doubling Multiply-Add Long (by element). This instruction multiplies each vector element in the lower or upper half of the
first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, and accumulates the
final results with the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that
are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts vector elements from the lower half of the first source register, while the

SQDMLAL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd
o2

Scalar

SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o2 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 0 0 1 1 H 0 Rn Rd
o2

SQDMLAL, SQDMLAL2 (by
element)

Page 869

Vector

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

SQDMLAL, SQDMLAL2 (by
element)

Page 870

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLAL, SQDMLAL2 (by
element)

Page 871

SQDMLAL, SQDMLAL2 (vector)

Signed saturating Doubling Multiply-Add Long. This instruction multiplies corresponding signed integer values in the lower or upper half of the
vectors of the two source SIMD&FP registers, doubles the results, and accumulates the final results with the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLAL instruction extracts each source vector from the lower half of each source register, while the

SQDMLAL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd
o1

Scalar

SQDMLAL <Va><d>, <Vb><n>, <Vb><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o1 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 0 1 0 0 Rn Rd
o1

Vector

SQDMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

SQDMLAL, SQDMLAL2 (vector) Page 872

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

SQDMLAL, SQDMLAL2 (vector) Page 873

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLAL, SQDMLAL2 (vector) Page 874

SQDMLSL, SQDMLSL2 (by element)

Signed saturating Doubling Multiply-Subtract Long (by element). This instruction multiplies each vector element in the lower or upper half of
the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, and subtracts the
final results from the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements
that are multiplied. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts vector elements from the lower half of the first source register, while the

SQDMLSL2 instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd
o2

Scalar

SQDMLSL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o2 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 0 1 1 1 H 0 Rn Rd
o2

SQDMLSL, SQDMLSL2 (by
element)

Page 875

Vector

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

SQDMLSL, SQDMLSL2 (by
element)

Page 876

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLSL, SQDMLSL2 (by
element)

Page 877

SQDMLSL, SQDMLSL2 (vector)

Signed saturating Doubling Multiply-Subtract Long. This instruction multiplies corresponding signed integer values in the lower or upper half of
the vectors of the two source SIMD&FP registers, doubles the results, and subtracts the final results from the vector elements of the destination
SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMLSL instruction extracts each source vector from the lower half of each source register, while the

SQDMLSL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd
o1

Scalar

SQDMLSL <Va><d>, <Vb><n>, <Vb><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

boolean sub_op = (o1 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 0 Rn Rd
o1

Vector

SQDMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

SQDMLSL, SQDMLSL2 (vector) Page 878

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

SQDMLSL, SQDMLSL2 (vector) Page 879

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
integer accum;
boolean sat1;
boolean sat2;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
(product, sat1) = SignedSatQ(2 * element1 * element2, 2 * esize);
if sub_op then

accum = SInt(Elem[operand3, e, 2*esize]) - SInt(product);
else

accum = SInt(Elem[operand3, e, 2*esize]) + SInt(product);
(Elem[result, e, 2*esize], sat2) = SignedSatQ(accum, 2 * esize);
if sat1 || sat2 then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMLSL, SQDMLSL2 (vector) Page 880

SQDMULH (by element)

Signed saturating Doubling Multiply returning High half (by element). This instruction multiplies each vector element in the first source
SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, places the most significant half
of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd
op

Scalar

SQDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 0 H 0 Rn Rd
op

SQDMULH (by element) Page 881

Vector

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean round = (op == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

SQDMULH (by element) Page 882

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
product = (2 * element1 * element2) + round_const;
// The following only saturates if element1 and element2 equal -(2^(esize-1))
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULH (by element) Page 883

SQDMULH (vector)

Signed saturating Doubling Multiply returning High half. This instruction multiplies the values of corresponding elements of the two source
SIMD&FP registers, doubles the results, places the most significant half of the final results into a vector, and writes the vector to the destination
SIMD&FP register.

The results are truncated. For rounded results, see SQRDMULH.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
U

Scalar

SQDMULH <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
U

Vector

SQDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

SQDMULH (vector) Page 884

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
product = (2 * element1 * element2) + round_const;
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULH (vector) Page 885

SQDMULL, SQDMULL2 (by element)

Signed saturating Doubling Multiply Long (by element). This instruction multiplies each vector element in the lower or upper half of the first
source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, places the final results in
a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMULL instruction extracts the first source vector from the lower half of the first source register, while the

SQDMULL2 instruction extracts the first source vector from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd

Scalar

SQDMULL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 1 0 1 1 H 0 Rn Rd

SQDMULL, SQDMULL2 (by
element)

Page 886

Vector

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

SQDMULL, SQDMULL2 (by
element)

Page 887

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();

bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
(product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
Elem[result, e, 2*esize] = product;
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULL, SQDMULL2 (by
element)

Page 888

SQDMULL, SQDMULL2 (vector)

Signed saturating Doubling Multiply Long. This instruction multiplies corresponding vector elements in the lower or upper half of the two
source SIMD&FP registers, doubles the results, places the final results in a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQDMULL instruction extracts each source vector from the lower half of each source register, while the

SQDMULL2 instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd

Scalar

SQDMULL <Va><d>, <Vb><n>, <Vb><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
integer part = 0;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 1 1 0 1 0 0 Rn Rd

Vector

SQDMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '00' || size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

SQDMULL, SQDMULL2 (vector) Page 889

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Va> Is the destination width specifier, encoded in “size”:

size <Va>
00 RESERVED
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vb> Is the source width specifier, encoded in “size”:

size <Vb>
00 RESERVED
01 H
10 S
11 RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
(product, sat) = SignedSatQ(2 * element1 * element2, 2 * esize);
Elem[result, e, 2*esize] = product;
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQDMULL, SQDMULL2 (vector) Page 890

SQNEG

Signed saturating Negate. This instruction reads each vector element from the source SIMD&FP register, negates each value, places the result
into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
U

Scalar

SQNEG <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 1 1 0 Rn Rd
U

Vector

SQNEG <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

SQNEG Page 891

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = SInt(Elem[operand, e, esize]);
if neg then

element = -element;
else

element = Abs(element);
(Elem[result, e, esize], sat) = SignedSatQ(element, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQNEG Page 892

SQRDMLAH (by element)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element). This instruction multiplies the vector elements of
the first source SIMD&FP register with the value of a vector element of the second source SIMD&FP register without saturating the multiply
results, doubles the results, and accumulates the most significant half of the final results with the vector elements of the destination SIMD&FP
register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
S

Scalar

SQRDMLAH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
S

SQRDMLAH (by element) Page 893

Vector

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

SQRDMLAH (by element) Page 894

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLAH (by element) Page 895

SQRDMLAH (vector)

Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector). This instruction multiplies the vector elements of the
first source SIMD&FP register with the corresponding vector elements of the second source SIMD&FP register without saturating the multiply
results, doubles the results, and accumulates the most significant half of the final results with the vector elements of the destination SIMD&FP
register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd
S

Scalar

SQRDMLAH <V><d>, <V><n>, <V><m>

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 0 1 Rn Rd
S

Vector

SQRDMLAH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

SQRDMLAH (vector) Page 896

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLAH (vector) Page 897

SQRDMLSH (by element)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element). This instruction multiplies the vector elements of the
first source SIMD&FP register with the value of a vector element of the second source SIMD&FP register without saturating the multiply
results, doubles the results, and subtracts the most significant half of the final results from the vector elements of the destination SIMD&FP
register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd
S

Scalar

SQRDMLSH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 1 H 0 Rn Rd
S

SQRDMLSH (by element) Page 898

Vector

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

SQRDMLSH (by element) Page 899

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLSH (by element) Page 900

SQRDMLSH (vector)

Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector). This instruction multiplies the vector elements of the first
source SIMD&FP register with the corresponding vector elements of the second source SIMD&FP register without saturating the multiply
results, doubles the results, and subtracts the most significant half of the final results from the vector elements of the destination SIMD&FP
register. The results are rounded.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSR.QC, is set if saturation occurs.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd
S

Scalar

SQRDMLSH <V><d>, <V><n>, <V><m>

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Vector
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 0 1 1 Rn Rd
S

Vector

SQRDMLSH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveQRDMLAHExt() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = TRUE;
boolean sub_op = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

SQRDMLSH (vector) Page 901

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];
bits(datasize) result;
integer rounding_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer element3;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
element3 = SInt(Elem[operand3, e, esize]);
if sub_op then

accum = ((element3 << esize) - 2 * (element1 * element2) + rounding_const);
else

accum = ((element3 << esize) + 2 * (element1 * element2) + rounding_const);
(Elem[result, e, esize], sat) = SignedSatQ(accum >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMLSH (vector) Page 902

SQRDMULH (by element)

Signed saturating Rounding Doubling Multiply returning High half (by element). This instruction multiplies each vector element in the first
source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, places the most
significant half of the final results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SQDMULH.

If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
op

Scalar

SQRDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 size L M Rm 1 1 0 1 H 0 Rn Rd
op

SQRDMULH (by element) Page 903

Vector

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean round = (op == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

SQRDMULH (by element) Page 904

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(idxdsize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

element2 = SInt(Elem[operand2, index, esize]);
for e = 0 to elements-1

element1 = SInt(Elem[operand1, e, esize]);
product = (2 * element1 * element2) + round_const;
// The following only saturates if element1 and element2 equal -(2^(esize-1))
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMULH (by element) Page 905

SQRDMULH (vector)

Signed saturating Rounding Doubling Multiply returning High half. This instruction multiplies the values of corresponding elements of the two
source SIMD&FP registers, doubles the results, places the most significant half of the final results into a vector, and writes the vector to the
destination SIMD&FP register.

The results are rounded. For truncated results, see SQDMULH.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
U

Scalar

SQRDMULH <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean rounding = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 1 0 1 Rn Rd
U

Vector

SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' || size == '00' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean rounding = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 RESERVED
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

SQRDMULH (vector) Page 906

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if rounding then 1 << (esize - 1) else 0;
integer element1;
integer element2;
integer product;
boolean sat;

for e = 0 to elements-1
element1 = SInt(Elem[operand1, e, esize]);
element2 = SInt(Elem[operand2, e, esize]);
product = (2 * element1 * element2) + round_const;
(Elem[result, e, esize], sat) = SignedSatQ(product >> esize, esize);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRDMULH (vector) Page 907

SQRSHL

Signed saturating Rounding Shift Left (register). This instruction takes each vector element in the first source SIMD&FP register, shifts it by a
value from the least significant byte of the corresponding vector element of the second source SIMD&FP register, places the results into a vector,
and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For truncated results, see SQSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
U R S

Scalar

SQRSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
U R S

Vector

SQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

SQRSHL Page 908

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRSHL Page 909

SQRSHRN, SQRSHRN2

Signed saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, saturates each shifted result to a value that is half the original width, puts the final result into a vector,
and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are signed integer values.
The destination vector elements are half as long as the source vector elements. The results are rounded. For truncated results, see SQSHRN.

The SQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd
U immh op

Scalar

SQRSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd
U immh op

Vector

SQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

SQRSHRN, SQRSHRN2 Page 910

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQRSHRN, SQRSHRN2 Page 911

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRSHRN, SQRSHRN2 Page 912

SQRSHRUN, SQRSHRUN2

Signed saturating Rounded Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value in the vector of the
source SIMD&FP register, right shifts each value by an immediate value, saturates the result to an unsigned integer value that is half the original
width, places the final result into a vector, and writes the vector to the destination SIMD&FP register. The results are rounded. For truncated
results, see SQSHRUN.

The SQRSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SQRSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the
register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 0 1 1 Rn Rd
immh op

Scalar

SQRSHRUN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 0 1 1 Rn Rd
immh op

Vector

SQRSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

SQRSHRUN, SQRSHRUN2 Page 913

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQRSHRUN, SQRSHRUN2 Page 914

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
(Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQRSHRUN, SQRSHRUN2 Page 915

SQSHL (immediate)

Signed saturating Shift Left (immediate). This instruction reads each vector element in the source SIMD&FP register, shifts each result by an
immediate value, places the final result in a vector, and writes the vector to the destination SIMD&FP register. The results are truncated. For
rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd
U immh op

Scalar

SQSHL <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UnallocatedEncoding();
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd
U immh op

SQSHL (immediate) Page 916

Vector

SQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UnallocatedEncoding();
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0000 RESERVED
0001 B
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

SQSHL (immediate) Page 917

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], src_unsigned) << shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHL (immediate) Page 918

SQSHL (register)

Signed saturating Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts each element
by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector,
and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For rounded results, see SQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
U R S

Scalar

SQSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
U R S

Vector

SQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

SQSHL (register) Page 919

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHL (register) Page 920

SQSHLU

Signed saturating Shift Left Unsigned (immediate). This instruction reads each signed integer value in the vector of the source SIMD&FP
register, shifts each value by an immediate value, saturates the shifted result to an unsigned integer value, places the result in a vector, and writes
the vector to the destination SIMD&FP register. The results are truncated. For rounded results, see UQRSHL.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 1 0 0 1 Rn Rd
U immh op

Scalar

SQSHLU <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UnallocatedEncoding();
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 1 0 0 1 Rn Rd
U immh op

SQSHLU Page 921

Vector

SQSHLU <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UnallocatedEncoding();
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0000 RESERVED
0001 B
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

SQSHLU Page 922

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], src_unsigned) << shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHLU Page 923

SQSHRN, SQSHRN2

Signed saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts and
truncates each result by an immediate value, saturates each shifted result to a value that is half the original width, puts the final result into a
vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are signed integer
values. The destination vector elements are half as long as the source vector elements. For rounded results, see SQRSHRN.

The SQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd
U immh op

Scalar

SQSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd
U immh op

Vector

SQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

SQSHRN, SQSHRN2 Page 924

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQSHRN, SQSHRN2 Page 925

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHRN, SQSHRN2 Page 926

SQSHRUN, SQSHRUN2

Signed saturating Shift Right Unsigned Narrow (immediate). This instruction reads each signed integer value in the vector of the source
SIMD&FP register, right shifts each value by an immediate value, saturates the result to an unsigned integer value that is half the original width,
places the final result into a vector, and writes the vector to the destination SIMD&FP register. The results are truncated. For rounded results, see
SQRSHRUN.

The SQSHRUN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SQSHRUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 0 0 1 Rn Rd
immh op

Scalar

SQSHRUN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 0 0 1 Rn Rd
immh op

Vector

SQSHRUN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');

SQSHRUN, SQSHRUN2 Page 927

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

SQSHRUN, SQSHRUN2 Page 928

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (SInt(Elem[operand, e, 2*esize]) + round_const) >> shift;
(Elem[result, e, esize], sat) = UnsignedSatQ(element, esize);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSHRUN, SQSHRUN2 Page 929

SQSUB

Signed saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register from the corresponding
element values of the first source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
U

Scalar

SQSUB <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
U

Vector

SQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

SQSUB Page 930

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
(Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQSUB Page 931

SQXTN, SQXTN2

Signed saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register, saturates the value to half the
original width, places the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The
destination vector elements are half as long as the source vector elements. All the values in this instruction are signed integer values.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
U

Scalar

SQXTN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
U

Vector

SQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

SQXTN, SQXTN2 Page 932

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vb> Is the destination width specifier, encoded in “size”:

size <Vb>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “size”:

size <Va>
00 H
01 S
10 D
11 RESERVED

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
(Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQXTN, SQXTN2 Page 933

SQXTUN, SQXTUN2

Signed saturating extract Unsigned Narrow. This instruction reads each signed integer value in the vector of the source SIMD&FP register,
saturates the value to an unsigned integer value that is half the original width, places the result into a vector, and writes the vector to the lower or
upper half of the destination SIMD&FP register. The destination vector elements are half as long as the source vector elements.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The SQXTUN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SQXTUN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

Scalar

SQXTUN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

Vector

SQXTUN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

SQXTUN, SQXTUN2 Page 934

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vb> Is the destination width specifier, encoded in “size”:

size <Vb>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “size”:

size <Va>
00 H
01 S
10 D
11 RESERVED

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
(Elem[result, e, esize], sat) = UnsignedSatQ(SInt(element), esize);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SQXTUN, SQXTUN2 Page 935

SRHADD

Signed Rounding Halving Add. This instruction adds corresponding signed integer values from the two source SIMD&FP registers, shifts each
result right one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see SHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd
U

Three registers of the same type

SRHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, esize] = (element1+element2+1)<esize:1>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRHADD Page 936

SRI

Shift Right and Insert (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each vector element
by an immediate value, and inserts the result into the corresponding vector element in the destination SIMD&FP register such that the new zero
bits created by the shift are not inserted but retain their existing value. Bits shifted out of the right of each vector element of the source register
are lost.

The following figure shows an example of the operation of shift right by 3 for an 8-bit vector element.

Vd.B[7] after operation

Vd.B[7] before operation

Vn.B[7]
63 5655 0

63 5655 0

63 5655 0

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 0 0 0 1 Rn Rd
immh

Scalar

SRI <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 0 0 0 1 Rn Rd
immh

SRI Page 937

Vector

SRI <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2 = V[d];
bits(datasize) result;
bits(esize) mask = LSR(Ones(esize), shift);
bits(esize) shifted;

for e = 0 to elements-1
shifted = LSR(Elem[operand, e, esize], shift);
Elem[result, e, esize] = (Elem[operand2, e, esize] AND NOT(mask)) OR shifted;

V[d] = result;

SRI Page 938

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRI Page 939

SRSHL

Signed Rounding Shift Left (register). This instruction takes each signed integer value in the vector of the first source SIMD&FP register, shifts
it by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector,
and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift. For a truncating shift, see SSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
U R S

Scalar

SRSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
U R S

Vector

SRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

SRSHL Page 940

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRSHL Page 941

SRSHR

Signed Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by
an immediate value, places the final result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this
instruction are signed integer values. The results are rounded. For truncated results, see SSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd
U immh o1 o0

Scalar

SRSHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd
U immh o1 o0

Vector

SRSHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

SRSHR Page 942

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRSHR Page 943

SRSRA

Signed Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the
values in this instruction are signed integer values. The results are rounded. For truncated results, see SSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd
U immh o1 o0

Scalar

SRSRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd
U immh o1 o0

Vector

SRSRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

SRSRA Page 944

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRSRA Page 945

SSHL

Signed Shift Left (register). This instruction takes each signed integer value in the vector of the first source SIMD&FP register, shifts each value
by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector,
and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For a rounding shift, see
SRSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
U R S

Scalar

SSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
U R S

Vector

SSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

SSHL Page 946

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSHL Page 947

SSHLL, SSHLL2

Signed Shift Left Long (immediate). This instruction reads each vector element from the source SIMD&FP register, left shifts each vector
element by the specified shift amount, places the result into a vector, and writes the vector to the destination SIMD&FP register. The destination
vector elements are twice as long as the source vector elements. All the values in this instruction are signed integer values.

The SSHLL instruction extracts vector elements from the lower half of the source register, while the SSHLL2
instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias SXTL, SXTL2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 1 0 1 0 0 1 Rn Rd
U immh

Vector

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in “immh:immb”:

SSHLL, SSHLL2 Page 948

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx RESERVED

Alias Conditions

Alias Is preferred when

SXTL, SXTL2 immb == '000' && BitCount(immh) == 1

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(datasize*2) result;
integer element;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], unsigned) << shift;
Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSHLL, SSHLL2 Page 949

SSHR

Signed Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an
immediate value, places the final result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction
are signed integer values. The results are truncated. For rounded results, see SRSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd
U immh o1 o0

Scalar

SSHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd
U immh o1 o0

Vector

SSHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

SSHR Page 950

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSHR Page 951

SSRA

Signed Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each
result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the values in
this instruction are signed integer values. The results are truncated. For rounded results, see SRSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd
U immh o1 o0

Scalar

SSRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd
U immh o1 o0

Vector

SSRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

SSRA Page 952

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSRA Page 953

SSUBL, SSUBL2

Signed Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second source SIMD&FP register from the
corresponding vector element of the first source SIMD&FP register, places the results into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are signed integer values. The destination vector elements are twice as long as the source
vector elements.

The SSUBL instruction extracts each source vector from the lower half of each source register, while the SSUBL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd
U o1

Three registers, not all the same type

SSUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SSUBL, SSUBL2 Page 954

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSUBL, SSUBL2 Page 955

SSUBW, SSUBW2

Signed Subtract Wide. This instruction subtracts each vector element in the lower or upper half of the second source SIMD&FP register from the
corresponding vector element in the first source SIMD&FP register, places the result in a vector, and writes the vector to the SIMD&FP
destination register. All the values in this instruction are signed integer values.

The SSUBW instruction extracts the second source vector from the lower half of the second source register, while the

SSUBW2 instruction extracts the second source vector from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd
U o1

Three registers, not all the same type

SSUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

SSUBW, SSUBW2 Page 956

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSUBW, SSUBW2 Page 957

ST1 (multiple structures)

Store multiple single-element structures from one, two, three, or four registers. This instruction stores elements to memory from one, two, three,
or four SIMD&FP registers, without interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 x x 1 x size Rn Rt
L opcode

One register (opcode == 0111)

ST1 { <Vt>.<T> }, [<Xn|SP>]

Two registers (opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

Three registers (opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

Four registers (opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 0 0 Rm x x 1 x size Rn Rt
L opcode

ST1 (multiple structures) Page 958

One register, immediate offset (Rm == 11111 && opcode == 0111)

ST1 { <Vt>.<T> }, [<Xn|SP>], <imm>

One register, register offset (Rm != 11111 && opcode == 0111)

ST1 { <Vt>.<T> }, [<Xn|SP>], <Xm>

Two registers, immediate offset (Rm == 11111 && opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Two registers, register offset (Rm != 11111 && opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

Three registers, immediate offset (Rm == 11111 && opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Three registers, register offset (Rm != 11111 && opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

Four registers, immediate offset (Rm == 11111 && opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Four registers, register offset (Rm != 11111 && opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

ST1 (multiple structures) Page 959

Q <imm>
0 #8
1 #16

For the two registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

For the three registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

For the four registers, immediate offset variant: is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

ST1 (multiple structures) Page 960

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1 (multiple structures) Page 961

ST1 (single structure)

Store a single-element structure from one lane of one register. This instruction stores the specified element of a SIMD&FP register to memory.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 0 S size Rn Rt
L R opcode

8-bit (opcode == 000)

ST1 { <Vt>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

ST1 { <Vt>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

ST1 { <Vt>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

ST1 { <Vt>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 0 0 Rm x x 0 S size Rn Rt
L R opcode

ST1 (single structure) Page 962

8-bit, immediate offset (Rm == 11111 && opcode == 000)

ST1 { <Vt>.B }[<index>], [<Xn|SP>], #1

8-bit, register offset (Rm != 11111 && opcode == 000)

ST1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

ST1 { <Vt>.H }[<index>], [<Xn|SP>], #2

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

ST1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

ST1 { <Vt>.S }[<index>], [<Xn|SP>], #4

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

ST1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

ST1 { <Vt>.D }[<index>], [<Xn|SP>], #8

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

ST1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST1 (single structure) Page 963

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST1 (single structure) Page 964

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST1 (single structure) Page 965

ST2 (multiple structures)

Store multiple 2-element structures from two registers. This instruction stores multiple 2-element structures from two SIMD&FP registers to
memory, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 size Rn Rt
L opcode

No offset

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 0 0 Rm 1 0 0 0 size Rn Rt
L opcode

Immediate offset (Rm == 11111)

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

ST2 { <Vt>.<T>, <Vt2>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

ST2 (multiple structures) Page 966

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #16
1 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

ST2 (multiple structures) Page 967

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2 (multiple structures) Page 968

ST2 (single structure)

Store single 2-element structure from one lane of two registers. This instruction stores a 2-element structure to memory from corresponding
elements of two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 0 S size Rn Rt
L R opcode

8-bit (opcode == 000)

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 010 && size == x0)

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 0 1 Rm x x 0 S size Rn Rt
L R opcode

ST2 (single structure) Page 969

8-bit, immediate offset (Rm == 11111 && opcode == 000)

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2

8-bit, register offset (Rm != 11111 && opcode == 000)

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST2 (single structure) Page 970

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST2 (single structure) Page 971

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST2 (single structure) Page 972

ST3 (multiple structures)

Store multiple 3-element structures from three registers. This instruction stores multiple 3-element structures to memory from three SIMD&FP
registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 size Rn Rt
L opcode

No offset

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 0 0 Rm 0 1 0 0 size Rn Rt
L opcode

Immediate offset (Rm == 11111)

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

ST3 (multiple structures) Page 973

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #24
1 #48

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

ST3 (multiple structures) Page 974

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3 (multiple structures) Page 975

ST3 (single structure)

Store single 3-element structure from one lane of three registers. This instruction stores a 3-element structure to memory from corresponding
elements of three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 0 0 0 0 0 0 0 x x 1 S size Rn Rt
L R opcode

8-bit (opcode == 001)

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 0 0 Rm x x 1 S size Rn Rt
L R opcode

ST3 (single structure) Page 976

8-bit, immediate offset (Rm == 11111 && opcode == 001)

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3

8-bit, register offset (Rm != 11111 && opcode == 001)

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST3 (single structure) Page 977

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST3 (single structure) Page 978

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST3 (single structure) Page 979

ST4 (multiple structures)

Store multiple 4-element structures from four registers. This instruction stores multiple 4-element structures to memory from four SIMD&FP
registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 size Rn Rt
L opcode

No offset

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 0 0 Rm 0 0 0 0 size Rn Rt
L opcode

Immediate offset (Rm == 11111)

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <imm>

Register offset (Rm != 11111)

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T> }, [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

ST4 (multiple structures) Page 980

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in “Q”:

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

Shared Decode

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << UInt(size);
integer elements = datasize DIV esize;

integer rpt; // number of iterations
integer selem; // structure elements

case opcode of
when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
otherwise UnallocatedEncoding();

// .1D format only permitted with LD1 & ST1
if size:Q == '110' && selem != 1 then ReservedValue();

ST4 (multiple structures) Page 981

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(datasize) rval;
integer e, r, s, tt;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
for r = 0 to rpt-1

for e = 0 to elements-1
tt = (t + r) MOD 32;
for s = 0 to selem-1

rval = V[tt];
if memop == MemOp_LOAD then

Elem[rval, e, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[tt] = rval;

else // memop == MemOp_STORE
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, e, esize];

offs = offs + ebytes;
tt = (tt + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4 (multiple structures) Page 982

ST4 (single structure)

Store single 4-element structure from one lane of four registers. This instruction stores a 4-element structure to memory from corresponding
elements of four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 0 1 0 0 0 0 0 x x 1 S size Rn Rt
L R opcode

8-bit (opcode == 001)

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>]

16-bit (opcode == 011 && size == x0)

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>]

32-bit (opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>]

64-bit (opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>]

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = integer UNKNOWN;
boolean wback = FALSE;

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 0 1 Rm x x 1 S size Rn Rt
L R opcode

ST4 (single structure) Page 983

8-bit, immediate offset (Rm == 11111 && opcode == 001)

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4

8-bit, register offset (Rm != 11111 && opcode == 001)

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm>

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm>

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm>

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm>

integer t = UInt(Rt);
integer n = UInt(Rn);
integer m = UInt(Rm);
boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo 32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field.

ST4 (single structure) Page 984

Shared Decode

integer scale = UInt(opcode<2:1>);
integer selem = UInt(opcode<0>:R) + 1;
boolean replicate = FALSE;
integer index;

case scale of
when 3

// load and replicate
if L == '0' || S == '1' then UnallocatedEncoding();
scale = UInt(size);
replicate = TRUE;

when 0
index = UInt(Q:S:size); // B[0-15]

when 1
if size<0> == '1' then UnallocatedEncoding();
index = UInt(Q:S:size<1>); // H[0-7]

when 2
if size<1> == '1' then UnallocatedEncoding();
if size<0> == '0' then

index = UInt(Q:S); // S[0-3]
else

if S == '1' then UnallocatedEncoding();
index = UInt(Q); // D[0-1]
scale = 3;

MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = if Q == '1' then 128 else 64;
integer esize = 8 << scale;

ST4 (single structure) Page 985

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(64) offs;
bits(128) rval;
bits(esize) element;
integer s;
constant integer ebytes = esize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

offs = Zeros();
if replicate then

// load and replicate to all elements
for s = 0 to selem-1

element = Mem[address+offs, ebytes, AccType_VEC];
// replicate to fill 128- or 64-bit register
V[t] = Replicate(element, datasize DIV esize);
offs = offs + ebytes;
t = (t + 1) MOD 32;

else
// load/store one element per register
for s = 0 to selem-1

rval = V[t];
if memop == MemOp_LOAD then

// insert into one lane of 128-bit register
Elem[rval, index, esize] = Mem[address+offs, ebytes, AccType_VEC];
V[t] = rval;

else // memop == MemOp_STORE
// extract from one lane of 128-bit register
Mem[address+offs, ebytes, AccType_VEC] = Elem[rval, index, esize];

offs = offs + ebytes;
t = (t + 1) MOD 32;

if wback then
if m != 31 then

offs = X[m];
if n == 31 then

SP[] = address + offs;
else

X[n] = address + offs;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ST4 (single structure) Page 986

STADD, STADDL

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, adds the
value held in a register to it, and stores the result back to memory.

• STADD has no memory ordering semantics.

• STADDL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STADD <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STADDL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STADD <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STADDL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STADD, STADDL Page 987

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = data + value;
Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADD, STADDL Page 988

STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in a register to it, and stores the
result back to memory.

• STADDB has no memory ordering semantics.

• STADDLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STADDB <Ws>, [<Xn|SP>]

Release (R == 1)

STADDLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = data + value;
Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADDB, STADDLB Page 989

STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the value held in a register to it, and
stores the result back to memory.

• STADDH has no memory ordering semantics.

• STADDLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STADDH <Ws>, [<Xn|SP>]

Release (R == 1)

STADDLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = data + value;
Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STADDH, STADDLH Page 990

STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, performs
a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLR has no memory ordering semantics.

• STCLRL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STCLR <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STCLRL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STCLR <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STCLRL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STCLR, STCLRL Page 991

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = data AND NOT(value);
Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLR, STCLRL Page 992

STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise AND with the complement
of the value held in a register on it, and stores the result back to memory.

• STCLRB has no memory ordering semantics.

• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STCLRB <Ws>, [<Xn|SP>]

Release (R == 1)

STCLRLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = data AND NOT(value);
Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLRB, STCLRLB Page 993

STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory.

• STCLRH has no memory ordering semantics.

• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 0 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STCLRH <Ws>, [<Xn|SP>]

Release (R == 1)

STCLRLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = data AND NOT(value);
Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STCLRH, STCLRLH Page 994

STEOR, STEORL

Atomic exclusive OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory,
performs an exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEOR has no memory ordering semantics.

• STEORL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STEOR <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STEORL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STEOR <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STEORL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STEOR, STEORL Page 995

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = data EOR value;
Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEOR, STEORL Page 996

STEORB, STEORLB

Atomic exclusive OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an exclusive OR with the value
held in a register on it, and stores the result back to memory.

• STEORB has no memory ordering semantics.

• STEORLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STEORB <Ws>, [<Xn|SP>]

Release (R == 1)

STEORLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = data EOR value;
Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEORB, STEORLB Page 997

STEORH, STEORLH

Atomic exclusive OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs an exclusive OR with
the value held in a register on it, and stores the result back to memory.

• STEORH has no memory ordering semantics.

• STEORLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STEORH <Ws>, [<Xn|SP>]

Release (R == 1)

STEORLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = data EOR value;
Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STEORH, STEORLH Page 998

STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The instruction also has memory
ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory accesses, see Load/Store addressing
modes.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

STLLR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STLLR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = X[t];
Mem[address, dbytes, AccType_LIMITEDORDERED] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLR Page 999

STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has memory ordering semantics as
described in Load LOAcquire, Store LORelease. For information about memory accesses, see Load/Store addressing modes.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

STLLRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = X[t];
Mem[address, 1, AccType_LIMITEDORDERED] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLRB Page 1000

STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also has memory ordering
semantics as described in Load LOAcquire, Store LORelease. For information about memory accesses, see Load/Store addressing modes.

No offset
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 0 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

STLLRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = X[t];
Mem[address, 2, AccType_LIMITEDORDERED] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLLRH Page 1001

STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The instruction also has memory
ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

32-bit (size == 10)

STLR <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STLR <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

integer elsize = 8 << UInt(size);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = X[t];
Mem[address, dbytes, AccType_ORDERED] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLR Page 1002

STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has memory ordering semantics as
described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

STLRB <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = X[t];
Mem[address, 1, AccType_ORDERED] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLRB Page 1003

STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 1 0 0 (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) Rn Rt
size L Rs o0 Rt2

No offset

STLRH <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = X[t];
Mem[address, 2, AccType_ORDERED] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLRH Page 1004

STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location if the PE has exclusive access
to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword
granularity. A 64-bit pair requires the address to be quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update
of the 128-bit memory location being updated. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 sz 0 0 1 0 0 0 0 0 1 Rs 1 Rt2 Rn Rt
L o0

32-bit (sz == 0)

STLXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

STLXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STLXP.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated,
subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXP Page 1005

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t || (s == t2) then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian() then el1:el2 else el2:el1;

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType_ORDERED] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXP Page 1006

STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive access to the memory address,
from two registers, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and
semaphores. The memory access is atomic. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

32-bit (size == 10)

STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 8 << UInt(size);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STLXR.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated,
subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXR Page 1007

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(elsize) UNKNOWN;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType_ORDERED] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXR Page 1008

STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access to the memory address, and
returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores. The memory
access is atomic. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about
memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

No offset

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STLXRB.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXRB Page 1009

Operation

bits(64) address;
bits(8) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(8) UNKNOWN;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 1) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, 1, AccType_ORDERED] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXRB Page 1010

STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has exclusive access to the memory
address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores. The
memory access is atomic. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information
about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0 0 Rs 1 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

No offset

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STLXRH.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STLXRH Page 1011

Operation

bits(64) address;
bits(16) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(16) UNKNOWN;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 2) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, 2, AccType_ORDERED] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLXRH Page 1012

STNP (SIMD&FP)

Store Pair of SIMD&FP registers, with Non-temporal hint. This instruction stores a pair of SIMD&FP registers to memory, issuing a hint to the
memory system that the access is non-temporal. The address used for the store is calculated from an address from a base register value and an
immediate offset. For information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 0 0 0 imm7 Rt2 Rn Rt
L

32-bit (opc == 00)

STNP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

STNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

STNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

// Empty.

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0
and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0
and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, defaulting
to 0 and encoded in the "imm7" field as <imm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc == '11' then UnallocatedEncoding();
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

STNP (SIMD&FP) Page 1013

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data1 = V[t];
data2 = V[t2];
Mem[address, dbytes, AccType_VECSTREAM] = data1;
Mem[address+dbytes, dbytes, AccType_VECSTREAM] = data2;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNP (SIMD&FP) Page 1014

STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate offset, and stores two 32-bit
words or two 64-bit doublewords to the calculated address, from two registers. For information about memory accesses, see Load/Store
addressing modes. For information about Non-temporal pair instructions, see Load/Store Non-temporal pair.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 0 0 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

STNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

// Empty.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252, defaulting to 0
and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504, defaulting to 0
and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc<0> == '1' then UnallocatedEncoding();
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

STNP Page 1015

Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data1 = X[t];
data2 = X[t2];
Mem[address, dbytes, AccType_STREAM] = data1;
Mem[address+dbytes, dbytes, AccType_STREAM] = data2;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STNP Page 1016

STP (SIMD&FP)

Store Pair of SIMD&FP registers. This instruction stores a pair of SIMD&FP registers to memory. The address used for the store is calculated
from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 0 1 0 imm7 Rt2 Rn Rt
L

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>], #<imm>

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>], #<imm>

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 1 1 0 imm7 Rt2 Rn Rt
L

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]!

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 1 0 1 0 0 imm7 Rt2 Rn Rt
L

STP (SIMD&FP) Page 1017

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}]

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256
to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512
to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset, a multiple of 16 in the range
-1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to
1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if opc == '11' then UnallocatedEncoding();
integer scale = 2 + UInt(opc);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

STP (SIMD&FP) Page 1018

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

data1 = V[t];
data2 = V[t2];
Mem[address, dbytes, AccType_VEC] = data1;
Mem[address+dbytes, dbytes, AccType_VEC] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STP (SIMD&FP) Page 1019

STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two 32-bit words or two 64-bit
doublewords to the calculated address, from two registers. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 0 1 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>], #<imm>

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>], #<imm>

boolean wback = TRUE;
boolean postindex = TRUE;

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 1 1 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]!

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]!

boolean wback = TRUE;
boolean postindex = FALSE;

Signed offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 1 0 0 1 0 0 imm7 Rt2 Rn Rt
opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}]

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}]

boolean wback = FALSE;
boolean postindex = FALSE;

STP Page 1020

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a multiple of 4 in the range -256
to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in the range -256 to 252,
defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a multiple of 8 in the range -512
to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple of 8 in the range -512 to 504,
defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2);
if L:opc<0> == '01' || opc == '11' then UnallocatedEncoding();
integer scale = 2 + UInt(opc<1>);
integer datasize = 8 << scale;
bits(64) offset = LSL(SignExtend(imm7, 64), scale);

STP Page 1021

Operation

bits(64) address;
bits(datasize) data1;
bits(datasize) data2;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;

if wback && (t == n || t2 == n) && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if rt_unknown && t == n then
data1 = bits(datasize) UNKNOWN;

else
data1 = X[t];

if rt_unknown && t2 == n then
data2 = bits(datasize) UNKNOWN;

else
data2 = X[t2];

Mem[address, dbytes, AccType_NORMAL] = data1;
Mem[address+dbytes, dbytes, AccType_NORMAL] = data2;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STP Page 1022

STR (immediate, SIMD&FP)

Store SIMD&FP register (immediate offset). This instruction stores a single SIMD&FP register to memory. The address that is used for the store
is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 0 0 imm9 0 1 Rn Rt
opc

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>], #<simm>

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>], #<simm>

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>], #<simm>

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>], #<simm>

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 0 0 imm9 1 1 Rn Rt
opc

STR (immediate, SIMD&FP) Page 1023

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>, #<simm>]!

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>, #<simm>]!

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>, #<simm>]!

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>, #<simm>]!

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 1 x 0 imm12 Rn Rt
opc

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>{, #<pimm>}]

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>{, #<pimm>}]

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>{, #<pimm>}]

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

STR (immediate, SIMD&FP) Page 1024

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0
and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0
and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0
and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the range 0 to 65520, defaulting to
0 and encoded in the "imm12" field as <pimm>/16.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

STR (immediate, SIMD&FP) Page 1025

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (immediate, SIMD&FP) Page 1026

STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for the store is calculated from a
base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
size opc

32-bit (size == 10)

STR <Wt>, [<Xn|SP>], #<simm>

64-bit (size == 11)

STR <Xt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
size opc

32-bit (size == 10)

STR <Wt>, [<Xn|SP>, #<simm>]!

64-bit (size == 11)

STR <Xt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 1 0 0 imm12 Rn Rt
size opc

STR (immediate) Page 1027

32-bit (size == 10)

STR <Wt>, [<Xn|SP>{, #<pimm>}]

64-bit (size == 11)

STR <Xt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(size);
bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380, defaulting to 0
and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760, defaulting to 0
and encoded in the "imm12" field as <pimm>/8.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

integer datasize = 8 << scale;

STR (immediate) Page 1028

Operation

bits(64) address;
bits(datasize) data;
boolean rt_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
data = X[t];

Mem[address, datasize DIV 8, AccType_NORMAL] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (immediate) Page 1029

STR (register, SIMD&FP)

Store SIMD&FP register (register offset). This instruction stores a single SIMD&FP register to memory. The address that is used for the store is
calculated from a base register value and an offset register value. The offset can be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 0 1 Rm option S 1 0 Rn Rt
opc

8-bit (size == 00 && opc == 00 && option != 011)

STR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

8-bit (size == 00 && opc == 00 && option == 011)

STR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in “option”:

STR (register, SIMD&FP) Page 1030

option <extend>
010 UXTW
110 SXTW
111 SXTX

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting to LSL, and which must be omitted
for the LSL option when <amount> is omitted. encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #4

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;

STR (register, SIMD&FP) Page 1031

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (register, SIMD&FP) Page 1032

STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores a 32-bit word or a 64-bit
doubleword to the calculated address, from a register. For information about memory accesses, see Load/Store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an offset
register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
size opc

32-bit (size == 10)

STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

64-bit (size == 11)

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

integer scale = UInt(size);
if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted.
encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it
defaults to #0. It is encoded in “S”:

S <amount>
0 #0
1 #3

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

integer datasize = 8 << scale;

STR (register) Page 1033

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, datasize DIV 8, AccType_NORMAL] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (register) Page 1034

STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is used for the store is calculated
from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
size opc

Post-index

STRB <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
size opc

Pre-index

STRB <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 0 0 imm12 Rn Rt
size opc

Unsigned offset

STRB <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STRB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the "imm12" field.

STRB (immediate) Page 1035

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(8) data;
boolean rt_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if rt_unknown then
data = bits(8) UNKNOWN;

else
data = X[t];

Mem[address, 1, AccType_NORMAL] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (immediate) Page 1036

STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores a byte from a 32-bit register
to the calculated address. For information about memory accesses, see Load/Store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an offset
register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
size opc

Extended register (option != 011)

STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend> {<amount>}]

Shifted register (option == 011)

STRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend specifier, encoded in “option”:

option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

Operation

bits(64) offset = ExtendReg(m, extend_type, 0);
bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, AccType_NORMAL] = data;

STRB (register) Page 1037

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (register) Page 1038

STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The address that is used for the store is
calculated from a base register and an immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
size opc

Post-index

STRH <Wt>, [<Xn|SP>], #<simm>

boolean wback = TRUE;
boolean postindex = TRUE;
bits(64) offset = SignExtend(imm9, 64);

Pre-index

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
size opc

Pre-index

STRH <Wt>, [<Xn|SP>, #<simm>]!

boolean wback = TRUE;
boolean postindex = FALSE;
bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1 0 0 imm12 Rn Rt
size opc

Unsigned offset

STRH <Wt>, [<Xn|SP>{, #<pimm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
bits(64) offset = LSL(ZeroExtend(imm12, 64), 1);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting to 0 and encoded in the
"imm12" field as <pimm>/2.

STRH (immediate) Page 1039

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(16) data;
boolean rt_unknown = FALSE;

if wback && n == t && n != 31 then
c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_NONE rt_unknown = FALSE; // value stored is original value
when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

if rt_unknown then
data = bits(16) UNKNOWN;

else
data = X[t];

Mem[address, 2, AccType_NORMAL] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (immediate) Page 1040

STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and stores a halfword from a
32-bit register to the calculated address. For information about memory accesses, see Load/Store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an offset
register value. The offset can be optionally shifted and extended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 0 1 Rm option S 1 0 Rn Rt
size opc

32-bit

STRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend> {<amount>}}]

if option<1> == '0' then UnallocatedEncoding(); // sub-word index
ExtendType extend_type = DecodeRegExtend(option);
integer shift = if S == '1' then 1 else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL option when <amount> is omitted.
encoded in “option”:

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to be optional, it defaults to #0. It is
encoded in “S”:

S <amount>
0 #0
1 #1

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
integer m = UInt(Rm);

STRH (register) Page 1041

Operation

bits(64) offset = ExtendReg(m, extend_type, shift);
bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, AccType_NORMAL] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (register) Page 1042

STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory, performs a
bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSET has no memory ordering semantics.

• STSETL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STSET <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STSETL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STSET <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STSETL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STSET, STSETL Page 1043

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = data OR value;
Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSET, STSETL Page 1044

STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise OR with the value held in a
register on it, and stores the result back to memory.

• STSETB has no memory ordering semantics.

• STSETLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STSETB <Ws>, [<Xn|SP>]

Release (R == 1)

STSETLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = data OR value;
Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSETB, STSETLB Page 1045

STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs a bitwise OR with the value
held in a register on it, and stores the result back to memory.

• STSETH has no memory ordering semantics.

• STSETLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 0 1 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STSETH <Ws>, [<Xn|SP>]

Release (R == 1)

STSETLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = data OR value;
Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSETH, STSETLH Page 1046

STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as signed numbers.

• STSMAX has no memory ordering semantics.

• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STSMAX <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STSMAXL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STSMAX <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STSMAXL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STSMAX, STSMAXL Page 1047

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = if SInt(data) > SInt(value) then data else value;
Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAX, STSMAXL Page 1048

STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held in a
register, and stores the larger value back to memory, treating the values as signed numbers.

• STSMAXB has no memory ordering semantics.

• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STSMAXB <Ws>, [<Xn|SP>]

Release (R == 1)

STSMAXLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = if SInt(data) > SInt(value) then data else value;
Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAXB, STSMAXLB Page 1049

STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the value
held in a register, and stores the larger value back to memory, treating the values as signed numbers.

• STSMAXH has no memory ordering semantics.

• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STSMAXH <Ws>, [<Xn|SP>]

Release (R == 1)

STSMAXLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = if SInt(data) > SInt(value) then data else value;
Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMAXH, STSMAXLH Page 1050

STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as signed numbers.

• STSMIN has no memory ordering semantics.

• STSMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STSMIN <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STSMINL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STSMIN <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STSMINL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STSMIN, STSMINL Page 1051

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = if SInt(data) > SInt(value) then value else data;
Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMIN, STSMINL Page 1052

STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held in a
register, and stores the smaller value back to memory, treating the values as signed numbers.

• STSMINB has no memory ordering semantics.

• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STSMINB <Ws>, [<Xn|SP>]

Release (R == 1)

STSMINLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = if SInt(data) > SInt(value) then value else data;
Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMINB, STSMINLB Page 1053

STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the value
held in a register, and stores the smaller value back to memory, treating the values as signed numbers.

• STSMINH has no memory ordering semantics.

• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 0 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STSMINH <Ws>, [<Xn|SP>]

Release (R == 1)

STSMINLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = if SInt(data) > SInt(value) then value else data;
Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STSMINH, STSMINLH Page 1054

STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for the store is calculated from a
base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
size opc

32-bit (size == 10)

STTR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

STTR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;

integer datasize = 8 << scale;

Operation

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, datasize DIV 8, acctype] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

STTR Page 1055

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTR Page 1056

STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the store is calculated from a base
register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
size opc

Unscaled offset

STTRB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, acctype] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTRB Page 1057

STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is used for the store is calculated
from a base register and an immediate offset.

The memory is restricted as if execution is at EL0 when:

• Executing at EL1.
• Executing at EL2, in ARMv8.1, with HCR_EL2.{E2H, TGE} set to {1, 1}.

Otherwise, the access permission is for the Exception level at which the instruction is executed. For information about memory accesses, see
Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 0 0 imm9 1 0 Rn Rt
size opc

Unscaled offset

STTRH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_UNPRIV;
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1) then

acctype = AccType_NORMAL;

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, acctype] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STTRH Page 1058

STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.

• STUMAX has no memory ordering semantics.

• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STUMAX <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STUMAXL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STUMAX <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STUMAXL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STUMAX, STUMAXL Page 1059

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = if UInt(data) > UInt(value) then data else value;
Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAX, STUMAXL Page 1060

STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held
in a register, and stores the larger value back to memory, treating the values as unsigned numbers.

• STUMAXB has no memory ordering semantics.

• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STUMAXB <Ws>, [<Xn|SP>]

Release (R == 1)

STUMAXLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = if UInt(data) > UInt(value) then data else value;
Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAXB, STUMAXLB Page 1061

STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.

• STUMAXH has no memory ordering semantics.

• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 0 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STUMAXH <Ws>, [<Xn|SP>]

Release (R == 1)

STUMAXLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = if UInt(data) > UInt(value) then data else value;
Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMAXH, STUMAXLH Page 1062

STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers.

• STUMIN has no memory ordering semantics.

• STUMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

32-bit, no memory ordering (size == 10 && R == 0)

STUMIN <Ws>, [<Xn|SP>]

32-bit, release (size == 10 && R == 1)

STUMINL <Ws>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && R == 0)

STUMIN <Xs>, [<Xn|SP>]

64-bit, release (size == 11 && R == 1)

STUMINL <Xs>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

STUMIN, STUMINL Page 1063

Operation

bits(64) address;
bits(datasize) value;
bits(datasize) data;
bits(datasize) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, datasize DIV 8, AccType_ATOMICRW];

result = if UInt(data) > UInt(value) then value else data;

Mem[address, datasize DIV 8, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMIN, STUMINL Page 1064

STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares it against the value held in
a register, and stores the smaller value back to memory, treating the values as unsigned numbers.

• STUMINB has no memory ordering semantics.

• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STUMINB <Ws>, [<Xn|SP>]

Release (R == 1)

STUMINLB <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(8) value;
bits(8) data;
bits(8) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 1, AccType_ATOMICRW];

result = if UInt(data) > UInt(value) then value else data;

Mem[address, 1, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMINB, STUMINLB Page 1065

STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers.

• STUMINH has no memory ordering semantics.

• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 R 1 Rs 0 1 1 1 0 0 Rn 1 1 1 1 1
size V A o3 opc

No memory ordering (R == 0)

STUMINH <Ws>, [<Xn|SP>]

Release (R == 1)

STUMINLH <Ws>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on with the contents of the memory
location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Operation

bits(64) address;
bits(16) value;
bits(16) data;
bits(16) result;

value = X[s];
if n == 31 then

CheckSPAlignment();
address = SP[];

else
address = X[n];

// All observers in the shareability domain observe the
// following load and store atomically.
data = Mem[address, 2, AccType_ATOMICRW];

result = if UInt(data) > UInt(value) then value else data;

Mem[address, 2, stacctype] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUMINH, STUMINLH Page 1066

STUR (SIMD&FP)

Store SIMD&FP register (unscaled offset). This instruction stores a single SIMD&FP register to memory. The address that is used for the store is
calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 1 0 0 x 0 0 imm9 0 0 Rn Rt
opc

8-bit (size == 00 && opc == 00)

STUR <Bt>, [<Xn|SP>{, #<simm>}]

16-bit (size == 01 && opc == 00)

STUR <Ht>, [<Xn|SP>{, #<simm>}]

32-bit (size == 10 && opc == 00)

STUR <St>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11 && opc == 00)

STUR <Dt>, [<Xn|SP>{, #<simm>}]

128-bit (size == 00 && opc == 10)

STUR <Qt>, [<Xn|SP>{, #<simm>}]

boolean wback = FALSE;
boolean postindex = FALSE;
integer scale = UInt(opc<1>:size);
if scale > 4 then UnallocatedEncoding();
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);
AccType acctype = AccType_VEC;
MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
integer datasize = 8 << scale;

STUR (SIMD&FP) Page 1067

Operation

CheckFPAdvSIMDEnabled64();

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

if !postindex then
address = address + offset;

case memop of
when MemOp_STORE

data = V[t];
Mem[address, datasize DIV 8, acctype] = data;

when MemOp_LOAD
data = Mem[address, datasize DIV 8, acctype];
V[t] = data;

if wback then
if postindex then

address = address + offset;
if n == 31 then

SP[] = address;
else

X[n] = address;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUR (SIMD&FP) Page 1068

STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores a 32-bit word or a 64-bit
doubleword to the calculated address, from a register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
size opc

32-bit (size == 10)

STUR <Wt>, [<Xn|SP>{, #<simm>}]

64-bit (size == 11)

STUR <Xt>, [<Xn|SP>{, #<simm>}]

integer scale = UInt(size);
bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

integer datasize = 8 << scale;

Operation

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, datasize DIV 8, AccType_NORMAL] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STUR Page 1069

STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores a byte to the calculated
address, from a 32-bit register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
size opc

Unscaled offset

STURB <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 1, AccType_NORMAL] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STURB Page 1070

STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and stores a halfword to the
calculated address, from a 32-bit register. For information about memory accesses, see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 0 0 0 imm9 0 0 Rn Rt
size opc

Unscaled offset

STURH <Wt>, [<Xn|SP>{, #<simm>}]

bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and encoded in the "imm9" field.

Shared Decode

integer n = UInt(Rn);
integer t = UInt(Rt);

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

address = address + offset;

data = X[t];
Mem[address, 2, AccType_NORMAL] = data;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STURH Page 1071

STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory location if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. A 32-bit pair requires the address to be doubleword aligned and is single-copy atomic at doubleword
granularity. A 64-bit pair requires the address to be quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update
of the 128-bit memory location being updated. For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 sz 0 0 1 0 0 0 0 0 1 Rs 0 Rt2 Rn Rt
L o0

32-bit (sz == 0)

STXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}]

64-bit (sz == 1)

STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer t2 = UInt(Rt2); // ignored by load/store single register
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 32 << UInt(sz);
integer datasize = elsize * 2;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STXP.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt" field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated,
subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STXP Page 1072

Operation

bits(64) address;
bits(datasize) data;
constant integer dbytes = datasize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t || (s == t2) then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(datasize) UNKNOWN;

else
bits(datasize DIV 2) el1 = X[t];
bits(datasize DIV 2) el2 = X[t2];
data = if BigEndian() then el1:el2 else el2:el1;

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType_ATOMIC] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXP Page 1073

STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has exclusive access to the memory
address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores. For
information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

32-bit (size == 10)

STXR <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit (size == 11)

STXR <Ws>, <Xt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

integer elsize = 8 << UInt(size);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STXR.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data Abort exception to be generated,
subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STXR Page 1074

Operation

bits(64) address;
bits(elsize) data;
constant integer dbytes = elsize DIV 8;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(elsize) UNKNOWN;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, dbytes) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, dbytes, AccType_ATOMIC] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXR Page 1075

STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the memory address, and returns a status
value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores. The memory access is atomic.

For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

No offset

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors, and particularly STXRB.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STXRB Page 1076

Operation

bits(64) address;
bits(8) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(8) UNKNOWN;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 1) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, 1, AccType_ATOMIC] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXRB Page 1077

STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to the memory address, and
returns a status value of 0 if the store was successful, or of 1 if no store was performed. See Synchronization and semaphores. The memory
access is atomic.

For information about memory accesses see Load/Store addressing modes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0 0 Rs 0 (1) (1) (1) (1) (1) Rn Rt
size L o0 Rt2

No offset

STXRH <Ws>, <Wt>, [<Xn|SP>{,#0}]

integer n = UInt(Rn);
integer t = UInt(Rt);
integer s = UInt(Rs); // ignored by all loads and store-release

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store exclusive is written, encoded in the
"Rs" field. The value returned is:

0
If the operation updates memory.

1
If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a synchronous Data Abort exception,
it is IMPLEMENTATION DEFINED whether the exception is generated.

STXRH Page 1078

Operation

bits(64) address;
bits(16) data;
boolean rt_unknown = FALSE;
boolean rn_unknown = FALSE;

if s == t then
Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
when Constraint_NONE rt_unknown = FALSE; // store original value
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if s == n && n != 31 then
Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
when Constraint_NONE rn_unknown = FALSE; // address is original base
when Constraint_UNDEF UnallocatedEncoding();
when Constraint_NOP EndOfInstruction();

if n == 31 then
CheckSPAlignment();
address = SP[];

elsif rn_unknown then
address = bits(64) UNKNOWN;

else
address = X[n];

if rt_unknown then
data = bits(16) UNKNOWN;

else
data = X[t];

bit status = '1';
// Check whether the Exclusives monitors are set to include the
// physical memory locations corresponding to virtual address
// range [address, address+dbytes-1].
if AArch64.ExclusiveMonitorsPass(address, 2) then

// This atomic write will be rejected if it does not refer
// to the same physical locations after address translation.
Mem[address, 2, AccType_ATOMIC] = data;
status = ExclusiveMonitorsStatus();

X[s] = ZeroExtend(status, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STXRH Page 1079

SUB (extended register)

Subtract (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift amount, from a register value, and
writes the result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
op S

32-bit (sf == 0)

SUB <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

SUB <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then ReservedValue();

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other
cases <extend> is required and must be UXTW when "option" is '010'.
For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

SUB (extended register) Page 1080

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other
cases <extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);

operand2 = NOT(operand2);
(result, -) = AddWithCarry(operand1, operand2, '1');

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (extended register) Page 1081

SUB (immediate)

Subtract (immediate) subtracts an optionally-shifted immediate value from a register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 0 1 shift imm12 Rn Rd
op S

32-bit (sf == 0)

SUB <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

SUB <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;

case shift of
when '00' imm = ZeroExtend(imm12, datasize);
when '01' imm = ZeroExtend(imm12:Zeros(12), datasize);
when '1x' ReservedValue();

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:

shift <shift>
00 LSL #0
01 LSL #12
1x RESERVED

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2;

operand2 = NOT(imm);
(result, -) = AddWithCarry(operand1, operand2, '1');

if d == 31 then
SP[] = result;

else
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (immediate) Page 1082

SUB (shifted register)

Subtract (shifted register) subtracts an optionally-shifted register value from a register value, and writes the result to the destination register.

This instruction is used by the alias NEG (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
op S

32-bit (sf == 0)

SUB <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

SUB <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

if shift == '11' then ReservedValue();
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Alias Conditions

Alias Is preferred when

NEG (shifted register) Rn == '11111'

SUB (shifted register) Page 1083

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

operand2 = NOT(operand2);
(result, -) = AddWithCarry(operand1, operand2, '1');

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (shifted register) Page 1084

SUB (vector)

Subtract (vector). This instruction subtracts each vector element in the second source SIMD&FP register from the corresponding vector element
in the first source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
U

Scalar

SUB <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size != '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean sub_op = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 1 Rn Rd
U

Vector

SUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub_op = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

SUB (vector) Page 1085

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) element1;
bits(esize) element2;

for e = 0 to elements-1
element1 = Elem[operand1, e, esize];
element2 = Elem[operand2, e, esize];
if sub_op then

Elem[result, e, esize] = element1 - element2;
else

Elem[result, e, esize] = element1 + element2;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (vector) Page 1086

SUBHN, SUBHN2

Subtract returning High Narrow. This instruction subtracts each vector element in the second source SIMD&FP register from the corresponding
vector element in the first source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the lower
or upper half of the destination SIMD&FP register. All the values in this instruction are signed integer values.

The results are truncated. For rounded results, see RSUBHN.

The SUBHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

SUBHN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 Rm 0 1 1 0 0 0 Rn Rd
U o1

Three registers, not all the same type

SUBHN{2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean round = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

SUBHN, SUBHN2 Page 1087

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(2*datasize) operand2 = V[m];
bits(datasize) result;
integer round_const = if round then 1 << (esize - 1) else 0;
bits(2*esize) element1;
bits(2*esize) element2;
bits(2*esize) sum;

for e = 0 to elements-1
element1 = Elem[operand1, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
sum = sum + round_const;
Elem[result, e, esize] = sum<2*esize-1:esize>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBHN, SUBHN2 Page 1088

SUBS (extended register)

Subtract (extended register), setting flags, subtracts a sign or zero-extended register value, followed by an optional left shift amount, from a
register value, and writes the result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword,
word, or doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMP (extended register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 1 0 0 1 Rm option imm3 Rn Rd
op S

32-bit (sf == 0)

SUBS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

SUBS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;
ExtendType extend_type = DecodeRegExtend(option);
integer shift = UInt(imm3);
if shift > 4 then ReservedValue();

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in “option”:

option <R>
00x W
010 W
x11 X
10x W
110 W

<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.

<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 LSL|UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTW when "option" is '010'.
For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

SUBS (extended register) Page 1089

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTX when "option" is '011'.

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Alias Conditions

Alias Is preferred when

CMP (extended register) Rd == '11111'

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend_type, shift);
bits(4) nzcv;

operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBS (extended register) Page 1090

SUBS (immediate)

Subtract (immediate), setting flags, subtracts an optionally-shifted immediate value from a register value, and writes the result to the destination
register. It updates the condition flags based on the result.

This instruction is used by the alias CMP (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 0 0 0 1 shift imm12 Rn Rd
op S

32-bit (sf == 0)

SUBS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

SUBS <Xd>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;
bits(datasize) imm;

case shift of
when '00' imm = ZeroExtend(imm12, datasize);
when '01' imm = ZeroExtend(imm12:Zeros(12), datasize);
when '1x' ReservedValue();

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.

<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.

<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:

shift <shift>
00 LSL #0
01 LSL #12
1x RESERVED

Alias Conditions

Alias Is preferred when

CMP (immediate) Rd == '11111'

SUBS (immediate) Page 1091

Operation

bits(datasize) result;
bits(datasize) operand1 = if n == 31 then SP[] else X[n];
bits(datasize) operand2;
bits(4) nzcv;

operand2 = NOT(imm);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBS (immediate) Page 1092

SUBS (shifted register)

Subtract (shifted register), setting flags, subtracts an optionally-shifted register value from a register value, and writes the result to the destination
register. It updates the condition flags based on the result.

This instruction is used by the aliases CMP (shifted register), and NEGS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
op S

32-bit (sf == 0)

SUBS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

SUBS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

if shift == '11' then ReservedValue();
if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift_type = DecodeShift(shift);
integer shift_amount = UInt(imm6);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Alias Conditions

Alias Is preferred when

CMP (shifted register) Rd == '11111'

NEGS Rn == '11111'

SUBS (shifted register) Page 1093

Operation

bits(datasize) result;
bits(datasize) operand1 = X[n];
bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);
bits(4) nzcv;

operand2 = NOT(operand2);
(result, nzcv) = AddWithCarry(operand1, operand2, '1');

PSTATE.<N,Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUBS (shifted register) Page 1094

SUQADD

Signed saturating Accumulate of Unsigned value. This instruction adds the unsigned integer values of the vector elements in the source
SIMD&FP register to corresponding signed integer values of the vector elements in the destination SIMD&FP register, and writes the resulting
signed integer values to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
U

Scalar

SUQADD <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
U

Vector

SUQADD <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

SUQADD Page 1095

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(datasize) operand2 = V[d];
integer op1;
integer op2;
boolean sat;

for e = 0 to elements-1
op1 = Int(Elem[operand, e, esize], !unsigned);
op2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUQADD Page 1096

SVC

Supervisor Call causes an exception to be taken to EL1.

On executing an SVC instruction, the PE records the exception as a Supervisor Call exception in ESR_ELx, using the EC value 0x15,
and the value of the immediate argument.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 0 0 0 imm16 0 0 0 0 1

System

SVC #<imm>

bits(16) imm = imm16;

Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArch64.CallSupervisor(imm);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SVC Page 1097

SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a memory location, and stores the value held in
a register back to the same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire semantics.

• SWPL and SWPAL store to memory with release semantics.

• SWP has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 x 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
size

SWP, SWPA, SWPAL, SWPL Page 1098

32-bit, acquire (size == 10 && A == 1 && R == 0)

SWPA <Ws>, <Wt>, [<Xn|SP>]

32-bit, acquire and release (size == 10 && A == 1 && R == 1)

SWPAL <Ws>, <Wt>, [<Xn|SP>]

32-bit, no memory ordering (size == 10 && A == 0 && R == 0)

SWP <Ws>, <Wt>, [<Xn|SP>]

32-bit, release (size == 10 && A == 0 && R == 1)

SWPL <Ws>, <Wt>, [<Xn|SP>]

64-bit, acquire (size == 11 && A == 1 && R == 0)

SWPA <Xs>, <Xt>, [<Xn|SP>]

64-bit, acquire and release (size == 11 && A == 1 && R == 1)

SWPAL <Xs>, <Xt>, [<Xn|SP>]

64-bit, no memory ordering (size == 11 && A == 0 && R == 0)

SWP <Xs>, <Xt>, [<Xn|SP>]

64-bit, release (size == 11 && A == 0 && R == 1)

SWPL <Xs>, <Xt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

integer datasize = 8 << UInt(size);
integer regsize = if datasize == 64 then 64 else 32;
AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

SWP, SWPA, SWPAL, SWPL Page 1099

Operation

bits(64) address;
bits(datasize) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, datasize DIV 8, ldacctype];

// all observers in the shareability domain
// observe the load and store atomically
Mem[address, datasize DIV 8, stacctype] = X[s];

X[t] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SWP, SWPA, SWPAL, SWPL Page 1100

SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held in a register back to the same memory
location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.

• SWPLB and SWPALB store to memory with release semantics.

• SWPB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
size

Acquire (A == 1 && R == 0)

SWPAB <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

SWPALB <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0)

SWPB <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1)

SWPLB <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

SWPB, SWPAB, SWPALB, SWPLB Page 1101

Operation

bits(64) address;
bits(8) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 1, ldacctype];

// all observers in the shareability domain
// observe the load and store atomically
Mem[address, 1, stacctype] = X[s];

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SWPB, SWPAB, SWPALB, SWPLB Page 1102

SWPH, SWPAH, SWPALH, SWPLH

Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the value held in a register back to the same
memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.

• SWPLH and SWPALH store to memory with release semantics.

• SWPH has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

Integer
(ARMv8.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 A R 1 Rs 1 0 0 0 0 0 Rn Rt
size

Acquire (A == 1 && R == 0)

SWPAH <Ws>, <Wt>, [<Xn|SP>]

Acquire and release (A == 1 && R == 1)

SWPALH <Ws>, <Wt>, [<Xn|SP>]

No memory ordering (A == 0 && R == 0)

SWPH <Ws>, <Wt>, [<Xn|SP>]

Release (A == 0 && R == 1)

SWPLH <Ws>, <Wt>, [<Xn|SP>]

if !HaveAtomicExt() then UnallocatedEncoding();

integer t = UInt(Rt);
integer n = UInt(Rn);
integer s = UInt(Rs);

AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDRW else AccType_ATOMICRW;
AccType stacctype = if R == '1' then AccType_ORDEREDRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

SWPH, SWPAH, SWPALH, SWPLH Page 1103

Operation

bits(64) address;
bits(16) data;

if n == 31 then
CheckSPAlignment();
address = SP[];

else
address = X[n];

data = Mem[address, 2, ldacctype];

// all observers in the shareability domain
// observe the load and store atomically
Mem[address, 2, stacctype] = X[s];

X[t] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SWPH, SWPAH, SWPALH, SWPLH Page 1104

SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to the size of the register, and writes the result to the destination
register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd
opc immr imms

32-bit (sf == 0 && N == 0)

SXTB <Wd>, <Wn>

is equivalent to

SBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1)

SXTB <Xd>, <Wn>

is equivalent to

SBFM <Xd>, <Xn>, #0, #7

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTB Page 1105

SXTH

Sign Extend Halfword extracts a 16-bit value, sign-extends it to the size of the register, and writes the result to the destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 0 0 1 1 0 N 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd
opc immr imms

32-bit (sf == 0 && N == 0)

SXTH <Wd>, <Wn>

is equivalent to

SBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

64-bit (sf == 1 && N == 1)

SXTH <Xd>, <Wn>

is equivalent to

SBFM <Xd>, <Xn>, #0, #15

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTH Page 1106

SXTL, SXTL2

Signed extend Long. This instruction duplicates each vector element in the lower or upper half of the source SIMD&FP register into a vector,
and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All
the values in this instruction are signed integer values.

The SXTL instruction extracts the source vector from the lower half of the source register, while the SXTL2 instruction
extracts the source vector from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of SSHLL, SSHLL2. This means:

• The encodings in this description are named to match the encodings of SSHLL, SSHLL2.
• The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 1 0 != 0000 0 0 0 1 0 1 0 0 1 Rn Rd
U immh immb

Vector

SXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

is equivalent to

SSHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

Operation

The description of SSHLL, SSHLL2 gives the operational pseudocode for this instruction.

SXTL, SXTL2 Page 1107

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTL, SXTL2 Page 1108

SXTW

Sign Extend Word sign-extends a word to the size of the register, and writes the result to the destination register.

This is an alias of SBFM. This means:

• The encodings in this description are named to match the encodings of SBFM.
• The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 Rn Rd
sf opc N immr imms

64-bit

SXTW <Xd>, <Wn>

is equivalent to

SBFM <Xd>, <Xn>, #0, #31

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTW Page 1109

SYS

System instruction. For more information, see Op0 equals 0b01, cache maintenance, TLB maintenance, and address translation instructions for
the encodings of System instructions.

This instruction is used by the aliases AT, DC, IC, and TLBI.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 CRn CRm op2 Rt
L

System

SYS #<op1>, <Cn>, <Cm>, #<op2>{, <Xt>}

AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);

Assembler Symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the "Rt" field.

Alias Conditions

Alias Is preferred when

AT CRn == '0111' && CRm == '100x' && SysOp(op1,'0111',CRm,op2) == Sys_AT

DC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_DC

IC CRn == '0111' && SysOp(op1,'0111',CRm,op2) == Sys_IC

TLBI CRn == '1000' && SysOp(op1,'1000',CRm,op2) == Sys_TLBI

Operation

AArch64.SysInstr(1, sys_op1, sys_crn, sys_crm, sys_op2, X[t]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SYS Page 1110

SYSL

System instruction with result. For more information, see Op0 equals 0b01, cache maintenance, TLB maintenance, and address translation
instructions for the encodings of System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 1 0 1 op1 CRn CRm op2 Rt
L

System

SYSL <Xt>, #<op1>, <Cn>, <Cm>, #<op2>

AArch64.CheckSystemAccess('01', op1, CRn, CRm, op2, Rt, L);

integer t = UInt(Rt);

integer sys_op1 = UInt(op1);
integer sys_op2 = UInt(op2);
integer sys_crn = UInt(CRn);
integer sys_crm = UInt(CRm);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose destination register, encoded in the "Rt" field.

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is a name 'Cn', with 'n' in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

Operation

X[t] = AArch64.SysInstrWithResult(1, sys_op1, sys_crn, sys_crm, sys_op2);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SYSL Page 1111

TBL

Table vector Lookup. This instruction reads each value from the vector elements in the index source SIMD&FP register, uses each result as an
index to perform a lookup in a table of bytes that is described by one to four source table SIMD&FP registers, places the lookup result in a
vector, and writes the vector to the destination SIMD&FP register. If an index is out of range for the table, the result for that lookup is 0. If more
than one source register is used to describe the table, the first source register describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 0 0 0 Rn Rd
op

Two register table (len == 01)

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table (len == 10)

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table (len == 11)

TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table (len == 00)

TBL <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;
integer regs = UInt(len) + 1;
boolean is_tbl = (op == '0');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 8B
1 16B

<Vn> For the four register table, three register table and two register table variant: is the name of the first SIMD&FP table register,
encoded in the "Rn" field.

For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn" field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

TBL Page 1112

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) indices = V[m];
bits(128*regs) table = Zeros();
bits(datasize) result;
integer index;
integer i;

// Create table from registers
for i = 0 to regs-1

table<128*i+127:128*i> = V[n];
n = (n + 1) MOD 32;

result = if is_tbl then Zeros() else V[d];
for i = 0 to elements-1

index = UInt(Elem[indices, i, 8]);
if index < 16 * regs then

Elem[result, i, 8] = Elem[table, index, 8];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBL Page 1113

TBNZ

Test bit and Branch if Nonzero compares the value of a bit in a general-purpose register with zero, and conditionally branches to a label at a PC-
relative offset if the comparison is not equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect
condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

b5 0 1 1 0 1 1 1 b40 imm14 Rt
op

14-bit signed PC-relative branch offset

TBNZ <R><t>, #<imm>, <label>

integer t = UInt(Rt);

integer datasize = if b5 == '1' then 64 else 32;
integer bit_pos = UInt(b5:b40);
bits(64) offset = SignExtend(imm14:'00', 64);

Assembler Symbols

<R> Is a width specifier, encoded in “b5”:

b5 <R>
0 W
1 X

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted when the bit number is less than
32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-32KB, is
encoded as "imm14" times 4.

Operation

bits(datasize) operand = X[t];

if operand<bit_pos> == op then
BranchTo(PC[] + offset, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBNZ Page 1114

TBX

Table vector lookup extension. This instruction reads each value from the vector elements in the index source SIMD&FP register, uses each
result as an index to perform a lookup in a table of bytes that is described by one to four source table SIMD&FP registers, places the lookup
result in a vector, and writes the vector to the destination SIMD&FP register. If an index is out of range for the table, the existing value in the
vector element of the destination register is left unchanged. If more than one source register is used to describe the table, the first source register
describes the lowest bytes of the table.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 0 Rm 0 len 1 0 0 Rn Rd
op

Two register table (len == 01)

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>

Three register table (len == 10)

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>

Four register table (len == 11)

TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>

Single register table (len == 00)

TBX <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV 8;
integer regs = UInt(len) + 1;
boolean is_tbl = (op == '0');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 8B
1 16B

<Vn> For the four register table, three register table and two register table variant: is the name of the first SIMD&FP table register,
encoded in the "Rn" field.

For the single register table variant: is the name of the SIMD&FP table register, encoded in the "Rn" field.

<Vn+1> Is the name of the second SIMD&FP table register, encoded as "Rn" plus 1 modulo 32.

<Vn+2> Is the name of the third SIMD&FP table register, encoded as "Rn" plus 2 modulo 32.

<Vn+3> Is the name of the fourth SIMD&FP table register, encoded as "Rn" plus 3 modulo 32.

<Vm> Is the name of the SIMD&FP index register, encoded in the "Rm" field.

TBX Page 1115

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) indices = V[m];
bits(128*regs) table = Zeros();
bits(datasize) result;
integer index;
integer i;

// Create table from registers
for i = 0 to regs-1

table<128*i+127:128*i> = V[n];
n = (n + 1) MOD 32;

result = if is_tbl then Zeros() else V[d];
for i = 0 to elements-1

index = UInt(Elem[indices, i, 8]);
if index < 16 * regs then

Elem[result, i, 8] = Elem[table, index, 8];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBX Page 1116

TBZ

Test bit and Branch if Zero compares the value of a test bit with zero, and conditionally branches to a label at a PC-relative offset if the
comparison is equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

b5 0 1 1 0 1 1 0 b40 imm14 Rt
op

14-bit signed PC-relative branch offset

TBZ <R><t>, #<imm>, <label>

integer t = UInt(Rt);

integer datasize = if b5 == '1' then 64 else 32;
integer bit_pos = UInt(b5:b40);
bits(64) offset = SignExtend(imm14:'00', 64);

Assembler Symbols

<R> Is a width specifier, encoded in “b5”:

b5 <R>
0 W
1 X

In assembler source code an 'X' specifier is always permitted, but a 'W' specifier is only permitted when the bit number is less than
32.

<t> Is the number [0-30] of the general-purpose register to be tested or the name ZR (31), encoded in the "Rt" field.

<imm> Is the bit number to be tested, in the range 0 to 63, encoded in "b5:b40".

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-32KB, is
encoded as "imm14" times 4.

Operation

bits(datasize) operand = X[t];

if operand<bit_pos> == op then
BranchTo(PC[] + offset, BranchType_JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBZ Page 1117

TLBI

TLB Invalidate operation. For more information, see A64 system instructions for TLB maintenance.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.
• The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 1 op1 1 0 0 0 CRm op2 Rt
L CRn

System

TLBI <tlbi_op>{, <Xt>}

is equivalent to

SYS #<op1>, C8, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,'1000',CRm,op2) == Sys_TLBI.

Assembler Symbols

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<tlbi_op> Is a TLBI instruction name, as listed for the TLBI system instruction group, encoded in “op1:CRm:op2”:

op1 CRm op2 <tlbi_op>
000 0011 000 VMALLE1IS
000 0011 001 VAE1IS
000 0011 010 ASIDE1IS
000 0011 011 VAAE1IS
000 0011 101 VALE1IS
000 0011 111 VAALE1IS
000 0111 000 VMALLE1
000 0111 001 VAE1
000 0111 010 ASIDE1
000 0111 011 VAAE1
000 0111 101 VALE1
000 0111 111 VAALE1
100 0000 001 IPAS2E1IS
100 0000 101 IPAS2LE1IS
100 0011 000 ALLE2IS
100 0011 001 VAE2IS
100 0011 100 ALLE1IS
100 0011 101 VALE2IS
100 0011 110 VMALLS12E1IS
100 0100 001 IPAS2E1
100 0100 101 IPAS2LE1
100 0111 000 ALLE2
100 0111 001 VAE2
100 0111 100 ALLE1
100 0111 101 VALE2
100 0111 110 VMALLS12E1
110 0011 000 ALLE3IS
110 0011 001 VAE3IS
110 0011 101 VALE3IS
110 0111 000 ALLE3
110 0111 001 VAE3
110 0111 101 VALE3

TLBI Page 1118

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to '11111', encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TLBI Page 1119

TRN1

Transpose vectors (primary). This instruction reads corresponding even-numbered vector elements from the two source SIMD&FP registers,
starting at zero, places each result into consecutive elements of a vector, and writes the vector to the destination SIMD&FP register. Vector
elements from the first source register are placed into even-numbered elements of the destination vector, starting at zero, while vector elements
from the second source register are placed into odd-numbered elements of the destination vector.

By using this instruction with TRN2, a 2 x 2 matrix can be transposed.

The following figure shows an example of the operation of TRN1 and TRN2 halfword operations where Q = 0.

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 0 1 0 Rn Rd
op

Advanced SIMD

TRN1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

TRN1 Page 1120

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer p;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRN1 Page 1121

TRN2

Transpose vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two source SIMD&FP registers,
places each result into consecutive elements of a vector, and writes the vector to the destination SIMD&FP register. Vector elements from the
first source register are placed into even-numbered elements of the destination vector, starting at zero, while vector elements from the second
source register are placed into odd-numbered elements of the destination vector.

By using this instruction with TRN1, a 2 x 2 matrix can be transposed.

The following figure shows an example of the operation of TRN1 and TRN2 halfword operations where Q = 0.

0123

Vn

Vd

TRN1.16

Vm

0123

Vn

Vd

TRN2.16

Vm

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 0 1 0 Rn Rd
op

Advanced SIMD

TRN2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

TRN2 Page 1122

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer p;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, 2*p+part, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, 2*p+part, esize];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TRN2 Page 1123

TST (immediate)

Test bits (immediate), setting the condition flags and discarding the result: Rn AND imm.

This is an alias of ANDS (immediate). This means:

• The encodings in this description are named to match the encodings of ANDS (immediate).
• The description of ANDS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 1 0 0 1 0 0 N immr imms Rn 1 1 1 1 1
opc Rd

32-bit (sf == 0 && N == 0)

TST <Wn>, #<imm>

is equivalent to

ANDS WZR, <Wn>, #<imm>

and is always the preferred disassembly.

64-bit (sf == 1)

TST <Xn>, #<imm>

is equivalent to

ANDS XZR, <Xn>, #<imm>

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

The description of ANDS (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TST (immediate) Page 1124

TST (shifted register)

Test (shifted register) performs a bitwise AND operation on a register value and an optionally-shifted register value. It updates the condition
flags based on the result, and discards the result.

This is an alias of ANDS (shifted register). This means:

• The encodings in this description are named to match the encodings of ANDS (shifted register).
• The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 1 0 1 0 1 0 shift 0 Rm imm6 Rn 1 1 1 1 1
opc N Rd

32-bit (sf == 0)

TST <Wn>, <Wm>{, <shift> #<amount>}

is equivalent to

ANDS WZR, <Wn>, <Wm>{, <shift> #<amount>}

and is always the preferred disassembly.

64-bit (sf == 1)

TST <Xn>, <Xm>{, <shift> #<amount>}

is equivalent to

ANDS XZR, <Xn>, <Xm>{, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

The description of ANDS (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TST (shifted register) Page 1125

UABA

Unsigned Absolute difference and Accumulate. This instruction subtracts the elements of the vector of the second source SIMD&FP register
from the corresponding elements of the first source SIMD&FP register, and accumulates the absolute values of the results into the elements of
the vector of the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 1 1 Rn Rd
U ac

Three registers of the same type

UABA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

UABA Page 1126

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABA Page 1127

UABAL, UABAL2

Unsigned Absolute difference and Accumulate Long. This instruction subtracts the vector elements in the lower or upper half of the second
source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register, and accumulates the absolute values of
the results into the vector elements of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector
elements. All the values in this instruction are unsigned integer values.

The UABAL instruction extracts each source vector from the lower half of each source register, while the UABAL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 0 Rn Rd
U op

Three registers, not all the same type

UABAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UABAL, UABAL2 Page 1128

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABAL, UABAL2 Page 1129

UABD

Unsigned Absolute Difference (vector). This instruction subtracts the elements of the vector of the second source SIMD&FP register from the
corresponding elements of the first source SIMD&FP register, places the the absolute values of the results into a vector, and writes the vector to
the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 1 Rn Rd
U ac

Three registers of the same type

UABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean accumulate = (ac == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
bits(esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<esize-1:0>;
Elem[result, e, esize] = Elem[result, e, esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

UABD Page 1130

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABD Page 1131

UABDL, UABDL2

Unsigned Absolute Difference Long. This instruction subtracts the vector elements in the lower or upper half of the second source SIMD&FP
register from the corresponding vector elements of the first source SIMD&FP register, places the absolute value of the result into a vector, and
writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the
values in this instruction are unsigned integer values.

The UABDL instruction extracts each source vector from the lower half of each source register, while the UABDL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 1 0 0 Rn Rd
U op

Three registers, not all the same type

UABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean accumulate = (op == '0');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UABDL, UABDL2 Page 1132

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) absdiff;

result = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
absdiff = Abs(element1-element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UABDL, UABDL2 Page 1133

UADALP

Unsigned Add and Accumulate Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the vector in the source
SIMD&FP register and accumulates the results with the vector elements of the destination SIMD&FP register. The destination vector elements
are twice as long as the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 1 1 0 1 0 Rn Rd
U op

Vector

UADALP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

UADALP Page 1134

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

result = if acc then V[d] else Zeros();
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1+op2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADALP Page 1135

UADDL, UADDL2

Unsigned Add Long (vector). This instruction adds each vector element in the lower or upper half of the first source SIMD&FP register to the
corresponding vector element of the second source SIMD&FP register, places the result into a vector, and writes the vector to the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements. All the values in this instruction are
unsigned integer values.

The UADDL instruction extracts each source vector from the lower half of each source register, while the UADDL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 0 Rn Rd
U o1

Three registers, not all the same type

UADDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UADDL, UADDL2 Page 1136

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDL, UADDL2 Page 1137

UADDLP

Unsigned Add Long Pairwise. This instruction adds pairs of adjacent unsigned integer values from the vector in the source SIMD&FP register,
places the result into a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as
the source vector elements.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 0 1 0 Rn Rd
U op

Vector

UADDLP <Vd>.<Ta>, <Vn>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV (2 * esize);
boolean acc = (op == '1');
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size:Q”:

size Q <Ta>
00 0 4H
00 1 8H
01 0 2S
01 1 4S
10 0 1D
10 1 2D
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

UADDLP Page 1138

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(2*esize) sum;
integer op1;
integer op2;

result = if acc then V[d] else Zeros();
for e = 0 to elements-1

op1 = Int(Elem[operand, 2*e+0, esize], unsigned);
op2 = Int(Elem[operand, 2*e+1, esize], unsigned);
sum = (op1+op2)<2*esize-1:0>;
Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + sum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDLP Page 1139

UADDLV

Unsigned sum Long across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the scalar
result to the destination SIMD&FP register. The destination scalar is twice as long as the source vector elements. All the values in this instruction
are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 0 0 1 1 1 0 Rn Rd
U

Advanced SIMD

UADDLV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 H
01 S
10 D
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer sum;

sum = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

sum = sum + Int(Elem[operand, e, esize], unsigned);

V[d] = sum<2*esize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

UADDLV Page 1140

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDLV Page 1141

UADDW, UADDW2

Unsigned Add Wide. This instruction adds the vector elements of the first source SIMD&FP register to the corresponding vector elements in the
lower or upper half of the second source SIMD&FP register, places the result in a vector, and writes the vector to the SIMD&FP destination
register. The vector elements of the destination register and the first source register are twice as long as the vector elements of the second source
register. All the values in this instruction are unsigned integer values.

The UADDW instruction extracts vector elements from the lower half of the second source register, while the UADDW2
instruction extracts vector elements from the upper half of the second source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 0 Rn Rd
U o1

Three registers, not all the same type

UADDW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

UADDW, UADDW2 Page 1142

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADDW, UADDW2 Page 1143

UBFIZ

Unsigned Bitfield Insert in Zero zeroes the destination register and copies any number of contiguous bits from a source register into any position
in the destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

UBFIZ <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

UBFM <Wd>, <Wn>, #(-<lsb> MOD 32), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

64-bit (sf == 1 && N == 1)

UBFIZ <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

UBFM <Xd>, <Xn>, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt(imms) < UInt(immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UBFIZ Page 1144

UBFM

Unsigned Bitfield Move copies any number of low-order bits from a source register into the same number of adjacent bits at any position in the
destination register, with zeros in the upper and lower bits.

This instruction is used by the aliases LSL (immediate), LSR (immediate), UBFIZ, UBFX, UXTB, and UXTH.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

UBFM <Wd>, <Wn>, #<immr>, #<imms>

64-bit (sf == 1 && N == 1)

UBFM <Xd>, <Xn>, #<immr>, #<imms>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer datasize = if sf == '1' then 64 else 32;

integer R;
bits(datasize) wmask;
bits(datasize) tmask;

if sf == '1' && N != '1' then ReservedValue();
if sf == '0' && (N != '0' || immr<5> != '0' || imms<5> != '0') then ReservedValue();

R = UInt(immr);
(wmask, tmask) = DecodeBitMasks(N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.

<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31, encoded in the "imms"
field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63, encoded in the "imms"
field.

Alias Conditions

Alias Of variant Is preferred when

LSL (immediate) 32-bit imms != '011111' && imms + 1 == immr

LSL (immediate) 64-bit imms != '111111' && imms + 1 == immr

LSR (immediate) 32-bit imms == '011111'

LSR (immediate) 64-bit imms == '111111'

UBFIZ UInt(imms) < UInt(immr)

UBFX BFXPreferred(sf, opc<1>, imms, immr)

UXTB immr == '000000' && imms == '000111'

UBFM Page 1145

Alias Of variant Is preferred when

UXTH immr == '000000' && imms == '001111'

Operation

bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = ROR(src, R) AND wmask;

// combine extension bits and result bits
X[d] = bot AND tmask;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UBFM Page 1146

UBFX

Unsigned Bitfield Extract extracts any number of adjacent bits at any position from a register, zero-extends them to the size of the register, and
writes the result to the destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 0 1 0 0 1 1 0 N immr imms Rn Rd
opc

32-bit (sf == 0 && N == 0)

UBFX <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

UBFM <Wd>, <Wn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

64-bit (sf == 1 && N == 1)

UBFX <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

UBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1)

and is the preferred disassembly when BFXPreferred(sf, opc<1>, imms, immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<lsb> For the 32-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the lsb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UBFX Page 1147

UCVTF (vector, fixed-point)

Unsigned fixed-point Convert to Floating-point (vector). This instruction converts each element in a vector from fixed-point to floating-point
using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd
U immh

Scalar

UCVTF <V><d>, <V><n>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = esize;
integer elements = 1;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 1 1 1 0 0 1 Rn Rd
U immh

Vector

UCVTF <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh == '000x' || (immh == '001x' && !HaveFP16Ext()) then ReservedValue();
if immh<3>:Q == '10' then ReservedValue();
integer esize = if immh == '1xxx' then 64 else if immh == '01xx' then 32 else 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
FPRounding rounding = FPRoundingMode(FPCR);

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

UCVTF (vector, fixed-point) Page 1148

immh <V>
000x RESERVED
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 x RESERVED
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in “immh:immb”:

immh <fbits>
000x RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in “immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED
001x (32-Uint(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (vector, fixed-point) Page 1149

UCVTF (vector, integer)

Unsigned integer Convert to Floating-point (vector). This instruction converts each element in a vector from an unsigned integer value to a
floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
U

Scalar half precision

UCVTF <Hd>, <Hn>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
U

Scalar single-precision and double-precision

UCVTF <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 32 << UInt(sz);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 Rn Rd
U

UCVTF (vector, integer) Page 1150

Vector half precision

UCVTF <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext() then UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 16;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 0 sz 1 0 0 0 0 1 1 1 0 1 1 0 Rn Rd
U

Vector single-precision and double-precision

UCVTF <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz:Q == '10' then ReservedValue();
integer esize = 32 << UInt(sz);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<V> Is a width specifier, encoded in “sz”:

sz <V>
0 S
1 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 0 RESERVED
1 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

UCVTF (vector, integer) Page 1151

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
FPRounding rounding = FPRoundingMode(FPCR);
bits(esize) element;
for e = 0 to elements-1

element = Elem[operand, e, esize];
Elem[result, e, esize] = FixedToFP(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (vector, integer) Page 1152

UCVTF (scalar, fixed-point)

Unsigned fixed-point Convert to Floating-point (scalar). This instruction converts the unsigned value in the 32-bit or 64-bit general-purpose
source register to a floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 0 0 0 0 1 1 scale Rn Rd
rmode opcode

32-bit to half-precision (sf == 0 && type == 11)
(ARMv8.2)

UCVTF <Hd>, <Wn>, #<fbits>

32-bit to single-precision (sf == 0 && type == 00)

UCVTF <Sd>, <Wn>, #<fbits>

32-bit to double-precision (sf == 0 && type == 01)

UCVTF <Dd>, <Wn>, #<fbits>

64-bit to half-precision (sf == 1 && type == 11)
(ARMv8.2)

UCVTF <Hd>, <Xn>, #<fbits>

64-bit to single-precision (sf == 1 && type == 00)

UCVTF <Sd>, <Xn>, #<fbits>

64-bit to double-precision (sf == 1 && type == 01)

UCVTF <Dd>, <Xn>, #<fbits>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00' fltsize = 32;
when '01' fltsize = 64;
when '10' UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

if sf == '0' && scale<5> == '0' then UnallocatedEncoding();
integer fracbits = 64 - UInt(scale);

rounding = FPRoundingMode(FPCR);

UCVTF (scalar, fixed-point) Page 1153

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

<fbits> For the 32-bit to double-precision, 32-bit to half-precision and 32-bit to single-precision variant: is the number of bits after
the binary point in the fixed-point source, in the range 1 to 32, encoded as 64 minus "scale".

For the 64-bit to double-precision, 64-bit to half-precision and 64-bit to single-precision variant: is the number of bits after
the binary point in the fixed-point source, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

intval = X[n];
fltval = FixedToFP(intval, fracbits, TRUE, FPCR, rounding);
V[d] = fltval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (scalar, fixed-point) Page 1154

UCVTF (scalar, integer)

Unsigned integer Convert to Floating-point (scalar). This instruction converts the unsigned integer value in the general-purpose source register to
a floating-point value using the rounding mode that is specified by the FPCR, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 1 1 0 type 1 0 0 0 1 1 0 0 0 0 0 0 Rn Rd
rmode opcode

32-bit to half-precision (sf == 0 && type == 11)
(ARMv8.2)

UCVTF <Hd>, <Wn>

32-bit to single-precision (sf == 0 && type == 00)

UCVTF <Sd>, <Wn>

32-bit to double-precision (sf == 0 && type == 01)

UCVTF <Dd>, <Wn>

64-bit to half-precision (sf == 1 && type == 11)
(ARMv8.2)

UCVTF <Hd>, <Xn>

64-bit to single-precision (sf == 1 && type == 00)

UCVTF <Sd>, <Xn>

64-bit to double-precision (sf == 1 && type == 01)

UCVTF <Dd>, <Xn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == '1' then 64 else 32;
integer fltsize;
FPRounding rounding;

case type of
when '00'

fltsize = 32;
when '01'

fltsize = 64;
when '10'

UnallocatedEncoding();
when '11'

if HaveFP16Ext() then
fltsize = 16;

else
UnallocatedEncoding();

rounding = FPRoundingMode(FPCR);

UCVTF (scalar, integer) Page 1155

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();

bits(fltsize) fltval;
bits(intsize) intval;

intval = X[n];
fltval = FixedToFP(intval, 0, TRUE, FPCR, rounding);
V[d] = fltval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UCVTF (scalar, integer) Page 1156

UDIV

Unsigned Divide divides an unsigned integer register value by another unsigned integer register value, and writes the result to the destination
register. The condition flags are not affected.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 0 1 1 0 1 0 1 1 0 Rm 0 0 0 0 1 0 Rn Rd
o1

32-bit (sf == 0)

UDIV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

UDIV <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) operand1 = X[n];
bits(datasize) operand2 = X[m];
integer result;

if IsZero(operand2) then
result = 0;

else
result = RoundTowardsZero(Real(Int(operand1, TRUE)) / Real(Int(operand2, TRUE)));

X[d] = result<datasize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDIV Page 1157

UDOT (by element)

Dot Product unsigned arithmetic (vector, by element). This instruction performs the dot product of the four 8-bit elements in each 32-bit element
of the first source register with the four 8-bit elements of an indexed 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

From ARMv8.2, this is an OPTIONAL instruction.

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Vector
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 1 1 1 0 H 0 Rn Rd
U

Vector

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.4B[<index>]

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then ReservedValue();
boolean signed = (U == '0');

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(M:Rm);
integer index = UInt(H:L);

integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.

<index> Is the element index, encoded in the "H:L" fields.

UDOT (by element) Page 1158

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(128) operand2 = V[m];
bits(datasize) result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4*index+i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4*index+i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDOT (by element) Page 1159

UDOT (vector)

Dot Product unsigned arithmetic (vector). This instruction performs the dot product of the four 8-bit elements in each 32-bit element of the first
source register with the four 8-bit elements of the corresponding 32-bit element in the second source register, accumulating the result into the
corresponding 32-bit element of the destination register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

From ARMv8.2, this is an OPTIONAL instruction.

ID_AA64ISAR0_EL1.DP indicates whether this instruction is supported.

Three registers of the same type
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 0 Rm 1 0 0 1 0 1 Rn Rd
U

Three registers of the same type

UDOT <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

if !HaveDOTPExt() then UNDEFINED;
if size != '10' then ReservedValue();
boolean signed = (U == '0');
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “Q”:

Q <Ta>
0 2S
1 4S

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “Q”:

Q <Tb>
0 8B
1 16B

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UDOT (vector) Page 1160

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

result = V[d];
for e = 0 to elements-1

integer res = 0;
integer element1, element2;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4*e+i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4*e+i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4*e+i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDOT (vector) Page 1161

UHADD

Unsigned Halving Add. This instruction adds corresponding unsigned integer values from the two source SIMD&FP registers, shifts each result
right one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are truncated. For rounded results, see URHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 0 1 Rn Rd
U

Three registers of the same type

UHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
Elem[result, e, esize] = sum<esize:1>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHADD Page 1162

UHSUB

Unsigned Halving Subtract. This instruction subtracts the vector elements in the second source SIMD&FP register from the corresponding vector
elements in the first source SIMD&FP register, shifts each result right one bit, places each result into a vector, and writes the vector to the
destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 1 Rn Rd
U

Three registers of the same type

UHSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
Elem[result, e, esize] = diff<esize:1>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHSUB Page 1163

UMADDL

Unsigned Multiply-Add Long multiplies two 32-bit register values, adds a 64-bit register value, and writes the result to the 64-bit destination
register.

This instruction is used by the alias UMULL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 1 0 1 Rm 0 Ra Rn Rd
U o0

64-bit

UMADDL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the addend, encoded in the "Ra" field.

Alias Conditions

Alias Is preferred when

UMULL Ra == '11111'

Operation

bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;

result = Int(operand3, TRUE) + (Int(operand1, TRUE) * Int(operand2, TRUE));

X[d] = result<63:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMADDL Page 1164

UMAX

Unsigned Maximum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places the
larger of each pair of unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 0 1 Rn Rd
U o1

Three registers of the same type

UMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

UMAX Page 1165

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAX Page 1166

UMAXP

Unsigned Maximum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after
the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers,
writes the largest of each pair of unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 1 Rn Rd
U o1

Three registers of the same type

UMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

UMAXP Page 1167

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAXP Page 1168

UMAXV

Unsigned Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest of
the values as a scalar to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 0 1 0 1 0 1 0 Rn Rd
U op

Advanced SIMD

UMAXV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

UMAXV Page 1169

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAXV Page 1170

UMIN

Unsigned Minimum (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers, places the smaller
of each of the two unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 1 0 1 1 Rn Rd
U o1

Three registers of the same type

UMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

UMIN Page 1171

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMIN Page 1172

UMINP

Unsigned Minimum Pairwise. This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after
the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two source SIMD&FP registers,
writes the smallest of each pair of unsigned integer values into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 1 1 Rn Rd
U o1

Three registers of the same type

UMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean minimum = (o1 == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operand1;
integer element1;
integer element2;
integer maxmin;

for e = 0 to elements-1
element1 = Int(Elem[concat, 2*e, esize], unsigned);
element2 = Int(Elem[concat, (2*e)+1, esize], unsigned);
maxmin = if minimum then Min(element1, element2) else Max(element1, element2);
Elem[result, e, esize] = maxmin<esize-1:0>;

V[d] = result;

UMINP Page 1173

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMINP Page 1174

UMINV

Unsigned Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the smallest of
the values as a scalar to the destination SIMD&FP register. All the values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 1 0 0 0 1 1 0 1 0 1 0 Rn Rd
U op

Advanced SIMD

UMINV <V><d>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '100' then ReservedValue();
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean min = (op == '1');

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 4S
11 x RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
integer maxmin;
integer element;

maxmin = Int(Elem[operand, 0, esize], unsigned);
for e = 1 to elements-1

element = Int(Elem[operand, e, esize], unsigned);
maxmin = if min then Min(maxmin, element) else Max(maxmin, element);

V[d] = maxmin<esize-1:0>;

UMINV Page 1175

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMINV Page 1176

UMLAL, UMLAL2 (by element)

Unsigned Multiply-Add Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source
SIMD&FP register by the specified vector element of the second source SIMD&FP register and accumulates the results with the vector elements
of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register, while the UMLAL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 0 0 1 0 H 0 Rn Rd
U o2

Vector

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

UMLAL, UMLAL2 (by element) Page 1177

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLAL, UMLAL2 (by element) Page 1178

UMLAL, UMLAL2 (vector)

Unsigned Multiply-Add Long (vector). This instruction multiplies the vector elements in the lower or upper half of the first source SIMD&FP
register by the corresponding vector elements of the second source SIMD&FP register, and accumulates the results with the vector elements of
the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The UMLAL instruction extracts vector elements from the lower half of the first source register, while the UMLAL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 0 0 0 0 Rn Rd
U o1

Three registers, not all the same type

UMLAL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UMLAL, UMLAL2 (vector) Page 1179

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLAL, UMLAL2 (vector) Page 1180

UMLSL, UMLSL2 (by element)

Unsigned Multiply-Subtract Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first
source SIMD&FP register by the specified vector element of the second source SIMD&FP register and subtracts the results from the vector
elements of the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The UMLSL instruction extracts vector elements from the lower half of the first source register, while the UMLSL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 0 1 1 0 H 0 Rn Rd
U o2

Vector

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');
boolean sub_op = (o2 == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

UMLSL, UMLSL2 (by element) Page 1181

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] - product;
else

Elem[result, e, 2*esize] = Elem[operand3, e, 2*esize] + product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLSL, UMLSL2 (by element) Page 1182

UMLSL, UMLSL2 (vector)

Unsigned Multiply-Subtract Long (vector). This instruction multiplies corresponding vector elements in the lower or upper half of the two source
SIMD&FP registers, and subtracts the results from the vector elements of the destination SIMD&FP register. The destination vector elements are
twice as long as the elements that are multiplied. All the values in this instruction are unsigned integer values.

The UMLSL instruction extracts each source vector from the lower half of each source register, while the UMLSL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 0 1 0 0 0 Rn Rd
U o1

Three registers, not all the same type

UMLSL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UMLSL, UMLSL2 (vector) Page 1183

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) operand3 = V[d];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;
bits(2*esize) accum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
if sub_op then

accum = Elem[operand3, e, 2*esize] - product;
else

accum = Elem[operand3, e, 2*esize] + product;
Elem[result, e, 2*esize] = accum;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLSL, UMLSL2 (vector) Page 1184

UMNEGL

Unsigned Multiply-Negate Long multiplies two 32-bit register values, negates the product, and writes the result to the 64-bit destination register.

This is an alias of UMSUBL. This means:

• The encodings in this description are named to match the encodings of UMSUBL.
• The description of UMSUBL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 1 0 1 Rm 1 1 1 1 1 1 Rn Rd
U o0 Ra

64-bit

UMNEGL <Xd>, <Wn>, <Wm>

is equivalent to

UMSUBL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of UMSUBL gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMNEGL Page 1185

UMOV

Unsigned Move vector element to general-purpose register. This instruction reads the unsigned integer from the source SIMD&FP register, zero-
extends it to form a 32-bit or 64-bit value, and writes the result to the destination general-purpose register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (to general).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 0 0 0 imm5 0 0 1 1 1 1 Rn Rd

32-bit (Q == 0)

UMOV <Wd>, <Vn>.<Ts>[<index>]

64-bit (Q == 1 && imm5 == x1000)

UMOV <Xd>, <Vn>.<Ts>[<index>]

integer d = UInt(Rd);
integer n = UInt(Rn);

integer size;
case Q:imm5 of

when '0xxxx1' size = 0; // UMOV Wd, Vn.B
when '0xxx10' size = 1; // UMOV Wd, Vn.H
when '0xx100' size = 2; // UMOV Wd, Vn.S
when '1x1000' size = 3; // UMOV Xd, Vn.D
otherwise UnallocatedEncoding();

integer idxdsize = if imm5<4> == '1' then 128 else 64;
integer index = UInt(imm5<4:size+1>);
integer esize = 8 << size;
integer datasize = if Q == '1' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ts> For the 32-bit variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
xx000 RESERVED
xxxx1 B
xxx10 H
xx100 S

For the 64-bit variant: is an element size specifier, encoded in “imm5”:

imm5 <Ts>
x0000 RESERVED
xxxx1 RESERVED
xxx10 RESERVED
xx100 RESERVED
x1000 D

<index> For the 32-bit variant: is the element index encoded in “imm5”:

UMOV Page 1186

imm5 <index>
xx000 RESERVED
xxxx1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>

For the 64-bit variant: is the element index encoded in "imm5<4>".

Alias Conditions

Alias Is preferred when

MOV (to general) imm5 == 'x1000'

MOV (to general) imm5 == 'xx100'

Operation

CheckFPAdvSIMDEnabled64();
bits(idxdsize) operand = V[n];

X[d] = ZeroExtend(Elem[operand, index, esize], datasize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMOV Page 1187

UMSUBL

Unsigned Multiply-Subtract Long multiplies two 32-bit register values, subtracts the product from a 64-bit register value, and writes the result to
the 64-bit destination register.

This instruction is used by the alias UMNEGL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 1 0 1 Rm 1 Ra Rn Rd
U o0

64-bit

UMSUBL <Xd>, <Wn>, <Wm>, <Xa>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer a = UInt(Ra);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Xa> Is the 64-bit name of the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Alias Conditions

Alias Is preferred when

UMNEGL Ra == '11111'

Operation

bits(32) operand1 = X[n];
bits(32) operand2 = X[m];
bits(64) operand3 = X[a];

integer result;

result = Int(operand3, TRUE) - (Int(operand1, TRUE) * Int(operand2, TRUE));
X[d] = result<63:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMSUBL Page 1188

UMULH

Unsigned Multiply High multiplies two 64-bit register values, and writes bits[127:64] of the 128-bit result to the 64-bit destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 1 1 0 Rm 0 (1) (1) (1) (1) (1) Rn Rd
U Ra

64-bit

UMULH <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

bits(64) operand1 = X[n];
bits(64) operand2 = X[m];

integer result;

result = Int(operand1, TRUE) * Int(operand2, TRUE);

X[d] = result<127:64>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULH Page 1189

UMULL, UMULL2 (by element)

Unsigned Multiply Long (vector, by element). This instruction multiplies each vector element in the lower or upper half of the first source
SIMD&FP register by the specified vector element of the second source SIMD&FP register, places the results in a vector, and writes the vector
to the destination SIMD&FP register. The destination vector elements are twice as long as the elements that are multiplied.

The UMULL instruction extracts vector elements from the lower half of the first source register, while the UMULL2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 size L M Rm 1 0 1 0 H 0 Rn Rd
U

Vector

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == '1' then 128 else 64;
integer index;
bit Rmhi;
case size of

when '01' index = UInt(H:L:M); Rmhi = '0';
when '10' index = UInt(H:L); Rmhi = M;
otherwise UnallocatedEncoding();

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rmhi:Rm);

integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 RESERVED
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 x RESERVED
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in “size:M:Rm”:

UMULL, UMULL2 (by element) Page 1190

size <Vm>
00 RESERVED
01 0:Rm
10 M:Rm
11 RESERVED

Restricted to V0-V15 when element size <Ts> is H.

<Ts> Is an element size specifier, encoded in “size”:

size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED

<index> Is the element index, encoded in “size:L:H:M”:

size <index>
00 RESERVED
01 H:L:M
10 H:L
11 RESERVED

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(idxdsize) operand2 = V[m];
bits(2*datasize) result;
integer element1;
integer element2;
bits(2*esize) product;

element2 = Int(Elem[operand2, index, esize], unsigned);
for e = 0 to elements-1

element1 = Int(Elem[operand1, e, esize], unsigned);
product = (element1*element2)<2*esize-1:0>;
Elem[result, e, 2*esize] = product;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULL, UMULL2 (by element) Page 1191

UMULL, UMULL2 (vector)

Unsigned Multiply long (vector). This instruction multiplies corresponding vector elements in the lower or upper half of the two source
SIMD&FP registers, places the result in a vector, and writes the vector to the destination SIMD&FP register. The destination vector elements are
twice as long as the elements that are multiplied. All the values in this instruction are unsigned integer values.

The UMULL instruction extracts each source vector from the lower half of each source register, while the UMULL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 1 1 0 0 0 0 Rn Rd
U

Three registers, not all the same type

UMULL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UMULL, UMULL2 (vector) Page 1192

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, 2*esize] = (element1*element2)<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULL, UMULL2 (vector) Page 1193

UMULL

Unsigned Multiply Long multiplies two 32-bit register values, and writes the result to the 64-bit destination register.

This is an alias of UMADDL. This means:

• The encodings in this description are named to match the encodings of UMADDL.
• The description of UMADDL gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 0 1 1 1 0 1 Rm 0 1 1 1 1 1 Rn Rd
U o0 Ra

64-bit

UMULL <Xd>, <Wn>, <Wm>

is equivalent to

UMADDL <Xd>, <Wn>, <Wm>, XZR

and is always the preferred disassembly.

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

The description of UMADDL gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULL Page 1194

UQADD

Unsigned saturating Add. This instruction adds the values of corresponding elements of the two source SIMD&FP registers, places the results
into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
U

Scalar

UQADD <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 0 1 1 Rn Rd
U

Vector

UQADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

UQADD Page 1195

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer sum;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
sum = element1 + element2;
(Elem[result, e, esize], sat) = SatQ(sum, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQADD Page 1196

UQRSHL

Unsigned saturating Rounding Shift Left (register). This instruction takes each vector element of the first source SIMD&FP register, shifts the
vector element by a value from the least significant byte of the corresponding vector element of the second source SIMD&FP register, places the
results into a vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are rounded. For truncated results, see UQSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
U R S

Scalar

UQRSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 1 1 Rn Rd
U R S

Vector

UQRSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

UQRSHL Page 1197

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQRSHL Page 1198

UQRSHRN, UQRSHRN2

Unsigned saturating Rounded Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, puts the final result into a vector, and writes the vector to the lower or upper half of the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The results are rounded. For truncated results, see UQSHRN.

The UQRSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

UQRSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd
U immh op

Scalar

UQRSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 1 1 1 Rn Rd
U immh op

Vector

UQRSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

UQRSHRN, UQRSHRN2 Page 1199

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

UQRSHRN, UQRSHRN2 Page 1200

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQRSHRN, UQRSHRN2 Page 1201

UQSHL (immediate)

Unsigned saturating Shift Left (immediate). This instruction takes each vector element in the source SIMD&FP register, shifts it by an immediate
value, places the results in a vector, and writes the vector to the destination SIMD&FP register. The results are truncated. For rounded results, see
UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd
U immh op

Scalar

UQSHL <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UnallocatedEncoding();
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 1 1 1 0 1 Rn Rd
U immh op

UQSHL (immediate) Page 1202

Vector

UQSHL <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;

boolean src_unsigned;
boolean dst_unsigned;
case op:U of

when '00' UnallocatedEncoding();
when '01' src_unsigned = FALSE; dst_unsigned = TRUE;
when '10' src_unsigned = FALSE; dst_unsigned = FALSE;
when '11' src_unsigned = TRUE; dst_unsigned = TRUE;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

immh <V>
0000 RESERVED
0001 B
001x H
01xx S
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the left shift amount, in the range 0 to the operand width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

For the vector variant: is the left shift amount, in the range 0 to the element width in bits minus 1, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64)

UQSHL (immediate) Page 1203

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
integer element;
boolean sat;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], src_unsigned) << shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, dst_unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSHL (immediate) Page 1204

UQSHL (register)

Unsigned saturating Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts the
element by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a
vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. Otherwise, it is a right shift. The results are truncated. For rounded results, see UQRSHL.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
U R S

Scalar

UQSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 1 1 Rn Rd
U R S

Vector

UQSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

UQSHL (register) Page 1205

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSHL (register) Page 1206

UQSHRN, UQSHRN2

Unsigned saturating Shift Right Narrow (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts
each result by an immediate value, saturates each shifted result to a value that is half the original width, puts the final result into a vector, and
writes the vector to the lower or upper half of the destination SIMD&FP register. All the values in this instruction are unsigned integer values.
The results are truncated. For rounded results, see UQRSHRN.

The UQSHRN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

UQSHRN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd
U immh op

Scalar

UQSHRN <Vb><d>, <Va><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then ReservedValue();
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = esize;
integer elements = 1;
integer part = 0;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 0 1 0 1 Rn Rd
U immh op

Vector

UQSHRN{2} <Vd>.<Tb>, <Vn>.<Ta>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = (2 * esize) - UInt(immh:immb);
boolean round = (op == '1');
boolean unsigned = (U == '1');

UQSHRN, UQSHRN2 Page 1207

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vb> Is the destination width specifier, encoded in “immh”:

immh <Vb>
0000 RESERVED
0001 B
001x H
01xx S
1xxx RESERVED

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<Va> Is the source width specifier, encoded in “immh”:

immh <Va>
0000 RESERVED
0001 H
001x S
01xx D
1xxx RESERVED

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to the destination operand width in bits, encoded in “immh:immb”:

immh <shift>
0000 RESERVED
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

For the vector variant: is the right shift amount, in the range 1 to the destination element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx RESERVED

UQSHRN, UQSHRN2 Page 1208

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize*2) operand = V[n];
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;
boolean sat;

for e = 0 to elements-1
element = (Int(Elem[operand, e, 2*esize], unsigned) + round_const) >> shift;
(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSHRN, UQSHRN2 Page 1209

UQSUB

Unsigned saturating Subtract. This instruction subtracts the element values of the second source SIMD&FP register from the corresponding
element values of the first source SIMD&FP register, places the results into a vector, and writes the vector to the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
U

Scalar

UQSUB <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 1 1 Rn Rd
U

Vector

UQSUB <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

UQSUB Page 1210

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;
integer diff;
boolean sat;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
diff = element1 - element2;
(Elem[result, e, esize], sat) = SatQ(diff, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSUB Page 1211

UQXTN, UQXTN2

Unsigned saturating extract Narrow. This instruction reads each vector element from the source SIMD&FP register, saturates each value to half
the original width, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are
unsigned integer values.

If saturation occurs, the cumulative saturation bit FPSR.QC is set.

The UQXTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

UQXTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
U

Scalar

UQXTN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = esize;
integer part = 0;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 1 0 1 0 0 1 0 Rn Rd
U

Vector

UQXTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

UQXTN, UQXTN2 Page 1212

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vb> Is the destination width specifier, encoded in “size”:

size <Vb>
00 B
01 H
10 S
11 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<Va> Is the source width specifier, encoded in “size”:

size <Va>
00 H
01 S
10 D
11 RESERVED

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;
boolean sat;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
(Elem[result, e, esize], sat) = SatQ(Int(element, unsigned), esize, unsigned);
if sat then FPSR.QC = '1';

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQXTN, UQXTN2 Page 1213

URECPE

Unsigned Reciprocal Estimate. This instruction reads each vector element from the source SIMD&FP register, calculates an approximate inverse
for the unsigned integer value, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

Vector

URECPE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '1' then ReservedValue();
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(32) element;

for e = 0 to elements-1
element = Elem[operand, e, 32];
Elem[result, e, 32] = UnsignedRecipEstimate(element);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URECPE Page 1214

URHADD

Unsigned Rounding Halving Add. This instruction adds corresponding unsigned integer values from the two source SIMD&FP registers, shifts
each result right one bit, places the results into a vector, and writes the vector to the destination SIMD&FP register.

The results are rounded. For truncated results, see UHADD.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 0 1 0 1 Rn Rd
U

Three registers of the same type

URHADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;
integer element1;
integer element2;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
Elem[result, e, esize] = (element1+element2+1)<esize:1>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URHADD Page 1215

URSHL

Unsigned Rounding Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts the vector
element by a value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a
vector, and writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a rounding right shift.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
U R S

Scalar

URSHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 1 0 1 Rn Rd
U R S

Vector

URSHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

URSHL Page 1216

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSHL Page 1217

URSHR

Unsigned Rounding Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result
by an immediate value, writes the final result to a vector, and writes the vector to the destination SIMD&FP register. All the values in this
instruction are unsigned integer values. The results are rounded. For truncated results, see USHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd
U immh o1 o0

Scalar

URSHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 1 0 0 1 Rn Rd
U immh o1 o0

Vector

URSHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

URSHR Page 1218

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSHR Page 1219

URSQRTE

Unsigned Reciprocal Square Root Estimate. This instruction reads each vector element from the source SIMD&FP register, calculates an
approximate inverse square root for each value, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the
values in this instruction are unsigned integer values.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 1 sz 1 0 0 0 0 1 1 1 0 0 1 0 Rn Rd

Vector

URSQRTE <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '1' then ReservedValue();
integer esize = 32;
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “sz:Q”:

sz Q <T>
0 0 2S
0 1 4S
1 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;
bits(32) element;

for e = 0 to elements-1
element = Elem[operand, e, 32];
Elem[result, e, 32] = UnsignedRSqrtEstimate(element);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSQRTE Page 1220

URSRA

Unsigned Rounding Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right
shifts each result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the
values in this instruction are unsigned integer values. The results are rounded. For truncated results, see USRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd
U immh o1 o0

Scalar

URSRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 1 1 0 1 Rn Rd
U immh o1 o0

Vector

URSRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

URSRA Page 1221

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

URSRA Page 1222

USHL

Unsigned Shift Left (register). This instruction takes each element in the vector of the first source SIMD&FP register, shifts each element by a
value from the least significant byte of the corresponding element of the second source SIMD&FP register, places the results in a vector, and
writes the vector to the destination SIMD&FP register.

If the shift value is positive, the operation is a left shift. If the shift value is negative, it is a truncating right shift. For a rounding shift, see
URSHL.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
U R S

Scalar

USHL <V><d>, <V><n>, <V><m>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');
if S == '0' && size != '11' then ReservedValue();

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 1 0 0 0 1 Rn Rd
U R S

Vector

USHL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1');
boolean rounding = (R == '1');
boolean saturating = (S == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
0x RESERVED
10 RESERVED
11 D

USHL Page 1223

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer round_const = 0;
integer shift;
integer element;
boolean sat;

for e = 0 to elements-1
shift = SInt(Elem[operand2, e, esize]<7:0>);
if rounding then

round_const = 1 << (-shift - 1); // 0 for left shift, 2^(n-1) for right shift
element = (Int(Elem[operand1, e, esize], unsigned) + round_const) << shift;
if saturating then

(Elem[result, e, esize], sat) = SatQ(element, esize, unsigned);
if sat then FPSR.QC = '1';

else
Elem[result, e, esize] = element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USHL Page 1224

USHLL, USHLL2

Unsigned Shift Left Long (immediate). This instruction reads each vector element in the lower or upper half of the source SIMD&FP register,
shifts the unsigned integer value left by the specified number of bits, places the result into a vector, and writes the vector to the destination
SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The USHLL instruction extracts vector elements from the lower half of the source register, while the USHLL2
instruction extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias UXTL, UXTL2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 1 0 1 0 0 1 Rn Rd
U immh

Vector

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3> == '1' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

integer shift = UInt(immh:immb) - esize;
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

<shift> Is the left shift amount, in the range 0 to the source element width in bits minus 1, encoded in “immh:immb”:

USHLL, USHLL2 Page 1225

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx RESERVED

Alias Conditions

Alias Is preferred when

UXTL, UXTL2 immb == '000' && BitCount(immh) == 1

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = Vpart[n, part];
bits(datasize*2) result;
integer element;

for e = 0 to elements-1
element = Int(Elem[operand, e, esize], unsigned) << shift;
Elem[result, e, 2*esize] = element<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USHLL, USHLL2 Page 1226

USHR

Unsigned Shift Right (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each result by an
immediate value, writes the final result to a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction
are unsigned integer values. The results are truncated. For rounded results, see URSHR.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd
U immh o1 o0

Scalar

USHR <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 0 0 0 1 Rn Rd
U immh o1 o0

Vector

USHR <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

USHR Page 1227

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USHR Page 1228

USQADD

Unsigned saturating Accumulate of Signed value. This instruction adds the signed integer values of the vector elements in the source SIMD&FP
register to corresponding unsigned integer values of the vector elements in the destination SIMD&FP register, and accumulates the resulting
unsigned integer values with the vector elements of the destination SIMD&FP register.

If overflow occurs with any of the results, those results are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
U

Scalar

USQADD <V><d>, <V><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer esize = 8 << UInt(size);
integer datasize = esize;
integer elements = 1;

boolean unsigned = (U == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 0 0 0 0 0 0 0 1 1 1 0 Rn Rd
U

Vector

USQADD <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean unsigned = (U == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <V>
00 B
01 H
10 S
11 D

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

USQADD Page 1229

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) result;

bits(datasize) operand2 = V[d];
integer op1;
integer op2;
boolean sat;

for e = 0 to elements-1
op1 = Int(Elem[operand, e, esize], !unsigned);
op2 = Int(Elem[operand2, e, esize], unsigned);
(Elem[result, e, esize], sat) = SatQ(op1 + op2, esize, unsigned);
if sat then FPSR.QC = '1';

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USQADD Page 1230

USRA

Unsigned Shift Right and Accumulate (immediate). This instruction reads each vector element in the source SIMD&FP register, right shifts each
result by an immediate value, and accumulates the final results with the vector elements of the destination SIMD&FP register. All the values in
this instruction are unsigned integer values. The results are truncated. For rounded results, see URSRA.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd
U immh o1 o0

Scalar

USRA <V><d>, <V><n>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh<3> != '1' then ReservedValue();
integer esize = 8 << 3;
integer datasize = esize;
integer elements = 1;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 immb 0 0 0 1 0 1 Rn Rd
U immh o1 o0

Vector

USRA <Vd>.<T>, <Vn>.<T>, #<shift>

integer d = UInt(Rd);
integer n = UInt(Rn);

if immh == '0000' then SEE(asimdimm);
if immh<3>:Q == '10' then ReservedValue();
integer esize = 8 << HighestSetBit(immh);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;

integer shift = (esize * 2) - UInt(immh:immb);
boolean unsigned = (U == '1');
boolean round = (o1 == '1');
boolean accumulate = (o0 == '1');

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

USRA Page 1231

immh <V>
0xxx RESERVED
1xxx D

<d> Is the number of the SIMD&FP destination register, in the "Rd" field.

<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <T>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<shift> For the scalar variant: is the right shift amount, in the range 1 to 64, encoded in “immh:immb”:

immh <shift>
0xxx RESERVED
1xxx (128-UInt(immh:immb))

For the vector variant: is the right shift amount, in the range 1 to the element width in bits, encoded in “immh:immb”:

immh <shift>
0000 SEE Advanced SIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb))

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand = V[n];
bits(datasize) operand2;
bits(datasize) result;
integer round_const = if round then (1 << (shift - 1)) else 0;
integer element;

operand2 = if accumulate then V[d] else Zeros();
for e = 0 to elements-1

element = (Int(Elem[operand, e, esize], unsigned) + round_const) >> shift;
Elem[result, e, esize] = Elem[operand2, e, esize] + element<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USRA Page 1232

USUBL, USUBL2

Unsigned Subtract Long. This instruction subtracts each vector element in the lower or upper half of the second source SIMD&FP register from
the corresponding vector element of the first source SIMD&FP register, places the result into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are unsigned integer values. The destination vector elements are twice as long as the source
vector elements.

The USUBL instruction extracts each source vector from the lower half of each source register, while the USUBL2
instruction extracts each source vector from the upper half of each source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 0 0 0 Rn Rd
U o1

Three registers, not all the same type

USUBL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

USUBL, USUBL2 Page 1233

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = Vpart[n, part];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USUBL, USUBL2 Page 1234

USUBW, USUBW2

Unsigned Subtract Wide. This instruction subtracts each vector element of the second source SIMD&FP register from the corresponding vector
element in the lower or upper half of the first source SIMD&FP register, places the result in a vector, and writes the vector to the SIMD&FP
destination register. All the values in this instruction are signed integer values.

The vector elements of the destination register and the first source register are twice as long as the vector elements of the second source register.

The USUBW instruction extracts vector elements from the lower half of the first source register, while the USUBW2
instruction extracts vector elements from the upper half of the first source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 size 1 Rm 0 0 1 1 0 0 Rn Rd
U o1

Three registers, not all the same type

USUBW{2} <Vd>.<Ta>, <Vn>.<Ta>, <Vm>.<Tb>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

boolean sub_op = (o1 == '1');
boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

USUBW, USUBW2 Page 1235

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand1 = V[n];
bits(datasize) operand2 = Vpart[m, part];
bits(2*datasize) result;
integer element1;
integer element2;
integer sum;

for e = 0 to elements-1
element1 = Int(Elem[operand1, e, 2*esize], unsigned);
element2 = Int(Elem[operand2, e, esize], unsigned);
if sub_op then

sum = element1 - element2;
else

sum = element1 + element2;
Elem[result, e, 2*esize] = sum<2*esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USUBW, USUBW2 Page 1236

UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to the size of the register, and writes the result to the destination
register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 Rn Rd
sf opc N immr imms

32-bit

UXTB <Wd>, <Wn>

is equivalent to

UBFM <Wd>, <Wn>, #0, #7

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTB Page 1237

UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to the size of the register, and writes the result to the
destination register.

This is an alias of UBFM. This means:

• The encodings in this description are named to match the encodings of UBFM.
• The description of UBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 Rn Rd
sf opc N immr imms

32-bit

UXTH <Wd>, <Wn>

is equivalent to

UBFM <Wd>, <Wn>, #0, #15

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.

Operation

The description of UBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTH Page 1238

UXTL, UXTL2

Unsigned extend Long. This instruction copies each vector element from the lower or upper half of the source SIMD&FP register into a vector,
and writes the vector to the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The UXTL instruction extracts vector elements from the lower half of the source register, while the UXTL2 instruction
extracts vector elements from the upper half of the source register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This is an alias of USHLL, USHLL2. This means:

• The encodings in this description are named to match the encodings of USHLL, USHLL2.
• The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 1 0 != 0000 0 0 0 1 0 1 0 0 1 Rn Rd
U immh immb

Vector

UXTL{2} <Vd>.<Ta>, <Vn>.<Tb>

is equivalent to

USHLL{2} <Vd>.<Ta>, <Vn>.<Tb>, #0

and is the preferred disassembly when BitCount(immh) == 1.

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in “immh”:

immh <Ta>
0000 SEE Advanced SIMD modified immediate
0001 8H
001x 4S
01xx 2D
1xxx RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in “immh:Q”:

immh Q <Tb>
0000 x SEE Advanced SIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx x RESERVED

Operation

The description of USHLL, USHLL2 gives the operational pseudocode for this instruction.

UXTL, UXTL2 Page 1239

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTL, UXTL2 Page 1240

UZP1

Unzip vectors (primary). This instruction reads corresponding even-numbered vector elements from the two source SIMD&FP registers, starting
at zero, places the result from the first source register into consecutive elements in the lower half of a vector, and the result from the second
source register into consecutive elements in the upper half of a vector, and writes the vector to the destination SIMD&FP register.

This instruction can be used with UZP2 to de-interleave two vectors.

The following figure shows an example of the operation of UZP1 and UZP2 with the arrangement specifier 8B.
A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn
Vm

Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 0 1 1 0 Rn Rd
op

Advanced SIMD

UZP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UZP1 Page 1241

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operandl = V[n];
bits(datasize) operandh = V[m];
bits(datasize) result;
integer e;

bits(datasize*2) zipped = operandh:operandl;
for e = 0 to elements-1

Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UZP1 Page 1242

UZP2

Unzip vectors (secondary). This instruction reads corresponding odd-numbered vector elements from the two source SIMD&FP registers, places
the result from the first source register into consecutive elements in the lower half of a vector, and the result from the second source register into
consecutive elements in the upper half of a vector, and writes the vector to the destination SIMD&FP register.

This instruction can be used with UZP1 to de-interleave two vectors.

The following figure shows an example of the operation of UZP1 and UZP2 with the arrangement specifier 8B.
A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

UZP1.8, doubleword

B2 B0B1B3B4B5

A4 A0A2A6B0B2B4B6

UZP2.8, doubleword

B7 B6

Vd

Vn
Vm

Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 0 1 1 0 Rn Rd
op

Advanced SIMD

UZP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

UZP2 Page 1243

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operandl = V[n];
bits(datasize) operandh = V[m];
bits(datasize) result;
integer e;

bits(datasize*2) zipped = operandh:operandl;
for e = 0 to elements-1

Elem[result, e, esize] = Elem[zipped, 2*e+part, esize];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UZP2 Page 1244

WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a wakeup event occurs. Wakeup

events include the event signaled as a result of executing the SEV instruction on any PE in the multiprocessor system. For more
information, see Wait For Event mechanism and Send event.

As described in Wait For Event mechanism and Send event, the execution of a WFE instruction that would otherwise cause entry to a
low-power state can be trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1
CRm op2

System

WFE

// Empty.

Operation

if IsEventRegisterSet() then
ClearEventRegister();

else
if PSTATE.EL == EL0 then

// Check for traps described by the OS which may be EL1 or EL2.
AArch64.CheckForWFxTrap(EL1, TRUE);

if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1} && !IsInHost() then
// Check for traps described by the Hypervisor.
AArch64.CheckForWFxTrap(EL2, TRUE);

if HaveEL(EL3) && PSTATE.EL != EL3 then
// Check for traps described by the Secure Monitor.
AArch64.CheckForWFxTrap(EL3, TRUE);

WaitForEvent();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFE Page 1245

WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until a wakeup event occurs. For
more information, see Wait For Interrupt.

As described in Wait For Interrupt, the execution of a WFI instruction that would otherwise cause entry to a low-power state can be
trapped to a higher Exception level. See:

• Traps to EL1 of EL0 execution of WFE and WFI instructions.
• Traps to EL2 of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to EL3 of EL2, EL1, and EL0 execution of WFE and WFI instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1
CRm op2

System

WFI

// Empty.

Operation

if !InterruptPending() then
if PSTATE.EL == EL0 then

// Check for traps described by the OS which may be EL1 or EL2.
AArch64.CheckForWFxTrap(EL1, FALSE);

if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1} && !IsInHost() then
// Check for traps described by the Hypervisor.
AArch64.CheckForWFxTrap(EL2, FALSE);

if HaveEL(EL3) && PSTATE.EL != EL3 then
// Check for traps described by the Secure Monitor.
AArch64.CheckForWFxTrap(EL3, FALSE);

WaitForInterrupt();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFI Page 1246

XAR

Exclusive OR and Rotate performs a bitwise exclusive OR of the 128-bit vectors in the two source SIMD&FP registers, rotates each 64-bit
element of the resulting 128-bit vector right by the value specified by a 6-bit immediate value, and writes the result to the destination SIMD&FP
register.

This instruction is implemented only when ARMv8.2-SHA is implemented.

Advanced SIMD
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 1 0 0 Rm imm6 Rn Rd

Advanced SIMD

XAR <Vd>.2D, <Vn>.2D, <Vm>.2D, #<imm6>

if !HaveCryptoExt2() then UnallocatedEncoding();
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

<imm6> Is a rotation right, encoded in "imm6".

Operation

bits(128) Vm = V[m];
bits(128) Vn = V[n];
bits(128) tmp;
tmp = Vn EOR Vm;
V[d] = ROR(tmp<127:64>, UInt(imm6)):ROR(tmp<63:0>, UInt(imm6));

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

XAR Page 1247

XPACD, XPACI, XPACLRI

Strip Pointer Authentication Code. This instruction removes the pointer authentication code from an address. The address is in the specified

general-purpose register for XPACI and XPACD, and is in LR for XPACLRI.

The XPACD instruction is used for data addresses, and XPACI and XPACLRI are used for instruction
addresses.

It has encodings from 2 classes: Integer and System

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 D 1 1 1 1 1 Rd
Rn

XPACD (D == 1)

XPACD <Xd>

XPACI (D == 0)

XPACI <Xd>

boolean data = (D == '1');
integer d = UInt(Rd);

if !HavePACExt() then
UnallocatedEncoding();

System
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1

System

XPACLRI

integer d = 30;
boolean data = FALSE;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Operation

if HavePACExt() then
X[d] = Strip(X[d], data);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

XPACD, XPACI, XPACLRI Page 1248

XTN, XTN2

Extract Narrow. This instruction reads each vector element from the source SIMD&FP register, narrows each value to half the original width,
places the result into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector
elements are half as long as the source vector elements.

The XTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

XTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 1 0 0 0 0 1 0 0 1 0 1 0 Rn Rd

Vector

XTN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d = UInt(Rd);
integer n = UInt(Rn);

if size == '11' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Tb> Is an arrangement specifier, encoded in “size:Q”:

size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Ta> Is an arrangement specifier, encoded in “size”:

size <Ta>
00 8H
01 4S
10 2D
11 RESERVED

XTN, XTN2 Page 1249

Operation

CheckFPAdvSIMDEnabled64();
bits(2*datasize) operand = V[n];
bits(datasize) result;
bits(2*esize) element;

for e = 0 to elements-1
element = Elem[operand, e, 2*esize];
Elem[result, e, esize] = element<esize-1:0>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

XTN, XTN2 Page 1250

YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the PE that it is
performing a task, for example a spin-lock, that could be swapped out to improve overall system performance. The PE can use this hint to
suspend and resume multiple software threads if it supports the capability.

For more information about the recommended use of this instruction, see The YIELD instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1
CRm op2

System

YIELD

// Empty.

Operation

Hint_Yield();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

YIELD Page 1251

ZIP1

Zip vectors (primary). This instruction reads adjacent vector elements from the upper half of two source SIMD&FP registers as pairs, interleaves
the pairs and places them into a vector, and writes the vector to the destination SIMD&FP register. The first pair from the first source register is
placed into the two lowest vector elements, with subsequent pairs taken alternately from each source register.

This instruction can be used with ZIP2 to interleave two vectors.

The following figure shows an example of the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.
A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6
Vn
Vm

Vd Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 0 1 1 1 0 Rn Rd
op

Advanced SIMD

ZIP1 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

ZIP1 Page 1252

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer base = part * pairs;
integer p;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZIP1 Page 1253

ZIP2

Zip vectors (secondary). This instruction reads adjacent vector elements from the lower half of two source SIMD&FP registers as pairs,
interleaves the pairs and places them into a vector, and writes the vector to the destination SIMD&FP register. The first pair from the first source
register is placed into the two lowest vector elements, with subsequent pairs taken alternately from each source register.

This instruction can be used with ZIP1 to interleave two vectors.

The following figure shows an example of the operation of ZIP1 and ZIP2 with the arrangement specifier 8B.
A2

A5

A0

A1

A1

A3

A3

A7

A4

B1

A5

B3

A6

B5

A7

B7

ZIP1.8, doubleword

B2 B0B1B3B4B5

A4A0A2 A6B0B2 B4B6

ZIP2.8, doubleword

B7 B6
Vn
Vm

Vd Vd

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 1 1 1 1 0 Rn Rd
op

Advanced SIMD

ZIP2 <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);

if size:Q == '110' then ReservedValue();
integer esize = 8 << UInt(size);
integer datasize = if Q == '1' then 128 else 64;
integer elements = datasize DIV esize;
integer part = UInt(op);
integer pairs = elements DIV 2;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

ZIP2 Page 1254

Operation

CheckFPAdvSIMDEnabled64();
bits(datasize) operand1 = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) result;

integer base = part * pairs;
integer p;

for p = 0 to pairs-1
Elem[result, 2*p+0, esize] = Elem[operand1, base+p, esize];
Elem[result, 2*p+1, esize] = Elem[operand2, base+p, esize];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ZIP2 Page 1255

Top-level encodings for A64

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0

Decode fields
op0

Instruction details

00xx UNALLOCATED

100x Data Processing -- Immediate

101x Branches, Exception Generating and System instructions

x1x0 Loads and Stores

x101 Data Processing -- Register

x111 Data Processing -- Scalar Floating-Point and Advanced SIMD

Data Processing -- Immediate

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

100 op0

Decode fields
op0

Instruction details

00x PC-rel. addressing

01x Add/subtract (immediate)

100 Logical (immediate)

101 Move wide (immediate)

110 Bitfield

111 Extract

PC-rel. addressing

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op immlo 1 0 0 0 0 immhi Rd

Decode fields
op

Instruction Details

0 ADR

1 ADRP

Add/subtract (immediate)

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op S 1 0 0 0 1 shift imm12 Rn Rd

Decode fields
sf op S shift

Instruction Details

1x UNALLOCATED

0 0 0 ADD (immediate) — 32-bit

0 0 1 ADDS (immediate) — 32-bit

Top-level encodings for A64

Page 1256

Decode fields
sf op S shift

Instruction Details

0 1 0 SUB (immediate) — 32-bit

0 1 1 SUBS (immediate) — 32-bit

1 0 0 ADD (immediate) — 64-bit

1 0 1 ADDS (immediate) — 64-bit

1 1 0 SUB (immediate) — 64-bit

1 1 1 SUBS (immediate) — 64-bit

Logical (immediate)

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf opc 1 0 0 1 0 0 N immr imms Rn Rd

Decode fields
sf opc N

Instruction Details

0 1 UNALLOCATED

0 00 0 AND (immediate) — 32-bit

0 01 0 ORR (immediate) — 32-bit

0 10 0 EOR (immediate) — 32-bit

0 11 0 ANDS (immediate) — 32-bit

1 00 AND (immediate) — 64-bit

1 01 ORR (immediate) — 64-bit

1 10 EOR (immediate) — 64-bit

1 11 ANDS (immediate) — 64-bit

Move wide (immediate)

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf opc 1 0 0 1 0 1 hw imm16 Rd

Decode fields
sf opc hw

Instruction Details

01 UNALLOCATED

0 1x UNALLOCATED

0 00 MOVN — 32-bit

0 10 MOVZ — 32-bit

0 11 MOVK — 32-bit

1 00 MOVN — 64-bit

1 10 MOVZ — 64-bit

1 11 MOVK — 64-bit

Bitfield

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf opc 1 0 0 1 1 0 N immr imms Rn Rd

Top-level encodings for A64

Page 1257

Decode fields
sf opc N

Instruction Details

11 UNALLOCATED

0 1 UNALLOCATED

0 00 0 SBFM — 32-bit

0 01 0 BFM — 32-bit

0 10 0 UBFM — 32-bit

1 0 UNALLOCATED

1 00 1 SBFM — 64-bit

1 01 1 BFM — 64-bit

1 10 1 UBFM — 64-bit

Extract

These instructions are under Data Processing -- Immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op21 1 0 0 1 1 1 N o0 Rm imms Rn Rd

Decode fields
sf op21 N o0 imms

Instruction Details

x1 UNALLOCATED

00 1 UNALLOCATED

1x UNALLOCATED

0 1xxxxx UNALLOCATED

0 1 UNALLOCATED

0 00 0 0 0xxxxx EXTR — 32-bit

1 0 UNALLOCATED

1 00 1 0 EXTR — 64-bit

Branches, Exception Generating and System instructions

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0 101 op1

Decode fields
op0 op1

Instruction details

010 0xxx Conditional branch (immediate)

010 1xxx UNALLOCATED

110 00xx Exception generation

110 0100 System

110 0101 UNALLOCATED

110 011x UNALLOCATED

110 1xxx Unconditional branch (register)

x00 Unconditional branch (immediate)

x01 0xxx Compare and branch (immediate)

x01 1xxx Test and branch (immediate)

x11 UNALLOCATED

Top-level encodings for A64

Page 1258

Conditional branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 o1 imm19 o0 cond

Decode fields
o1 o0

Instruction Details

0 0 B.cond

0 1 UNALLOCATED

1 UNALLOCATED

Exception generation

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 0 opc imm16 op2 LL

Decode fields
opc op2 LL

Instruction Details

xx1 UNALLOCATED

x1x UNALLOCATED

1xx UNALLOCATED

000 000 00 UNALLOCATED

000 000 01 SVC

000 000 10 HVC

000 000 11 SMC

001 000 x1 UNALLOCATED

001 000 00 BRK

001 000 1x UNALLOCATED

010 000 x1 UNALLOCATED

010 000 00 HLT

010 000 1x UNALLOCATED

011 000 UNALLOCATED

100 000 UNALLOCATED

101 000 00 UNALLOCATED

101 000 01 DCPS1

101 000 10 DCPS2

101 000 11 DCPS3

11x 000 UNALLOCATED

System

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 0 1 0 0 L op0 op1 CRn CRm op2 Rt

Decode fields
L op0 op1 CRn CRm op2 Rt

Instruction Details
Architecture

Version

0 00 000x UNALLOCATED -

0 00 0100 !=
11111

UNALLOCATED -

Top-level encodings for A64

Page 1259

Decode fields
L op0 op1 CRn CRm op2 Rt

Instruction Details
Architecture

Version

0 00 0100 11111 MSR (immediate) -

0 00 0101 UNALLOCATED -

0 00 011x UNALLOCATED -

0 00 1xxx UNALLOCATED -

0 00 xx0 001x UNALLOCATED -

0 00 x0x 001x UNALLOCATED -

0 00 011 001x !=
11111

UNALLOCATED -

0 00 011 0010 !=
00x0

11111 HINT — hints 8 to 15, and 24 to 127 -

0 00 011 0010 0000 000 11111 NOP -

0 00 011 0010 0000 001 11111 YIELD -

0 00 011 0010 0000 010 11111 WFE -

0 00 011 0010 0000 011 11111 WFI -

0 00 011 0010 0000 100 11111 SEV -

0 00 011 0010 0000 101 11111 SEVL -

0 00 011 0010 0000 11x 11111 HINT — hints 6 and 7 -

0 00 011 0010 0000 111 11111 XPACD, XPACI, XPACLRI ARMv8.3

0 00 011 0010 0001 000 11111 PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA — PACIA1716

ARMv8.3

0 00 011 0010 0001 010 11111 PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB — PACIB1716

ARMv8.3

0 00 011 0010 0001 100 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIZA — AUTIA1716

ARMv8.3

0 00 011 0010 0001 110 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ,
AUTIZB — AUTIB1716

ARMv8.3

0 00 011 0010 0010 !=
00x

11111 HINT — hints 17 to 23 -

0 00 011 0010 0010 000 11111 ESB ARMv8.2

0 00 011 0010 0010 001 11111 PSB CSYNC ARMv8.2

0 00 011 0010 0011 000 11111 PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA — PACIAZ

ARMv8.3

0 00 011 0010 0011 001 11111 PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA — PACIASP

ARMv8.3

0 00 011 0010 0011 010 11111 PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB — PACIBZ

ARMv8.3

0 00 011 0010 0011 011 11111 PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB — PACIBSP

ARMv8.3

0 00 011 0010 0011 100 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIZA — AUTIAZ

ARMv8.3

0 00 011 0010 0011 101 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIZA — AUTIASP

ARMv8.3

0 00 011 0010 0011 110 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ,
AUTIZB — AUTIBZ

ARMv8.3

0 00 011 0010 0011 111 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ,
AUTIZB — AUTIBSP

ARMv8.3

0 00 011 0011 000 UNALLOCATED -

0 00 011 0011 001 UNALLOCATED -

0 00 011 0011 010 11111 CLREX -

0 00 011 0011 011 UNALLOCATED -

0 00 011 0011 100 11111 DSB -

0 00 011 0011 101 11111 DMB -

Top-level encodings for A64

Page 1260

Decode fields
L op0 op1 CRn CRm op2 Rt

Instruction Details
Architecture

Version

0 00 011 0011 110 11111 ISB -

0 00 011 0011 111 UNALLOCATED -

0 00 1xx 001x UNALLOCATED -

0 01 SYS -

0 1x MSR (register) -

1 00 UNALLOCATED -

1 01 SYSL -

1 1x MRS -

Unconditional branch (register)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 opc op2 op3 Rn op4

Decode fields
opc op2 op3 Rn op4

Instruction Details
Architecture

Version

!=
00000

UNALLOCATED -

!=
000000

UNALLOCATED -

!=
11111

UNALLOCATED -

0000 11111 000000 00000 BR -

0000 11111 000010 11111 BRAA, BRAAZ, BRAB, BRABZ — key A, zero
modifier

ARMv8.3

0000 11111 000011 11111 BRAA, BRAAZ, BRAB, BRABZ — key B, zero
modifier

ARMv8.3

0001 11111 000000 00000 BLR -

0001 11111 000010 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ — key A,
zero modifier

ARMv8.3

0001 11111 000011 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ — key B,
zero modifier

ARMv8.3

0010 11111 000000 00000 RET -

0010 11111 000010 11111 11111 RETAA, RETAB — RETAA ARMv8.3

0010 11111 000011 11111 11111 RETAA, RETAB — RETAB ARMv8.3

0011 UNALLOCATED -

010x !=
11111

UNALLOCATED -

0100 11111 000000 11111 00000 ERET -

0100 11111 000010 11111 11111 ERETAA, ERETAB — ERETAA ARMv8.3

0100 11111 000011 11111 11111 ERETAA, ERETAB — ERETAB ARMv8.3

0101 11111 000000 11111 00000 DRPS -

011x UNALLOCATED -

1xxx UNALLOCATED -

1000 11111 000010 BRAA, BRAAZ, BRAB, BRABZ — key A,
register modifier

ARMv8.3

1000 11111 000011 BRAA, BRAAZ, BRAB, BRABZ — key B,
register modifier

ARMv8.3

1001 11111 000010 BLRAA, BLRAAZ, BLRAB, BLRABZ — key A,
register modifier

ARMv8.3

Top-level encodings for A64

Page 1261

Decode fields
opc op2 op3 Rn op4

Instruction Details
Architecture

Version

1001 11111 000011 BLRAA, BLRAAZ, BLRAB, BLRABZ — key B,
register modifier

ARMv8.3

Unconditional branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op 0 0 1 0 1 imm26

Decode fields
op

Instruction Details

0 B

1 BL

Compare and branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 1 1 0 1 0 op imm19 Rt

Decode fields
sf op

Instruction Details

0 0 CBZ — 32-bit

0 1 CBNZ — 32-bit

1 0 CBZ — 64-bit

1 1 CBNZ — 64-bit

Test and branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

b5 0 1 1 0 1 1 op b40 imm14 Rt

Decode fields
op

Instruction Details

0 TBZ

1 TBNZ

Loads and Stores

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0 op1 1 op2 0 op3 op4 op5

Decode fields
op0 op1 op2 op3 op4 op5

Instruction details

0 00 1 00 000000 Advanced SIMD load/store multiple structures

0 00 1 01 0xxxxx Advanced SIMD load/store multiple structures (post-indexed)

0 00 1 0x 1xxxxx UNALLOCATED

0 00 1 10 x00000 Advanced SIMD load/store single structure

Top-level encodings for A64

Page 1262

0 00 1 11 Advanced SIMD load/store single structure (post-indexed)

0 00 1 x0 x1xxxx UNALLOCATED

0 00 1 x0 xx1xxx UNALLOCATED

0 00 1 x0 xxx1xx UNALLOCATED

0 00 1 x0 xxxx1x UNALLOCATED

0 00 1 x0 xxxxx1 UNALLOCATED

1 00 1 UNALLOCATED

00 0 0x Load/store exclusive

00 0 1x UNALLOCATED

01 0x Load register (literal)

01 1x UNALLOCATED

10 00 Load/store no-allocate pair (offset)

10 01 Load/store register pair (post-indexed)

10 10 Load/store register pair (offset)

10 11 Load/store register pair (pre-indexed)

11 0x 0xxxxx 00 Load/store register (unscaled immediate)

11 0x 0xxxxx 01 Load/store register (immediate post-indexed)

11 0x 0xxxxx 10 Load/store register (unprivileged)

11 0x 0xxxxx 11 Load/store register (immediate pre-indexed)

11 0x 1xxxxx 00 Atomic memory operations

11 0x 1xxxxx 10 Load/store register (register offset)

11 0x 1xxxxx x1 Load/store register (pac)

11 1x Load/store register (unsigned immediate)

Advanced SIMD load/store multiple structures

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 0 L 0 0 0 0 0 0 opcode size Rn Rt

Decode fields
L opcode

Instruction Details

0 0000 ST4 (multiple structures)

0 0001 UNALLOCATED

0 0010 ST1 (multiple structures) — four registers

0 0011 UNALLOCATED

0 0100 ST3 (multiple structures)

0 0101 UNALLOCATED

0 0110 ST1 (multiple structures) — three registers

0 0111 ST1 (multiple structures) — one register

0 1000 ST2 (multiple structures)

0 1001 UNALLOCATED

0 1010 ST1 (multiple structures) — two registers

0 1011 UNALLOCATED

0 11xx UNALLOCATED

1 0000 LD4 (multiple structures)

1 0001 UNALLOCATED

1 0010 LD1 (multiple structures) — four registers

1 0011 UNALLOCATED

Top-level encodings for A64

Page 1263

Decode fields
L opcode

Instruction Details

1 0100 LD3 (multiple structures)

1 0101 UNALLOCATED

1 0110 LD1 (multiple structures) — three registers

1 0111 LD1 (multiple structures) — one register

1 1000 LD2 (multiple structures)

1 1001 UNALLOCATED

1 1010 LD1 (multiple structures) — two registers

1 1011 UNALLOCATED

1 11xx UNALLOCATED

Advanced SIMD load/store multiple structures (post-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 0 1 L 0 Rm opcode size Rn Rt

Decode fields
L Rm opcode

Instruction Details

0 0001 UNALLOCATED

0 0011 UNALLOCATED

0 0101 UNALLOCATED

0 1001 UNALLOCATED

0 1011 UNALLOCATED

0 11xx UNALLOCATED

0 != 11111 0000 ST4 (multiple structures) — register offset

0 != 11111 0010 ST1 (multiple structures) — four registers, register offset

0 != 11111 0100 ST3 (multiple structures) — register offset

0 != 11111 0110 ST1 (multiple structures) — three registers, register offset

0 != 11111 0111 ST1 (multiple structures) — one register, register offset

0 != 11111 1000 ST2 (multiple structures) — register offset

0 != 11111 1010 ST1 (multiple structures) — two registers, register offset

0 11111 0000 ST4 (multiple structures) — immediate offset

0 11111 0010 ST1 (multiple structures) — four registers, immediate offset

0 11111 0100 ST3 (multiple structures) — immediate offset

0 11111 0110 ST1 (multiple structures) — three registers, immediate offset

0 11111 0111 ST1 (multiple structures) — one register, immediate offset

0 11111 1000 ST2 (multiple structures) — immediate offset

0 11111 1010 ST1 (multiple structures) — two registers, immediate offset

1 0001 UNALLOCATED

1 0011 UNALLOCATED

1 0101 UNALLOCATED

1 1001 UNALLOCATED

1 1011 UNALLOCATED

1 11xx UNALLOCATED

1 != 11111 0000 LD4 (multiple structures) — register offset

1 != 11111 0010 LD1 (multiple structures) — four registers, register offset

1 != 11111 0100 LD3 (multiple structures) — register offset

1 != 11111 0110 LD1 (multiple structures) — three registers, register offset

Top-level encodings for A64

Page 1264

Decode fields
L Rm opcode

Instruction Details

1 != 11111 0111 LD1 (multiple structures) — one register, register offset

1 != 11111 1000 LD2 (multiple structures) — register offset

1 != 11111 1010 LD1 (multiple structures) — two registers, register offset

1 11111 0000 LD4 (multiple structures) — immediate offset

1 11111 0010 LD1 (multiple structures) — four registers, immediate offset

1 11111 0100 LD3 (multiple structures) — immediate offset

1 11111 0110 LD1 (multiple structures) — three registers, immediate offset

1 11111 0111 LD1 (multiple structures) — one register, immediate offset

1 11111 1000 LD2 (multiple structures) — immediate offset

1 11111 1010 LD1 (multiple structures) — two registers, immediate offset

Advanced SIMD load/store single structure

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 0 L R 0 0 0 0 0 opcode S size Rn Rt

Decode fields
L R opcode S size

Instruction Details

0 11x UNALLOCATED

0 0 000 ST1 (single structure) — 8-bit

0 0 001 ST3 (single structure) — 8-bit

0 0 010 x0 ST1 (single structure) — 16-bit

0 0 010 x1 UNALLOCATED

0 0 011 x0 ST3 (single structure) — 16-bit

0 0 011 x1 UNALLOCATED

0 0 100 00 ST1 (single structure) — 32-bit

0 0 100 1x UNALLOCATED

0 0 100 0 01 ST1 (single structure) — 64-bit

0 0 100 1 01 UNALLOCATED

0 0 101 00 ST3 (single structure) — 32-bit

0 0 101 10 UNALLOCATED

0 0 101 0 01 ST3 (single structure) — 64-bit

0 0 101 0 11 UNALLOCATED

0 0 101 1 x1 UNALLOCATED

0 1 000 ST2 (single structure) — 8-bit

0 1 001 ST4 (single structure) — 8-bit

0 1 010 x0 ST2 (single structure) — 16-bit

0 1 010 x1 UNALLOCATED

0 1 011 x0 ST4 (single structure) — 16-bit

0 1 011 x1 UNALLOCATED

0 1 100 00 ST2 (single structure) — 32-bit

0 1 100 10 UNALLOCATED

0 1 100 0 01 ST2 (single structure) — 64-bit

0 1 100 0 11 UNALLOCATED

0 1 100 1 x1 UNALLOCATED

0 1 101 00 ST4 (single structure) — 32-bit

0 1 101 10 UNALLOCATED

Top-level encodings for A64

Page 1265

Decode fields
L R opcode S size

Instruction Details

0 1 101 0 01 ST4 (single structure) — 64-bit

0 1 101 0 11 UNALLOCATED

0 1 101 1 x1 UNALLOCATED

1 0 000 LD1 (single structure) — 8-bit

1 0 001 LD3 (single structure) — 8-bit

1 0 010 x0 LD1 (single structure) — 16-bit

1 0 010 x1 UNALLOCATED

1 0 011 x0 LD3 (single structure) — 16-bit

1 0 011 x1 UNALLOCATED

1 0 100 00 LD1 (single structure) — 32-bit

1 0 100 1x UNALLOCATED

1 0 100 0 01 LD1 (single structure) — 64-bit

1 0 100 1 01 UNALLOCATED

1 0 101 00 LD3 (single structure) — 32-bit

1 0 101 10 UNALLOCATED

1 0 101 0 01 LD3 (single structure) — 64-bit

1 0 101 0 11 UNALLOCATED

1 0 101 1 x1 UNALLOCATED

1 0 110 0 LD1R

1 0 110 1 UNALLOCATED

1 0 111 0 LD3R

1 0 111 1 UNALLOCATED

1 1 000 LD2 (single structure) — 8-bit

1 1 001 LD4 (single structure) — 8-bit

1 1 010 x0 LD2 (single structure) — 16-bit

1 1 010 x1 UNALLOCATED

1 1 011 x0 LD4 (single structure) — 16-bit

1 1 011 x1 UNALLOCATED

1 1 100 00 LD2 (single structure) — 32-bit

1 1 100 10 UNALLOCATED

1 1 100 0 01 LD2 (single structure) — 64-bit

1 1 100 0 11 UNALLOCATED

1 1 100 1 x1 UNALLOCATED

1 1 101 00 LD4 (single structure) — 32-bit

1 1 101 10 UNALLOCATED

1 1 101 0 01 LD4 (single structure) — 64-bit

1 1 101 0 11 UNALLOCATED

1 1 101 1 x1 UNALLOCATED

1 1 110 0 LD2R

1 1 110 1 UNALLOCATED

1 1 111 0 LD4R

1 1 111 1 UNALLOCATED

Advanced SIMD load/store single structure (post-indexed)

These instructions are under Loads and Stores.

Top-level encodings for A64

Page 1266

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 0 1 1 L R Rm opcode S size Rn Rt

Decode fields
L R Rm opcode S size

Instruction Details

0 11x UNALLOCATED

0 0 010 x1 UNALLOCATED

0 0 011 x1 UNALLOCATED

0 0 100 1x UNALLOCATED

0 0 100 1 01 UNALLOCATED

0 0 101 10 UNALLOCATED

0 0 101 0 11 UNALLOCATED

0 0 101 1 x1 UNALLOCATED

0 0 != 11111 000 ST1 (single structure) — 8-bit, register offset

0 0 != 11111 001 ST3 (single structure) — 8-bit, register offset

0 0 != 11111 010 x0 ST1 (single structure) — 16-bit, register offset

0 0 != 11111 011 x0 ST3 (single structure) — 16-bit, register offset

0 0 != 11111 100 00 ST1 (single structure) — 32-bit, register offset

0 0 != 11111 100 0 01 ST1 (single structure) — 64-bit, register offset

0 0 != 11111 101 00 ST3 (single structure) — 32-bit, register offset

0 0 != 11111 101 0 01 ST3 (single structure) — 64-bit, register offset

0 0 11111 000 ST1 (single structure) — 8-bit, immediate offset

0 0 11111 001 ST3 (single structure) — 8-bit, immediate offset

0 0 11111 010 x0 ST1 (single structure) — 16-bit, immediate offset

0 0 11111 011 x0 ST3 (single structure) — 16-bit, immediate offset

0 0 11111 100 00 ST1 (single structure) — 32-bit, immediate offset

0 0 11111 100 0 01 ST1 (single structure) — 64-bit, immediate offset

0 0 11111 101 00 ST3 (single structure) — 32-bit, immediate offset

0 0 11111 101 0 01 ST3 (single structure) — 64-bit, immediate offset

0 1 010 x1 UNALLOCATED

0 1 011 x1 UNALLOCATED

0 1 100 10 UNALLOCATED

0 1 100 0 11 UNALLOCATED

0 1 100 1 x1 UNALLOCATED

0 1 101 10 UNALLOCATED

0 1 101 0 11 UNALLOCATED

0 1 101 1 x1 UNALLOCATED

0 1 != 11111 000 ST2 (single structure) — 8-bit, register offset

0 1 != 11111 001 ST4 (single structure) — 8-bit, register offset

0 1 != 11111 010 x0 ST2 (single structure) — 16-bit, register offset

0 1 != 11111 011 x0 ST4 (single structure) — 16-bit, register offset

0 1 != 11111 100 00 ST2 (single structure) — 32-bit, register offset

0 1 != 11111 100 0 01 ST2 (single structure) — 64-bit, register offset

0 1 != 11111 101 00 ST4 (single structure) — 32-bit, register offset

0 1 != 11111 101 0 01 ST4 (single structure) — 64-bit, register offset

0 1 11111 000 ST2 (single structure) — 8-bit, immediate offset

0 1 11111 001 ST4 (single structure) — 8-bit, immediate offset

0 1 11111 010 x0 ST2 (single structure) — 16-bit, immediate offset

0 1 11111 011 x0 ST4 (single structure) — 16-bit, immediate offset

0 1 11111 100 00 ST2 (single structure) — 32-bit, immediate offset

0 1 11111 100 0 01 ST2 (single structure) — 64-bit, immediate offset

Top-level encodings for A64

Page 1267

Decode fields
L R Rm opcode S size

Instruction Details

0 1 11111 101 00 ST4 (single structure) — 32-bit, immediate offset

0 1 11111 101 0 01 ST4 (single structure) — 64-bit, immediate offset

1 0 010 x1 UNALLOCATED

1 0 011 x1 UNALLOCATED

1 0 100 1x UNALLOCATED

1 0 100 1 01 UNALLOCATED

1 0 101 10 UNALLOCATED

1 0 101 0 11 UNALLOCATED

1 0 101 1 x1 UNALLOCATED

1 0 110 1 UNALLOCATED

1 0 111 1 UNALLOCATED

1 0 != 11111 000 LD1 (single structure) — 8-bit, register offset

1 0 != 11111 001 LD3 (single structure) — 8-bit, register offset

1 0 != 11111 010 x0 LD1 (single structure) — 16-bit, register offset

1 0 != 11111 011 x0 LD3 (single structure) — 16-bit, register offset

1 0 != 11111 100 00 LD1 (single structure) — 32-bit, register offset

1 0 != 11111 100 0 01 LD1 (single structure) — 64-bit, register offset

1 0 != 11111 101 00 LD3 (single structure) — 32-bit, register offset

1 0 != 11111 101 0 01 LD3 (single structure) — 64-bit, register offset

1 0 != 11111 110 0 LD1R — register offset

1 0 != 11111 111 0 LD3R — register offset

1 0 11111 000 LD1 (single structure) — 8-bit, immediate offset

1 0 11111 001 LD3 (single structure) — 8-bit, immediate offset

1 0 11111 010 x0 LD1 (single structure) — 16-bit, immediate offset

1 0 11111 011 x0 LD3 (single structure) — 16-bit, immediate offset

1 0 11111 100 00 LD1 (single structure) — 32-bit, immediate offset

1 0 11111 100 0 01 LD1 (single structure) — 64-bit, immediate offset

1 0 11111 101 00 LD3 (single structure) — 32-bit, immediate offset

1 0 11111 101 0 01 LD3 (single structure) — 64-bit, immediate offset

1 0 11111 110 0 LD1R — immediate offset

1 0 11111 111 0 LD3R — immediate offset

1 1 010 x1 UNALLOCATED

1 1 011 x1 UNALLOCATED

1 1 100 10 UNALLOCATED

1 1 100 0 11 UNALLOCATED

1 1 100 1 x1 UNALLOCATED

1 1 101 10 UNALLOCATED

1 1 101 0 11 UNALLOCATED

1 1 101 1 x1 UNALLOCATED

1 1 110 1 UNALLOCATED

1 1 111 1 UNALLOCATED

1 1 != 11111 000 LD2 (single structure) — 8-bit, register offset

1 1 != 11111 001 LD4 (single structure) — 8-bit, register offset

1 1 != 11111 010 x0 LD2 (single structure) — 16-bit, register offset

1 1 != 11111 011 x0 LD4 (single structure) — 16-bit, register offset

1 1 != 11111 100 00 LD2 (single structure) — 32-bit, register offset

1 1 != 11111 100 0 01 LD2 (single structure) — 64-bit, register offset

Top-level encodings for A64

Page 1268

Decode fields
L R Rm opcode S size

Instruction Details

1 1 != 11111 101 00 LD4 (single structure) — 32-bit, register offset

1 1 != 11111 101 0 01 LD4 (single structure) — 64-bit, register offset

1 1 != 11111 110 0 LD2R — register offset

1 1 != 11111 111 0 LD4R — register offset

1 1 11111 000 LD2 (single structure) — 8-bit, immediate offset

1 1 11111 001 LD4 (single structure) — 8-bit, immediate offset

1 1 11111 010 x0 LD2 (single structure) — 16-bit, immediate offset

1 1 11111 011 x0 LD4 (single structure) — 16-bit, immediate offset

1 1 11111 100 00 LD2 (single structure) — 32-bit, immediate offset

1 1 11111 100 0 01 LD2 (single structure) — 64-bit, immediate offset

1 1 11111 101 00 LD4 (single structure) — 32-bit, immediate offset

1 1 11111 101 0 01 LD4 (single structure) — 64-bit, immediate offset

1 1 11111 110 0 LD2R — immediate offset

1 1 11111 111 0 LD4R — immediate offset

Load/store exclusive

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 0 0 1 0 0 0 o2 L o1 Rs o0 Rt2 Rn Rt

Decode fields
size o2 L o1 o0 Rt2

Instruction Details
Architecture

Version

1 1 !=
11111

UNALLOCATED -

0x 0 1 !=
11111

UNALLOCATED -

00 0 0 0 0 STXRB -

00 0 0 0 1 STLXRB -

00 0 0 1 0 11111 CASP, CASPA, CASPAL, CASPL — 32-bit, no memory
ordering

ARMv8.1

00 0 0 1 1 11111 CASP, CASPA, CASPAL, CASPL — 32-bit, release ARMv8.1

00 0 1 0 0 LDXRB -

00 0 1 0 1 LDAXRB -

00 0 1 1 0 11111 CASP, CASPA, CASPAL, CASPL — 32-bit, acquire ARMv8.1

00 0 1 1 1 11111 CASP, CASPA, CASPAL, CASPL — 32-bit, acquire and
release

ARMv8.1

00 1 0 0 0 STLLRB ARMv8.1

00 1 0 0 1 STLRB -

00 1 0 1 0 11111 CASB, CASAB, CASALB, CASLB — no memory ordering ARMv8.1

00 1 0 1 1 11111 CASB, CASAB, CASALB, CASLB — release ARMv8.1

00 1 1 0 0 LDLARB ARMv8.1

00 1 1 0 1 LDARB -

00 1 1 1 0 11111 CASB, CASAB, CASALB, CASLB — acquire ARMv8.1

00 1 1 1 1 11111 CASB, CASAB, CASALB, CASLB — acquire and release ARMv8.1

01 0 0 0 0 STXRH -

01 0 0 0 1 STLXRH -

01 0 0 1 0 11111 CASP, CASPA, CASPAL, CASPL — 64-bit, no memory
ordering

ARMv8.1

Top-level encodings for A64

Page 1269

Decode fields
size o2 L o1 o0 Rt2

Instruction Details
Architecture

Version

01 0 0 1 1 11111 CASP, CASPA, CASPAL, CASPL — 64-bit, release ARMv8.1

01 0 1 0 0 LDXRH -

01 0 1 0 1 LDAXRH -

01 0 1 1 0 11111 CASP, CASPA, CASPAL, CASPL — 64-bit, acquire ARMv8.1

01 0 1 1 1 11111 CASP, CASPA, CASPAL, CASPL — 64-bit, acquire and
release

ARMv8.1

01 1 0 0 0 STLLRH ARMv8.1

01 1 0 0 1 STLRH -

01 1 0 1 0 11111 CASH, CASAH, CASALH, CASLH — no memory ordering ARMv8.1

01 1 0 1 1 11111 CASH, CASAH, CASALH, CASLH — release ARMv8.1

01 1 1 0 0 LDLARH ARMv8.1

01 1 1 0 1 LDARH -

01 1 1 1 0 11111 CASH, CASAH, CASALH, CASLH — acquire ARMv8.1

01 1 1 1 1 11111 CASH, CASAH, CASALH, CASLH — acquire and release ARMv8.1

10 0 0 0 0 STXR — 32-bit -

10 0 0 0 1 STLXR — 32-bit -

10 0 0 1 0 STXP — 32-bit -

10 0 0 1 1 STLXP — 32-bit -

10 0 1 0 0 LDXR — 32-bit -

10 0 1 0 1 LDAXR — 32-bit -

10 0 1 1 0 LDXP — 32-bit -

10 0 1 1 1 LDAXP — 32-bit -

10 1 0 0 0 STLLR — 32-bit ARMv8.1

10 1 0 0 1 STLR — 32-bit -

10 1 0 1 0 11111 CAS, CASA, CASAL, CASL — 32-bit, no memory ordering ARMv8.1

10 1 0 1 1 11111 CAS, CASA, CASAL, CASL — 32-bit, release ARMv8.1

10 1 1 0 0 LDLAR — 32-bit ARMv8.1

10 1 1 0 1 LDAR — 32-bit -

10 1 1 1 0 11111 CAS, CASA, CASAL, CASL — 32-bit, acquire ARMv8.1

10 1 1 1 1 11111 CAS, CASA, CASAL, CASL — 32-bit, acquire and release ARMv8.1

11 0 0 0 0 STXR — 64-bit -

11 0 0 0 1 STLXR — 64-bit -

11 0 0 1 0 STXP — 64-bit -

11 0 0 1 1 STLXP — 64-bit -

11 0 1 0 0 LDXR — 64-bit -

11 0 1 0 1 LDAXR — 64-bit -

11 0 1 1 0 LDXP — 64-bit -

11 0 1 1 1 LDAXP — 64-bit -

11 1 0 0 0 STLLR — 64-bit ARMv8.1

11 1 0 0 1 STLR — 64-bit -

11 1 0 1 0 11111 CAS, CASA, CASAL, CASL — 64-bit, no memory ordering ARMv8.1

11 1 0 1 1 11111 CAS, CASA, CASAL, CASL — 64-bit, release ARMv8.1

11 1 1 0 0 LDLAR — 64-bit ARMv8.1

11 1 1 0 1 LDAR — 64-bit -

11 1 1 1 0 11111 CAS, CASA, CASAL, CASL — 64-bit, acquire ARMv8.1

11 1 1 1 1 11111 CAS, CASA, CASAL, CASL — 64-bit, acquire and release ARMv8.1

Top-level encodings for A64

Page 1270

Load register (literal)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 0 1 1 V 0 0 imm19 Rt

Decode fields
opc V

Instruction Details

00 0 LDR (literal) — 32-bit

00 1 LDR (literal, SIMD&FP) — 32-bit

01 0 LDR (literal) — 64-bit

01 1 LDR (literal, SIMD&FP) — 64-bit

10 0 LDRSW (literal)

10 1 LDR (literal, SIMD&FP) — 128-bit

11 0 PRFM (literal)

11 1 UNALLOCATED

Load/store no-allocate pair (offset)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 V 0 0 0 L imm7 Rt2 Rn Rt

Decode fields
opc V L

Instruction Details

00 0 0 STNP — 32-bit

00 0 1 LDNP — 32-bit

00 1 0 STNP (SIMD&FP) — 32-bit

00 1 1 LDNP (SIMD&FP) — 32-bit

01 0 UNALLOCATED

01 1 0 STNP (SIMD&FP) — 64-bit

01 1 1 LDNP (SIMD&FP) — 64-bit

10 0 0 STNP — 64-bit

10 0 1 LDNP — 64-bit

10 1 0 STNP (SIMD&FP) — 128-bit

10 1 1 LDNP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register pair (post-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 V 0 0 1 L imm7 Rt2 Rn Rt

Decode fields
opc V L

Instruction Details

00 0 0 STP — 32-bit

00 0 1 LDP — 32-bit

00 1 0 STP (SIMD&FP) — 32-bit

00 1 1 LDP (SIMD&FP) — 32-bit

01 0 0 UNALLOCATED

01 0 1 LDPSW

Top-level encodings for A64

Page 1271

Decode fields
opc V L

Instruction Details

01 1 0 STP (SIMD&FP) — 64-bit

01 1 1 LDP (SIMD&FP) — 64-bit

10 0 0 STP — 64-bit

10 0 1 LDP — 64-bit

10 1 0 STP (SIMD&FP) — 128-bit

10 1 1 LDP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register pair (offset)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 V 0 1 0 L imm7 Rt2 Rn Rt

Decode fields
opc V L

Instruction Details

00 0 0 STP — 32-bit

00 0 1 LDP — 32-bit

00 1 0 STP (SIMD&FP) — 32-bit

00 1 1 LDP (SIMD&FP) — 32-bit

01 0 0 UNALLOCATED

01 0 1 LDPSW

01 1 0 STP (SIMD&FP) — 64-bit

01 1 1 LDP (SIMD&FP) — 64-bit

10 0 0 STP — 64-bit

10 0 1 LDP — 64-bit

10 1 0 STP (SIMD&FP) — 128-bit

10 1 1 LDP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register pair (pre-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opc 1 0 1 V 0 1 1 L imm7 Rt2 Rn Rt

Decode fields
opc V L

Instruction Details

00 0 0 STP — 32-bit

00 0 1 LDP — 32-bit

00 1 0 STP (SIMD&FP) — 32-bit

00 1 1 LDP (SIMD&FP) — 32-bit

01 0 0 UNALLOCATED

01 0 1 LDPSW

01 1 0 STP (SIMD&FP) — 64-bit

01 1 1 LDP (SIMD&FP) — 64-bit

10 0 0 STP — 64-bit

10 0 1 LDP — 64-bit

Top-level encodings for A64

Page 1272

Decode fields
opc V L

Instruction Details

10 1 0 STP (SIMD&FP) — 128-bit

10 1 1 LDP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register (unscaled immediate)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 0 opc 0 imm9 0 0 Rn Rt

Decode fields
size V opc

Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STURB

00 0 01 LDURB

00 0 10 LDURSB — 64-bit

00 0 11 LDURSB — 32-bit

00 1 00 STUR (SIMD&FP) — 8-bit

00 1 01 LDUR (SIMD&FP) — 8-bit

00 1 10 STUR (SIMD&FP) — 128-bit

00 1 11 LDUR (SIMD&FP) — 128-bit

01 0 00 STURH

01 0 01 LDURH

01 0 10 LDURSH — 64-bit

01 0 11 LDURSH — 32-bit

01 1 00 STUR (SIMD&FP) — 16-bit

01 1 01 LDUR (SIMD&FP) — 16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STUR — 32-bit

10 0 01 LDUR — 32-bit

10 0 10 LDURSW

10 1 00 STUR (SIMD&FP) — 32-bit

10 1 01 LDUR (SIMD&FP) — 32-bit

11 0 00 STUR — 64-bit

11 0 01 LDUR — 64-bit

11 0 10 PRFM (unscaled offset)

11 1 00 STUR (SIMD&FP) — 64-bit

11 1 01 LDUR (SIMD&FP) — 64-bit

Load/store register (immediate post-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 0 opc 0 imm9 0 1 Rn Rt

Top-level encodings for A64

Page 1273

Decode fields
size V opc

Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) — 64-bit

00 0 11 LDRSB (immediate) — 32-bit

00 1 00 STR (immediate, SIMD&FP) — 8-bit

00 1 01 LDR (immediate, SIMD&FP) — 8-bit

00 1 10 STR (immediate, SIMD&FP) — 128-bit

00 1 11 LDR (immediate, SIMD&FP) — 128-bit

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) — 64-bit

01 0 11 LDRSH (immediate) — 32-bit

01 1 00 STR (immediate, SIMD&FP) — 16-bit

01 1 01 LDR (immediate, SIMD&FP) — 16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STR (immediate) — 32-bit

10 0 01 LDR (immediate) — 32-bit

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) — 32-bit

10 1 01 LDR (immediate, SIMD&FP) — 32-bit

11 0 00 STR (immediate) — 64-bit

11 0 01 LDR (immediate) — 64-bit

11 0 10 UNALLOCATED

11 1 00 STR (immediate, SIMD&FP) — 64-bit

11 1 01 LDR (immediate, SIMD&FP) — 64-bit

Load/store register (unprivileged)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 0 opc 0 imm9 1 0 Rn Rt

Decode fields
size V opc

Instruction Details

1 UNALLOCATED

00 0 00 STTRB

00 0 01 LDTRB

00 0 10 LDTRSB — 64-bit

00 0 11 LDTRSB — 32-bit

01 0 00 STTRH

01 0 01 LDTRH

01 0 10 LDTRSH — 64-bit

01 0 11 LDTRSH — 32-bit

1x 0 11 UNALLOCATED

10 0 00 STTR — 32-bit

10 0 01 LDTR — 32-bit

Top-level encodings for A64

Page 1274

Decode fields
size V opc

Instruction Details

10 0 10 LDTRSW

11 0 00 STTR — 64-bit

11 0 01 LDTR — 64-bit

11 0 10 UNALLOCATED

Load/store register (immediate pre-indexed)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 0 opc 0 imm9 1 1 Rn Rt

Decode fields
size V opc

Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) — 64-bit

00 0 11 LDRSB (immediate) — 32-bit

00 1 00 STR (immediate, SIMD&FP) — 8-bit

00 1 01 LDR (immediate, SIMD&FP) — 8-bit

00 1 10 STR (immediate, SIMD&FP) — 128-bit

00 1 11 LDR (immediate, SIMD&FP) — 128-bit

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) — 64-bit

01 0 11 LDRSH (immediate) — 32-bit

01 1 00 STR (immediate, SIMD&FP) — 16-bit

01 1 01 LDR (immediate, SIMD&FP) — 16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STR (immediate) — 32-bit

10 0 01 LDR (immediate) — 32-bit

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) — 32-bit

10 1 01 LDR (immediate, SIMD&FP) — 32-bit

11 0 00 STR (immediate) — 64-bit

11 0 01 LDR (immediate) — 64-bit

11 0 10 UNALLOCATED

11 1 00 STR (immediate, SIMD&FP) — 64-bit

11 1 01 LDR (immediate, SIMD&FP) — 64-bit

Atomic memory operations

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 0 A R 1 Rs o3 opc 0 0 Rn Rt

Top-level encodings for A64

Page 1275

Decode fields
size V A R o3 opc Rt

Instruction Details
Architecture

Version

0 1 001 UNALLOCATED -

0 1 01x UNALLOCATED -

0 1 101 UNALLOCATED -

0 1 11x UNALLOCATED -

0 0 1 100 UNALLOCATED -

0 1 1 1 100 UNALLOCATED -

1 UNALLOCATED -

00 0 0 0 0 000 !=
11111

LDADDB, LDADDAB, LDADDALB, LDADDLB — no
memory ordering

ARMv8.1

00 0 0 0 0 000 11111 STADDB, STADDLB — no memory ordering ARMv8.1

00 0 0 0 0 001 !=
11111

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB — no
memory ordering

ARMv8.1

00 0 0 0 0 001 11111 STCLRB, STCLRLB — no memory ordering ARMv8.1

00 0 0 0 0 010 !=
11111

LDEORB, LDEORAB, LDEORALB, LDEORLB — no
memory ordering

ARMv8.1

00 0 0 0 0 010 11111 STEORB, STEORLB — no memory ordering ARMv8.1

00 0 0 0 0 011 !=
11111

LDSETB, LDSETAB, LDSETALB, LDSETLB — no memory
ordering

ARMv8.1

00 0 0 0 0 011 11111 STSETB, STSETLB — no memory ordering ARMv8.1

00 0 0 0 0 100 !=
11111

LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB —
no memory ordering

ARMv8.1

00 0 0 0 0 100 11111 STSMAXB, STSMAXLB — no memory ordering ARMv8.1

00 0 0 0 0 101 !=
11111

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB — no
memory ordering

ARMv8.1

00 0 0 0 0 101 11111 STSMINB, STSMINLB — no memory ordering ARMv8.1

00 0 0 0 0 110 !=
11111

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB —
no memory ordering

ARMv8.1

00 0 0 0 0 110 11111 STUMAXB, STUMAXLB — no memory ordering ARMv8.1

00 0 0 0 0 111 !=
11111

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB — no
memory ordering

ARMv8.1

00 0 0 0 0 111 11111 STUMINB, STUMINLB — no memory ordering ARMv8.1

00 0 0 0 1 000 SWPB, SWPAB, SWPALB, SWPLB — no memory ordering ARMv8.1

00 0 0 1 0 000 !=
11111

LDADDB, LDADDAB, LDADDALB, LDADDLB — release ARMv8.1

00 0 0 1 0 000 11111 STADDB, STADDLB — release ARMv8.1

00 0 0 1 0 001 !=
11111

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB — release ARMv8.1

00 0 0 1 0 001 11111 STCLRB, STCLRLB — release ARMv8.1

00 0 0 1 0 010 !=
11111

LDEORB, LDEORAB, LDEORALB, LDEORLB — release ARMv8.1

00 0 0 1 0 010 11111 STEORB, STEORLB — release ARMv8.1

00 0 0 1 0 011 !=
11111

LDSETB, LDSETAB, LDSETALB, LDSETLB — release ARMv8.1

00 0 0 1 0 011 11111 STSETB, STSETLB — release ARMv8.1

00 0 0 1 0 100 !=
11111

LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB —
release

ARMv8.1

00 0 0 1 0 100 11111 STSMAXB, STSMAXLB — release ARMv8.1

Top-level encodings for A64

Page 1276

Decode fields
size V A R o3 opc Rt

Instruction Details
Architecture

Version

00 0 0 1 0 101 !=
11111

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB —
release

ARMv8.1

00 0 0 1 0 101 11111 STSMINB, STSMINLB — release ARMv8.1

00 0 0 1 0 110 !=
11111

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB —
release

ARMv8.1

00 0 0 1 0 110 11111 STUMAXB, STUMAXLB — release ARMv8.1

00 0 0 1 0 111 !=
11111

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB —
release

ARMv8.1

00 0 0 1 0 111 11111 STUMINB, STUMINLB — release ARMv8.1

00 0 0 1 1 000 SWPB, SWPAB, SWPALB, SWPLB — release ARMv8.1

00 0 1 0 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB — acquire ARMv8.1

00 0 1 0 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB — acquire ARMv8.1

00 0 1 0 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB — acquire ARMv8.1

00 0 1 0 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB — acquire ARMv8.1

00 0 1 0 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB —
acquire

ARMv8.1

00 0 1 0 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB —
acquire

ARMv8.1

00 0 1 0 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB —
acquire

ARMv8.1

00 0 1 0 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB —
acquire

ARMv8.1

00 0 1 0 1 000 SWPB, SWPAB, SWPALB, SWPLB — acquire ARMv8.1

00 0 1 0 1 100 LDAPRB ARMv8.3

00 0 1 1 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB — acquire
and release

ARMv8.1

00 0 1 1 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB — acquire
and release

ARMv8.1

00 0 1 1 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB — acquire
and release

ARMv8.1

00 0 1 1 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB — acquire and
release

ARMv8.1

00 0 1 1 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB —
acquire and release

ARMv8.1

00 0 1 1 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB —
acquire and release

ARMv8.1

00 0 1 1 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB —
acquire and release

ARMv8.1

00 0 1 1 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB —
acquire and release

ARMv8.1

00 0 1 1 1 000 SWPB, SWPAB, SWPALB, SWPLB — acquire and release ARMv8.1

01 0 0 0 0 000 !=
11111

LDADDH, LDADDAH, LDADDALH, LDADDLH — no
memory ordering

ARMv8.1

01 0 0 0 0 000 11111 STADDH, STADDLH — no memory ordering ARMv8.1

01 0 0 0 0 001 !=
11111

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH — no
memory ordering

ARMv8.1

01 0 0 0 0 001 11111 STCLRH, STCLRLH — no memory ordering ARMv8.1

01 0 0 0 0 010 !=
11111

LDEORH, LDEORAH, LDEORALH, LDEORLH — no
memory ordering

ARMv8.1

01 0 0 0 0 010 11111 STEORH, STEORLH — no memory ordering ARMv8.1

01 0 0 0 0 011 !=
11111

LDSETH, LDSETAH, LDSETALH, LDSETLH — no memory
ordering

ARMv8.1

Top-level encodings for A64

Page 1277

Decode fields
size V A R o3 opc Rt

Instruction Details
Architecture

Version

01 0 0 0 0 011 11111 STSETH, STSETLH — no memory ordering ARMv8.1

01 0 0 0 0 100 !=
11111

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH —
no memory ordering

ARMv8.1

01 0 0 0 0 100 11111 STSMAXH, STSMAXLH — no memory ordering ARMv8.1

01 0 0 0 0 101 !=
11111

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH — no
memory ordering

ARMv8.1

01 0 0 0 0 101 11111 STSMINH, STSMINLH — no memory ordering ARMv8.1

01 0 0 0 0 110 !=
11111

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
— no memory ordering

ARMv8.1

01 0 0 0 0 110 11111 STUMAXH, STUMAXLH — no memory ordering ARMv8.1

01 0 0 0 0 111 !=
11111

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH — no
memory ordering

ARMv8.1

01 0 0 0 0 111 11111 STUMINH, STUMINLH — no memory ordering ARMv8.1

01 0 0 0 1 000 SWPH, SWPAH, SWPALH, SWPLH — no memory ordering ARMv8.1

01 0 0 1 0 000 !=
11111

LDADDH, LDADDAH, LDADDALH, LDADDLH — release ARMv8.1

01 0 0 1 0 000 11111 STADDH, STADDLH — release ARMv8.1

01 0 0 1 0 001 !=
11111

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH — release ARMv8.1

01 0 0 1 0 001 11111 STCLRH, STCLRLH — release ARMv8.1

01 0 0 1 0 010 !=
11111

LDEORH, LDEORAH, LDEORALH, LDEORLH — release ARMv8.1

01 0 0 1 0 010 11111 STEORH, STEORLH — release ARMv8.1

01 0 0 1 0 011 !=
11111

LDSETH, LDSETAH, LDSETALH, LDSETLH — release ARMv8.1

01 0 0 1 0 011 11111 STSETH, STSETLH — release ARMv8.1

01 0 0 1 0 100 !=
11111

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH —
release

ARMv8.1

01 0 0 1 0 100 11111 STSMAXH, STSMAXLH — release ARMv8.1

01 0 0 1 0 101 !=
11111

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH —
release

ARMv8.1

01 0 0 1 0 101 11111 STSMINH, STSMINLH — release ARMv8.1

01 0 0 1 0 110 !=
11111

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
— release

ARMv8.1

01 0 0 1 0 110 11111 STUMAXH, STUMAXLH — release ARMv8.1

01 0 0 1 0 111 !=
11111

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH —
release

ARMv8.1

01 0 0 1 0 111 11111 STUMINH, STUMINLH — release ARMv8.1

01 0 0 1 1 000 SWPH, SWPAH, SWPALH, SWPLH — release ARMv8.1

01 0 1 0 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH — acquire ARMv8.1

01 0 1 0 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH — acquire ARMv8.1

01 0 1 0 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH — acquire ARMv8.1

01 0 1 0 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH — acquire ARMv8.1

01 0 1 0 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH —
acquire

ARMv8.1

01 0 1 0 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH —
acquire

ARMv8.1

01 0 1 0 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
— acquire

ARMv8.1

Top-level encodings for A64

Page 1278

Decode fields
size V A R o3 opc Rt

Instruction Details
Architecture

Version

01 0 1 0 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH —
acquire

ARMv8.1

01 0 1 0 1 000 SWPH, SWPAH, SWPALH, SWPLH — acquire ARMv8.1

01 0 1 0 1 100 LDAPRH ARMv8.3

01 0 1 1 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH — acquire
and release

ARMv8.1

01 0 1 1 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH — acquire
and release

ARMv8.1

01 0 1 1 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH — acquire
and release

ARMv8.1

01 0 1 1 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH — acquire and
release

ARMv8.1

01 0 1 1 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH —
acquire and release

ARMv8.1

01 0 1 1 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH —
acquire and release

ARMv8.1

01 0 1 1 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
— acquire and release

ARMv8.1

01 0 1 1 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH —
acquire and release

ARMv8.1

01 0 1 1 1 000 SWPH, SWPAH, SWPALH, SWPLH — acquire and release ARMv8.1

10 0 0 0 0 000 !=
11111

LDADD, LDADDA, LDADDAL, LDADDL — 32-bit, no
memory ordering

ARMv8.1

10 0 0 0 0 000 11111 STADD, STADDL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 0 001 !=
11111

LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit, no
memory ordering

ARMv8.1

10 0 0 0 0 001 11111 STCLR, STCLRL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 0 010 !=
11111

LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit, no
memory ordering

ARMv8.1

10 0 0 0 0 010 11111 STEOR, STEORL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 0 011 !=
11111

LDSET, LDSETA, LDSETAL, LDSETL — 32-bit, no memory
ordering

ARMv8.1

10 0 0 0 0 011 11111 STSET, STSETL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 0 100 !=
11111

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 32-bit,
no memory ordering

ARMv8.1

10 0 0 0 0 100 11111 STSMAX, STSMAXL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 0 101 !=
11111

LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 32-bit, no
memory ordering

ARMv8.1

10 0 0 0 0 101 11111 STSMIN, STSMINL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 0 110 !=
11111

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit, no memory ordering

ARMv8.1

10 0 0 0 0 110 11111 STUMAX, STUMAXL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 0 111 !=
11111

LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 32-bit, no
memory ordering

ARMv8.1

10 0 0 0 0 111 11111 STUMIN, STUMINL — 32-bit, no memory ordering ARMv8.1

10 0 0 0 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit, no memory ordering ARMv8.1

10 0 0 1 0 000 !=
11111

LDADD, LDADDA, LDADDAL, LDADDL — 32-bit, release ARMv8.1

10 0 0 1 0 000 11111 STADD, STADDL — 32-bit, release ARMv8.1

10 0 0 1 0 001 !=
11111

LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit, release ARMv8.1

Top-level encodings for A64

Page 1279

Decode fields
size V A R o3 opc Rt

Instruction Details
Architecture

Version

10 0 0 1 0 001 11111 STCLR, STCLRL — 32-bit, release ARMv8.1

10 0 0 1 0 010 !=
11111

LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit, release ARMv8.1

10 0 0 1 0 010 11111 STEOR, STEORL — 32-bit, release ARMv8.1

10 0 0 1 0 011 !=
11111

LDSET, LDSETA, LDSETAL, LDSETL — 32-bit, release ARMv8.1

10 0 0 1 0 011 11111 STSET, STSETL — 32-bit, release ARMv8.1

10 0 0 1 0 100 !=
11111

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 32-bit,
release

ARMv8.1

10 0 0 1 0 100 11111 STSMAX, STSMAXL — 32-bit, release ARMv8.1

10 0 0 1 0 101 !=
11111

LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 32-bit,
release

ARMv8.1

10 0 0 1 0 101 11111 STSMIN, STSMINL — 32-bit, release ARMv8.1

10 0 0 1 0 110 !=
11111

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit, release

ARMv8.1

10 0 0 1 0 110 11111 STUMAX, STUMAXL — 32-bit, release ARMv8.1

10 0 0 1 0 111 !=
11111

LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 32-bit,
release

ARMv8.1

10 0 0 1 0 111 11111 STUMIN, STUMINL — 32-bit, release ARMv8.1

10 0 0 1 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit, release ARMv8.1

10 0 1 0 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 32-bit, acquire ARMv8.1

10 0 1 0 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit, acquire ARMv8.1

10 0 1 0 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit, acquire ARMv8.1

10 0 1 0 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 32-bit, acquire ARMv8.1

10 0 1 0 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 32-bit,
acquire

ARMv8.1

10 0 1 0 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 32-bit,
acquire

ARMv8.1

10 0 1 0 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit, acquire

ARMv8.1

10 0 1 0 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 32-bit,
acquire

ARMv8.1

10 0 1 0 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit, acquire ARMv8.1

10 0 1 0 1 100 LDAPR — 32-bit ARMv8.3

10 0 1 1 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 32-bit, acquire
and release

ARMv8.1

10 0 1 1 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 32-bit, acquire
and release

ARMv8.1

10 0 1 1 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 32-bit, acquire
and release

ARMv8.1

10 0 1 1 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 32-bit, acquire and
release

ARMv8.1

10 0 1 1 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 32-bit,
acquire and release

ARMv8.1

10 0 1 1 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 32-bit,
acquire and release

ARMv8.1

10 0 1 1 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
32-bit, acquire and release

ARMv8.1

10 0 1 1 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 32-bit,
acquire and release

ARMv8.1

10 0 1 1 1 000 SWP, SWPA, SWPAL, SWPL — 32-bit, acquire and release ARMv8.1

Top-level encodings for A64

Page 1280

Decode fields
size V A R o3 opc Rt

Instruction Details
Architecture

Version

11 0 0 0 0 000 !=
11111

LDADD, LDADDA, LDADDAL, LDADDL — 64-bit, no
memory ordering

ARMv8.1

11 0 0 0 0 000 11111 STADD, STADDL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 0 001 !=
11111

LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit, no
memory ordering

ARMv8.1

11 0 0 0 0 001 11111 STCLR, STCLRL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 0 010 !=
11111

LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit, no
memory ordering

ARMv8.1

11 0 0 0 0 010 11111 STEOR, STEORL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 0 011 !=
11111

LDSET, LDSETA, LDSETAL, LDSETL — 64-bit, no memory
ordering

ARMv8.1

11 0 0 0 0 011 11111 STSET, STSETL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 0 100 !=
11111

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 64-bit,
no memory ordering

ARMv8.1

11 0 0 0 0 100 11111 STSMAX, STSMAXL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 0 101 !=
11111

LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 64-bit, no
memory ordering

ARMv8.1

11 0 0 0 0 101 11111 STSMIN, STSMINL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 0 110 !=
11111

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit, no memory ordering

ARMv8.1

11 0 0 0 0 110 11111 STUMAX, STUMAXL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 0 111 !=
11111

LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 64-bit, no
memory ordering

ARMv8.1

11 0 0 0 0 111 11111 STUMIN, STUMINL — 64-bit, no memory ordering ARMv8.1

11 0 0 0 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit, no memory ordering ARMv8.1

11 0 0 1 0 000 !=
11111

LDADD, LDADDA, LDADDAL, LDADDL — 64-bit, release ARMv8.1

11 0 0 1 0 000 11111 STADD, STADDL — 64-bit, release ARMv8.1

11 0 0 1 0 001 !=
11111

LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit, release ARMv8.1

11 0 0 1 0 001 11111 STCLR, STCLRL — 64-bit, release ARMv8.1

11 0 0 1 0 010 !=
11111

LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit, release ARMv8.1

11 0 0 1 0 010 11111 STEOR, STEORL — 64-bit, release ARMv8.1

11 0 0 1 0 011 !=
11111

LDSET, LDSETA, LDSETAL, LDSETL — 64-bit, release ARMv8.1

11 0 0 1 0 011 11111 STSET, STSETL — 64-bit, release ARMv8.1

11 0 0 1 0 100 !=
11111

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 64-bit,
release

ARMv8.1

11 0 0 1 0 100 11111 STSMAX, STSMAXL — 64-bit, release ARMv8.1

11 0 0 1 0 101 !=
11111

LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 64-bit,
release

ARMv8.1

11 0 0 1 0 101 11111 STSMIN, STSMINL — 64-bit, release ARMv8.1

11 0 0 1 0 110 !=
11111

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit, release

ARMv8.1

11 0 0 1 0 110 11111 STUMAX, STUMAXL — 64-bit, release ARMv8.1

11 0 0 1 0 111 !=
11111

LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 64-bit,
release

ARMv8.1

Top-level encodings for A64

Page 1281

Decode fields
size V A R o3 opc Rt

Instruction Details
Architecture

Version

11 0 0 1 0 111 11111 STUMIN, STUMINL — 64-bit, release ARMv8.1

11 0 0 1 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit, release ARMv8.1

11 0 1 0 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 64-bit, acquire ARMv8.1

11 0 1 0 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit, acquire ARMv8.1

11 0 1 0 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit, acquire ARMv8.1

11 0 1 0 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 64-bit, acquire ARMv8.1

11 0 1 0 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 64-bit,
acquire

ARMv8.1

11 0 1 0 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 64-bit,
acquire

ARMv8.1

11 0 1 0 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit, acquire

ARMv8.1

11 0 1 0 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 64-bit,
acquire

ARMv8.1

11 0 1 0 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit, acquire ARMv8.1

11 0 1 0 1 100 LDAPR — 64-bit ARMv8.3

11 0 1 1 0 000 LDADD, LDADDA, LDADDAL, LDADDL — 64-bit, acquire
and release

ARMv8.1

11 0 1 1 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL — 64-bit, acquire
and release

ARMv8.1

11 0 1 1 0 010 LDEOR, LDEORA, LDEORAL, LDEORL — 64-bit, acquire
and release

ARMv8.1

11 0 1 1 0 011 LDSET, LDSETA, LDSETAL, LDSETL — 64-bit, acquire and
release

ARMv8.1

11 0 1 1 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL — 64-bit,
acquire and release

ARMv8.1

11 0 1 1 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL — 64-bit,
acquire and release

ARMv8.1

11 0 1 1 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL —
64-bit, acquire and release

ARMv8.1

11 0 1 1 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL — 64-bit,
acquire and release

ARMv8.1

11 0 1 1 1 000 SWP, SWPA, SWPAL, SWPL — 64-bit, acquire and release ARMv8.1

Load/store register (register offset)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 0 opc 1 Rm option S 1 0 Rn Rt

Decode fields
size V opc option

Instruction Details

x0x UNALLOCATED

x1 1 1x UNALLOCATED

00 0 00 != 011 STRB (register) — extended register

00 0 00 011 STRB (register) — shifted register

00 0 01 != 011 LDRB (register) — extended register

00 0 01 011 LDRB (register) — shifted register

00 0 10 != 011 LDRSB (register) — 64-bit with extended register offset

00 0 10 011 LDRSB (register) — 64-bit with shifted register offset

00 0 11 != 011 LDRSB (register) — 32-bit with extended register offset

00 0 11 011 LDRSB (register) — 32-bit with shifted register offset

00 1 00 != 011 STR (register, SIMD&FP)

Top-level encodings for A64

Page 1282

Decode fields
size V opc option

Instruction Details

00 1 00 011 STR (register, SIMD&FP)

00 1 01 != 011 LDR (register, SIMD&FP)

00 1 01 011 LDR (register, SIMD&FP)

00 1 10 STR (register, SIMD&FP)

00 1 11 LDR (register, SIMD&FP)

01 0 00 STRH (register)

01 0 01 LDRH (register)

01 0 10 LDRSH (register) — 64-bit

01 0 11 LDRSH (register) — 32-bit

01 1 00 STR (register, SIMD&FP)

01 1 01 LDR (register, SIMD&FP)

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STR (register) — 32-bit

10 0 01 LDR (register) — 32-bit

10 0 10 LDRSW (register)

10 1 00 STR (register, SIMD&FP)

10 1 01 LDR (register, SIMD&FP)

11 0 00 STR (register) — 64-bit

11 0 01 LDR (register) — 64-bit

11 0 10 PRFM (register)

11 1 00 STR (register, SIMD&FP)

11 1 01 LDR (register, SIMD&FP)

Load/store register (pac)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 0 M S 1 imm9 W 1 Rn Rt

Decode fields
size M W

Instruction Details Architecture Version

!= 11 UNALLOCATED -

11 0 0 LDRAA, LDRAB — key A, offset ARMv8.3

11 0 1 LDRAA, LDRAB — key A, pre-indexed ARMv8.3

11 1 0 LDRAA, LDRAB — key B, offset ARMv8.3

11 1 1 LDRAA, LDRAB — key B, pre-indexed ARMv8.3

Load/store register (unsigned immediate)

These instructions are under Loads and Stores.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

size 1 1 1 V 0 1 opc imm12 Rn Rt

Decode fields
size V opc

Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STRB (immediate)

Top-level encodings for A64

Page 1283

Decode fields
size V opc

Instruction Details

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) — 64-bit

00 0 11 LDRSB (immediate) — 32-bit

00 1 00 STR (immediate, SIMD&FP) — 8-bit

00 1 01 LDR (immediate, SIMD&FP) — 8-bit

00 1 10 STR (immediate, SIMD&FP) — 128-bit

00 1 11 LDR (immediate, SIMD&FP) — 128-bit

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) — 64-bit

01 0 11 LDRSH (immediate) — 32-bit

01 1 00 STR (immediate, SIMD&FP) — 16-bit

01 1 01 LDR (immediate, SIMD&FP) — 16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STR (immediate) — 32-bit

10 0 01 LDR (immediate) — 32-bit

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) — 32-bit

10 1 01 LDR (immediate, SIMD&FP) — 32-bit

11 0 00 STR (immediate) — 64-bit

11 0 01 LDR (immediate) — 64-bit

11 0 10 PRFM (immediate)

11 1 00 STR (immediate, SIMD&FP) — 64-bit

11 1 01 LDR (immediate, SIMD&FP) — 64-bit

Data Processing -- Register

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0 op1 101 op2 op3

Decode fields
op0 op1 op2 op3

Instruction details

0 1 0110 Data-processing (2 source)

1 1 0110 Data-processing (1 source)

0 0xxx Logical (shifted register)

0 1xx0 Add/subtract (shifted register)

0 1xx1 Add/subtract (extended register)

1 0000 Add/subtract (with carry)

1 0010 0 Conditional compare (register)

1 0010 1 Conditional compare (immediate)

1 0100 Conditional select

1 0xx1 UNALLOCATED

1 1xxx Data-processing (3 source)

Top-level encodings for A64

Page 1284

Data-processing (2 source)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 S 1 1 0 1 0 1 1 0 Rm opcode Rn Rd

Decode fields
sf S opcode

Instruction Details Architecture Version

00000x UNALLOCATED -

011xxx UNALLOCATED -

1xxxxx UNALLOCATED -

0 0001xx UNALLOCATED -

0 0011xx UNALLOCATED -

1 UNALLOCATED -

0 0 000010 UDIV — 32-bit -

0 0 000011 SDIV — 32-bit -

0 0 001000 LSLV — 32-bit -

0 0 001001 LSRV — 32-bit -

0 0 001010 ASRV — 32-bit -

0 0 001011 RORV — 32-bit -

0 0 010x11 UNALLOCATED -

0 0 010000 CRC32B, CRC32H, CRC32W, CRC32X — CRC32B -

0 0 010001 CRC32B, CRC32H, CRC32W, CRC32X — CRC32H -

0 0 010010 CRC32B, CRC32H, CRC32W, CRC32X — CRC32W -

0 0 010100 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CB -

0 0 010101 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CH -

0 0 010110 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CW -

1 0 000010 UDIV — 64-bit -

1 0 000011 SDIV — 64-bit -

1 0 001000 LSLV — 64-bit -

1 0 001001 LSRV — 64-bit -

1 0 001010 ASRV — 64-bit -

1 0 001011 RORV — 64-bit -

1 0 001100 PACGA ARMv8.3

1 0 010xx0 UNALLOCATED -

1 0 010x0x UNALLOCATED -

1 0 010011 CRC32B, CRC32H, CRC32W, CRC32X — CRC32X -

1 0 010111 CRC32CB, CRC32CH, CRC32CW, CRC32CX — CRC32CX -

Data-processing (1 source)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 1 S 1 1 0 1 0 1 1 0 opcode2 opcode Rn Rd

Decode fields
sf S opcode2 opcode Rn

Instruction Details
Architecture

Version

xx1xxx UNALLOCATED -

x1xxxx UNALLOCATED -

1xxxxx UNALLOCATED -

xxxx1 UNALLOCATED -

Top-level encodings for A64

Page 1285

Decode fields
sf S opcode2 opcode Rn

Instruction Details
Architecture

Version

xxx1x UNALLOCATED -

xx1xx UNALLOCATED -

x1xxx UNALLOCATED -

1xxxx UNALLOCATED -

0 00000 00011x UNALLOCATED -

1 UNALLOCATED -

0 0 00000 000000 RBIT — 32-bit -

0 0 00000 000001 REV16 — 32-bit -

0 0 00000 000010 REV — 32-bit -

0 0 00000 000011 UNALLOCATED -

0 0 00000 000100 CLZ — 32-bit -

0 0 00000 000101 CLS — 32-bit -

1 0 00000 000000 RBIT — 64-bit -

1 0 00000 000001 REV16 — 64-bit -

1 0 00000 000010 REV32 -

1 0 00000 000011 REV — 64-bit -

1 0 00000 000100 CLZ — 64-bit -

1 0 00000 000101 CLS — 64-bit -

1 0 00001 000000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA — PACIA ARMv8.3

1 0 00001 000001 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB — PACIB ARMv8.3

1 0 00001 000010 PACDA, PACDZA — PACDA ARMv8.3

1 0 00001 000011 PACDB, PACDZB — PACDB ARMv8.3

1 0 00001 000100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA —
AUTIA

ARMv8.3

1 0 00001 000101 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB —
AUTIB

ARMv8.3

1 0 00001 000110 AUTDA, AUTDZA — AUTDA ARMv8.3

1 0 00001 000111 AUTDB, AUTDZB — AUTDB ARMv8.3

1 0 00001 001000 11111 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA —
PACIZA

ARMv8.3

1 0 00001 001001 11111 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB — PACIZB ARMv8.3

1 0 00001 001010 11111 PACDA, PACDZA — PACDZA ARMv8.3

1 0 00001 001011 11111 PACDB, PACDZB — PACDZB ARMv8.3

1 0 00001 001100 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA —
AUTIZA

ARMv8.3

1 0 00001 001101 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB —
AUTIZB

ARMv8.3

1 0 00001 001110 11111 AUTDA, AUTDZA — AUTDZA ARMv8.3

1 0 00001 001111 11111 AUTDB, AUTDZB — AUTDZB ARMv8.3

1 0 00001 010000 11111 XPACD, XPACI, XPACLRI — XPACI ARMv8.3

1 0 00001 010001 11111 XPACD, XPACI, XPACLRI — XPACD ARMv8.3

Logical (shifted register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf opc 0 1 0 1 0 shift N Rm imm6 Rn Rd

Top-level encodings for A64

Page 1286

Decode fields
sf opc N imm6

Instruction Details

0 1xxxxx UNALLOCATED

0 00 0 AND (shifted register) — 32-bit

0 00 1 BIC (shifted register) — 32-bit

0 01 0 ORR (shifted register) — 32-bit

0 01 1 ORN (shifted register) — 32-bit

0 10 0 EOR (shifted register) — 32-bit

0 10 1 EON (shifted register) — 32-bit

0 11 0 ANDS (shifted register) — 32-bit

0 11 1 BICS (shifted register) — 32-bit

1 00 0 AND (shifted register) — 64-bit

1 00 1 BIC (shifted register) — 64-bit

1 01 0 ORR (shifted register) — 64-bit

1 01 1 ORN (shifted register) — 64-bit

1 10 0 EOR (shifted register) — 64-bit

1 10 1 EON (shifted register) — 64-bit

1 11 0 ANDS (shifted register) — 64-bit

1 11 1 BICS (shifted register) — 64-bit

Add/subtract (shifted register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op S 0 1 0 1 1 shift 0 Rm imm6 Rn Rd

Decode fields
sf op S shift imm6

Instruction Details

11 UNALLOCATED

0 1xxxxx UNALLOCATED

0 0 0 ADD (shifted register) — 32-bit

0 0 1 ADDS (shifted register) — 32-bit

0 1 0 SUB (shifted register) — 32-bit

0 1 1 SUBS (shifted register) — 32-bit

1 0 0 ADD (shifted register) — 64-bit

1 0 1 ADDS (shifted register) — 64-bit

1 1 0 SUB (shifted register) — 64-bit

1 1 1 SUBS (shifted register) — 64-bit

Add/subtract (extended register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op S 0 1 0 1 1 opt 1 Rm option imm3 Rn Rd

Decode fields
sf op S opt imm3

Instruction Details

1x1 UNALLOCATED

11x UNALLOCATED

x1 UNALLOCATED

Top-level encodings for A64

Page 1287

Decode fields
sf op S opt imm3

Instruction Details

1x UNALLOCATED

0 0 0 00 ADD (extended register) — 32-bit

0 0 1 00 ADDS (extended register) — 32-bit

0 1 0 00 SUB (extended register) — 32-bit

0 1 1 00 SUBS (extended register) — 32-bit

1 0 0 00 ADD (extended register) — 64-bit

1 0 1 00 ADDS (extended register) — 64-bit

1 1 0 00 SUB (extended register) — 64-bit

1 1 1 00 SUBS (extended register) — 64-bit

Add/subtract (with carry)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op S 1 1 0 1 0 0 0 0 Rm opcode2 Rn Rd

Decode fields
sf op S opcode2

Instruction Details

xxxxx1 UNALLOCATED

xxxx1x UNALLOCATED

xxx1xx UNALLOCATED

xx1xxx UNALLOCATED

x1xxxx UNALLOCATED

1xxxxx UNALLOCATED

0 0 0 000000 ADC — 32-bit

0 0 1 000000 ADCS — 32-bit

0 1 0 000000 SBC — 32-bit

0 1 1 000000 SBCS — 32-bit

1 0 0 000000 ADC — 64-bit

1 0 1 000000 ADCS — 64-bit

1 1 0 000000 SBC — 64-bit

1 1 1 000000 SBCS — 64-bit

Conditional compare (register)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op S 1 1 0 1 0 0 1 0 Rm cond 0 o2 Rn o3 nzcv

Decode fields
sf op S o2 o3

Instruction Details

1 UNALLOCATED

1 UNALLOCATED

0 UNALLOCATED

0 0 1 0 0 CCMN (register) — 32-bit

0 1 1 0 0 CCMP (register) — 32-bit

1 0 1 0 0 CCMN (register) — 64-bit

1 1 1 0 0 CCMP (register) — 64-bit

Top-level encodings for A64

Page 1288

Conditional compare (immediate)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op S 1 1 0 1 0 0 1 0 imm5 cond 1 o2 Rn o3 nzcv

Decode fields
sf op S o2 o3

Instruction Details

1 UNALLOCATED

1 UNALLOCATED

0 UNALLOCATED

0 0 1 0 0 CCMN (immediate) — 32-bit

0 1 1 0 0 CCMP (immediate) — 32-bit

1 0 1 0 0 CCMN (immediate) — 64-bit

1 1 1 0 0 CCMP (immediate) — 64-bit

Conditional select

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op S 1 1 0 1 0 1 0 0 Rm cond op2 Rn Rd

Decode fields
sf op S op2

Instruction Details

1x UNALLOCATED

1 UNALLOCATED

0 0 0 00 CSEL — 32-bit

0 0 0 01 CSINC — 32-bit

0 1 0 00 CSINV — 32-bit

0 1 0 01 CSNEG — 32-bit

1 0 0 00 CSEL — 64-bit

1 0 0 01 CSINC — 64-bit

1 1 0 00 CSINV — 64-bit

1 1 0 01 CSNEG — 64-bit

Data-processing (3 source)

These instructions are under Data Processing -- Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf op54 1 1 0 1 1 op31 Rm o0 Ra Rn Rd

Decode fields
sf op54 op31 o0

Instruction Details

00 010 1 UNALLOCATED

00 011 UNALLOCATED

00 100 UNALLOCATED

00 110 1 UNALLOCATED

00 111 UNALLOCATED

01 UNALLOCATED

1x UNALLOCATED

0 00 000 0 MADD — 32-bit

0 00 000 1 MSUB — 32-bit

Top-level encodings for A64

Page 1289

Decode fields
sf op54 op31 o0

Instruction Details

0 00 001 0 UNALLOCATED

0 00 001 1 UNALLOCATED

0 00 010 0 UNALLOCATED

0 00 101 0 UNALLOCATED

0 00 101 1 UNALLOCATED

0 00 110 0 UNALLOCATED

1 00 000 0 MADD — 64-bit

1 00 000 1 MSUB — 64-bit

1 00 001 0 SMADDL

1 00 001 1 SMSUBL

1 00 010 0 SMULH

1 00 101 0 UMADDL

1 00 101 1 UMSUBL

1 00 110 0 UMULH

Data Processing -- Scalar Floating-Point and Advanced SIMD

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0 111 op1 op2 op3

Decode fields
op0 op1 op2 op3

Instruction details Architecture version

0000 0x x101 00xxxxx10 UNALLOCATED -

0010 0x x101 00xxxxx10 UNALLOCATED -

0100 0x x101 00xxxxx10 Cryptographic AES -

0101 0x x0xx xxx0xxx00 Cryptographic three-register SHA -

0101 0x x0xx xxx0xxx10 UNALLOCATED -

0101 0x x101 00xxxxx10 Cryptographic two-register SHA -

0110 0x x101 00xxxxx10 UNALLOCATED -

0111 0x x0xx xxx0xxxx0 UNALLOCATED -

0111 0x x101 00xxxxx10 UNALLOCATED -

01x1 00 00xx xxx0xxxx1 Advanced SIMD scalar copy -

01x1 01 00xx xxx0xxxx1 UNALLOCATED -

01x1 0x 0111 00xxxxx10 UNALLOCATED -

01x1 0x 10xx xxx00xxx1 Advanced SIMD scalar three same FP16 ARMv8.2

01x1 0x 10xx xxx01xxx1 UNALLOCATED -

01x1 0x 1111 00xxxxx10 Advanced SIMD scalar two-register miscellaneous FP16 ARMv8.2

01x1 0x x0xx xxx1xxxx0 UNALLOCATED -

01x1 0x x0xx xxx1xxxx1 Advanced SIMD scalar three same extra ARMv8.1

01x1 0x x100 00xxxxx10 Advanced SIMD scalar two-register miscellaneous -

01x1 0x x110 00xxxxx10 Advanced SIMD scalar pairwise ARMv8.2

01x1 0x x1xx 1xxxxxx10 UNALLOCATED -

01x1 0x x1xx x1xxxxx10 UNALLOCATED -

01x1 0x x1xx xxxxxxx00 Advanced SIMD scalar three different -

01x1 0x x1xx xxxxxxxx1 Advanced SIMD scalar three same -

01x1 10 xxxxxxxx1 Advanced SIMD scalar shift by immediate -

Top-level encodings for A64

Page 1290

01x1 11 xxxxxxxx1 UNALLOCATED -

01x1 1x xxxxxxxx0 Advanced SIMD scalar x indexed element ARMv8.2

0x00 0x x0xx xxx0xxx00 Advanced SIMD table lookup -

0x00 0x x0xx xxx0xxx10 Advanced SIMD permute -

0x10 0x x0xx xxx0xxxx0 Advanced SIMD extract -

0xx0 00 00xx xxx0xxxx1 Advanced SIMD copy -

0xx0 01 00xx xxx0xxxx1 UNALLOCATED -

0xx0 0x 0111 00xxxxx10 UNALLOCATED -

0xx0 0x 10xx xxx00xxx1 Advanced SIMD three same (FP16) ARMv8.2

0xx0 0x 10xx xxx01xxx1 UNALLOCATED -

0xx0 0x 1111 00xxxxx10 Advanced SIMD two-register miscellaneous (FP16) ARMv8.2

0xx0 0x x0xx xxx1xxxx0 UNALLOCATED -

0xx0 0x x0xx xxx1xxxx1 Advanced SIMD three same extra ARMv8.2

0xx0 0x x100 00xxxxx10 Advanced SIMD two-register miscellaneous -

0xx0 0x x110 00xxxxx10 Advanced SIMD across lanes ARMv8.2

0xx0 0x x1xx 1xxxxxx10 UNALLOCATED -

0xx0 0x x1xx x1xxxxx10 UNALLOCATED -

0xx0 0x x1xx xxxxxxx00 Advanced SIMD three different -

0xx0 0x x1xx xxxxxxxx1 Advanced SIMD three same -

0xx0 10 0000 xxxxxxxx1 Advanced SIMD modified immediate ARMv8.2

0xx0 10 != 0000 xxxxxxxx1 Advanced SIMD shift by immediate -

0xx0 11 xxxxxxxx1 UNALLOCATED -

0xx0 1x xxxxxxxx0 Advanced SIMD vector x indexed element ARMv8.2

1100 00 10xx xxx10xxxx Cryptographic three-register, imm2 ARMv8.2

1100 00 11xx xxx1x00xx Cryptographic three-register SHA 512 ARMv8.2

1100 00 xxx0xxxxx Cryptographic four-register ARMv8.2

1100 01 00xx XAR ARMv8.2

1100 01 1000 0001000xx Cryptographic two-register SHA 512 ARMv8.2

11x1 UNALLOCATED -

1xx0 1x UNALLOCATED -

x0x1 0x x0xx Conversion between floating-point and fixed-point ARMv8.2

x0x1 0x x1xx xxx000000 Conversion between floating-point and integer ARMv8.3

x0x1 0x x1xx xxx100000 UNALLOCATED -

x0x1 0x x1xx xxxx10000 Floating-point data-processing (1 source) ARMv8.2

x0x1 0x x1xx xxxxx1000 Floating-point compare ARMv8.2

x0x1 0x x1xx xxxxxx100 Floating-point immediate ARMv8.2

x0x1 0x x1xx xxxxxxx01 Floating-point conditional compare ARMv8.2

x0x1 0x x1xx xxxxxxx10 Floating-point data-processing (2 source) ARMv8.2

x0x1 0x x1xx xxxxxxx11 Floating-point conditional select ARMv8.2

x0x1 1x Floating-point data-processing (3 source) ARMv8.2

Cryptographic AES

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd

Top-level encodings for A64

Page 1291

Decode fields
size opcode

Instruction Details

x1xxx UNALLOCATED

000xx UNALLOCATED

1xxxx UNALLOCATED

x1 UNALLOCATED

00 00100 AESE

00 00101 AESD

00 00110 AESMC

00 00111 AESIMC

1x UNALLOCATED

Cryptographic three-register SHA

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 0 Rm 0 opcode 0 0 Rn Rd

Decode fields
size opcode

Instruction Details

111 UNALLOCATED

x1 UNALLOCATED

00 000 SHA1C

00 001 SHA1P

00 010 SHA1M

00 011 SHA1SU0

00 100 SHA256H

00 101 SHA256H2

00 110 SHA256SU1

1x UNALLOCATED

Cryptographic two-register SHA

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 0 size 1 0 1 0 0 opcode 1 0 Rn Rd

Decode fields
size opcode

Instruction Details

xx1xx UNALLOCATED

x1xxx UNALLOCATED

1xxxx UNALLOCATED

x1 UNALLOCATED

00 00000 SHA1H

00 00001 SHA1SU1

00 00010 SHA256SU0

00 00011 UNALLOCATED

1x UNALLOCATED

Top-level encodings for A64

Page 1292

Advanced SIMD scalar copy

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 op 1 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

Decode fields
op imm5 imm4

Instruction Details

0 xxx1 UNALLOCATED

0 xx1x UNALLOCATED

0 x1xx UNALLOCATED

0 0000 DUP (element)

0 1xxx UNALLOCATED

0 x0000 0000 UNALLOCATED

1 UNALLOCATED

Advanced SIMD scalar three same FP16

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd

Decode fields
U a opcode

Instruction Details Architecture Version

110 UNALLOCATED -

1 011 UNALLOCATED -

0 0 011 FMULX ARMv8.2

0 0 100 FCMEQ (register) ARMv8.2

0 0 101 UNALLOCATED -

0 0 111 FRECPS ARMv8.2

0 1 100 UNALLOCATED -

0 1 101 UNALLOCATED -

0 1 111 FRSQRTS ARMv8.2

1 0 011 UNALLOCATED -

1 0 100 FCMGE (register) ARMv8.2

1 0 101 FACGE ARMv8.2

1 0 111 UNALLOCATED -

1 1 010 FABD ARMv8.2

1 1 100 FCMGT (register) ARMv8.2

1 1 101 FACGT ARMv8.2

1 1 111 UNALLOCATED -

Advanced SIMD scalar two-register miscellaneous FP16

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd

Decode fields
U a opcode

Instruction Details Architecture Version

00xxx UNALLOCATED -

010xx UNALLOCATED -

Top-level encodings for A64

Page 1293

Decode fields
U a opcode

Instruction Details Architecture Version

10xxx UNALLOCATED -

1100x UNALLOCATED -

11110 UNALLOCATED -

0 011xx UNALLOCATED -

0 11111 UNALLOCATED -

1 01111 UNALLOCATED -

1 11100 UNALLOCATED -

0 0 11010 FCVTNS (vector) ARMv8.2

0 0 11011 FCVTMS (vector) ARMv8.2

0 0 11100 FCVTAS (vector) ARMv8.2

0 0 11101 SCVTF (vector, integer) ARMv8.2

0 1 01100 FCMGT (zero) ARMv8.2

0 1 01101 FCMEQ (zero) ARMv8.2

0 1 01110 FCMLT (zero) ARMv8.2

0 1 11010 FCVTPS (vector) ARMv8.2

0 1 11011 FCVTZS (vector, integer) ARMv8.2

0 1 11101 FRECPE ARMv8.2

0 1 11111 FRECPX ARMv8.2

1 0 11010 FCVTNU (vector) ARMv8.2

1 0 11011 FCVTMU (vector) ARMv8.2

1 0 11100 FCVTAU (vector) ARMv8.2

1 0 11101 UCVTF (vector, integer) ARMv8.2

1 1 01100 FCMGE (zero) ARMv8.2

1 1 01101 FCMLE (zero) ARMv8.2

1 1 01110 UNALLOCATED -

1 1 11010 FCVTPU (vector) ARMv8.2

1 1 11011 FCVTZU (vector, integer) ARMv8.2

1 1 11101 FRSQRTE ARMv8.2

1 1 11111 UNALLOCATED -

Advanced SIMD scalar three same extra

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd

Decode fields
U opcode

Instruction Details Architecture Version

001x UNALLOCATED -

01xx UNALLOCATED -

1xxx UNALLOCATED -

0 0000 UNALLOCATED -

0 0001 UNALLOCATED -

1 0000 SQRDMLAH (vector) ARMv8.1

1 0001 SQRDMLSH (vector) ARMv8.1

Top-level encodings for A64

Page 1294

Advanced SIMD scalar two-register miscellaneous

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd

Decode fields
U size opcode

Instruction Details

0000x UNALLOCATED

00010 UNALLOCATED

0010x UNALLOCATED

00110 UNALLOCATED

01111 UNALLOCATED

1000x UNALLOCATED

10011 UNALLOCATED

10101 UNALLOCATED

10111 UNALLOCATED

1100x UNALLOCATED

11110 UNALLOCATED

0x 011xx UNALLOCATED

0x 11111 UNALLOCATED

1x 10110 UNALLOCATED

1x 11100 UNALLOCATED

0 00011 SUQADD

0 00111 SQABS

0 01000 CMGT (zero)

0 01001 CMEQ (zero)

0 01010 CMLT (zero)

0 01011 ABS

0 10010 UNALLOCATED

0 10100 SQXTN, SQXTN2

0 0x 10110 UNALLOCATED

0 0x 11010 FCVTNS (vector)

0 0x 11011 FCVTMS (vector)

0 0x 11100 FCVTAS (vector)

0 0x 11101 SCVTF (vector, integer)

0 1x 01100 FCMGT (zero)

0 1x 01101 FCMEQ (zero)

0 1x 01110 FCMLT (zero)

0 1x 11010 FCVTPS (vector)

0 1x 11011 FCVTZS (vector, integer)

0 1x 11101 FRECPE

0 1x 11111 FRECPX

1 00011 USQADD

1 00111 SQNEG

1 01000 CMGE (zero)

1 01001 CMLE (zero)

1 01010 UNALLOCATED

1 01011 NEG (vector)

1 10010 SQXTUN, SQXTUN2

Top-level encodings for A64

Page 1295

Decode fields
U size opcode

Instruction Details

1 10100 UQXTN, UQXTN2

1 0x 10110 FCVTXN, FCVTXN2

1 0x 11010 FCVTNU (vector)

1 0x 11011 FCVTMU (vector)

1 0x 11100 FCVTAU (vector)

1 0x 11101 UCVTF (vector, integer)

1 1x 01100 FCMGE (zero)

1 1x 01101 FCMLE (zero)

1 1x 01110 UNALLOCATED

1 1x 11010 FCVTPU (vector)

1 1x 11011 FCVTZU (vector, integer)

1 1x 11101 FRSQRTE

1 1x 11111 UNALLOCATED

Advanced SIMD scalar pairwise

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd

Decode fields
U size opcode

Instruction Details Architecture Version

00xxx UNALLOCATED -

010xx UNALLOCATED -

01110 UNALLOCATED -

10xxx UNALLOCATED -

1100x UNALLOCATED -

11010 UNALLOCATED -

111xx UNALLOCATED -

1x 01101 UNALLOCATED -

0 11011 ADDP (scalar) -

0 00 01100 FMAXNMP (scalar) — half-precision ARMv8.2

0 00 01101 FADDP (scalar) — half-precision ARMv8.2

0 00 01111 FMAXP (scalar) — half-precision ARMv8.2

0 01 01100 UNALLOCATED -

0 01 01101 UNALLOCATED -

0 01 01111 UNALLOCATED -

0 10 01100 FMINNMP (scalar) — half-precision ARMv8.2

0 10 01111 FMINP (scalar) — half-precision ARMv8.2

0 11 01100 UNALLOCATED -

0 11 01111 UNALLOCATED -

1 11011 UNALLOCATED -

1 0x 01100 FMAXNMP (scalar) — single-precision and double-precision -

1 0x 01101 FADDP (scalar) — single-precision and double-precision -

1 0x 01111 FMAXP (scalar) — single-precision and double-precision -

1 1x 01100 FMINNMP (scalar) — single-precision and double-precision -

1 1x 01111 FMINP (scalar) — single-precision and double-precision -

Top-level encodings for A64

Page 1296

Advanced SIMD scalar three different

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd

Decode fields
U opcode

Instruction Details

00xx UNALLOCATED

01xx UNALLOCATED

1000 UNALLOCATED

1010 UNALLOCATED

1100 UNALLOCATED

111x UNALLOCATED

0 1001 SQDMLAL, SQDMLAL2 (vector)

0 1011 SQDMLSL, SQDMLSL2 (vector)

0 1101 SQDMULL, SQDMULL2 (vector)

1 1001 UNALLOCATED

1 1011 UNALLOCATED

1 1101 UNALLOCATED

Advanced SIMD scalar three same

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 0 size 1 Rm opcode 1 Rn Rd

Decode fields
U size opcode

Instruction Details

00000 UNALLOCATED

0001x UNALLOCATED

00100 UNALLOCATED

011xx UNALLOCATED

1001x UNALLOCATED

1x 11011 UNALLOCATED

0 00001 SQADD

0 00101 SQSUB

0 00110 CMGT (register)

0 00111 CMGE (register)

0 01000 SSHL

0 01001 SQSHL (register)

0 01010 SRSHL

0 01011 SQRSHL

0 10000 ADD (vector)

0 10001 CMTST

0 10100 UNALLOCATED

0 10101 UNALLOCATED

0 10110 SQDMULH (vector)

0 10111 UNALLOCATED

0 0x 11000 UNALLOCATED

0 0x 11001 UNALLOCATED

Top-level encodings for A64

Page 1297

Decode fields
U size opcode

Instruction Details

0 0x 11010 UNALLOCATED

0 0x 11011 FMULX

0 0x 11100 FCMEQ (register)

0 0x 11101 UNALLOCATED

0 0x 11110 UNALLOCATED

0 0x 11111 FRECPS

0 1x 11000 UNALLOCATED

0 1x 11001 UNALLOCATED

0 1x 11010 UNALLOCATED

0 1x 11100 UNALLOCATED

0 1x 11101 UNALLOCATED

0 1x 11110 UNALLOCATED

0 1x 11111 FRSQRTS

1 00001 UQADD

1 00101 UQSUB

1 00110 CMHI (register)

1 00111 CMHS (register)

1 01000 USHL

1 01001 UQSHL (register)

1 01010 URSHL

1 01011 UQRSHL

1 10000 SUB (vector)

1 10001 CMEQ (register)

1 10100 UNALLOCATED

1 10101 UNALLOCATED

1 10110 SQRDMULH (vector)

1 10111 UNALLOCATED

1 0x 11000 UNALLOCATED

1 0x 11001 UNALLOCATED

1 0x 11010 UNALLOCATED

1 0x 11011 UNALLOCATED

1 0x 11100 FCMGE (register)

1 0x 11101 FACGE

1 0x 11110 UNALLOCATED

1 0x 11111 UNALLOCATED

1 1x 11000 UNALLOCATED

1 1x 11001 UNALLOCATED

1 1x 11010 FABD

1 1x 11100 FCMGT (register)

1 1x 11101 FACGT

1 1x 11110 UNALLOCATED

1 1x 11111 UNALLOCATED

Advanced SIMD scalar shift by immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

Top-level encodings for A64

Page 1298

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 1 0 immh immb opcode 1 Rn Rd

Decode fields
U immh opcode

Instruction Details

!= 0000 00001 UNALLOCATED

!= 0000 00011 UNALLOCATED

!= 0000 00101 UNALLOCATED

!= 0000 00111 UNALLOCATED

!= 0000 01001 UNALLOCATED

!= 0000 01011 UNALLOCATED

!= 0000 01101 UNALLOCATED

!= 0000 01111 UNALLOCATED

!= 0000 101xx UNALLOCATED

!= 0000 110xx UNALLOCATED

!= 0000 11101 UNALLOCATED

!= 0000 11110 UNALLOCATED

0000 UNALLOCATED

0 != 0000 00000 SSHR

0 != 0000 00010 SSRA

0 != 0000 00100 SRSHR

0 != 0000 00110 SRSRA

0 != 0000 01000 UNALLOCATED

0 != 0000 01010 SHL

0 != 0000 01100 UNALLOCATED

0 != 0000 01110 SQSHL (immediate)

0 != 0000 10000 UNALLOCATED

0 != 0000 10001 UNALLOCATED

0 != 0000 10010 SQSHRN, SQSHRN2

0 != 0000 10011 SQRSHRN, SQRSHRN2

0 != 0000 11100 SCVTF (vector, fixed-point)

0 != 0000 11111 FCVTZS (vector, fixed-point)

1 != 0000 00000 USHR

1 != 0000 00010 USRA

1 != 0000 00100 URSHR

1 != 0000 00110 URSRA

1 != 0000 01000 SRI

1 != 0000 01010 SLI

1 != 0000 01100 SQSHLU

1 != 0000 01110 UQSHL (immediate)

1 != 0000 10000 SQSHRUN, SQSHRUN2

1 != 0000 10001 SQRSHRUN, SQRSHRUN2

1 != 0000 10010 UQSHRN, UQSHRN2

1 != 0000 10011 UQRSHRN, UQRSHRN2

1 != 0000 11100 UCVTF (vector, fixed-point)

1 != 0000 11111 FCVTZU (vector, fixed-point)

Advanced SIMD scalar x indexed element

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

Top-level encodings for A64

Page 1299

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 U 1 1 1 1 1 size L M Rm opcode H 0 Rn Rd

Decode fields
U size opcode

Instruction Details Architecture Version

0000 UNALLOCATED -

0010 UNALLOCATED -

0100 UNALLOCATED -

0110 UNALLOCATED -

1000 UNALLOCATED -

1010 UNALLOCATED -

1110 UNALLOCATED -

01 0001 UNALLOCATED -

01 0101 UNALLOCATED -

01 1001 UNALLOCATED -

0 0011 SQDMLAL, SQDMLAL2 (by element) -

0 0111 SQDMLSL, SQDMLSL2 (by element) -

0 1011 SQDMULL, SQDMULL2 (by element) -

0 1100 SQDMULH (by element) -

0 1101 SQRDMULH (by element) -

0 1111 UNALLOCATED -

0 00 0001 FMLA (by element) — half-precision ARMv8.2

0 00 0101 FMLS (by element) — half-precision ARMv8.2

0 00 1001 FMUL (by element) — half-precision ARMv8.2

0 1x 0001 FMLA (by element) — single-precision and double-precision -

0 1x 0101 FMLS (by element) — single-precision and double-precision -

0 1x 1001 FMUL (by element) — single-precision and double-precision -

1 0011 UNALLOCATED -

1 0111 UNALLOCATED -

1 1011 UNALLOCATED -

1 1100 UNALLOCATED -

1 1101 SQRDMLAH (by element) ARMv8.1

1 1111 SQRDMLSH (by element) ARMv8.1

1 00 0001 UNALLOCATED -

1 00 0101 UNALLOCATED -

1 00 1001 FMULX (by element) — half-precision ARMv8.2

1 1x 0001 UNALLOCATED -

1 1x 0101 UNALLOCATED -

1 1x 1001 FMULX (by element) — single-precision and double-precision -

Advanced SIMD table lookup

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 op2 0 Rm 0 len op 0 0 Rn Rd

Decode fields
op2 len op

Instruction Details

x1 UNALLOCATED

00 00 0 TBL — single register table

00 00 1 TBX — single register table

Top-level encodings for A64

Page 1300

Decode fields
op2 len op

Instruction Details

00 01 0 TBL — two register table

00 01 1 TBX — two register table

00 10 0 TBL — three register table

00 10 1 TBX — three register table

00 11 0 TBL — four register table

00 11 1 TBX — four register table

1x UNALLOCATED

Advanced SIMD permute

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 0 0 1 1 1 0 size 0 Rm 0 opcode 1 0 Rn Rd

Decode fields
opcode

Instruction Details

000 UNALLOCATED

001 UZP1

010 TRN1

011 ZIP1

100 UNALLOCATED

101 UZP2

110 TRN2

111 ZIP2

Advanced SIMD extract

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q 1 0 1 1 1 0 op2 0 Rm 0 imm4 0 Rn Rd

Decode fields
op2

Instruction Details

x1 UNALLOCATED

00 EXT

1x UNALLOCATED

Advanced SIMD copy

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q op 0 1 1 1 0 0 0 0 imm5 0 imm4 1 Rn Rd

Decode fields
Q op imm5 imm4

Instruction Details

x0000 UNALLOCATED

0 0000 DUP (element)

0 0001 DUP (general)

0 0010 UNALLOCATED

Top-level encodings for A64

Page 1301

Decode fields
Q op imm5 imm4

Instruction Details

0 0100 UNALLOCATED

0 0110 UNALLOCATED

0 1xxx UNALLOCATED

0 0 0011 UNALLOCATED

0 0 0101 SMOV

0 0 0111 UMOV

0 1 UNALLOCATED

1 0 0011 INS (general)

1 0 0101 SMOV

1 0 x1000 0111 UMOV

1 1 INS (element)

Advanced SIMD three same (FP16)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 0 a 1 0 Rm 0 0 opcode 1 Rn Rd

Decode fields
U a opcode

Instruction Details Architecture Version

0 0 000 FMAXNM (vector) ARMv8.2

0 0 001 FMLA (vector) ARMv8.2

0 0 010 FADD (vector) ARMv8.2

0 0 011 FMULX ARMv8.2

0 0 100 FCMEQ (register) ARMv8.2

0 0 101 UNALLOCATED -

0 0 110 FMAX (vector) ARMv8.2

0 0 111 FRECPS ARMv8.2

0 1 000 FMINNM (vector) ARMv8.2

0 1 001 FMLS (vector) ARMv8.2

0 1 010 FSUB (vector) ARMv8.2

0 1 011 UNALLOCATED -

0 1 100 UNALLOCATED -

0 1 101 UNALLOCATED -

0 1 110 FMIN (vector) ARMv8.2

0 1 111 FRSQRTS ARMv8.2

1 0 000 FMAXNMP (vector) ARMv8.2

1 0 001 UNALLOCATED -

1 0 010 FADDP (vector) ARMv8.2

1 0 011 FMUL (vector) ARMv8.2

1 0 100 FCMGE (register) ARMv8.2

1 0 101 FACGE ARMv8.2

1 0 110 FMAXP (vector) ARMv8.2

1 0 111 FDIV (vector) ARMv8.2

1 1 000 FMINNMP (vector) ARMv8.2

1 1 001 UNALLOCATED -

1 1 010 FABD ARMv8.2

1 1 011 UNALLOCATED -

Top-level encodings for A64

Page 1302

Decode fields
U a opcode

Instruction Details Architecture Version

1 1 100 FCMGT (register) ARMv8.2

1 1 101 FACGT ARMv8.2

1 1 110 FMINP (vector) ARMv8.2

1 1 111 UNALLOCATED -

Advanced SIMD two-register miscellaneous (FP16)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 0 a 1 1 1 1 0 0 opcode 1 0 Rn Rd

Decode fields
U a opcode

Instruction Details Architecture Version

00xxx UNALLOCATED -

010xx UNALLOCATED -

10xxx UNALLOCATED -

11110 UNALLOCATED -

0 011xx UNALLOCATED -

0 11111 UNALLOCATED -

1 11100 UNALLOCATED -

0 0 11000 FRINTN (vector) ARMv8.2

0 0 11001 FRINTM (vector) ARMv8.2

0 0 11010 FCVTNS (vector) ARMv8.2

0 0 11011 FCVTMS (vector) ARMv8.2

0 0 11100 FCVTAS (vector) ARMv8.2

0 0 11101 SCVTF (vector, integer) ARMv8.2

0 1 01100 FCMGT (zero) ARMv8.2

0 1 01101 FCMEQ (zero) ARMv8.2

0 1 01110 FCMLT (zero) ARMv8.2

0 1 01111 FABS (vector) ARMv8.2

0 1 11000 FRINTP (vector) ARMv8.2

0 1 11001 FRINTZ (vector) ARMv8.2

0 1 11010 FCVTPS (vector) ARMv8.2

0 1 11011 FCVTZS (vector, integer) ARMv8.2

0 1 11101 FRECPE ARMv8.2

0 1 11111 UNALLOCATED -

1 0 11000 FRINTA (vector) ARMv8.2

1 0 11001 FRINTX (vector) ARMv8.2

1 0 11010 FCVTNU (vector) ARMv8.2

1 0 11011 FCVTMU (vector) ARMv8.2

1 0 11100 FCVTAU (vector) ARMv8.2

1 0 11101 UCVTF (vector, integer) ARMv8.2

1 1 01100 FCMGE (zero) ARMv8.2

1 1 01101 FCMLE (zero) ARMv8.2

1 1 01110 UNALLOCATED -

1 1 01111 FNEG (vector) ARMv8.2

1 1 11000 UNALLOCATED -

1 1 11001 FRINTI (vector) ARMv8.2

Top-level encodings for A64

Page 1303

Decode fields
U a opcode

Instruction Details Architecture Version

1 1 11010 FCVTPU (vector) ARMv8.2

1 1 11011 FCVTZU (vector, integer) ARMv8.2

1 1 11101 FRSQRTE ARMv8.2

1 1 11111 FSQRT (vector) ARMv8.2

Advanced SIMD three same extra

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 0 size 0 Rm 1 opcode 1 Rn Rd

Decode fields
U opcode

Instruction Details Architecture Version

0011 UNALLOCATED -

01xx UNALLOCATED -

0 0000 UNALLOCATED -

0 0001 UNALLOCATED -

0 0010 SDOT (vector) ARMv8.2

0 1xxx UNALLOCATED -

1 0000 SQRDMLAH (vector) ARMv8.1

1 0001 SQRDMLSH (vector) ARMv8.1

1 0010 UDOT (vector) ARMv8.2

1 10xx FCMLA ARMv8.3

1 11x0 FCADD ARMv8.3

1 11x1 UNALLOCATED -

Advanced SIMD two-register miscellaneous

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 0 size 1 0 0 0 0 opcode 1 0 Rn Rd

Decode fields
U size opcode

Instruction Details

1000x UNALLOCATED

10101 UNALLOCATED

11110 UNALLOCATED

0x 011xx UNALLOCATED

0x 11111 UNALLOCATED

1x 10110 UNALLOCATED

1x 10111 UNALLOCATED

0 00000 REV64

0 00001 REV16 (vector)

0 00010 SADDLP

0 00011 SUQADD

0 00100 CLS (vector)

0 00101 CNT

0 00110 SADALP

Top-level encodings for A64

Page 1304

Decode fields
U size opcode

Instruction Details

0 00111 SQABS

0 01000 CMGT (zero)

0 01001 CMEQ (zero)

0 01010 CMLT (zero)

0 01011 ABS

0 10010 XTN, XTN2

0 10011 UNALLOCATED

0 10100 SQXTN, SQXTN2

0 0x 10110 FCVTN, FCVTN2

0 0x 10111 FCVTL, FCVTL2

0 0x 11000 FRINTN (vector)

0 0x 11001 FRINTM (vector)

0 0x 11010 FCVTNS (vector)

0 0x 11011 FCVTMS (vector)

0 0x 11100 FCVTAS (vector)

0 0x 11101 SCVTF (vector, integer)

0 1x 01100 FCMGT (zero)

0 1x 01101 FCMEQ (zero)

0 1x 01110 FCMLT (zero)

0 1x 01111 FABS (vector)

0 1x 11000 FRINTP (vector)

0 1x 11001 FRINTZ (vector)

0 1x 11010 FCVTPS (vector)

0 1x 11011 FCVTZS (vector, integer)

0 1x 11100 URECPE

0 1x 11101 FRECPE

0 1x 11111 UNALLOCATED

1 00000 REV32 (vector)

1 00001 UNALLOCATED

1 00010 UADDLP

1 00011 USQADD

1 00100 CLZ (vector)

1 00110 UADALP

1 00111 SQNEG

1 01000 CMGE (zero)

1 01001 CMLE (zero)

1 01010 UNALLOCATED

1 01011 NEG (vector)

1 10010 SQXTUN, SQXTUN2

1 10011 SHLL, SHLL2

1 10100 UQXTN, UQXTN2

1 0x 10110 FCVTXN, FCVTXN2

1 0x 10111 UNALLOCATED

1 0x 11000 FRINTA (vector)

1 0x 11001 FRINTX (vector)

1 0x 11010 FCVTNU (vector)

1 0x 11011 FCVTMU (vector)

Top-level encodings for A64

Page 1305

Decode fields
U size opcode

Instruction Details

1 0x 11100 FCVTAU (vector)

1 0x 11101 UCVTF (vector, integer)

1 00 00101 NOT

1 01 00101 RBIT (vector)

1 1x 00101 UNALLOCATED

1 1x 01100 FCMGE (zero)

1 1x 01101 FCMLE (zero)

1 1x 01110 UNALLOCATED

1 1x 01111 FNEG (vector)

1 1x 11000 UNALLOCATED

1 1x 11001 FRINTI (vector)

1 1x 11010 FCVTPU (vector)

1 1x 11011 FCVTZU (vector, integer)

1 1x 11100 URSQRTE

1 1x 11101 FRSQRTE

1 1x 11111 FSQRT (vector)

Advanced SIMD across lanes

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 0 size 1 1 0 0 0 opcode 1 0 Rn Rd

Decode fields
U size opcode

Instruction Details Architecture Version

0000x UNALLOCATED -

00010 UNALLOCATED -

001xx UNALLOCATED -

0100x UNALLOCATED -

01011 UNALLOCATED -

01101 UNALLOCATED -

01110 UNALLOCATED -

10xxx UNALLOCATED -

1100x UNALLOCATED -

111xx UNALLOCATED -

0 00011 SADDLV -

0 01010 SMAXV -

0 11010 SMINV -

0 11011 ADDV -

0 00 01100 FMAXNMV — half-precision ARMv8.2

0 00 01111 FMAXV — half-precision ARMv8.2

0 01 01100 UNALLOCATED -

0 01 01111 UNALLOCATED -

0 10 01100 FMINNMV — half-precision ARMv8.2

0 10 01111 FMINV — half-precision ARMv8.2

0 11 01100 UNALLOCATED -

0 11 01111 UNALLOCATED -

1 00011 UADDLV -

Top-level encodings for A64

Page 1306

Decode fields
U size opcode

Instruction Details Architecture Version

1 01010 UMAXV -

1 11010 UMINV -

1 11011 UNALLOCATED -

1 0x 01100 FMAXNMV — single-precision and double-precision -

1 0x 01111 FMAXV — single-precision and double-precision -

1 1x 01100 FMINNMV — single-precision and double-precision -

1 1x 01111 FMINV — single-precision and double-precision -

Advanced SIMD three different

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 0 size 1 Rm opcode 0 0 Rn Rd

Decode fields
U opcode

Instruction Details

1111 UNALLOCATED

0 0000 SADDL, SADDL2

0 0001 SADDW, SADDW2

0 0010 SSUBL, SSUBL2

0 0011 SSUBW, SSUBW2

0 0100 ADDHN, ADDHN2

0 0101 SABAL, SABAL2

0 0110 SUBHN, SUBHN2

0 0111 SABDL, SABDL2

0 1000 SMLAL, SMLAL2 (vector)

0 1001 SQDMLAL, SQDMLAL2 (vector)

0 1010 SMLSL, SMLSL2 (vector)

0 1011 SQDMLSL, SQDMLSL2 (vector)

0 1100 SMULL, SMULL2 (vector)

0 1101 SQDMULL, SQDMULL2 (vector)

0 1110 PMULL, PMULL2

1 0000 UADDL, UADDL2

1 0001 UADDW, UADDW2

1 0010 USUBL, USUBL2

1 0011 USUBW, USUBW2

1 0100 RADDHN, RADDHN2

1 0101 UABAL, UABAL2

1 0110 RSUBHN, RSUBHN2

1 0111 UABDL, UABDL2

1 1000 UMLAL, UMLAL2 (vector)

1 1001 UNALLOCATED

1 1010 UMLSL, UMLSL2 (vector)

1 1011 UNALLOCATED

1 1100 UMULL, UMULL2 (vector)

1 1101 UNALLOCATED

1 1110 UNALLOCATED

Top-level encodings for A64

Page 1307

Advanced SIMD three same

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 0 size 1 Rm opcode 1 Rn Rd

Decode fields
U size opcode

Instruction Details

0 00000 SHADD

0 00001 SQADD

0 00010 SRHADD

0 00100 SHSUB

0 00101 SQSUB

0 00110 CMGT (register)

0 00111 CMGE (register)

0 01000 SSHL

0 01001 SQSHL (register)

0 01010 SRSHL

0 01011 SQRSHL

0 01100 SMAX

0 01101 SMIN

0 01110 SABD

0 01111 SABA

0 10000 ADD (vector)

0 10001 CMTST

0 10010 MLA (vector)

0 10011 MUL (vector)

0 10100 SMAXP

0 10101 SMINP

0 10110 SQDMULH (vector)

0 10111 ADDP (vector)

0 0x 11000 FMAXNM (vector)

0 0x 11001 FMLA (vector)

0 0x 11010 FADD (vector)

0 0x 11011 FMULX

0 0x 11100 FCMEQ (register)

0 0x 11101 UNALLOCATED

0 0x 11110 FMAX (vector)

0 0x 11111 FRECPS

0 00 00011 AND (vector)

0 01 00011 BIC (vector, register)

0 1x 11000 FMINNM (vector)

0 1x 11001 FMLS (vector)

0 1x 11010 FSUB (vector)

0 1x 11011 UNALLOCATED

0 1x 11100 UNALLOCATED

0 1x 11101 UNALLOCATED

0 1x 11110 FMIN (vector)

0 1x 11111 FRSQRTS

0 10 00011 ORR (vector, register)

Top-level encodings for A64

Page 1308

Decode fields
U size opcode

Instruction Details

0 11 00011 ORN (vector)

1 00000 UHADD

1 00001 UQADD

1 00010 URHADD

1 00100 UHSUB

1 00101 UQSUB

1 00110 CMHI (register)

1 00111 CMHS (register)

1 01000 USHL

1 01001 UQSHL (register)

1 01010 URSHL

1 01011 UQRSHL

1 01100 UMAX

1 01101 UMIN

1 01110 UABD

1 01111 UABA

1 10000 SUB (vector)

1 10001 CMEQ (register)

1 10010 MLS (vector)

1 10011 PMUL

1 10100 UMAXP

1 10101 UMINP

1 10110 SQRDMULH (vector)

1 10111 UNALLOCATED

1 0x 11000 FMAXNMP (vector)

1 0x 11001 UNALLOCATED

1 0x 11010 FADDP (vector)

1 0x 11011 FMUL (vector)

1 0x 11100 FCMGE (register)

1 0x 11101 FACGE

1 0x 11110 FMAXP (vector)

1 0x 11111 FDIV (vector)

1 00 00011 EOR (vector)

1 01 00011 BSL

1 1x 11000 FMINNMP (vector)

1 1x 11001 UNALLOCATED

1 1x 11010 FABD

1 1x 11011 UNALLOCATED

1 1x 11100 FCMGT (register)

1 1x 11101 FACGT

1 1x 11110 FMINP (vector)

1 1x 11111 UNALLOCATED

1 10 00011 BIT

1 11 00011 BIF

Advanced SIMD modified immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

Top-level encodings for A64

Page 1309

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q op 0 1 1 1 1 0 0 0 0 0 a b c cmode o2 1 d e f g h Rd

Decode fields
Q op cmode o2

Instruction Details Architecture Version

0 0xxx 1 UNALLOCATED -

0 0xx0 0 MOVI — 32-bit shifted immediate -

0 0xx1 0 ORR (vector, immediate) — 32-bit -

0 10xx 1 UNALLOCATED -

0 10x0 0 MOVI — 16-bit shifted immediate -

0 10x1 0 ORR (vector, immediate) — 16-bit -

0 110x 0 MOVI — 32-bit shifting ones -

0 110x 1 UNALLOCATED -

0 1110 0 MOVI — 8-bit -

0 1110 1 UNALLOCATED -

0 1111 0 FMOV (vector, immediate) — single-precision -

0 1111 1 FMOV (vector, immediate) — half-precision ARMv8.2

1 1 UNALLOCATED -

1 0xx0 0 MVNI — 32-bit shifted immediate -

1 0xx1 0 BIC (vector, immediate) — 32-bit -

1 10x0 0 MVNI — 16-bit shifted immediate -

1 10x1 0 BIC (vector, immediate) — 16-bit -

1 110x 0 MVNI — 32-bit shifting ones -

0 1 1110 0 MOVI — 64-bit scalar -

0 1 1111 0 UNALLOCATED -

1 1 1110 0 MOVI — 64-bit vector -

1 1 1111 0 FMOV (vector, immediate) — double-precision -

Advanced SIMD shift by immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 1 0 != 0000 immb opcode 1 Rn Rd
immh

The following constraints also apply to this encoding: immh != 0000 && immh != 0000

Decode fields
U opcode

Instruction Details

00001 UNALLOCATED

00011 UNALLOCATED

00101 UNALLOCATED

00111 UNALLOCATED

01001 UNALLOCATED

01011 UNALLOCATED

01101 UNALLOCATED

01111 UNALLOCATED

10101 UNALLOCATED

1011x UNALLOCATED

110xx UNALLOCATED

11101 UNALLOCATED

Top-level encodings for A64

Page 1310

Decode fields
U opcode

Instruction Details

11110 UNALLOCATED

0 00000 SSHR

0 00010 SSRA

0 00100 SRSHR

0 00110 SRSRA

0 01000 UNALLOCATED

0 01010 SHL

0 01100 UNALLOCATED

0 01110 SQSHL (immediate)

0 10000 SHRN, SHRN2

0 10001 RSHRN, RSHRN2

0 10010 SQSHRN, SQSHRN2

0 10011 SQRSHRN, SQRSHRN2

0 10100 SSHLL, SSHLL2

0 11100 SCVTF (vector, fixed-point)

0 11111 FCVTZS (vector, fixed-point)

1 00000 USHR

1 00010 USRA

1 00100 URSHR

1 00110 URSRA

1 01000 SRI

1 01010 SLI

1 01100 SQSHLU

1 01110 UQSHL (immediate)

1 10000 SQSHRUN, SQSHRUN2

1 10001 SQRSHRUN, SQRSHRUN2

1 10010 UQSHRN, UQSHRN2

1 10011 UQRSHRN, UQRSHRN2

1 10100 USHLL, USHLL2

1 11100 UCVTF (vector, fixed-point)

1 11111 FCVTZU (vector, fixed-point)

Advanced SIMD vector x indexed element

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Q U 0 1 1 1 1 size L M Rm opcode H 0 Rn Rd

Decode fields
U size opcode

Instruction Details Architecture Version

01 1001 UNALLOCATED -

0 0000 UNALLOCATED -

0 0010 SMLAL, SMLAL2 (by element) -

0 0011 SQDMLAL, SQDMLAL2 (by element) -

0 0100 UNALLOCATED -

0 0110 SMLSL, SMLSL2 (by element) -

0 0111 SQDMLSL, SQDMLSL2 (by element) -

0 1000 MUL (by element) -

Top-level encodings for A64

Page 1311

Decode fields
U size opcode

Instruction Details Architecture Version

0 1010 SMULL, SMULL2 (by element) -

0 1011 SQDMULL, SQDMULL2 (by element) -

0 1100 SQDMULH (by element) -

0 1101 SQRDMULH (by element) -

0 1110 SDOT (by element) ARMv8.2

0 1111 UNALLOCATED -

0 00 0001 FMLA (by element) — half-precision ARMv8.2

0 00 0101 FMLS (by element) — half-precision ARMv8.2

0 00 1001 FMUL (by element) — half-precision ARMv8.2

0 01 0001 UNALLOCATED -

0 01 0101 UNALLOCATED -

0 1x 0001 FMLA (by element) — single-precision and double-precision -

0 1x 0101 FMLS (by element) — single-precision and double-precision -

0 1x 1001 FMUL (by element) — single-precision and double-precision -

1 0000 MLA (by element) -

1 0010 UMLAL, UMLAL2 (by element) -

1 0100 MLS (by element) -

1 0110 UMLSL, UMLSL2 (by element) -

1 1000 UNALLOCATED -

1 1010 UMULL, UMULL2 (by element) -

1 1011 UNALLOCATED -

1 1100 UNALLOCATED -

1 1101 SQRDMLAH (by element) ARMv8.1

1 1110 UDOT (by element) ARMv8.2

1 1111 SQRDMLSH (by element) ARMv8.1

1 00 0001 UNALLOCATED -

1 00 0011 UNALLOCATED -

1 00 0101 UNALLOCATED -

1 00 0111 UNALLOCATED -

1 00 1001 FMULX (by element) — half-precision ARMv8.2

1 01 0xx1 FCMLA (by element) ARMv8.3

1 1x 0101 UNALLOCATED -

1 1x 1001 FMULX (by element) — single-precision and double-precision -

1 10 0xx1 FCMLA (by element) ARMv8.3

1 11 0001 UNALLOCATED -

1 11 0011 UNALLOCATED -

1 11 0111 UNALLOCATED -

Cryptographic three-register, imm2

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 0 Rm 1 0 imm2 opcode Rn Rd

Decode fields
opcode

Instruction Details Architecture Version

00 SM3TT1A ARMv8.2

01 SM3TT1B ARMv8.2

Top-level encodings for A64

Page 1312

Decode fields
opcode

Instruction Details Architecture Version

10 SM3TT2A ARMv8.2

11 SM3TT2B ARMv8.2

Cryptographic three-register SHA 512

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 1 1 Rm 1 O 0 0 opcode Rn Rd

Decode fields
O opcode

Instruction Details Architecture Version

0 00 SHA512H ARMv8.2

0 01 SHA512H2 ARMv8.2

0 10 SHA512SU1 ARMv8.2

0 11 RAX1 ARMv8.2

1 00 SM3PARTW1 ARMv8.2

1 01 SM3PARTW2 ARMv8.2

1 10 SM4EKEY ARMv8.2

1 11 UNALLOCATED -

Cryptographic four-register

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 0 Op0 Rm 0 Ra Rn Rd

Decode fields
Op0

Instruction Details Architecture Version

00 EOR3 ARMv8.2

01 BCAX ARMv8.2

10 SM3SS1 ARMv8.2

11 UNALLOCATED -

Cryptographic two-register SHA 512

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 opcode Rn Rd

Decode fields
opcode

Instruction Details Architecture Version

00 SHA512SU0 ARMv8.2

01 SM4E ARMv8.2

1x UNALLOCATED -

Conversion between floating-point and fixed-point

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

Top-level encodings for A64

Page 1313

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 S 1 1 1 1 0 type 0 rmode opcode scale Rn Rd

Decode fields
sf S type rmode opcode scale

Instruction Details
Architecture

Version

1xx UNALLOCATED -

x0 00x UNALLOCATED -

x1 01x UNALLOCATED -

0x 00x UNALLOCATED -

1x 01x UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

0 0xxxxx UNALLOCATED -

0 0 00 00 010 SCVTF (scalar, fixed-point) — 32-bit to single-precision -

0 0 00 00 011 UCVTF (scalar, fixed-point) — 32-bit to single-precision -

0 0 00 11 000 FCVTZS (scalar, fixed-point) — single-precision to
32-bit

-

0 0 00 11 001 FCVTZU (scalar, fixed-point) — single-precision to
32-bit

-

0 0 01 00 010 SCVTF (scalar, fixed-point) — 32-bit to double-
precision

-

0 0 01 00 011 UCVTF (scalar, fixed-point) — 32-bit to double-
precision

-

0 0 01 11 000 FCVTZS (scalar, fixed-point) — double-precision to
32-bit

-

0 0 01 11 001 FCVTZU (scalar, fixed-point) — double-precision to
32-bit

-

0 0 11 00 010 SCVTF (scalar, fixed-point) — 32-bit to half-precision ARMv8.2

0 0 11 00 011 UCVTF (scalar, fixed-point) — 32-bit to half-precision ARMv8.2

0 0 11 11 000 FCVTZS (scalar, fixed-point) — half-precision to 32-bit ARMv8.2

0 0 11 11 001 FCVTZU (scalar, fixed-point) — half-precision to 32-bit ARMv8.2

1 0 00 00 010 SCVTF (scalar, fixed-point) — 64-bit to single-precision -

1 0 00 00 011 UCVTF (scalar, fixed-point) — 64-bit to single-precision -

1 0 00 11 000 FCVTZS (scalar, fixed-point) — single-precision to
64-bit

-

1 0 00 11 001 FCVTZU (scalar, fixed-point) — single-precision to
64-bit

-

1 0 01 00 010 SCVTF (scalar, fixed-point) — 64-bit to double-
precision

-

1 0 01 00 011 UCVTF (scalar, fixed-point) — 64-bit to double-
precision

-

1 0 01 11 000 FCVTZS (scalar, fixed-point) — double-precision to
64-bit

-

1 0 01 11 001 FCVTZU (scalar, fixed-point) — double-precision to
64-bit

-

1 0 11 00 010 SCVTF (scalar, fixed-point) — 64-bit to half-precision ARMv8.2

1 0 11 00 011 UCVTF (scalar, fixed-point) — 64-bit to half-precision ARMv8.2

1 0 11 11 000 FCVTZS (scalar, fixed-point) — half-precision to 64-bit ARMv8.2

1 0 11 11 001 FCVTZU (scalar, fixed-point) — half-precision to 64-bit ARMv8.2

Conversion between floating-point and integer

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sf 0 S 1 1 1 1 0 type 1 rmode opcode 0 0 0 0 0 0 Rn Rd

Top-level encodings for A64

Page 1314

Decode fields
sf S type rmode opcode

Instruction Details Architecture Version

x1 01x UNALLOCATED -

x1 10x UNALLOCATED -

1x 01x UNALLOCATED -

1x 10x UNALLOCATED -

0 10 0xx UNALLOCATED -

0 10 10x UNALLOCATED -

1 UNALLOCATED -

0 0 00 x1 11x UNALLOCATED -

0 0 00 00 000 FCVTNS (scalar) — single-precision to 32-bit -

0 0 00 00 001 FCVTNU (scalar) — single-precision to 32-bit -

0 0 00 00 010 SCVTF (scalar, integer) — 32-bit to single-precision -

0 0 00 00 011 UCVTF (scalar, integer) — 32-bit to single-precision -

0 0 00 00 100 FCVTAS (scalar) — single-precision to 32-bit -

0 0 00 00 101 FCVTAU (scalar) — single-precision to 32-bit -

0 0 00 00 110 FMOV (general) — single-precision to 32-bit -

0 0 00 00 111 FMOV (general) — 32-bit to single-precision -

0 0 00 01 000 FCVTPS (scalar) — single-precision to 32-bit -

0 0 00 01 001 FCVTPU (scalar) — single-precision to 32-bit -

0 0 00 1x 11x UNALLOCATED -

0 0 00 10 000 FCVTMS (scalar) — single-precision to 32-bit -

0 0 00 10 001 FCVTMU (scalar) — single-precision to 32-bit -

0 0 00 11 000 FCVTZS (scalar, integer) — single-precision to 32-bit -

0 0 00 11 001 FCVTZU (scalar, integer) — single-precision to 32-bit -

0 0 01 0x 11x UNALLOCATED -

0 0 01 00 000 FCVTNS (scalar) — double-precision to 32-bit -

0 0 01 00 001 FCVTNU (scalar) — double-precision to 32-bit -

0 0 01 00 010 SCVTF (scalar, integer) — 32-bit to double-precision -

0 0 01 00 011 UCVTF (scalar, integer) — 32-bit to double-precision -

0 0 01 00 100 FCVTAS (scalar) — double-precision to 32-bit -

0 0 01 00 101 FCVTAU (scalar) — double-precision to 32-bit -

0 0 01 01 000 FCVTPS (scalar) — double-precision to 32-bit -

0 0 01 01 001 FCVTPU (scalar) — double-precision to 32-bit -

0 0 01 10 000 FCVTMS (scalar) — double-precision to 32-bit -

0 0 01 10 001 FCVTMU (scalar) — double-precision to 32-bit -

0 0 01 10 11x UNALLOCATED -

0 0 01 11 000 FCVTZS (scalar, integer) — double-precision to 32-bit -

0 0 01 11 001 FCVTZU (scalar, integer) — double-precision to 32-bit -

0 0 01 11 110 FJCVTZS ARMv8.3

0 0 01 11 111 UNALLOCATED -

0 0 10 11x UNALLOCATED -

0 0 11 00 000 FCVTNS (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 00 001 FCVTNU (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 00 010 SCVTF (scalar, integer) — 32-bit to half-precision ARMv8.2

0 0 11 00 011 UCVTF (scalar, integer) — 32-bit to half-precision ARMv8.2

0 0 11 00 100 FCVTAS (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 00 101 FCVTAU (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 00 110 FMOV (general) — half-precision to 32-bit ARMv8.2

Top-level encodings for A64

Page 1315

Decode fields
sf S type rmode opcode

Instruction Details Architecture Version

0 0 11 00 111 FMOV (general) — 32-bit to half-precision ARMv8.2

0 0 11 01 000 FCVTPS (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 01 001 FCVTPU (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 10 000 FCVTMS (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 10 001 FCVTMU (scalar) — half-precision to 32-bit ARMv8.2

0 0 11 11 000 FCVTZS (scalar, integer) — half-precision to 32-bit ARMv8.2

0 0 11 11 001 FCVTZU (scalar, integer) — half-precision to 32-bit ARMv8.2

1 0 00 11x UNALLOCATED -

1 0 00 00 000 FCVTNS (scalar) — single-precision to 64-bit -

1 0 00 00 001 FCVTNU (scalar) — single-precision to 64-bit -

1 0 00 00 010 SCVTF (scalar, integer) — 64-bit to single-precision -

1 0 00 00 011 UCVTF (scalar, integer) — 64-bit to single-precision -

1 0 00 00 100 FCVTAS (scalar) — single-precision to 64-bit -

1 0 00 00 101 FCVTAU (scalar) — single-precision to 64-bit -

1 0 00 01 000 FCVTPS (scalar) — single-precision to 64-bit -

1 0 00 01 001 FCVTPU (scalar) — single-precision to 64-bit -

1 0 00 10 000 FCVTMS (scalar) — single-precision to 64-bit -

1 0 00 10 001 FCVTMU (scalar) — single-precision to 64-bit -

1 0 00 11 000 FCVTZS (scalar, integer) — single-precision to 64-bit -

1 0 00 11 001 FCVTZU (scalar, integer) — single-precision to 64-bit -

1 0 01 x1 11x UNALLOCATED -

1 0 01 00 000 FCVTNS (scalar) — double-precision to 64-bit -

1 0 01 00 001 FCVTNU (scalar) — double-precision to 64-bit -

1 0 01 00 010 SCVTF (scalar, integer) — 64-bit to double-precision -

1 0 01 00 011 UCVTF (scalar, integer) — 64-bit to double-precision -

1 0 01 00 100 FCVTAS (scalar) — double-precision to 64-bit -

1 0 01 00 101 FCVTAU (scalar) — double-precision to 64-bit -

1 0 01 00 110 FMOV (general) — double-precision to 64-bit -

1 0 01 00 111 FMOV (general) — 64-bit to double-precision -

1 0 01 01 000 FCVTPS (scalar) — double-precision to 64-bit -

1 0 01 01 001 FCVTPU (scalar) — double-precision to 64-bit -

1 0 01 1x 11x UNALLOCATED -

1 0 01 10 000 FCVTMS (scalar) — double-precision to 64-bit -

1 0 01 10 001 FCVTMU (scalar) — double-precision to 64-bit -

1 0 01 11 000 FCVTZS (scalar, integer) — double-precision to 64-bit -

1 0 01 11 001 FCVTZU (scalar, integer) — double-precision to 64-bit -

1 0 10 x0 11x UNALLOCATED -

1 0 10 01 110 FMOV (general) — top half of 128-bit to 64-bit -

1 0 10 01 111 FMOV (general) — 64-bit to top half of 128-bit -

1 0 10 1x 11x UNALLOCATED -

1 0 11 00 000 FCVTNS (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 00 001 FCVTNU (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 00 010 SCVTF (scalar, integer) — 64-bit to half-precision ARMv8.2

1 0 11 00 011 UCVTF (scalar, integer) — 64-bit to half-precision ARMv8.2

1 0 11 00 100 FCVTAS (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 00 101 FCVTAU (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 00 110 FMOV (general) — half-precision to 64-bit ARMv8.2

Top-level encodings for A64

Page 1316

Decode fields
sf S type rmode opcode

Instruction Details Architecture Version

1 0 11 00 111 FMOV (general) — 64-bit to half-precision ARMv8.2

1 0 11 01 000 FCVTPS (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 01 001 FCVTPU (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 10 000 FCVTMS (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 10 001 FCVTMU (scalar) — half-precision to 64-bit ARMv8.2

1 0 11 11 000 FCVTZS (scalar, integer) — half-precision to 64-bit ARMv8.2

1 0 11 11 001 FCVTZU (scalar, integer) — half-precision to 64-bit ARMv8.2

Floating-point data-processing (1 source)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 S 1 1 1 1 0 type 1 opcode 1 0 0 0 0 Rn Rd

Decode fields
M S type opcode

Instruction Details Architecture Version

x1xxxx UNALLOCATED -

1xxxxx UNALLOCATED -

1 UNALLOCATED -

0 0 00 000000 FMOV (register) — single-precision -

0 0 00 000001 FABS (scalar) — single-precision -

0 0 00 000010 FNEG (scalar) — single-precision -

0 0 00 000011 FSQRT (scalar) — single-precision -

0 0 00 000100 UNALLOCATED -

0 0 00 000101 FCVT — single-precision to double-precision -

0 0 00 000110 UNALLOCATED -

0 0 00 000111 FCVT — single-precision to half-precision -

0 0 00 001000 FRINTN (scalar) — single-precision -

0 0 00 001001 FRINTP (scalar) — single-precision -

0 0 00 001010 FRINTM (scalar) — single-precision -

0 0 00 001011 FRINTZ (scalar) — single-precision -

0 0 00 001100 FRINTA (scalar) — single-precision -

0 0 00 001101 UNALLOCATED -

0 0 00 001110 FRINTX (scalar) — single-precision -

0 0 00 001111 FRINTI (scalar) — single-precision -

0 0 01 000000 FMOV (register) — double-precision -

0 0 01 000001 FABS (scalar) — double-precision -

0 0 01 000010 FNEG (scalar) — double-precision -

0 0 01 000011 FSQRT (scalar) — double-precision -

0 0 01 000100 FCVT — double-precision to single-precision -

0 0 01 000101 UNALLOCATED -

0 0 01 000110 UNALLOCATED -

0 0 01 000111 FCVT — double-precision to half-precision -

0 0 01 001000 FRINTN (scalar) — double-precision -

0 0 01 001001 FRINTP (scalar) — double-precision -

0 0 01 001010 FRINTM (scalar) — double-precision -

0 0 01 001011 FRINTZ (scalar) — double-precision -

0 0 01 001100 FRINTA (scalar) — double-precision -

Top-level encodings for A64

Page 1317

Decode fields
M S type opcode

Instruction Details Architecture Version

0 0 01 001101 UNALLOCATED -

0 0 01 001110 FRINTX (scalar) — double-precision -

0 0 01 001111 FRINTI (scalar) — double-precision -

0 0 10 00xxxx UNALLOCATED -

0 0 11 000000 FMOV (register) — half-precision ARMv8.2

0 0 11 000001 FABS (scalar) — half-precision ARMv8.2

0 0 11 000010 FNEG (scalar) — half-precision ARMv8.2

0 0 11 000011 FSQRT (scalar) — half-precision ARMv8.2

0 0 11 000100 FCVT — half-precision to single-precision -

0 0 11 000101 FCVT — half-precision to double-precision -

0 0 11 00011x UNALLOCATED -

0 0 11 001000 FRINTN (scalar) — half-precision ARMv8.2

0 0 11 001001 FRINTP (scalar) — half-precision ARMv8.2

0 0 11 001010 FRINTM (scalar) — half-precision ARMv8.2

0 0 11 001011 FRINTZ (scalar) — half-precision ARMv8.2

0 0 11 001100 FRINTA (scalar) — half-precision ARMv8.2

0 0 11 001101 UNALLOCATED -

0 0 11 001110 FRINTX (scalar) — half-precision ARMv8.2

0 0 11 001111 FRINTI (scalar) — half-precision ARMv8.2

1 UNALLOCATED -

Floating-point compare

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 S 1 1 1 1 0 type 1 Rm op 1 0 0 0 Rn opcode2

Decode fields
M S type op opcode2

Instruction Details Architecture Version

xxxx1 UNALLOCATED -

xxx1x UNALLOCATED -

xx1xx UNALLOCATED -

x1 UNALLOCATED -

1x UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 00 00000 FCMP -

0 0 00 00 01000 FCMP -

0 0 00 00 10000 FCMPE -

0 0 00 00 11000 FCMPE -

0 0 01 00 00000 FCMP -

0 0 01 00 01000 FCMP -

0 0 01 00 10000 FCMPE -

0 0 01 00 11000 FCMPE -

0 0 11 00 00000 FCMP ARMv8.2

0 0 11 00 01000 FCMP ARMv8.2

0 0 11 00 10000 FCMPE ARMv8.2

0 0 11 00 11000 FCMPE ARMv8.2

Top-level encodings for A64

Page 1318

Decode fields
M S type op opcode2

Instruction Details Architecture Version

1 UNALLOCATED -

Floating-point immediate

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 S 1 1 1 1 0 type 1 imm8 1 0 0 imm5 Rd

Decode fields
M S type imm5

Instruction Details Architecture Version

xxxx1 UNALLOCATED -

xxx1x UNALLOCATED -

xx1xx UNALLOCATED -

x1xxx UNALLOCATED -

1xxxx UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 00000 FMOV (scalar, immediate) — single-precision -

0 0 01 00000 FMOV (scalar, immediate) — double-precision -

0 0 11 00000 FMOV (scalar, immediate) — half-precision ARMv8.2

1 UNALLOCATED -

Floating-point conditional compare

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 S 1 1 1 1 0 type 1 Rm cond 0 1 Rn op nzcv

Decode fields
M S type op

Instruction Details Architecture Version

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 0 FCCMP — single-precision -

0 0 00 1 FCCMPE — single-precision -

0 0 01 0 FCCMP — double-precision -

0 0 01 1 FCCMPE — double-precision -

0 0 11 0 FCCMP — half-precision ARMv8.2

0 0 11 1 FCCMPE — half-precision ARMv8.2

1 UNALLOCATED -

Floating-point data-processing (2 source)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 S 1 1 1 1 0 type 1 Rm opcode 1 0 Rn Rd

Decode fields
M S type opcode

Instruction Details Architecture Version

1xx1 UNALLOCATED -

Top-level encodings for A64

Page 1319

Decode fields
M S type opcode

Instruction Details Architecture Version

1x1x UNALLOCATED -

11xx UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 0000 FMUL (scalar) — single-precision -

0 0 00 0001 FDIV (scalar) — single-precision -

0 0 00 0010 FADD (scalar) — single-precision -

0 0 00 0011 FSUB (scalar) — single-precision -

0 0 00 0100 FMAX (scalar) — single-precision -

0 0 00 0101 FMIN (scalar) — single-precision -

0 0 00 0110 FMAXNM (scalar) — single-precision -

0 0 00 0111 FMINNM (scalar) — single-precision -

0 0 00 1000 FNMUL (scalar) — single-precision -

0 0 01 0000 FMUL (scalar) — double-precision -

0 0 01 0001 FDIV (scalar) — double-precision -

0 0 01 0010 FADD (scalar) — double-precision -

0 0 01 0011 FSUB (scalar) — double-precision -

0 0 01 0100 FMAX (scalar) — double-precision -

0 0 01 0101 FMIN (scalar) — double-precision -

0 0 01 0110 FMAXNM (scalar) — double-precision -

0 0 01 0111 FMINNM (scalar) — double-precision -

0 0 01 1000 FNMUL (scalar) — double-precision -

0 0 11 0000 FMUL (scalar) — half-precision ARMv8.2

0 0 11 0001 FDIV (scalar) — half-precision ARMv8.2

0 0 11 0010 FADD (scalar) — half-precision ARMv8.2

0 0 11 0011 FSUB (scalar) — half-precision ARMv8.2

0 0 11 0100 FMAX (scalar) — half-precision ARMv8.2

0 0 11 0101 FMIN (scalar) — half-precision ARMv8.2

0 0 11 0110 FMAXNM (scalar) — half-precision ARMv8.2

0 0 11 0111 FMINNM (scalar) — half-precision ARMv8.2

0 0 11 1000 FNMUL (scalar) — half-precision ARMv8.2

1 UNALLOCATED -

Floating-point conditional select

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 S 1 1 1 1 0 type 1 Rm cond 1 1 Rn Rd

Decode fields
M S type

Instruction Details Architecture Version

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 FCSEL — single-precision -

0 0 01 FCSEL — double-precision -

0 0 11 FCSEL — half-precision ARMv8.2

1 UNALLOCATED -

Top-level encodings for A64

Page 1320

Floating-point data-processing (3 source)

These instructions are under Data Processing -- Scalar Floating-Point and Advanced SIMD.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 S 1 1 1 1 1 type o1 Rm o0 Ra Rn Rd

Decode fields
M S type o1 o0

Instruction Details Architecture Version

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 0 0 FMADD — single-precision -

0 0 00 0 1 FMSUB — single-precision -

0 0 00 1 0 FNMADD — single-precision -

0 0 00 1 1 FNMSUB — single-precision -

0 0 01 0 0 FMADD — double-precision -

0 0 01 0 1 FMSUB — double-precision -

0 0 01 1 0 FNMADD — double-precision -

0 0 01 1 1 FNMSUB — double-precision -

0 0 11 0 0 FMADD — half-precision ARMv8.2

0 0 11 0 1 FMSUB — half-precision ARMv8.2

0 0 11 1 0 FNMADD — half-precision ARMv8.2

0 0 11 1 1 FNMSUB — half-precision ARMv8.2

1 UNALLOCATED -

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Top-level encodings for A64

Page 1321

Shared Pseudocode Functions

This page displays common pseudocode functions shared by many pages.

Pseudocodes

Library pseudocode for aarch32/debug/VCRMatch/AArch32.VCRMatch

// AArch32.VCRMatch()
// ==================

boolean AArch32.VCRMatch(bits(32) vaddress)

if UsingAArch32() && ELUsingAArch32(EL1) && IsZero(vaddress<1:0>) && PSTATE.EL != EL2 then
// Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
match_word = Zeros(32);

if vaddress<31:5> == ExcVectorBase()<31:5> then
if HaveEL(EL3) && !IsSecure() then

match_word<UInt(vaddress<4:2>) + 24> = '1'; // Non-secure vectors
else

match_word<UInt(vaddress<4:2>) + 0> = '1'; // Secure vectors (or no EL3)

if HaveEL(EL3) && ELUsingAArch32(EL3) && IsSecure() && vaddress<31:5> == MVBAR<31:5> then
match_word<UInt(vaddress<4:2>) + 8> = '1'; // Monitor vectors

// Mask out bits not corresponding to vectors.
if !HaveEL(EL3) then

mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0
elsif !ELUsingAArch32(EL3) then

mask = '11011110':'00000000':'00000000':'11011110'; // DBGVCR[15:8] are RES0
else

mask = '11011110':'00000000':'11011100':'11011110';

match_word = match_word AND DBGVCR AND mask;
match = !IsZero(match_word);

// Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
if !IsZero(match_word<28:27,12:11,4:3>) && DebugTarget() == PSTATE.EL then

match = ConstrainUnpredictableBool(Unpredictable_VCMATCHDAPA);
else

match = FALSE;

return match;

Library pseudocode for aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled

// AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// ==

boolean AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled returns
// the state of the (DBGEN AND SPIDEN) signal.
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return DBGEN == HIGH && SPIDEN == HIGH;

Shared Pseudocode Functions Page 1322

Library pseudocode for aarch32/debug/breakpoint/AArch32.BreakpointMatch

// AArch32.BreakpointMatch()
// =========================
// Breakpoint matching in an AArch32 translation regime.

(boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(DBGDIDR.BRPs);

enabled = DBGBCR[n].E == '1';
ispriv = PSTATE.EL != EL0;
linked = DBGBCR[n].BT == '0x01';
isbreakpnt = TRUE;
linked_to = FALSE;

state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
linked, DBGBCR[n].LBN, isbreakpnt, ispriv);

(value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

if size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
(match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);
if !value_match && match_i then

value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);
if value_mismatch && !mismatch_i then

value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);

if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then
// The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
// UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
// at the address DBGBVR[n]+2.
if value_match then value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);
if !value_mismatch then value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);

match = value_match && state_match && enabled;
mismatch = value_mismatch && state_match && enabled;

return (match, mismatch);

Shared Pseudocode Functions Page 1323

Library pseudocode for aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

Shared Pseudocode Functions Page 1324

// AArch32.BreakpointValueMatch()
// ==============================
// The first result is whether an Address Match or Context breakpoint is programmed on the
// instruction at "address". The second result is whether an Address Mismatch breakpoint is
// programmed on the instruction, that is, whether the instruction should be stepped.

(boolean,boolean) AArch32.BreakpointValueMatch(integer n, bits(32) vaddress, boolean linked_to)

// "n" is the identity of the breakpoint unit to match against
// "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
// matching breakpoints.
// "linked_to" is TRUE if this is a call from StateMatch for linking.

// If a non-existant breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
// no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n > UInt(DBGDIDR.BRPs) then

(c, n) = ConstrainUnpredictableInteger(0, UInt(DBGDIDR.BRPs), Unpredictable_BPNOTIMPL);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return (FALSE,FALSE);

// If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
// call from StateMatch for linking.)
if DBGBCR[n].E == '0' then return (FALSE,FALSE);

context_aware = (n >= UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));

// If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
type = DBGBCR[n].BT;

if ((type IN {'011x','11xx'} && !HaveVirtHostExt()) || // Context matching
(type == '010x' && HaltOnBreakpointOrWatchpoint()) || // Address mismatch
(type != '0x0x' && !context_aware) || // Context matching
(type == '1xxx' && !HaveEL(EL2))) then // EL2 extension

(c, type) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return (FALSE,FALSE);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

// Determine what to compare against.
match_addr = (type == '0x0x');
mismatch = (type == '010x');
match_vmid = (type == '10xx');
match_cid1 = (type == 'xx1x');
match_cid2 = (type == '11xx');
linked = (type == 'xxx1');

// If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
// VMID and/or context ID match, of if not context-aware. The above assertions mean that the
// code can just test for match_addr == TRUE to confirm all these things.
if linked_to && (!linked || match_addr) then return (FALSE,FALSE);

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !linked_to && linked && !match_addr then return (FALSE,FALSE);

// Do the comparison.
if match_addr then

byte = UInt(vaddress<1:0>);
assert byte IN {0,2}; // "vaddress" is halfword aligned.
byte_select_match = (DBGBCR[n].BAS<byte> == '1');
BVR_match = vaddress<31:2> == DBGBVR[n]<31:2> && byte_select_match;

elsif match_cid1 then
BVR_match = (PSTATE.EL != EL2 && CONTEXTIDR == DBGBVR[n]<31:0>);

if match_vmid then
if ELUsingAArch32(EL2) then

vmid = ZeroExtend(VTTBR.VMID, 16);
bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);

elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);

else

Shared Pseudocode Functions Page 1325

vmid = VTTBR_EL2.VMID;
bvr_vmid = DBGBXVR[n]<15:0>;

BXVR_match = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
vmid == bvr_vmid);

elsif match_cid2 then
BXVR_match = (!IsSecure() && HaveVirtHostExt() &&

!ELUsingAArch32(EL2) &&
DBGBXVR[n]<31:0> == CONTEXTIDR_EL2);

bvr_match_valid = (match_addr || match_cid1);
bxvr_match_valid = (match_vmid || match_cid2);

match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

return (match && !mismatch, !match && mismatch);

Shared Pseudocode Functions Page 1326

Library pseudocode for aarch32/debug/breakpoint/AArch32.StateMatch

// AArch32.StateMatch()
// ====================
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch32.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
boolean isbreakpnt, boolean ispriv)

// "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
// "linked" is TRUE if this is a linked breakpoint/watchpoint type.
// "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

// If parameters are set to a reserved type, behaves as either disabled or a defined type
if ((HMC:SSC:PxC) IN {'011xx','100x0','101x0','11010','11101','1111x'} || // Reserved

(HMC == '0' && PxC == '00' && !isbreakpnt) || // Usr/Svc/Sys
(SSC IN {'01','10'} && !HaveEL(EL3)) || // No EL3
(HMC:SSC:PxC == '11000' && ELUsingAArch32(EL3)) || // AArch64 only
(HMC:SSC != '000' && HMC:SSC != '111' && !HaveEL(EL3) && !HaveEL(EL2)) || // No EL3/EL2
(HMC:SSC:PxC == '11100' && !HaveEL(EL2))) then // No EL2

(c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits(Unpredictable_RESBPWPCTRL);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return FALSE;
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

PL2_match = HaveEL(EL2) && HMC == '1';
PL1_match = PxC<0> == '1';
PL0_match = PxC<1> == '1';
SSU_match = isbreakpnt && HMC == '0' && PxC == '00' && SSC != '11';

if !ispriv && !isbreakpnt then
priv_match = PL0_match;

elsif SSU_match then
priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};

else
case PSTATE.EL of

when EL3 priv_match = PL1_match; // EL3 and EL1 are both PL1
when EL2 priv_match = PL2_match;
when EL1 priv_match = PL1_match;
when EL0 priv_match = PL0_match;

case SSC of
when '00' security_state_match = TRUE; // Both
when '01' security_state_match = !IsSecure(); // Non-secure only
when '10' security_state_match = IsSecure(); // Secure only
when '11' security_state_match = TRUE; // Both

if linked then
// "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
// it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
// UNKNOWN breakpoint that is context-aware.
lbn = UInt(LBN);
first_ctx_cmp = (UInt(DBGDIDR.BRPs) - UInt(DBGDIDR.CTX_CMPs));
last_ctx_cmp = UInt(DBGDIDR.BRPs);
if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then

(c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp, Unpredictable_BPNOTCTXCMP);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE linked = FALSE; // No linking
// Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

if linked then
vaddress = bits(32) UNKNOWN;
linked_to = TRUE;
(linked_match,-) = AArch32.BreakpointValueMatch(lbn, vaddress, linked_to);

return priv_match && security_state_match && (!linked || linked_match);

Shared Pseudocode Functions Page 1327

Library pseudocode for aarch32/debug/enables/AArch32.GenerateDebugExceptions

// AArch32.GenerateDebugExceptions()
// =================================

boolean AArch32.GenerateDebugExceptions()
return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure());

Library pseudocode for aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

// AArch32.GenerateDebugExceptionsFrom()
// =====================================

boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from, boolean secure)

if from == EL0 && !ELStateUsingAArch32(EL1, secure) then
mask = bit UNKNOWN; // PSTATE.D mask, unused for EL0 case
return AArch64.GenerateDebugExceptionsFrom(from, secure, mask);

if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
return FALSE;

if HaveEL(EL3) && secure then
spd = (if ELUsingAArch32(EL3) then SDCR.SPD else MDCR_EL3.SPD32);
if spd<1> == '1' then

enabled = spd<0> == '1';
else

// SPD == 0b01 is reserved, but behaves the same as 0b00.
enabled = AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled();

if from == EL0 then enabled = enabled || SDER.SUIDEN == '1';
else

enabled = from != EL2;

return enabled;

Library pseudocode for aarch32/debug/pmu/AArch32.CheckForPMUOverflow

// AArch32.CheckForPMUOverflow()
// =============================
// Signal Performance Monitors overflow IRQ and CTI overflow events

boolean AArch32.CheckForPMUOverflow()

if !ELUsingAArch32(EL1) then return AArch64.CheckForPMUOverflow();
pmuirq = (PMCR.E == '1' && PMINTENSET<31> == '1' && PMOVSSET<31> == '1');
for n = 0 to UInt(PMCR.N) - 1

if HaveEL(EL2) then
hpmn = (if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN);
hpme = (if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME);
E = (if n < UInt(hpmn) then PMCR.E else hpme);

else
E = PMCR.E;

if E == '1' && PMINTENSET<n> == '1' && PMOVSSET<n> == '1' then pmuirq = TRUE;

SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

// The request remains set until the condition is cleared. (For example, an interrupt handler
// or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

return pmuirq;

Shared Pseudocode Functions Page 1328

Library pseudocode for aarch32/debug/pmu/AArch32.CountEvents

// AArch32.CountEvents()
// =====================
// Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

boolean AArch32.CountEvents(integer n)
assert (n == 31 || n < UInt(PMCR.N));

if !ELUsingAArch32(EL1) then return AArch64.CountEvents(n);
// Event counting is disabled in Debug state
debug = Halted();

// In Non-secure state, some counters are reserved for EL2
if HaveEL(EL2) then

hpmn = (if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN);
hpme = (if !ELUsingAArch32(EL2) then MDCR_EL2.HPME else HDCR.HPME);
E = (if n < UInt(hpmn) || n == 31 then PMCR.E else hpme);

else
E = PMCR.E;

enabled = (E == '1' && PMCNTENSET<n> == '1');

if !IsSecure() then
// Event counting in Non-secure state is allowed unless all of:
// * EL2 and the HPMD Extension are implemented
// * Executing at EL2
// * PMNx is not reserved for EL2
// * HDCR.HPMD == 1
if HaveHPMDExt() && PSTATE.EL == EL2 && (n < UInt(hpmn) || n == 31) then

hpmd = (if !ELUsingAArch32(EL2) then MDCR_EL2.HPMD else HDCR.HPMD);
prohibited = (hpmd == '1');

else
prohibited = FALSE;

else
// Event counting in Secure state is prohibited unless any one of:
// * EL3 is not implemented
// * EL3 is using AArch64 and MDCR_EL3.SPME == 1
// * EL3 is using AArch32 and SDCR.SPME == 1
// * Executing at EL0, and SDER.SUNIDEN == 1.
spme = (if ELUsingAArch32(EL3) then SDCR.SPME else MDCR_EL3.SPME);
prohibited = (HaveEL(EL3) && spme == '0' && (PSTATE.EL != EL0 || SDER.SUNIDEN == '0'));

// The IMPLEMENTATION DEFINED authentication interface might override software controls
if ExternalSecureNoninvasiveDebugEnabled() then prohibited = FALSE;

// For the cycle counter, PMCR.DP enables counting when otherwise prohibited
if prohibited && n == 31 then prohibited = (PMCR.DP == '1');

// Event counting can be filtered by the {P, U, NSK, NSU, NSH} bits
filter = (if n == 31 then PMCCFILTR else PMEVTYPER[n]);

P = filter<31>;
U = filter<30>;
NSK = (if HaveEL(EL3) then filter<29> else '0');
NSU = (if HaveEL(EL3) then filter<28> else '0');
NSH = (if HaveEL(EL2) then filter<27> else '0');

case PSTATE.EL of
when EL0 filtered = (if IsSecure() then U == '1' else U != NSU);
when EL1 filtered = (if IsSecure() then P == '1' else P != NSK);
when EL2 filtered = (NSH == '0');
when EL3 filtered = (P == '1');

return !debug && enabled && !prohibited && !filtered;

Shared Pseudocode Functions Page 1329

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

// AArch32.EnterHypModeInDebugState()
// ==================================
// Take an exception in Debug state to Hyp mode.

AArch32.EnterHypModeInDebugState(ExceptionRecord exception)
SynchronizeContext();
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

AArch32.ReportHypEntry(exception);
AArch32.WriteMode(M32_Hyp);
SPSR[] = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
PSTATE.E = HSCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
EDSCR.ERR = '1';
UpdateEDSCRFields();

EndOfInstruction();

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

// AArch32.EnterModeInDebugState()
// ===============================
// Take an exception in Debug state to a mode other than Monitor and Hyp mode.

AArch32.EnterModeInDebugState(bits(5) target_mode)
SynchronizeContext();
assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(target_mode);
SPSR[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() && SCTLR.SPAN == '0' then

PSTATE.PAN = '1';
EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

EndOfInstruction();

Shared Pseudocode Functions Page 1330

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState

// AArch32.EnterMonitorModeInDebugState()
// ======================================
// Take an exception in Debug state to Monitor mode.

AArch32.EnterMonitorModeInDebugState()
SynchronizeContext();
assert HaveEL(EL3) && ELUsingAArch32(EL3);
from_secure = IsSecure();
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
SPSR[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

EndOfInstruction();

Shared Pseudocode Functions Page 1331

Library pseudocode for aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

// AArch32.WatchpointByteMatch()
// =============================

boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)

bottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR[n].MASK);

// If DBGWCR[n].MASK is non-zero value and DBGWCR[n].BAS is not set to '11111111', or
// DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR[n].BAS) then

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
else

LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then

(c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

if mask > bottom then
WVR_match = (vaddress<31:mask> == DBGWVR[n]<31:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR[n]<mask-1:bottom>) then

WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);
else

WVR_match = vaddress<31:bottom> == DBGWVR[n]<31:bottom>;

return WVR_match && byte_select_match;

Library pseudocode for aarch32/debug/watchpoint/AArch32.WatchpointMatch

// AArch32.WatchpointMatch()
// =========================
// Watchpoint matching in an AArch32 translation regime.

boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size, boolean ispriv,
boolean iswrite)

assert ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(DBGDIDR.WRPs);

// "ispriv" is FALSE for LDRT/STRT instructions executed at EL1 and all
// load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
// loads.
enabled = DBGWCR[n].E == '1';
linked = DBGWCR[n].WT == '1';
isbreakpnt = FALSE;

state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC,
linked, DBGWCR[n].LBN, isbreakpnt, ispriv);

ls_match = (DBGWCR[n].LSC<(if iswrite then 1 else 0)> == '1');

value_match = FALSE;
for byte = 0 to size - 1

value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);

return value_match && state_match && ls_match && enabled;

Shared Pseudocode Functions Page 1332

Library pseudocode for aarch32/exceptions/aborts/AArch32.Abort

// AArch32.Abort()
// ===============
// Abort and Debug exception handling in an AArch32 translation regime.

AArch32.Abort(bits(32) vaddress, FaultRecord fault)

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||

(HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && MDCR_EL2.TDE == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_EL3.EA == '1' && IsExternalAbort(fault);

if route_to_aarch64 then
AArch64.Abort(ZeroExtend(vaddress), fault);

elsif fault.acctype == AccType_IFETCH then
AArch32.TakePrefetchAbortException(vaddress, fault);

else
AArch32.TakeDataAbortException(vaddress, fault);

Library pseudocode for aarch32/exceptions/aborts/AArch32.AbortSyndrome

// AArch32.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort exceptions taken to Hyp mode
// from an AArch32 translation regime.

ExceptionRecord AArch32.AbortSyndrome(Exception type, FaultRecord fault, bits(32) vaddress)

exception = ExceptionSyndrome(type);

d_side = type == Exception_DataAbort;

exception.syndrome = AArch32.FaultSyndrome(d_side, fault);
exception.vaddress = ZeroExtend(vaddress);
if IPAValid(fault) then

exception.ipavalid = TRUE;
exception.ipaddress = ZeroExtend(fault.ipaddress);

else
exception.ipavalid = FALSE;

return exception;

Library pseudocode for aarch32/exceptions/aborts/AArch32.CheckPCAlignment

// AArch32.CheckPCAlignment()
// ==========================

AArch32.CheckPCAlignment()

bits(32) pc = ThisInstrAddr();
if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then

if AArch32.GeneralExceptionsToAArch64() then AArch64.PCAlignmentFault();

// Generate an Alignment fault Prefetch Abort exception
vaddress = pc;
acctype = AccType_IFETCH;
iswrite = FALSE;
secondstage = FALSE;
AArch32.Abort(vaddress, AArch32.AlignmentFault(acctype, iswrite, secondstage));

Shared Pseudocode Functions Page 1333

Library pseudocode for aarch32/exceptions/aborts/AArch32.ReportDataAbort

// AArch32.ReportDataAbort()
// =========================
// Report syndrome information for aborts taken to modes other than Hyp mode.

AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)

// The encoding used in the IFSR or DFSR can be Long-descriptor format or Short-descriptor
// format. Normally, the current translation table format determines the format. For an abort
// from Non-secure state to Monitor mode, the IFSR or DFSR uses the Long-descriptor format if
// any of the following applies:
// * The Secure TTBCR.EAE is set to 1.
// * The abort is synchronous and either:
// - It is taken from Hyp mode.
// - It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
long_format = FALSE;
if route_to_monitor && !IsSecure() then

long_format = TTBCR_S.EAE == '1';
if !IsSErrorInterrupt(fault) && !long_format then

long_format = PSTATE.EL == EL2 || TTBCR.EAE == '1';
else

long_format = TTBCR.EAE == '1';
d_side = TRUE;
if long_format then

syndrome = AArch32.FaultStatusLD(d_side, fault);
else

syndrome = AArch32.FaultStatusSD(d_side, fault);

if fault.acctype == AccType_IC then
if (!long_format &&

boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
i_syndrome = syndrome;
syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);

else
i_syndrome = bits(32) UNKNOWN;

if route_to_monitor then
IFSR_S = i_syndrome;

else
IFSR = i_syndrome;

if route_to_monitor then
DFSR_S = syndrome;
DFAR_S = vaddress;

else
DFSR = syndrome;
DFAR = vaddress;

return;

Shared Pseudocode Functions Page 1334

Library pseudocode for aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

// AArch32.ReportPrefetchAbort()
// =============================
// Report syndrome information for aborts taken to modes other than Hyp mode.

AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
// The encoding used in the IFSR can be Long-descriptor format or Short-descriptor format.
// Normally, the current translation table format determines the format. For an abort from
// Non-secure state to Monitor mode, the IFSR uses the Long-descriptor format if any of the
// following applies:
// * The Secure TTBCR.EAE is set to 1.
// * It is taken from Hyp mode.
// * It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
long_format = FALSE;
if route_to_monitor && !IsSecure() then

long_format = TTBCR_S.EAE == '1' || PSTATE.EL == EL2 || TTBCR.EAE == '1';
else

long_format = TTBCR.EAE == '1';

d_side = FALSE;
if long_format then

fsr = AArch32.FaultStatusLD(d_side, fault);
else

fsr = AArch32.FaultStatusSD(d_side, fault);

if route_to_monitor then
IFSR_S = fsr;
IFAR_S = vaddress;

else
IFSR = fsr;
IFAR = vaddress;

return;

Library pseudocode for aarch32/exceptions/aborts/AArch32.TakeDataAbortException

// AArch32.TakeDataAbortException()
// ================================

AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR.TGE == '1' || IsSecondStage(fault) ||
(HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && HDCR.TDE == '1')));

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;

if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
if route_to_monitor then

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

elsif PSTATE.EL == EL2 || route_to_hyp then
exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1335

Library pseudocode for aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

// AArch32.TakePrefetchAbortException()
// ====================================

AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && SCR.EA == '1' && IsExternalAbort(fault);
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR.TGE == '1' || IsSecondStage(fault) ||
(HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && HDCR.TDE == '1')));

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0C;
lr_offset = 4;

if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
if route_to_monitor then

AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

elsif PSTATE.EL == EL2 || route_to_hyp then
if fault.type == Fault_Alignment then // PC Alignment fault

exception = ExceptionSyndrome(Exception_PCAlignment);
exception.vaddress = ThisInstrAddr();

else
exception = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

else
AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/asynch/AArch32.TakePhysicalFIQException

// AArch32.TakePhysicalFIQException()
// ==================================

AArch32.TakePhysicalFIQException()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.FMO == '1' && !IsInHost());

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_EL3.FIQ == '1';

if route_to_aarch64 then AArch64.TakePhysicalFIQException();
route_to_monitor = HaveEL(EL3) && SCR.FIQ == '1';
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR.TGE == '1' || HCR.FMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x1C;
lr_offset = 4;
if route_to_monitor then

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then

exception = ExceptionSyndrome(Exception_FIQ);
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1336

Library pseudocode for aarch32/exceptions/asynch/AArch32.TakePhysicalIRQException

// AArch32.TakePhysicalIRQException()
// ==================================
// Take an enabled physical IRQ exception.

AArch32.TakePhysicalIRQException()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.IMO == '1' && !IsInHost());
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then

route_to_aarch64 = SCR_EL3.IRQ == '1';

if route_to_aarch64 then AArch64.TakePhysicalIRQException();

route_to_monitor = HaveEL(EL3) && SCR.IRQ == '1';
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR.TGE == '1' || HCR.IMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x18;
lr_offset = 4;
if route_to_monitor then

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then

exception = ExceptionSyndrome(Exception_IRQ);
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1337

Library pseudocode for aarch32/exceptions/asynch/AArch32.TakePhysicalSErrorException

// AArch32.TakePhysicalSErrorException()
// =====================================

AArch32.TakePhysicalSErrorException(boolean parity, bit extflag, bits(2) errortype,
boolean impdef_syndrome, bits(24) full_syndrome)

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
route_to_aarch64 = (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_EL3.EA == '1';

if route_to_aarch64 then
AArch64.TakePhysicalSErrorException(impdef_syndrome, full_syndrome);

route_to_monitor = HaveEL(EL3) && SCR.EA == '1';
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR.TGE == '1' || HCR.AMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;

fault = AArch32.AsynchExternalAbort(parity, errortype, extflag);
vaddress = bits(32) UNKNOWN;
if route_to_monitor then

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

elsif PSTATE.EL == EL2 || route_to_hyp then
exception = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/asynch/AArch32.TakeVirtualFIQException

// AArch32.TakeVirtualFIQException()
// =================================

AArch32.TakeVirtualFIQException()
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
if ELUsingAArch32(EL2) then // Virtual IRQ enabled if TGE==0 and FMO==1

assert HCR.TGE == '0' && HCR.FMO == '1';
else

assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1';
// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualFIQException();

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x1C;
lr_offset = 4;

AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1338

Library pseudocode for aarch32/exceptions/asynch/AArch32.TakeVirtualIRQException

// AArch32.TakeVirtualIRQException()
// =================================

AArch32.TakeVirtualIRQException()
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};

if ELUsingAArch32(EL2) then // Virtual IRQs enabled if TGE==0 and IMO==1
assert HCR.TGE == '0' && HCR.IMO == '1';

else
assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1';

// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualIRQException();

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x18;
lr_offset = 4;

AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/asynch/AArch32.TakeVirtualSErrorException

// AArch32.TakeVirtualSErrorException()
// ====================================

AArch32.TakeVirtualSErrorException(bit extflag, bits(2) errortype, boolean impdef_syndrome, bits(24) full_syndrome)

assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
if ELUsingAArch32(EL2) then // Virtual SError enabled if TGE==0 and AMO==1

assert HCR.TGE == '0' && HCR.AMO == '1';
else

assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualSErrorException(impdef_syndrome, full_syndrome);

route_to_monitor = FALSE;

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x10;
lr_offset = 8;

vaddress = bits(32) UNKNOWN;
parity = FALSE;
fault = AArch32.AsynchExternalAbort(parity, errortype, extflag);
if ELUsingAArch32(EL2) then HCR.VA = '0'; else HCR_EL2.VSE = '0';
AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

// AArch32.SoftwareBreakpoint()
// ============================

AArch32.SoftwareBreakpoint(bits(16) immediate)

if (HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1')) || !ELUsingAArch32(EL1) then
AArch64.SoftwareBreakpoint(immediate);

vaddress = bits(32) UNKNOWN;
acctype = AccType_IFETCH; // Take as a Prefetch Abort
iswrite = FALSE;
entry = DebugException_BKPT;

fault = AArch32.DebugFault(acctype, iswrite, entry);
AArch32.Abort(vaddress, fault);

Shared Pseudocode Functions Page 1339

Library pseudocode for aarch32/exceptions/debug/DebugException

constant bits(4) DebugException_Breakpoint = '0001';
constant bits(4) DebugException_BKPT = '0011';
constant bits(4) DebugException_VectorCatch = '0101';
constant bits(4) DebugException_Watchpoint = '1010';

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ExceptionClass

// AArch32.ExceptionClass()
// ========================
// Return the Exception Class and Instruction Length fields for reported in HSR

(integer,bit) AArch32.ExceptionClass(Exception type)

il = if ThisInstrLength() == 32 then '1' else '0';

case type of
when Exception_Uncategorized ec = 0x00; il = '1';
when Exception_WFxTrap ec = 0x01;
when Exception_CP15RTTrap ec = 0x03;
when Exception_CP15RRTTrap ec = 0x04;
when Exception_CP14RTTrap ec = 0x05;
when Exception_CP14DTTrap ec = 0x06;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;
when Exception_FPIDTrap ec = 0x08;
when Exception_CP14RRTTrap ec = 0x0C;
when Exception_IllegalState ec = 0x0E; il = '1';
when Exception_SupervisorCall ec = 0x11;
when Exception_HypervisorCall ec = 0x12;
when Exception_MonitorCall ec = 0x13;
when Exception_InstructionAbort ec = 0x20; il = '1';
when Exception_PCAlignment ec = 0x22; il = '1';
when Exception_DataAbort ec = 0x24;
when Exception_FPTrappedException ec = 0x28;
otherwise Unreachable();

if ec IN {0x20,0x24} && PSTATE.EL == EL2 then
ec = ec + 1;

return (ec,il);

Library pseudocode for aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64

// AArch32.GeneralExceptionsToAArch64()
// ====================================
// Returns TRUE if exceptions normally routed to EL1 are being handled at an Exception
// level using AArch64, because either EL1 is using AArch64 or TGE is in force and EL2
// is using AArch64.

boolean AArch32.GeneralExceptionsToAArch64()
return ((PSTATE.EL == EL0 && !ELUsingAArch32(EL1)) ||

(HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1'));

Shared Pseudocode Functions Page 1340

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ReportHypEntry

// AArch32.ReportHypEntry()
// ========================
// Report syndrome information to Hyp mode registers.

AArch32.ReportHypEntry(ExceptionRecord exception)

Exception type = exception.type;

(ec,il) = AArch32.ExceptionClass(type);
iss = exception.syndrome;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then

il = '1';

HSR = ec<5:0>:il:iss;

if type IN {Exception_InstructionAbort, Exception_PCAlignment} then
HIFAR = exception.vaddress<31:0>;
HDFAR = bits(32) UNKNOWN;

elsif type == Exception_DataAbort then
HIFAR = bits(32) UNKNOWN;
HDFAR = exception.vaddress<31:0>;

if exception.ipavalid then
HPFAR<31:4> = exception.ipaddress<39:12>;

else
HPFAR<31:4> = bits(28) UNKNOWN;

return;

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.
AArch32.ResetControlRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 1341

Library pseudocode for aarch32/exceptions/exceptions/AArch32.TakeReset

// AArch32.TakeReset()
// ===================
// Reset into AArch32 state

AArch32.TakeReset(boolean cold_reset)
assert HighestELUsingAArch32();

// Enter the highest implemented Exception level in AArch32 state
if HaveEL(EL3) then

AArch32.WriteMode(M32_Svc);
SCR.NS = '0'; // Secure state

elsif HaveEL(EL2) then
AArch32.WriteMode(M32_Hyp);

else
AArch32.WriteMode(M32_Svc);

// Reset the CP14 and CP15 registers and other system components
AArch32.ResetControlRegisters(cold_reset);
FPEXC.EN = '0';

// Reset all other PSTATE fields, including instruction set and endianness according to the
// SCTLR values produced by the above call to ResetControlRegisters()
PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
PSTATE.IT = '00000000'; // IT block state reset
PSTATE.T = SCTLR.TE; // Instruction set: TE=0: A32, TE=1: T32. PSTATE.J is RES0.
PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian
PSTATE.IL = '0'; // Clear Illegal Execution state bit

// All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
// below are UNKNOWN bitstrings after reset. In particular, the return information registers
// R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
// is impossible to return from a reset in an architecturally defined way.
AArch32.ResetGeneralRegisters();
AArch32.ResetSIMDFPRegisters();
AArch32.ResetSpecialRegisters();
ResetExternalDebugRegisters(cold_reset);

bits(32) rv; // IMPLEMENTATION DEFINED reset vector

if HaveEL(EL3) then
if MVBAR<0> == '1' then // Reset vector in MVBAR

rv = MVBAR<31:1>:'0';
else

rv = bits(32) IMPLEMENTATION_DEFINED "reset vector address";
else

rv = RVBAR<31:1>:'0';
// The reset vector must be correctly aligned
assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');

BranchTo(rv, BranchType_UNKNOWN);

Library pseudocode for aarch32/exceptions/exceptions/ExcVectorBase

// ExcVectorBase()
// ===============

bits(32) ExcVectorBase()
if SCTLR.V == '1' then // Hivecs selected, base = 0xFFFF0000

return Ones(16):Zeros(16);
else

return VBAR<31:5>:Zeros(5);

Shared Pseudocode Functions Page 1342

Library pseudocode for aarch32/exceptions/ieeefp/AArch32.FPTrappedException

// AArch32.FPTrappedException()
// ============================

AArch32.FPTrappedException(bits(8) accumulated_exceptions)
if AArch32.GeneralExceptionsToAArch64() then

is_ase = FALSE;
element = 0;
AArch64.FPTrappedException(is_ase, element, accumulated_exceptions);

FPEXC.DEX = '1';
FPEXC.TFV = '1';
FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF

AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/exceptions/syscalls/AArch32.CallHypervisor

// AArch32.CallHypervisor()
// ========================
// Performs a HVC call

AArch32.CallHypervisor(bits(16) immediate)
assert HaveEL(EL2);

if !ELUsingAArch32(EL2) then
AArch64.CallHypervisor(immediate);

else
AArch32.TakeHVCException(immediate);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.CallSupervisor

// AArch32.CallSupervisor()
// ========================
// Calls the Supervisor

AArch32.CallSupervisor(bits(16) immediate)

if AArch32.CurrentCond() != '1110' then
immediate = bits(16) UNKNOWN;

if AArch32.GeneralExceptionsToAArch64() then
AArch64.CallSupervisor(immediate);

else
AArch32.TakeSVCException(immediate);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeHVCException

// AArch32.TakeHVCException()
// ==========================

AArch32.TakeHVCException(bits(16) immediate)
assert HaveEL(EL2) && ELUsingAArch32(EL2);

AArch32.ITAdvance();
SSAdvance();
bits(32) preferred_exception_return = NextInstrAddr();
vect_offset = 0x08;

exception = ExceptionSyndrome(Exception_HypervisorCall);
exception.syndrome<15:0> = immediate;

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

else
AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

Shared Pseudocode Functions Page 1343

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeSMCException

// AArch32.TakeSMCException()
// ==========================

AArch32.TakeSMCException()
assert HaveEL(EL3) && ELUsingAArch32(EL3);

AArch32.ITAdvance();
SSAdvance();

bits(32) preferred_exception_return = NextInstrAddr();
vect_offset = 0x08;
lr_offset = 0;

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeSVCException

// AArch32.TakeSVCException()
// ==========================

AArch32.TakeSVCException(bits(16) immediate)

AArch32.ITAdvance();
SSAdvance();
route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

bits(32) preferred_exception_return = NextInstrAddr();
vect_offset = 0x08;
lr_offset = 0;

if PSTATE.EL == EL2 || route_to_hyp then
exception = ExceptionSyndrome(Exception_SupervisorCall);
exception.syndrome<15:0> = immediate;
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else

AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1344

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterHypMode

// AArch32.EnterHypMode()
// ======================
// Take an exception to Hyp mode.

AArch32.EnterHypMode(ExceptionRecord exception, bits(32) preferred_exception_return,
integer vect_offset)

SynchronizeContext();
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

spsr = GetPSRFromPSTATE();
if !(exception.type IN {Exception_IRQ, Exception_FIQ}) then

AArch32.ReportHypEntry(exception);
AArch32.WriteMode(M32_Hyp);
SPSR[] = spsr;
ELR_hyp = preferred_exception_return;
PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
if !HaveEL(EL3) || SCR_GEN[].EA == '0' then PSTATE.A = '1';
if !HaveEL(EL3) || SCR_GEN[].IRQ == '0' then PSTATE.I = '1';
if !HaveEL(EL3) || SCR_GEN[].FIQ == '0' then PSTATE.F = '1';
PSTATE.E = HSCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
BranchTo(HVBAR<31:5>:vect_offset<4:0>, BranchType_UNKNOWN);

EndOfInstruction();

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterMode

// AArch32.EnterMode()
// ===================
// Take an exception to a mode other than Monitor and Hyp mode.

AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
integer vect_offset)

SynchronizeContext();
assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

spsr = GetPSRFromPSTATE();
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(target_mode);
SPSR[] = spsr;
R[14] = preferred_exception_return + lr_offset;
PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
if target_mode == M32_FIQ then

PSTATE.<A,I,F> = '111';
elsif target_mode IN {M32_Abort, M32_IRQ} then

PSTATE.<A,I> = '11';
else

PSTATE.I = '1';
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() && SCTLR.SPAN == '0' then

PSTATE.PAN = '1';
BranchTo(ExcVectorBase()<31:5>:vect_offset<4:0>, BranchType_UNKNOWN);

EndOfInstruction();

Shared Pseudocode Functions Page 1345

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterMonitorMode

// AArch32.EnterMonitorMode()
// ==========================
// Take an exception to Monitor mode.

AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
integer vect_offset)

SynchronizeContext();
assert HaveEL(EL3) && ELUsingAArch32(EL3);
from_secure = IsSecure();
spsr = GetPSRFromPSTATE();
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
SPSR[] = spsr;
R[14] = preferred_exception_return + lr_offset;
PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
PSTATE.<A,I,F> = '111';
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

BranchTo(MVBAR<31:5>:vect_offset<4:0>, BranchType_UNKNOWN);

EndOfInstruction();

Library pseudocode for aarch32/exceptions/traps/AArch32.AArch32SystemAccessTrap

// AArch32.AArch32SystemAccessTrap()
// =================================
// Trapped AArch32 System register access other than due to CPTR_EL2 or CPACR_EL1.

AArch32.AArch32SystemAccessTrap(bits(2) target_el, bits(32) instr)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

if !ELUsingAArch32(target_el) || AArch32.GeneralExceptionsToAArch64() then
AArch64.AArch32SystemAccessTrap(target_el, instr);

assert target_el IN {EL1,EL2};

if target_el == EL2 then
exception = AArch32.AArch32SystemAccessTrapSyndrome(instr);
AArch32.TakeHypTrapException(exception);

else
AArch32.TakeUndefInstrException();

Shared Pseudocode Functions Page 1346

Library pseudocode for aarch32/exceptions/traps/AArch32.AArch32SystemAccessTrapSyndrome

// AArch32.AArch32SystemAccessTrapSyndrome()
// ===
// Return the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS instructions,
// other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch32.AArch32SystemAccessTrapSyndrome(bits(32) instr)

ExceptionRecord exception;
cpnum = UInt(instr<11:8>);

bits(20) iss = Zeros();
if instr<27:24> == '1110' && instr<4> == '1' && instr<31:28> != '1111' then

// MRC/MCR
case cpnum of

when 10 exception = ExceptionSyndrome(Exception_FPIDTrap);
when 14 exception = ExceptionSyndrome(Exception_CP14RTTrap);
when 15 exception = ExceptionSyndrome(Exception_CP15RTTrap);
otherwise Unreachable();

iss<19:17> = instr<7:5>; // opc2
iss<16:14> = instr<23:21>; // opc1
iss<13:10> = instr<19:16>; // CRn
iss<8:5> = instr<15:12>; // Rt
iss<4:1> = instr<3:0>; // CRm

elsif instr<27:21> == '1100010' && instr<31:28> != '1111' then
// MRRC/MCRR
case cpnum of

when 14 exception = ExceptionSyndrome(Exception_CP14RRTTrap);
when 15 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
otherwise Unreachable();

iss<19:16> = instr<7:4>; // opc1
iss<13:10> = instr<19:16>; // Rt2
iss<8:5> = instr<15:12>; // Rt
iss<4:1> = instr<3:0>; // CRm

elsif instr<27:25> == '110' && instr<31:28> != '1111' then
// LDC/STC
assert cpnum == 14;
exception = ExceptionSyndrome(Exception_CP14DTTrap);
iss<19:12> = instr<7:0>; // imm8
iss<4> = instr<23>; // U
iss<2:1> = instr<24,21>; // P,W
if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC

iss<8:5> = bits(4) UNKNOWN;
iss<3> = '1';

else
iss<8:5> = instr<19:16>; // Rn
iss<3> = '0';

else
Unreachable();

iss<0> = instr<20>; // Direction

exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<19:0> = iss;

return exception;

Shared Pseudocode Functions Page 1347

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

// AArch32.CheckAdvSIMDOrFPEnabled()
// =================================
// Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check, boolean advsimd)
if PSTATE.EL == EL0 && (!HaveEL(EL2) || (!ELUsingAArch32(EL2) && HCR_EL2.TGE == '0')) && !ELUsingAArch32(EL1) then

// The PE behaves as if FPEXC.EN is 1
AArch64.CheckFPAdvSIMDEnabled();

elsif PSTATE.EL == EL0 && HaveEL(EL2) && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
if fpexc_check && HCR_EL2.RW == '0' then

fpexc_en = bits(1) IMPLEMENTATION_DEFINED "FPEXC.EN value when TGE==1 and RW==0";
if fpexc_en == '0' then UNDEFINED;

AArch64.CheckFPAdvSIMDEnabled();
else

cpacr_asedis = CPACR.ASEDIS;
cpacr_cp10 = CPACR.cp10;

if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
// Check if access disabled in NSACR
if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
if NSACR.cp10 == '0' then cpacr_cp10 = '00';

if PSTATE.EL != EL2 then
// Check if Advanced SIMD disabled in CPACR
if advsimd && cpacr_asedis == '1' then UNDEFINED;

if cpacr_cp10 == '10' then
(c, cpacr_cp10) = ConstrainUnpredictableBits(Unpredictable_RESCPACR);

// Check if access disabled in CPACR
case cpacr_cp10 of

when '00' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then UNDEFINED;

// If required, check FPEXC enabled bit.
if fpexc_check && FPEXC.EN == '0' then UNDEFINED;

AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3

Shared Pseudocode Functions Page 1348

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap

// AArch32.CheckFPAdvSIMDTrap()
// ============================
// Check against CPTR_EL2 and CPTR_EL3.

AArch32.CheckFPAdvSIMDTrap(boolean advsimd)
if HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then

AArch64.CheckFPAdvSIMDTrap();
else

if HaveEL(EL2) && !IsSecure() then
hcptr_tase = HCPTR.TASE;
hcptr_cp10 = HCPTR.TCP10;

if HaveEL(EL3) && ELUsingAArch32(EL3) && !IsSecure() then
// Check if access disabled in NSACR
if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
if NSACR.cp10 == '0' then hcptr_cp10 = '1';

// Check if access disabled in HCPTR
if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then

exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
exception.syndrome<24:20> = ConditionSyndrome();

if advsimd then
exception.syndrome<5> = '1';

else
exception.syndrome<5> = '0';
exception.syndrome<3:0> = '1010'; // coproc field, always 0xA

if PSTATE.EL == EL2 then
AArch32.TakeUndefInstrException(exception);

else
AArch32.TakeHypTrapException(exception);

if HaveEL(EL3) && !ELUsingAArch32(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

return;

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap

// AArch32.CheckForSMCUndefOrTrap()
// ================================
// Check for UNDEFINED or trap on SMC instruction

AArch32.CheckForSMCUndefOrTrap()

if !HaveEL(EL3) || PSTATE.EL == EL0 then
UNDEFINED;

if HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
AArch64.CheckForSMCUndefOrTrap(Zeros(16));

else
route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR.TSC == '1';
if route_to_hyp then

exception = ExceptionSyndrome(Exception_MonitorCall);
AArch32.TakeHypTrapException(exception);

Shared Pseudocode Functions Page 1349

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForWFxTrap

// AArch32.CheckForWFxTrap()
// =========================
// Check for trap on WFE or WFI instruction

AArch32.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
assert HaveEL(target_el);

// Check for routing to AArch64
if !ELUsingAArch32(target_el) then

AArch64.CheckForWFxTrap(target_el, is_wfe);
return;

case target_el of
when EL1 trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';
when EL2 trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';
when EL3 trap = (if is_wfe then SCR.TWE else SCR.TWI) == '1';

if trap then
if (target_el == EL1 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) &&

HCR_EL2.TGE == '1') then
AArch64.WFxTrap(target_el, is_wfe);

if target_el == EL3 then
AArch32.TakeMonitorTrapException();

elsif target_el == EL2 then
exception = ExceptionSyndrome(Exception_WFxTrap);
exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<0> = if is_wfe then '1' else '0';
AArch32.TakeHypTrapException(exception);

else
AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckITEnabled

// AArch32.CheckITEnabled()
// ========================
// Check whether the T32 IT instruction is disabled.

AArch32.CheckITEnabled(bits(4) mask)

if PSTATE.EL == EL2 then
it_disabled = HSCTLR.ITD;

else
it_disabled = (if ELUsingAArch32(EL1) then SCTLR.ITD else SCTLR[].ITD);

if it_disabled == '1' then
if mask != '1000' then UNDEFINED;

// Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
next_instr = AArch32.MemSingle[NextInstrAddr(), 2, AccType_IFETCH, TRUE];

if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
'01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx111'} then

// It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
// taken on the IT instruction or the next instruction. This is not reflected in
// the pseudocode, which always takes the exception on the IT instruction. This
// also does not take into account cases where the next instruction is UNPREDICTABLE.
UNDEFINED;

return;

Shared Pseudocode Functions Page 1350

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckIllegalState

// AArch32.CheckIllegalState()
// ===========================
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

AArch32.CheckIllegalState()

if AArch32.GeneralExceptionsToAArch64() then
AArch64.CheckIllegalState();

elsif PSTATE.IL == '1' then
route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x04;

if PSTATE.EL == EL2 || route_to_hyp then
exception = ExceptionSyndrome(Exception_IllegalState);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);
else

AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

// AArch32.CheckSETENDEnabled()
// ============================
// Check whether the AArch32 SETEND instruction is disabled.

AArch32.CheckSETENDEnabled()

if PSTATE.EL == EL2 then
setend_disabled = HSCTLR.SED;

else
setend_disabled = (if ELUsingAArch32(EL1) then SCTLR.SED else SCTLR[].SED);

if setend_disabled == '1' then
UNDEFINED;

return;

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeHypTrapException

// AArch32.TakeHypTrapException()
// ==============================
// Exceptions routed to Hyp mode as a Hyp Trap exception.

AArch32.TakeHypTrapException(ExceptionRecord exception)
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2);

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x14;

AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1351

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeMonitorTrapException

// AArch32.TakeMonitorTrapException()
// ==================================
// Exceptions routed to Monitor mode as a Monitor Trap exception.

AArch32.TakeMonitorTrapException()
assert HaveEL(EL3) && ELUsingAArch32(EL3);

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x04;
lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeUndefInstrException

// AArch32.TakeUndefInstrException()
// =================================

AArch32.TakeUndefInstrException()
exception = ExceptionSyndrome(Exception_Uncategorized);
AArch32.TakeUndefInstrException(exception);

// AArch32.TakeUndefInstrException()
// =================================

AArch32.TakeUndefInstrException(ExceptionRecord exception)

route_to_hyp = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR.TGE == '1';

bits(32) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x04;
lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(exception, preferred_exception_return, vect_offset);

elsif route_to_hyp then
AArch32.EnterHypMode(exception, preferred_exception_return, 0x14);

else
AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.UndefinedFault

// AArch32.UndefinedFault()
// ========================

AArch32.UndefinedFault()

if AArch32.GeneralExceptionsToAArch64() then AArch64.UndefinedFault();
AArch32.TakeUndefInstrException();

Shared Pseudocode Functions Page 1352

Library pseudocode for aarch32/functions/aborts/AArch32.CreateFaultRecord

// AArch32.CreateFaultRecord()
// ===========================

FaultRecord AArch32.CreateFaultRecord(Fault type, bits(40) ipaddress, bits(4) domain,
integer level, AccType acctype, boolean write, bit extflag,
bits(4) debugmoe, bits(2) errortype, boolean secondstage, boolean s2fs1walk)

FaultRecord fault;
fault.type = type;
if (type != Fault_None && PSTATE.EL != EL2 && TTBCR.EAE == '0' && !secondstage && !s2fs1walk &&

AArch32.DomainValid(type, level)) then
fault.domain = domain;

else
fault.domain = bits(4) UNKNOWN;

fault.debugmoe = debugmoe;
fault.errortype = errortype;
fault.ipaddress = ZeroExtend(ipaddress);
fault.level = level;
fault.acctype = acctype;
fault.write = write;
fault.extflag = extflag;
fault.secondstage = secondstage;
fault.s2fs1walk = s2fs1walk;

return fault;

Library pseudocode for aarch32/functions/aborts/AArch32.DomainValid

// AArch32.DomainValid()
// =====================
// Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.

boolean AArch32.DomainValid(Fault type, integer level)
assert type != Fault_None;

case type of
when Fault_Domain

return TRUE;
when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk

return level == 2;
otherwise

return FALSE;

Library pseudocode for aarch32/functions/aborts/AArch32.FaultStatusLD

// AArch32.FaultStatusLD()
// =======================
// Creates an exception fault status value for Abort and Watchpoint exceptions taken
// to Abort mode using AArch32 and Long-descriptor format.

bits(32) AArch32.FaultStatusLD(boolean d_side, FaultRecord fault)
assert fault.type != Fault_None;

bits(32) fsr = Zeros();
if HaveRASExt() && IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
if d_side then

if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
fsr<13> = '1'; fsr<11> = '1';

else
fsr<11> = if fault.write then '1' else '0';

if IsExternalAbort(fault) then fsr<12> = fault.extflag;
fsr<9> = '1';
fsr<5:0> = EncodeLDFSC(fault.type, fault.level);

return fsr;

Shared Pseudocode Functions Page 1353

Library pseudocode for aarch32/functions/aborts/AArch32.FaultStatusSD

// AArch32.FaultStatusSD()
// =======================
// Creates an exception fault status value for Abort and Watchpoint exceptions taken
// to Abort mode using AArch32 and Short-descriptor format.

bits(32) AArch32.FaultStatusSD(boolean d_side, FaultRecord fault)
assert fault.type != Fault_None;

bits(32) fsr = Zeros();
if HaveRASExt() && IsAsyncAbort(fault) then fsr<15:14> = fault.errortype;
if d_side then

if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then
fsr<13> = '1'; fsr<11> = '1';

else
fsr<11> = if fault.write then '1' else '0';

if IsExternalAbort(fault) then fsr<12> = fault.extflag;
fsr<9> = '0';
fsr<10,3:0> = EncodeSDFSC(fault.type, fault.level);
if d_side then

fsr<7:4> = fault.domain; // Domain field (data fault only)

return fsr;

Library pseudocode for aarch32/functions/aborts/AArch32.FaultSyndrome

// AArch32.FaultSyndrome()
// =======================
// Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
// AArch32 Hyp mode.

bits(25) AArch32.FaultSyndrome(boolean d_side, FaultRecord fault)
assert fault.type != Fault_None;

bits(25) iss = Zeros();
if HaveRASExt() && IsAsyncAbort(fault) then iss<11:10> = fault.errortype; // AET
if d_side then

if IsSecondStage(fault) && !fault.s2fs1walk then iss<24:14> = LSInstructionSyndrome();
if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then

iss<8> = '1'; iss<6> = '1';
else

iss<6> = if fault.write then '1' else '0';
if IsExternalAbort(fault) then iss<9> = fault.extflag;
iss<7> = if fault.s2fs1walk then '1' else '0';
iss<5:0> = EncodeLDFSC(fault.type, fault.level);

return iss;

Shared Pseudocode Functions Page 1354

Library pseudocode for aarch32/functions/aborts/EncodeSDFSC

// EncodeSDFSC()
// =============
// Function that gives the Short-descriptor FSR code for different types of Fault

bits(5) EncodeSDFSC(Fault type, integer level)

bits(5) result;
case type of

when Fault_AccessFlag
assert level IN {1,2};
result = if level == 1 then '00011' else '00110';

when Fault_Alignment
result = '00001';

when Fault_Permission
assert level IN {1,2};
result = if level == 1 then '01101' else '01111';

when Fault_Domain
assert level IN {1,2};
result = if level == 1 then '01001' else '01011';

when Fault_Translation
assert level IN {1,2};
result = if level == 1 then '00101' else '00111';

when Fault_SyncExternal
result = '01000';

when Fault_SyncExternalOnWalk
assert level IN {1,2};
result = if level == 1 then '01100' else '01110';

when Fault_SyncParity
result = '11001';

when Fault_SyncParityOnWalk
assert level IN {1,2};
result = if level == 1 then '11100' else '11110';

when Fault_AsyncParity
result = '11000';

when Fault_AsyncExternal
result = '10110';

when Fault_Debug
result = '00010';

when Fault_TLBConflict
result = '10000';

when Fault_Lockdown
result = '10100'; // IMPLEMENTATION DEFINED

when Fault_Exclusive
result = '10101'; // IMPLEMENTATION DEFINED

when Fault_ICacheMaint
result = '00100';

otherwise
Unreachable();

return result;

Library pseudocode for aarch32/functions/common/A32ExpandImm

// A32ExpandImm()
// ==============

bits(32) A32ExpandImm(bits(12) imm12)

// PSTATE.C argument to following function call does not affect the imm32 result.
(imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);

return imm32;

Shared Pseudocode Functions Page 1355

Library pseudocode for aarch32/functions/common/A32ExpandImm_C

// A32ExpandImm_C()
// ================

(bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

unrotated_value = ZeroExtend(imm12<7:0>, 32);
(imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

return (imm32, carry_out);

Library pseudocode for aarch32/functions/common/DecodeImmShift

// DecodeImmShift()
// ================

(SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

case type of
when '00'

shift_t = SRType_LSL; shift_n = UInt(imm5);
when '01'

shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
when '10'

shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);
when '11'

if imm5 == '00000' then
shift_t = SRType_RRX; shift_n = 1;

else
shift_t = SRType_ROR; shift_n = UInt(imm5);

return (shift_t, shift_n);

Library pseudocode for aarch32/functions/common/DecodeRegShift

// DecodeRegShift()
// ================

SRType DecodeRegShift(bits(2) type)
case type of

when '00' shift_t = SRType_LSL;
when '01' shift_t = SRType_LSR;
when '10' shift_t = SRType_ASR;
when '11' shift_t = SRType_ROR;

return shift_t;

Library pseudocode for aarch32/functions/common/RRX

// RRX()
// =====

bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;

Library pseudocode for aarch32/functions/common/RRX_C

// RRX_C()
// =======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);

Shared Pseudocode Functions Page 1356

Library pseudocode for aarch32/functions/common/SRType

enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

Library pseudocode for aarch32/functions/common/Shift

// Shift()
// =======

bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
(result, -) = Shift_C(value, type, amount, carry_in);
return result;

Library pseudocode for aarch32/functions/common/Shift_C

// Shift_C()
// =========

(bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
assert !(type == SRType_RRX && amount != 1);

if amount == 0 then
(result, carry_out) = (value, carry_in);

else
case type of

when SRType_LSL
(result, carry_out) = LSL_C(value, amount);

when SRType_LSR
(result, carry_out) = LSR_C(value, amount);

when SRType_ASR
(result, carry_out) = ASR_C(value, amount);

when SRType_ROR
(result, carry_out) = ROR_C(value, amount);

when SRType_RRX
(result, carry_out) = RRX_C(value, carry_in);

return (result, carry_out);

Library pseudocode for aarch32/functions/common/T32ExpandImm

// T32ExpandImm()
// ==============

bits(32) T32ExpandImm(bits(12) imm12)

// PSTATE.C argument to following function call does not affect the imm32 result.
(imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);

return imm32;

Shared Pseudocode Functions Page 1357

Library pseudocode for aarch32/functions/common/T32ExpandImm_C

// T32ExpandImm_C()
// ================

(bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)

if imm12<11:10> == '00' then
case imm12<9:8> of

when '00'
imm32 = ZeroExtend(imm12<7:0>, 32);

when '01'
imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;

when '10'
imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';

when '11'
imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;

carry_out = carry_in;
else

unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
(imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

return (imm32, carry_out);

Library pseudocode for aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

// AArch32.CheckCP15InstrCoarseTraps()
// ===================================
// Check for coarse-grained CP15 traps in HSTR and HCR.

boolean AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

// Check for coarse-grained Hyp traps
if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} then

if PSTATE.EL == EL0 && !ELUsingAArch32(EL2) then
return AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm);

// Check for MCR, MRC, MCRR and MRRC disabled by HSTR<CRn/CRm>
major = if nreg == 1 then CRn else CRm;
if !(major IN {4,14}) && HSTR<major> == '1' then

return TRUE;

// Check for MRC and MCR disabled by HCR.TIDCP
if (HCR.TIDCP == '1' && nreg == 1 &&

((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
(CRn == 10 && CRm IN {0,1, 4, 8 }) ||
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then

return TRUE;

return FALSE;

Shared Pseudocode Functions Page 1358

Library pseudocode for aarch32/functions/coproc/AArch32.CheckSystemAccess

Shared Pseudocode Functions Page 1359

// AArch32.CheckSystemAccess()
// ===========================
// Check System register access instruction for enables and disables

AArch32.CheckSystemAccess(integer cp_num, bits(32) instr)
assert cp_num == UInt(instr<11:8>) && (cp_num IN {14,15});

if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
AArch64.CheckAArch32SystemAccess(instr);
return;

// Decode the AArch32 System register access instruction
if instr<31:28> != '1111' && instr<27:24> == '1110' && instr<4> == '1' then // MRC/MCR

cprt = TRUE; cpdt = FALSE; nreg = 1;
opc1 = UInt(instr<23:21>);
opc2 = UInt(instr<7:5>);
CRn = UInt(instr<19:16>);
CRm = UInt(instr<3:0>);

elsif instr<31:28> != '1111' && instr<27:21> == '1100010' then // MRRC/MCRR
cprt = TRUE; cpdt = FALSE; nreg = 2;
opc1 = UInt(instr<7:4>);
CRm = UInt(instr<3:0>);

elsif instr<31:28> != '1111' && instr<27:25> == '110' && instr<22> == '0' then // LDC/STC
cprt = FALSE; cpdt = TRUE; nreg = 0;
opc1 = 0;
CRn = UInt(instr<15:12>);

else
allocated = FALSE;

//
// Coarse-grain decode into CP14 or CP15 encoding space. Each of the CPxxxInstrDecode functions
// returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
if cp_num == 14 then

// LDC and STC only supported for c5 in CP14 encoding space
if cpdt && CRn != 5 then

allocated = FALSE;
else

// Coarse-grained decode of CP14 based on opc1 field
case opc1 of

when 0 allocated = CP14DebugInstrDecode(instr);
when 1 allocated = CP14TraceInstrDecode(instr);
when 7 allocated = CP14JazelleInstrDecode(instr); // JIDR only
otherwise allocated = FALSE; // All other values are unallocated

elsif cp_num == 15 then
// LDC and STC not supported in CP15 encoding space
if !cprt then

allocated = FALSE;
else

allocated = CP15InstrDecode(instr);

// Coarse-grain traps to EL2 have a higher priority than exceptions generated because
// the access instruction is UNDEFINED
if AArch32.CheckCP15InstrCoarseTraps(CRn, nreg, CRm) then

// For a coarse-grain trap, if it is IMPLEMENTATION DEFINED whether an access from
// Non-secure User mode is UNDEFINED when the trap is disabled, then it is
// IMPLEMENTATION DEFINED whether the same access is UNDEFINED or generates a trap
// when the trap is enabled.
if PSTATE.EL == EL0 && !IsSecure() && !allocated then

if boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at NS EL0" then
UNDEFINED;

AArch32.AArch32SystemAccessTrap(EL2, instr);

else
allocated = FALSE;

if !allocated then
UNDEFINED;

// If the instruction is not UNDEFINED, it might be disabled or trapped to a higher EL.

Shared Pseudocode Functions Page 1360

AArch32.CheckSystemAccessTraps(instr);

return;

Shared Pseudocode Functions Page 1361

Library pseudocode for aarch32/functions/coproc/AArch32.CheckSystemAccessEL1Traps

// AArch32.CheckSystemAccessEL1Traps()
// ===================================
// Check for configurable disables or traps to EL1 or EL2 of a System register
// access instruction.

AArch32.CheckSystemAccessEL1Traps(bits(32) instr)
assert PSTATE.EL == EL0;

if ((HaveEL(EL1) && IsSecure() && !ELUsingAArch32(EL1)) || IsInHost()) then
AArch64.CheckAArch32SystemAccessEL1Traps(instr);
return;

trap = FALSE;

// Decode the AArch32 System register access instruction
(op, cp_num, opc1, CRn, CRm, opc2, write) = AArch32.DecodeSysRegAccess(instr);

if cp_num == 14 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 5 && opc2 == 0) || // DBGDTRRXint/DBGDTRTXint

(op == SystemAccessType_DT && CRn == 5 && opc2 == 0)) then // DBGDTRRXint/DBGDTRTXint (STC/LDC)
trap = !Halted() && DBGDSCRext.UDCCdis == '1';

elsif opc1 == 0 then
trap = DBGDSCRext.UDCCdis == '1';

elsif opc1 == 1 then
trap = CPACR.TRCDIS == '1';
if HaveEL(EL3) && ELUsingAArch32(EL3) && NSACR.NSTRCDIS == '1' then

trap = TRUE;

elsif cp_num == 15 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 0) || // PMCR

(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 1) || // PMCNTENSET
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 2) || // PMCNTENCLR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 3) || // PMOVSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 6) || // PMCEID0
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 7) || // PMCEID1
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 13 && opc2 == 1) || // PMXEVTYPER
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 14 && opc2 == 3) || // PMOVSSET
(op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm >= 12)) then // PMEVTYPER<n>
trap = PMUSERENR.EN == '0';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 14 && opc2 == 4 then // PMSWINC
trap = PMUSERENR.EN == '0' && PMUSERENR.SW == '0';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 13 && opc2 == 0) || // PMCCNTR
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 9)) then // PMCCNTR (MRRC/MCRR)
trap = PMUSERENR.EN == '0' && (write || PMUSERENR.CR == '0');

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 13 && opc2 == 2) || // PMXEVCNTR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm >= 8 && CRm <= 11)) then // PMEVCNTR<n>
trap = PMUSERENR.EN == '0' && (write || PMUSERENR.ER == '0');

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 5 then // PMSELR
trap = PMUSERENR.EN == '0' && PMUSERENR.ER == '0';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm == 2 && opc2 IN {0,1,2} then // CNTP_TVAL CNTP_CTL CNTP_CVAL
trap = CNTKCTL.PL0PTEN == '0';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm == 0 && opc2 == 0 then // CNTFRQ
trap = CNTKCTL.PL0PCTEN == '0' && CNTKCTL.PL0VCTEN == '0';

elsif op == SystemAccessType_RRT && opc1 == 1 && CRm == 14 then // CNTVCT
trap = CNTKCTL.PL0VCTEN == '0';

if trap then
AArch32.AArch32SystemAccessTrap(EL1, instr);

Shared Pseudocode Functions Page 1362

Library pseudocode for aarch32/functions/coproc/AArch32.CheckSystemAccessEL2Traps

Shared Pseudocode Functions Page 1363

// AArch32.CheckSystemAccessEL2Traps()
// ===================================
// Check for configurable traps to EL2 of a System register access instruction.

AArch32.CheckSystemAccessEL2Traps(bits(32) instr)
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1};

if HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
AArch64.CheckAArch32SystemAccessEL2Traps(instr);
return;

trap = FALSE;

// Decode the AArch32 System register access instruction
(op, cp_num, opc1, CRn, CRm, opc2, write) = AArch32.DecodeSysRegAccess(instr);

if cp_num == 14 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 0) || // DBGDRAR

(op == SystemAccessType_RRT && opc1 == 0 && CRm == 1) || // DBGDRAR (MRRC)
(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 0) || // DBGDSAR
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 2)) then // DBGDSAR (MRRC)
trap = HDCR.TDRA == '1' || HDCR.TDE == '1' || HCR.TGE == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 4) || // DBGOSLAR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 1 && opc2 == 4) || // DBGOSLSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 3 && opc2 == 4) || // DBGOSDLR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 4 && opc2 == 4)) then // DBGPRCR
trap = HDCR.TDOSA == '1' || HDCR.TDE == '1' || HCR.TGE == '1';

elsif opc1 == 0 && (!Halted() || !(op == SystemAccessType_RT && CRn == 0 && CRm == 5 && opc2 == 0)) then
trap = HDCR.TDA == '1' || HDCR.TDE == '1' || HCR.TGE == '1';

elsif opc1 == 1 then
trap = HCPTR.TTA == '1';
if HaveEL(EL3) && ELUsingAArch32(EL3) && NSACR.NSTRCDIS == '1' then

trap = TRUE;

elsif op == SystemAccessType_RT && opc1 == 7 && CRn == 0 && CRm == 0 && opc2 == 0 then // JIDR
trap = HCR.TID0 == '1';

elsif cp_num == 15 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 0) || // SCTLR

(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 0) || // TTBR0
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 2) || // TTBR0 (MRRC/MCCR)
(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 1) || // TTBR1
(op == SystemAccessType_RRT && opc1 == 1 && CRm == 2) || // TTBR1 (MRRC/MCCR)
(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 2) || // TTBCR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 3 && CRm == 0 && opc2 == 0) || // DACR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 0 && opc2 == 0) || // DFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 0 && opc2 == 1) || // IFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 6 && CRm == 0 && opc2 == 0) || // DFAR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 6 && CRm == 0 && opc2 == 2) || // IFAR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 1 && opc2 == 0) || // ADFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 1 && opc2 == 1) || // AIFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 2 && opc2 == 0) || // PRRR/MAIR0
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 2 && opc2 == 1) || // NMRR/MAIR1
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 3 && opc2 == 0) || // AMAIR0
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 3 && opc2 == 1) || // AMAIR1
(op == SystemAccessType_RT && opc1 == 0 && CRn == 13 && CRm == 0 && opc2 == 1)) then // CONTEXTIDR
trap = if write then HCR.TVM == '1' else HCR.TRVM == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 8 then // TLBI
trap = write && HCR.TTLB == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 6 && opc2 == 2) || // DCISW
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 10 && opc2 == 2) || // DCCSW
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 14 && opc2 == 2)) then // DCCISW
trap = write && HCR.TSW == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 6 && opc2 == 1) || // DCIMVAC
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 10 && opc2 == 1) || // DCCMVAC
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 14 && opc2 == 1)) then // DCCIMVAC
trap = write && HCR.TPC == '1';

Shared Pseudocode Functions Page 1364

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 5 && opc2 == 1) || // ICIMVAU
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 5 && opc2 == 0) || // ICIALLU
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 1 && opc2 == 0) || // ICIALLUIS
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 11 && opc2 == 1)) then // DCCMVAU
trap = write && HCR.TPU == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 1 then // ACTLR
trap = HCR.TAC == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 2) || // TCMTR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 3) || // TLBTR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 6) || // REVIDR
(op == SystemAccessType_RT && opc1 == 1 && CRn == 0 && CRm == 0 && opc2 == 7)) then // AIDR
trap = HCR.TID1 == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 1) || // CTR
(op == SystemAccessType_RT && opc1 == 1 && CRn == 0 && CRm == 0 && opc2 == 0) || // CCSIDR
(op == SystemAccessType_RT && opc1 == 1 && CRn == 0 && CRm == 0 && opc2 == 1) || // CLIDR
(op == SystemAccessType_RT && opc1 == 2 && CRn == 0 && CRm == 0 && opc2 == 0)) then // CSSELR
trap = HCR.TID2 == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 1) || // ID_*
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 2 && opc2 <= 5) || // ID_*
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm >= 3 && opc2 <= 1) || // Reserved
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 3 && opc2 == 2) || // Reserved
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 5 && opc2 IN {4,5})) then // Reserved
trap = HCR.TID3 == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 2 then // CPACR
trap = HCPTR.TCPAC == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 0 then // PMCR
trap = HDCR.TPMCR == '1' || HDCR.TPM == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm >= 8) || // PMEVCNTR<n>/PMEVTYPER<n>
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm IN {12,13,14}) || // PM*
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 9)) then // PMCCNTR (MRRC/MCCR)
trap = HDCR.TPM == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm == 2 && opc2 IN {0,1,2} then // CNTP_TVAL CNTP_CTL CNTP_CVAL
trap = CNTHCTL.PL1PCEN == '0';

elsif op == SystemAccessType_RRT && opc1 == 0 && CRm == 14 then // CNTPCT
trap = CNTHCTL.PL1PCTEN == '0';

if trap then
AArch32.AArch32SystemAccessTrap(EL2, instr);

Library pseudocode for aarch32/functions/coproc/AArch32.CheckSystemAccessTraps

// AArch32.CheckSystemAccessTraps()
// ================================
// Check for configurable disables or traps to a higher EL of an System register access.

AArch32.CheckSystemAccessTraps(bits(32) instr)

if PSTATE.EL == EL0 then
AArch32.CheckSystemAccessEL1Traps(instr);

if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1} && !IsInHost() then
AArch32.CheckSystemAccessEL2Traps(instr);

if HaveEL(EL3) && !ELUsingAArch32(EL3) && PSTATE.EL IN {EL0,EL1,EL2} then
AArch64.CheckAArch32SystemAccessEL3Traps(instr);

Shared Pseudocode Functions Page 1365

Library pseudocode for aarch32/functions/coproc/AArch32.DecodeSysRegAccess

// AArch32.DecodeSysRegAccess()
// ============================
// Decode an AArch32 System register access instruction into its operands.

(SystemAccessType, integer, integer, integer, integer, integer, boolean) AArch32.DecodeSysRegAccess(bits(32) instr)

cp_num = UInt(instr<11:8>);

// Decode the AArch32 System register access instruction
if instr<31:28> != '1111' && instr<27:24> == '1110' && instr<4> == '1' then // MRC/MCR

op = SystemAccessType_RT;
opc1 = UInt(instr<23:21>);
opc2 = UInt(instr<7:5>);
CRn = UInt(instr<19:16>);
CRm = UInt(instr<3:0>);
write = instr<20> == '0';

elsif instr<31:28> != '1111' && instr<27:21> == '1100010' then // MRRC/MCRR
op = SystemAccessType_RRT;
opc1 = UInt(instr<7:4>);
CRm = UInt(instr<3:0>);
write = instr<20> == '0';

elsif instr<31:28> != '1111' && instr<27:25> == '110' then // LDC/STC
op = SystemAccessType_DT;
CRn = UInt(instr<15:12>);
write = instr<20> == '0';

return (op, cp_num, opc1, CRn, CRm, opc2, write);

Library pseudocode for aarch32/functions/coproc/CP14DebugInstrDecode

// Decodes an accepted access to a debug System register in the CP14 encoding space.
// Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
boolean CP14DebugInstrDecode(bits(32) instr);

Library pseudocode for aarch32/functions/coproc/CP14JazelleInstrDecode

// Decodes an accepted access to a Jazelle System register in the CP14 encoding space.
// Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
boolean CP14JazelleInstrDecode(bits(32) instr);

Library pseudocode for aarch32/functions/coproc/CP14TraceInstrDecode

// Decodes an accepted access to a trace System register in the CP14 encoding space.
// Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
boolean CP14TraceInstrDecode(bits(32) instr);

Library pseudocode for aarch32/functions/coproc/CP15InstrDecode

// Decodes an accepted access to a System register in the CP15 encoding space.
// Returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
boolean CP15InstrDecode(bits(32) instr);

Shared Pseudocode Functions Page 1366

Library pseudocode for aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

// AArch32.ExclusiveMonitorsPass()
// ===============================

// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
// before or after the check on the local Exclusives monitor. As a result a failure
// of the local monitor can occur on some implementations even if the memory
// access would give an memory abort.

acctype = AccType_ATOMIC;
iswrite = TRUE;
aligned = (address == Align(address, size));

if !aligned then
secondstage = FALSE;
AArch32.Abort(address, AArch32.AlignmentFault(acctype, iswrite, secondstage));

passed = AArch32.IsExclusiveVA(address, ProcessorID(), size);
if !passed then

return FALSE;
memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

if passed then
ClearExclusiveLocal(ProcessorID());
if memaddrdesc.memattrs.shareable then

passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

return passed;

Library pseudocode for aarch32/functions/exclusive/AArch32.IsExclusiveVA

// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
//
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
//
// It is always safe to return TRUE which will check the physical address only.
boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);

Library pseudocode for aarch32/functions/exclusive/AArch32.MarkExclusiveVA

// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.
AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

Shared Pseudocode Functions Page 1367

Library pseudocode for aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

// AArch32.SetExclusiveMonitors()
// ==============================

// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.

AArch32.SetExclusiveMonitors(bits(32) address, integer size)

acctype = AccType_ATOMIC;
iswrite = FALSE;
aligned = (address != Align(address, size));
memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return;

if memaddrdesc.memattrs.shareable then
MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

AArch32.MarkExclusiveVA(address, ProcessorID(), size);

Library pseudocode for aarch32/functions/float/CheckAdvSIMDEnabled

// CheckAdvSIMDEnabled()
// =====================

CheckAdvSIMDEnabled()

fpexc_check = TRUE;
advsimd = TRUE;

AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted

// Make temporary copy of D registers
// _Dclone[] is used as input data for instruction pseudocode
for i = 0 to 31

_Dclone[i] = D[i];

return;

Library pseudocode for aarch32/functions/float/CheckAdvSIMDOrVFPEnabled

// CheckAdvSIMDOrVFPEnabled()
// ==========================

CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
return;

Library pseudocode for aarch32/functions/float/CheckCryptoEnabled32

// CheckCryptoEnabled32()
// ======================

CheckCryptoEnabled32()
CheckAdvSIMDEnabled();
// Return from CheckAdvSIMDEnabled() occurs only if access is permitted
return;

Shared Pseudocode Functions Page 1368

Library pseudocode for aarch32/functions/float/CheckVFPEnabled

// CheckVFPEnabled()
// =================

CheckVFPEnabled(boolean include_fpexc_check)
advsimd = FALSE;
AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
return;

Library pseudocode for aarch32/functions/float/FPHalvedSub

// FPHalvedSub()
// =============

bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == sign2 then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0');

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1');

elsif zero1 && zero2 && sign1 != sign2 then
result = FPZero(sign1);

else
result_value = (value1 - value2) / 2.0;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr);

return result;

Library pseudocode for aarch32/functions/float/FPRSqrtStep

// FPRSqrtStep()
// =============

bits(N) FPRSqrtStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then

product = FPZero('0');
else

product = FPMul(op1, op2, fpcr);
bits(N) three = FPThree('0');
result = FPHalvedSub(three, product, fpcr);

return result;

Shared Pseudocode Functions Page 1369

Library pseudocode for aarch32/functions/float/FPRecipStep

// FPRecipStep()
// =============

bits(N) FPRecipStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then

product = FPZero('0');
else

product = FPMul(op1, op2, fpcr);
bits(N) two = FPTwo('0');
result = FPSub(two, product, fpcr);

return result;

Library pseudocode for aarch32/functions/float/StandardFPSCRValue

// StandardFPSCRValue()
// ====================

FPCRType StandardFPSCRValue()
return '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '0000000000000000000';

Library pseudocode for aarch32/functions/memory/AArch32.CheckAlignment

// AArch32.CheckAlignment()
// ========================

boolean AArch32.CheckAlignment(bits(32) address, integer alignment, AccType acctype,
boolean iswrite)

if PSTATE.EL == EL0 && !ELUsingAArch32(S1TranslationRegime()) then
A = SCTLR[].A; //use AArch64 register, when higher Exception level is using AArch64

elsif PSTATE.EL == EL2 then
A = HSCTLR.A;

else
A = SCTLR.A;

aligned = (address == Align(address, alignment));
atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW };
ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED };
vector = acctype == AccType_VEC;

// AccType_VEC is used for SIMD element alignment checks only
check = (atomic || ordered || vector || A == '1');

if check && !aligned then
secondstage = FALSE;
AArch32.Abort(address, AArch32.AlignmentFault(acctype, iswrite, secondstage));

return aligned;

Shared Pseudocode Functions Page 1370

Library pseudocode for aarch32/functions/memory/AArch32.MemSingle

// AArch32.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned]
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
bits(size*8) value;
iswrite = FALSE;

// MMU or MPU
memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
value = _Mem[memaddrdesc, size, accdesc];
return value;

// AArch32.MemSingle[] - assignment (write) form
// ===
// Perform an atomic, little-endian write of 'size' bytes.

AArch32.MemSingle[bits(32) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8) value
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
iswrite = TRUE;

// MMU or MPU
memaddrdesc = AArch32.TranslateAddress(address, acctype, iswrite, wasaligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareable then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
_Mem[memaddrdesc, size, accdesc] = value;
return;

Library pseudocode for aarch32/functions/memory/Hint_PreloadData

Hint_PreloadData(bits(32) address);

Library pseudocode for aarch32/functions/memory/Hint_PreloadDataForWrite

Hint_PreloadDataForWrite(bits(32) address);

Library pseudocode for aarch32/functions/memory/Hint_PreloadInstr

Hint_PreloadInstr(bits(32) address);

Shared Pseudocode Functions Page 1371

Library pseudocode for aarch32/functions/memory/MemA

// MemA[] - non-assignment form
// ============================

bits(8*size) MemA[bits(32) address, integer size]
acctype = AccType_ATOMIC;
return Mem_with_type[address, size, acctype];

// MemA[] - assignment form
// ========================

MemA[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_ATOMIC;
Mem_with_type[address, size, acctype] = value;
return;

Library pseudocode for aarch32/functions/memory/MemO

// MemO[] - non-assignment form
// ============================

bits(8*size) MemO[bits(32) address, integer size]
acctype = AccType_ORDERED;
return Mem_with_type[address, size, acctype];

// MemO[] - assignment form
// ========================

MemO[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_ORDERED;
Mem_with_type[address, size, acctype] = value;
return;

Library pseudocode for aarch32/functions/memory/MemU

// MemU[] - non-assignment form
// ============================

bits(8*size) MemU[bits(32) address, integer size]
acctype = AccType_NORMAL;
return Mem_with_type[address, size, acctype];

// MemU[] - assignment form
// ========================

MemU[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_NORMAL;
Mem_with_type[address, size, acctype] = value;
return;

Library pseudocode for aarch32/functions/memory/MemU_unpriv

// MemU_unpriv[] - non-assignment form
// ===================================

bits(8*size) MemU_unpriv[bits(32) address, integer size]
acctype = AccType_UNPRIV;
return Mem_with_type[address, size, acctype];

// MemU_unpriv[] - assignment form
// ===============================

MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
acctype = AccType_UNPRIV;
Mem_with_type[address, size, acctype] = value;
return;

Shared Pseudocode Functions Page 1372

Library pseudocode for aarch32/functions/memory/Mem_with_type

// Mem_with_type[] - non-assignment (read) form
// ==
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch32.MemSingle directly.

bits(size*8) Mem_with_type[bits(32) address, integer size, AccType acctype]
assert size IN {1, 2, 4, 8, 16};
bits(size*8) value;
integer i;
boolean iswrite = FALSE;

aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);
if !aligned then

assert size > 1;
value<7:0> = AArch32.MemSingle[address, 1, acctype, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, acctype, aligned];

else
value = AArch32.MemSingle[address, size, acctype, aligned];

if BigEndian() then
value = BigEndianReverse(value);

return value;

// Mem_with_type[] - assignment (write) form
// ===
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem_with_type[bits(32) address, integer size, AccType acctype] = bits(size*8) value
integer i;
boolean iswrite = TRUE;

if BigEndian() then
value = BigEndianReverse(value);

aligned = AArch32.CheckAlignment(address, size, acctype, iswrite);

if !aligned then
assert size > 1;
AArch32.MemSingle[address, 1, acctype, aligned] = value<7:0>;

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
AArch32.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;

else
AArch32.MemSingle[address, size, acctype, aligned] = value;

return;

Shared Pseudocode Functions Page 1373

Library pseudocode for aarch32/functions/ras/AArch32.ESBOperation

// AArch32.ESBOperation()
// ======================
// Perform the AArch32 ESB operation for ESB executed in AArch32 state

AArch32.ESBOperation()

// Check if routed to AArch64 state
route_to_aarch64 = (PSTATE.EL == EL0 && !ELUsingAArch32(EL1));
if !route_to_aarch64 && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then

route_to_aarch64 = (HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1');
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then

route_to_aarch64 = (SCR_EL3.EA == '1');

if route_to_aarch64 then
AArch64.ESBOperation();
return;

route_to_monitor = (HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.EA == '1');
route_to_hyp = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR.TGE == '1' || HCR.AMO == '1'));

if route_to_monitor then
target = M32_Monitor;

elsif route_to_hyp || PSTATE.M == M32_Hyp then
target = M32_Hyp;

else
target = M32_Abort;

if IsSecure() then
mask_active = TRUE;

elsif target == M32_Monitor then
mask_active = (SCR.AW == '1' &&

(!HaveEL(EL2) || (HCR.TGE == '0' && HCR.AMO == '0')));
else

mask_active = (target == M32_Abort || PSTATE.M == M32_Hyp);

mask_set = (PSTATE.A == '1');
(-, el) = ELFromM32(target);
intdis = (Halted() || ExternalDebugInterruptsDisabled(el));
masked = intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending
if SErrorPending() && masked then // i.e. ISR.A is set to 1

syndrome32 = AArch32.PhysicalSErrorSyndrome();
DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);
ClearPendingPhysicalSError(); // Clear ISR.A to 0

return;

Library pseudocode for aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome

// Return the SError syndrome
AArch32.SErrorSyndrome AArch32.PhysicalSErrorSyndrome();

Shared Pseudocode Functions Page 1374

Library pseudocode for aarch32/functions/ras/AArch32.ReportDeferredSError

// AArch32.ReportDeferredSError()
// ==============================
// Return deferred SError syndrome

bits(32) AArch32.ReportDeferredSError(bits(2) AET, bit ExT)
bits(32) target;
target<31> = '1'; // A
syndrome = Zeros(16);
if PSTATE.EL == EL2 then

syndrome<11:10> = AET; // AET
syndrome<9> = ExT; // EA
syndrome<5:0> = '010001'; // DFSC

else
syndrome<15:14> = AET; // AET
syndrome<12> = ExT; // ExT
syndrome<9> = TTBCR.EAE; // LPAE
if TTBCR.EAE == '1' then // Long-descriptor format

syndrome<5:0> = '010001'; // STATUS
else // Short-descriptor format

syndrome<10,3:0> = '10110'; // FS
if HaveAnyAArch64() then

target<24:0> = ZeroExtend(syndrome);// Any RES0 fields must be set to zero
else

target<15:0> = syndrome;
return target;

Library pseudocode for aarch32/functions/ras/AArch32.SErrorSyndrome

type AArch32.SErrorSyndrome is (
bits(2) AET,
bit ExT

)

Library pseudocode for aarch32/functions/ras/AArch32.vESBOperation

// AArch32.vESBOperation()
// =======================
// Perform the ESB operation for virtual SError interrupts executed in AArch32 state

AArch32.vESBOperation()
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};

// Check for EL2 using AArch64 state
if !ELUsingAArch32(EL2) then

AArch64.vESBOperation();
return;

// If physical SError interrupts are routed to Hyp mode, and TGE is not set, then a
// virtual SError interrupt might be pending
vSEI_enabled = (HCR.TGE == '0' && HCR.AMO == '1');
vSEI_pending = (vSEI_enabled && HCR.VA == '1');
vintdis = (Halted() || ExternalDebugInterruptsDisabled(EL1));
vmasked = (vintdis || PSTATE.A == '1');

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then

VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
HCR.VA = '0'; // Clear pending virtual SError

return;

Shared Pseudocode Functions Page 1375

Library pseudocode for aarch32/functions/registers/AArch32.ResetGeneralRegisters

// AArch32.ResetGeneralRegisters()
// ===============================

AArch32.ResetGeneralRegisters()

for i = 0 to 7
R[i] = bits(32) UNKNOWN;

for i = 8 to 12
Rmode[i, M32_User] = bits(32) UNKNOWN;
Rmode[i, M32_FIQ] = bits(32) UNKNOWN;

if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
for i = 13 to 14

Rmode[i, M32_User] = bits(32) UNKNOWN;
Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
Rmode[i, M32_Svc] = bits(32) UNKNOWN;
Rmode[i, M32_Abort] = bits(32) UNKNOWN;
Rmode[i, M32_Undef] = bits(32) UNKNOWN;
if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSIMDFPRegisters

// AArch32.ResetSIMDFPRegisters()
// ==============================

AArch32.ResetSIMDFPRegisters()

for i = 0 to 15
Q[i] = bits(128) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSpecialRegisters

// AArch32.ResetSpecialRegisters()
// ===============================

AArch32.ResetSpecialRegisters()

// AArch32 special registers
SPSR_fiq = bits(32) UNKNOWN;
SPSR_irq = bits(32) UNKNOWN;
SPSR_svc = bits(32) UNKNOWN;
SPSR_abt = bits(32) UNKNOWN;
SPSR_und = bits(32) UNKNOWN;
if HaveEL(EL2) then

SPSR_hyp = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;

if HaveEL(EL3) then
SPSR_mon = bits(32) UNKNOWN;

// External debug special registers
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSystemRegisters

AArch32.ResetSystemRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 1376

Library pseudocode for aarch32/functions/registers/ALUExceptionReturn

// ALUExceptionReturn()
// ====================

ALUExceptionReturn(bits(32) address)
if PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.M IN {M32_User,M32_System} then

UNPREDICTABLE; // UNDEFINED or NOP
else

AArch32.ExceptionReturn(address, SPSR[]);

Library pseudocode for aarch32/functions/registers/ALUWritePC

// ALUWritePC()
// ============

ALUWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_A32 then

BXWritePC(address);
else

BranchWritePC(address);

Library pseudocode for aarch32/functions/registers/BXWritePC

// BXWritePC()
// ===========

BXWritePC(bits(32) address)
if address<0> == '1' then

SelectInstrSet(InstrSet_T32);
address<0> = '0';

else
SelectInstrSet(InstrSet_A32);
// For branches to an unaligned PC counter in A32 state, the processor takes the branch
// and does one of:
// * Forces the address to be aligned
// * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
if address<1> == '1' && ConstrainUnpredictableBool(Unpredictable_A32FORCEALIGNPC) then

address<1> = '0';
BranchTo(address, BranchType_UNKNOWN);

Library pseudocode for aarch32/functions/registers/BranchWritePC

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_A32 then

address<1:0> = '00';
else

address<0> = '0';
BranchTo(address, BranchType_UNKNOWN);

Shared Pseudocode Functions Page 1377

Library pseudocode for aarch32/functions/registers/D

// D[] - non-assignment form
// =========================

bits(64) D[integer n]
assert n >= 0 && n <= 31;
base = (n MOD 2) * 64;
return _V[n DIV 2]<base+63:base>;

// D[] - assignment form
// =====================

D[integer n] = bits(64) value
assert n >= 0 && n <= 31;
base = (n MOD 2) * 64;
_V[n DIV 2]<base+63:base> = value;
return;

Library pseudocode for aarch32/functions/registers/Din

// Din[] - non-assignment form
// ===========================

bits(64) Din[integer n]
assert n >= 0 && n <= 31;
return _Dclone[n];

Library pseudocode for aarch32/functions/registers/LR

// LR - assignment form
// ====================

LR = bits(32) value
R[14] = value;
return;

// LR - non-assignment form
// ========================

bits(32) LR
return R[14];

Library pseudocode for aarch32/functions/registers/LoadWritePC

// LoadWritePC()
// =============

LoadWritePC(bits(32) address)
BXWritePC(address);

Shared Pseudocode Functions Page 1378

Library pseudocode for aarch32/functions/registers/LookUpRIndex

// LookUpRIndex()
// ==============

integer LookUpRIndex(integer n, bits(5) mode)
assert n >= 0 && n <= 14;

case n of // Select index by mode: usr fiq irq svc abt und hyp
when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
otherwise result = n;

return result;

Library pseudocode for aarch32/functions/registers/Monitor_mode_registers

bits(32) SP_mon;
bits(32) LR_mon;

Library pseudocode for aarch32/functions/registers/PC

// PC - non-assignment form
// ========================

bits(32) PC
return R[15]; // This includes the offset from AArch32 state

Library pseudocode for aarch32/functions/registers/PCStoreValue

// PCStoreValue()
// ==============

bits(32) PCStoreValue()
// This function returns the PC value. On architecture versions before ARMv7, it
// is permitted to instead return PC+4, provided it does so consistently. It is
// used only to describe A32 instructions, so it returns the address of the current
// instruction plus 8 (normally) or 12 (when the alternative is permitted).
return PC;

Library pseudocode for aarch32/functions/registers/Q

// Q[] - non-assignment form
// =========================

bits(128) Q[integer n]
assert n >= 0 && n <= 15;
return _V[n];

// Q[] - assignment form
// =====================

Q[integer n] = bits(128) value
assert n >= 0 && n <= 15;
_V[n] = value;
return;

Shared Pseudocode Functions Page 1379

Library pseudocode for aarch32/functions/registers/Qin

// Qin[] - non-assignment form
// ===========================

bits(128) Qin[integer n]
assert n >= 0 && n <= 15;
return Din[2*n+1]:Din[2*n];

Library pseudocode for aarch32/functions/registers/R

// R[] - assignment form
// =====================

R[integer n] = bits(32) value
Rmode[n, PSTATE.M] = value;
return;

// R[] - non-assignment form
// =========================

bits(32) R[integer n]
if n == 15 then

offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
return _PC<31:0> + offset;

else
return Rmode[n, PSTATE.M];

Library pseudocode for aarch32/functions/registers/RBankSelect

// RBankSelect()
// =============

integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
integer svc, integer abt, integer und, integer hyp)

case mode of
when M32_User result = usr; // User mode
when M32_FIQ result = fiq; // FIQ mode
when M32_IRQ result = irq; // IRQ mode
when M32_Svc result = svc; // Supervisor mode
when M32_Abort result = abt; // Abort mode
when M32_Hyp result = hyp; // Hyp mode
when M32_Undef result = und; // Undefined mode
when M32_System result = usr; // System mode uses User mode registers
otherwise Unreachable(); // Monitor mode

return result;

Shared Pseudocode Functions Page 1380

Library pseudocode for aarch32/functions/registers/Rmode

// Rmode[] - non-assignment form
// =============================

bits(32) Rmode[integer n, bits(5) mode]
assert n >= 0 && n <= 14;

// Check for attempted use of Monitor mode in Non-secure state.
if !IsSecure() then assert mode != M32_Monitor;
assert !BadMode(mode);

if mode == M32_Monitor then
if n == 13 then return SP_mon;
elsif n == 14 then return LR_mon;
else return _R[n]<31:0>;

else
return _R[LookUpRIndex(n, mode)]<31:0>;

// Rmode[] - assignment form
// =========================

Rmode[integer n, bits(5) mode] = bits(32) value
assert n >= 0 && n <= 14;

// Check for attempted use of Monitor mode in Non-secure state.
if !IsSecure() then assert mode != M32_Monitor;
assert !BadMode(mode);

if mode == M32_Monitor then
if n == 13 then SP_mon = value;
elsif n == 14 then LR_mon = value;
else _R[n]<31:0> = value;

else
// It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
// register are unchanged or set to zero. This is also tested for on
// exception entry, as this applies to all AArch32 registers.
if !HighestELUsingAArch32() && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then

_R[LookUpRIndex(n, mode)] = ZeroExtend(value);
else

_R[LookUpRIndex(n, mode)]<31:0> = value;

return;

Library pseudocode for aarch32/functions/registers/S

// S[] - non-assignment form
// =========================

bits(32) S[integer n]
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
return _V[n DIV 4]<base+31:base>;

// S[] - assignment form
// =====================

S[integer n] = bits(32) value
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
_V[n DIV 4]<base+31:base> = value;
return;

Shared Pseudocode Functions Page 1381

Library pseudocode for aarch32/functions/registers/SP

// SP - assignment form
// ====================

SP = bits(32) value
R[13] = value;
return;

// SP - non-assignment form
// ========================

bits(32) SP
return R[13];

Library pseudocode for aarch32/functions/registers/_Dclone

array bits(64) _Dclone[0..31];

Library pseudocode for aarch32/functions/system/AArch32.ExceptionReturn

// AArch32.ExceptionReturn()
// =========================

AArch32.ExceptionReturn(bits(32) new_pc, bits(32) spsr)

SynchronizeContext();

// Attempts to change to an illegal mode or state will invoke the Illegal Execution state
// mechanism
SetPSTATEFromPSR(spsr);
ClearExclusiveLocal(ProcessorID());
SendEventLocal();

if PSTATE.IL == '1' then
// If the exception return is illegal, PC[1:0] are UNKNOWN
new_pc<1:0> = bits(2) UNKNOWN;

else
// LR[1:0] or LR[0] are treated as being 0, depending on the target instruction set state
if PSTATE.T == '0' then

new_pc<0> = '0'; // T32
else

new_pc<1:0> = '00'; // A32

BranchTo(new_pc, BranchType_UNKNOWN);

Library pseudocode for aarch32/functions/system/AArch32.ExecutingATS1xPInstr

// AArch32.ExecutingATS1xPInstr()
// ==============================
// Return TRUE if current instruction is AT S1CPR/WP

boolean AArch32.ExecutingATS1xPInstr()
if !HavePrivATExt() then return FALSE;

instr = ThisInstr();
if instr<24+:4> == '1110' && instr<8+:4> == '1110' then

op1 = instr<21+:3>;
CRn = instr<16+:4>;
CRm = instr<0+:4>;
op2 = instr<5+:3>;
return (op1 == '000' && CRn == '0111' && CRm == '1001' && op2 IN {'000','001'});

else
return FALSE;

Shared Pseudocode Functions Page 1382

Library pseudocode for aarch32/functions/system/AArch32.ExecutingCP10or11Instr

// AArch32.ExecutingCP10or11Instr()
// ================================

boolean AArch32.ExecutingCP10or11Instr()
instr = ThisInstr();
instr_set = CurrentInstrSet();
assert instr_set IN {InstrSet_A32, InstrSet_T32};

if instr_set == InstrSet_A32 then
return ((instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> == '101x');

else // InstrSet_T32
return (instr<31:28> == '111x' && (instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> == '101x');

Library pseudocode for aarch32/functions/system/AArch32.ExecutingLSMInstr

// AArch32.ExecutingLSMInstr()
// ===========================
// Returns TRUE if processor is executing a Load/Store Multiple instruction

boolean AArch32.ExecutingLSMInstr()
instr = ThisInstr();
instr_set = CurrentInstrSet();
assert instr_set IN {InstrSet_A32, InstrSet_T32};

if instr_set == InstrSet_A32 then
return (instr<28+:4> != '1111' && instr<25+:3> == '100');

else // InstrSet_T32
if ThisInstrLength() == 16 then

return (instr<12+:4> == '1100');
else

return (instr<25+:7> == '1110100' && instr<22> == '0');

Library pseudocode for aarch32/functions/system/AArch32.ITAdvance

// AArch32.ITAdvance()
// ===================

AArch32.ITAdvance()
if PSTATE.IT<2:0> == '000' then

PSTATE.IT = '00000000';
else

PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
return;

Library pseudocode for aarch32/functions/system/AArch32.SysRegRead

// Read from a 32-bit AArch32 System register and return the register's contents.
bits(32) AArch32.SysRegRead(integer cp_num, bits(32) instr);

Library pseudocode for aarch32/functions/system/AArch32.SysRegRead64

// Read from a 64-bit AArch32 System register and return the register's contents.
bits(64) AArch32.SysRegRead64(integer cp_num, bits(32) instr);

Shared Pseudocode Functions Page 1383

Library pseudocode for aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

// AArch32.SysRegReadCanWriteAPSR()
// ================================
// Determines whether the AArch32 System register read instruction can write to APSR flags.

boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
assert UsingAArch32();
assert (cp_num IN {14,15});
assert cp_num == UInt(instr<11:8>);

opc1 = UInt(instr<23:21>);
opc2 = UInt(instr<7:5>);
CRn = UInt(instr<19:16>);
CRm = UInt(instr<3:0>);

if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGDSCRint
return TRUE;

return FALSE;

Library pseudocode for aarch32/functions/system/AArch32.SysRegWrite

// Write to a 32-bit AArch32 System register.
AArch32.SysRegWrite(integer cp_num, bits(32) instr, bits(32) val);

Library pseudocode for aarch32/functions/system/AArch32.SysRegWrite64

// Write to a 64-bit AArch32 System register.
AArch32.SysRegWrite64(integer cp_num, bits(32) instr, bits(64) val);

Library pseudocode for aarch32/functions/system/AArch32.WriteMode

// AArch32.WriteMode()
// ===================
// Function for dealing with writes to PSTATE.M from AArch32 state only.
// This ensures that PSTATE.EL and PSTATE.SP are always valid.

AArch32.WriteMode(bits(5) mode)
(valid,el) = ELFromM32(mode);
assert valid;
PSTATE.M = mode;
PSTATE.EL = el;
PSTATE.nRW = '1';
PSTATE.SP = (if mode IN {M32_User,M32_System} then '0' else '1');
return;

Shared Pseudocode Functions Page 1384

Library pseudocode for aarch32/functions/system/AArch32.WriteModeByInstr

// AArch32.WriteModeByInstr()
// ==========================
// Function for dealing with writes to PSTATE.M from an AArch32 instruction, and ensuring that
// illegal state changes are correctly flagged in PSTATE.IL.

AArch32.WriteModeByInstr(bits(5) mode)
(valid,el) = ELFromM32(mode);

// 'valid' is set to FALSE if' mode' is invalid for this implementation or the current value
// of SCR.NS/SCR_EL3.NS. Additionally, it is illegal for an instruction to write 'mode' to
// PSTATE.EL if it would result in any of:
// * A change to a mode that would cause entry to a higher Exception level.
if UInt(el) > UInt(PSTATE.EL) then

valid = FALSE;

// * A change to or from Hyp mode.
if (PSTATE.M == M32_Hyp || mode == M32_Hyp) && PSTATE.M != mode then

valid = FALSE;

// * When EL2 is implemented, the value of HCR.TGE is '1', a change to a Non-secure EL1 mode.
if PSTATE.M == M32_Monitor && HaveEL(EL2) && el == EL1 && SCR.NS == '1' && HCR.TGE == '1' then

valid = FALSE;

if !valid then
PSTATE.IL = '1';

else
AArch32.WriteMode(mode);

Library pseudocode for aarch32/functions/system/BadMode

// BadMode()
// =========

boolean BadMode(bits(5) mode)
// Return TRUE if 'mode' encodes a mode that is not valid for this implementation
case mode of

when M32_Monitor
valid = HaveAArch32EL(EL3);

when M32_Hyp
valid = HaveAArch32EL(EL2);

when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
// If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
// state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
// AArch64, then these modes are EL1 modes.
// Therefore it is sufficient to test this implementation supports EL1 using AArch32.
valid = HaveAArch32EL(EL1);

when M32_User
valid = HaveAArch32EL(EL0);

otherwise
valid = FALSE; // Passed an illegal mode value

return !valid;

Shared Pseudocode Functions Page 1385

Library pseudocode for aarch32/functions/system/BankedRegisterAccessValid

// BankedRegisterAccessValid()
// ===========================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
// other than the SPSRs that are invalid. This includes ELR_hyp accesses.

BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)

case SYSm of
when '000xx', '00100' // R8_usr to R12_usr

if mode != M32_FIQ then UNPREDICTABLE;
when '00101' // SP_usr

if mode == M32_System then UNPREDICTABLE;
when '00110' // LR_usr

if mode IN {M32_Hyp,M32_System} then UNPREDICTABLE;
when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq

if mode == M32_FIQ then UNPREDICTABLE;
when '1000x' // LR_irq, SP_irq

if mode == M32_IRQ then UNPREDICTABLE;
when '1001x' // LR_svc, SP_svc

if mode == M32_Svc then UNPREDICTABLE;
when '1010x' // LR_abt, SP_abt

if mode == M32_Abort then UNPREDICTABLE;
when '1011x' // LR_und, SP_und

if mode == M32_Undef then UNPREDICTABLE;
when '1110x' // LR_mon, SP_mon

if !HaveEL(EL3) || !IsSecure() || mode == M32_Monitor then UNPREDICTABLE;
when '11110' // ELR_hyp, only from Monitor or Hyp mode

if !HaveEL(EL2) || !(mode IN {M32_Monitor,M32_Hyp}) then UNPREDICTABLE;
when '11111' // SP_hyp, only from Monitor mode

if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
otherwise

UNPREDICTABLE;

return;

Shared Pseudocode Functions Page 1386

Library pseudocode for aarch32/functions/system/CPSRWriteByInstr

// CPSRWriteByInstr()
// ==================
// Update PSTATE.<N,Z,C,V,Q,GE,E,A,I,F,M> from a CPSR value written by an MSR instruction.

CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
privileged = PSTATE.EL != EL0; // PSTATE.<A,I,F,M> are not writable at EL0

// Write PSTATE from 'value', ignoring bytes masked by 'bytemask'
if bytemask<3> == '1' then

PSTATE.<N,Z,C,V,Q> = value<31:27>;
// Bits <26:24> are ignored

if bytemask<2> == '1' then
// Bit <23> is RES0
if privileged then

PSTATE.PAN = value<22>;
// Bits <21:20> are RES0
PSTATE.GE = value<19:16>;

if bytemask<1> == '1' then
// Bits <15:10> are RES0
PSTATE.E = value<9>; // PSTATE.E is writable at EL0
if privileged then

PSTATE.A = value<8>;

if bytemask<0> == '1' then
if privileged then

PSTATE.<I,F> = value<7:6>;
// Bit <5> is RES0
// AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr(value<4:0>);

return;

Library pseudocode for aarch32/functions/system/ConditionPassed

// ConditionPassed()
// =================

boolean ConditionPassed()
return ConditionHolds(AArch32.CurrentCond());

Library pseudocode for aarch32/functions/system/CurrentCond

bits(4) AArch32.CurrentCond();

Library pseudocode for aarch32/functions/system/InITBlock

// InITBlock()
// ===========

boolean InITBlock()
if CurrentInstrSet() == InstrSet_T32 then

return PSTATE.IT<3:0> != '0000';
else

return FALSE;

Library pseudocode for aarch32/functions/system/LastInITBlock

// LastInITBlock()
// ===============

boolean LastInITBlock()
return (PSTATE.IT<3:0> == '1000');

Shared Pseudocode Functions Page 1387

Library pseudocode for aarch32/functions/system/SPSRWriteByInstr

// SPSRWriteByInstr()
// ==================

SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

new_spsr = SPSR[];

if bytemask<3> == '1' then
new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

if bytemask<2> == '1' then
new_spsr<23:16> = value<23:16>; // IL bit, GE[3:0] flags

if bytemask<1> == '1' then
new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

if bytemask<0> == '1' then
new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

SPSR[] = new_spsr; // UNPREDICTABLE if User or System mode

return;

Library pseudocode for aarch32/functions/system/SPSRaccessValid

// SPSRaccessValid()
// =================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
// that are UNPREDICTABLE

SPSRaccessValid(bits(5) SYSm, bits(5) mode)
case SYSm of

when '01110' // SPSR_fiq
if mode == M32_FIQ then UNPREDICTABLE;

when '10000' // SPSR_irq
if mode == M32_IRQ then UNPREDICTABLE;

when '10010' // SPSR_svc
if mode == M32_Svc then UNPREDICTABLE;

when '10100' // SPSR_abt
if mode == M32_Abort then UNPREDICTABLE;

when '10110' // SPSR_und
if mode == M32_Undef then UNPREDICTABLE;

when '11100' // SPSR_mon
if !HaveEL(EL3) || mode == M32_Monitor || !IsSecure() then UNPREDICTABLE;

when '11110' // SPSR_hyp
if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;

otherwise
UNPREDICTABLE;

return;

Library pseudocode for aarch32/functions/system/SelectInstrSet

// SelectInstrSet()
// ================

SelectInstrSet(InstrSet iset)
assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
assert iset IN {InstrSet_A32, InstrSet_T32};

PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

return;

Shared Pseudocode Functions Page 1388

Library pseudocode for aarch32/functions/v6simd/Sat

// Sat()
// =====

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

Library pseudocode for aarch32/functions/v6simd/SignedSat

// SignedSat()
// ===========

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

Library pseudocode for aarch32/functions/v6simd/UnsignedSat

// UnsignedSat()
// =============

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

Shared Pseudocode Functions Page 1389

Library pseudocode for aarch32/translation/attrs/AArch32.DefaultTEXDecode

// AArch32.DefaultTEXDecode()
// ==========================

MemoryAttributes AArch32.DefaultTEXDecode(bits(3) TEX, bit C, bit B, bit S, AccType acctype)

MemoryAttributes memattrs;

// Reserved values map to allocated values
if (TEX == '001' && C:B == '01') || (TEX == '010' && C:B != '00') || TEX == '011' then

bits(5) texcb;
(-, texcb) = ConstrainUnpredictableBits(Unpredictable_RESTEXCB);
TEX = texcb<4:2>; C = texcb<1>; B = texcb<0>;

case TEX:C:B of
when '00000'

// Device-nGnRnE
memattrs.type = MemType_Device;
memattrs.device = DeviceType_nGnRnE;

when '00001', '01000'
// Device-nGnRE
memattrs.type = MemType_Device;
memattrs.device = DeviceType_nGnRE;

when '00010', '00011', '00100'
// Write-back or Write-through Read allocate, or Non-cacheable
memattrs.type = MemType_Normal;
memattrs.inner = ShortConvertAttrsHints(C:B, acctype, FALSE);
memattrs.outer = ShortConvertAttrsHints(C:B, acctype, FALSE);
memattrs.shareable = (S == '1');

when '00110'
memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

when '00111'
// Write-back Read and Write allocate
memattrs.type = MemType_Normal;
memattrs.inner = ShortConvertAttrsHints('01', acctype, FALSE);
memattrs.outer = ShortConvertAttrsHints('01', acctype, FALSE);
memattrs.shareable = (S == '1');

when '1xxxx'
// Cacheable, TEX<1:0> = Outer attrs, {C,B} = Inner attrs
memattrs.type = MemType_Normal;
memattrs.inner = ShortConvertAttrsHints(C:B, acctype, FALSE);
memattrs.outer = ShortConvertAttrsHints(TEX<1:0>, acctype, FALSE);
memattrs.shareable = (S == '1');

otherwise
// Reserved, handled above
Unreachable();

// transient bits are not supported in this format
memattrs.inner.transient = FALSE;
memattrs.outer.transient = FALSE;

// distinction between inner and outer shareable is not supported in this format
memattrs.outershareable = memattrs.shareable;

return MemAttrDefaults(memattrs);

Shared Pseudocode Functions Page 1390

Library pseudocode for aarch32/translation/attrs/AArch32.InstructionDevice

// AArch32.InstructionDevice()
// ===========================
// Instruction fetches from memory marked as Device but not execute-never might generate a
// Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

AddressDescriptor AArch32.InstructionDevice(AddressDescriptor addrdesc, bits(32) vaddress,
bits(40) ipaddress, integer level, bits(4) domain,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

c = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
assert c IN {Constraint_NONE, Constraint_FAULT};

if c == Constraint_FAULT then
addrdesc.fault = AArch32.PermissionFault(ipaddress, domain, level, acctype, iswrite,

secondstage, s2fs1walk);
else

addrdesc.memattrs.type = MemType_Normal;
addrdesc.memattrs.inner.attrs = MemAttr_NC;
addrdesc.memattrs.inner.hints = MemHint_No;
addrdesc.memattrs.outer = addrdesc.memattrs.inner;
addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);

return addrdesc;

Library pseudocode for aarch32/translation/attrs/AArch32.RemappedTEXDecode

// AArch32.RemappedTEXDecode()
// ===========================

MemoryAttributes AArch32.RemappedTEXDecode(bits(3) TEX, bit C, bit B, bit S, AccType acctype)

MemoryAttributes memattrs;

region = UInt(TEX<0>:C:B); // TEX<2:1> are ignored in this mapping scheme
if region == 6 then

memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;
else

base = 2 * region;
attrfield = PRRR<base+1:base>;

if attrfield == '11' then // Reserved, maps to allocated value
(-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESPRRR);

case attrfield of
when '00' // Device-nGnRnE

memattrs.type = MemType_Device;
memattrs.device = DeviceType_nGnRnE;

when '01' // Device-nGnRE
memattrs.type = MemType_Device;
memattrs.device = DeviceType_nGnRE;

when '10'
memattrs.type = MemType_Normal;
memattrs.inner = ShortConvertAttrsHints(NMRR<base+1:base>, acctype, FALSE);
memattrs.outer = ShortConvertAttrsHints(NMRR<base+17:base+16>, acctype, FALSE);
s_bit = if S == '0' then PRRR.NS0 else PRRR.NS1;
memattrs.shareable = (s_bit == '1');
memattrs.outershareable = (s_bit == '1' && PRRR<region+24> == '0');

when '11'
Unreachable();

// transient bits are not supported in this format
memattrs.inner.transient = FALSE;
memattrs.outer.transient = FALSE;

return MemAttrDefaults(memattrs);

Shared Pseudocode Functions Page 1391

Library pseudocode for aarch32/translation/attrs/AArch32.S1AttrDecode

// AArch32.S1AttrDecode()
// ======================
// Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
// attributes and hints.

MemoryAttributes AArch32.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)

MemoryAttributes memattrs;

if PSTATE.EL == EL2 then
mair = HMAIR1:HMAIR0;

else
mair = MAIR1:MAIR0;

index = 8 * UInt(attr);
attrfield = mair<index+7:index>;

if ((attrfield<7:4> != '0000' && attrfield<3:0> == '0000') ||
(attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
// Reserved, maps to an allocated value
(-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESMAIR);

if attrfield<7:4> == '0000' then // Device
memattrs.type = MemType_Device;
case attrfield<3:0> of

when '0000' memattrs.device = DeviceType_nGnRnE;
when '0100' memattrs.device = DeviceType_nGnRE;
when '1000' memattrs.device = DeviceType_nGRE;
when '1100' memattrs.device = DeviceType_GRE;
otherwise Unreachable(); // Reserved, handled above

elsif attrfield<3:0> != '0000' then // Normal
memattrs.type = MemType_Normal;
memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype);
memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';

else
Unreachable(); // Reserved, handled above

return MemAttrDefaults(memattrs);

Shared Pseudocode Functions Page 1392

Library pseudocode for aarch32/translation/attrs/AArch32.TranslateAddressS1Off

// AArch32.TranslateAddressS1Off()
// ===============================
// Called for stage 1 translations when translation is disabled to supply a default translation.
// Note that there are additional constraints on instruction prefetching that are not described in
// this pseudocode.

TLBRecord AArch32.TranslateAddressS1Off(bits(32) vaddress, AccType acctype, boolean iswrite)
assert ELUsingAArch32(S1TranslationRegime());

TLBRecord result;

default_cacheable = (HasS2Translation() && ((if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC) == '1'));

if default_cacheable then
// Use default cacheable settings
result.addrdesc.memattrs.type = MemType_Normal;
result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
result.addrdesc.memattrs.inner.hints = MemHint_RWA;
result.addrdesc.memattrs.shareable = FALSE;
result.addrdesc.memattrs.outershareable = FALSE;

elsif acctype != AccType_IFETCH then
// Treat data as Device
result.addrdesc.memattrs.type = MemType_Device;
result.addrdesc.memattrs.device = DeviceType_nGnRnE;
result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;

else
// Instruction cacheability controlled by SCTLR/HSCTLR.I
if PSTATE.EL == EL2 then

cacheable = HSCTLR.I == '1';
else

cacheable = SCTLR.I == '1';
result.addrdesc.memattrs.type = MemType_Normal;
if cacheable then

result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
result.addrdesc.memattrs.inner.hints = MemHint_RA;

else
result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
result.addrdesc.memattrs.inner.hints = MemHint_No;

result.addrdesc.memattrs.shareable = TRUE;
result.addrdesc.memattrs.outershareable = TRUE;

result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;

result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

result.perms.ap = bits(3) UNKNOWN;
result.perms.xn = '0';
result.perms.pxn = '0';

result.nG = bit UNKNOWN;
result.contiguous = boolean UNKNOWN;
result.domain = bits(4) UNKNOWN;
result.level = integer UNKNOWN;
result.blocksize = integer UNKNOWN;
result.addrdesc.paddress.physicaladdress = ZeroExtend(vaddress);
result.addrdesc.paddress.NS = if IsSecure() then '0' else '1';
result.addrdesc.fault = AArch32.NoFault();
return result;

Shared Pseudocode Functions Page 1393

Library pseudocode for aarch32/translation/checks/AArch32.AccessIsPrivileged

// AArch32.AccessIsPrivileged()
// ============================

boolean AArch32.AccessIsPrivileged(AccType acctype)

if PSTATE.EL == EL0 then
ispriv = FALSE;

elsif PSTATE.EL != EL1 then
ispriv = TRUE;

else
ispriv = (acctype != AccType_UNPRIV);

return ispriv;

Library pseudocode for aarch32/translation/checks/AArch32.CheckDomain

// AArch32.CheckDomain()
// =====================

(boolean, FaultRecord) AArch32.CheckDomain(bits(4) domain, bits(32) vaddress, integer level,
AccType acctype, boolean iswrite)

index = 2 * UInt(domain);
attrfield = DACR<index+1:index>;

if attrfield == '10' then // Reserved, maps to an allocated value
// Reserved value maps to an allocated value
(-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESDACR);

if attrfield == '00' then
fault = AArch32.DomainFault(domain, level, acctype, iswrite);

else
fault = AArch32.NoFault();

permissioncheck = (attrfield == '01');

return (permissioncheck, fault);

Shared Pseudocode Functions Page 1394

Library pseudocode for aarch32/translation/checks/AArch32.CheckPermission

Shared Pseudocode Functions Page 1395

// AArch32.CheckPermission()
// =========================
// Function used for permission checking from AArch32 stage 1 translations

FaultRecord AArch32.CheckPermission(Permissions perms, bits(32) vaddress, integer level,
bits(4) domain, bit NS, AccType acctype, boolean iswrite)

assert ELUsingAArch32(S1TranslationRegime());

if PSTATE.EL != EL2 then
wxn = SCTLR.WXN == '1';
if TTBCR.EAE == '1' || SCTLR.AFE == '1' || perms.ap<0> == '1' then

priv_r = TRUE;
priv_w = perms.ap<2> == '0';
user_r = perms.ap<1> == '1';
user_w = perms.ap<2:1> == '01';

else
priv_r = perms.ap<2:1> != '00';
priv_w = perms.ap<2:1> == '01';
user_r = perms.ap<1> == '1';
user_w = FALSE;

uwxn = SCTLR.UWXN == '1';

ispriv = AArch32.AccessIsPrivileged(acctype);

pan = if HavePANExt() then PSTATE.PAN else '0';
if (pan == '1' && user_r && ispriv &&

!(acctype IN {AccType_DC,AccType_AT,AccType_IFETCH}) ||
(acctype == AccType_AT && AArch32.ExecutingATS1xPInstr())) then
priv_r = FALSE;
priv_w = FALSE;

user_xn = !user_r || perms.xn == '1' || (user_w && wxn);
priv_xn = (!priv_r || perms.xn == '1' || perms.pxn == '1' ||

(priv_w && wxn) || (user_w && uwxn));

if ispriv then
(r, w, xn) = (priv_r, priv_w, priv_xn);

else
(r, w, xn) = (user_r, user_w, user_xn);

else
// Access from EL2
wxn = HSCTLR.WXN == '1';
r = TRUE;
w = perms.ap<2> == '0';
xn = perms.xn == '1' || (w && wxn);

// Restriction on Secure instruction fetch
if HaveEL(EL3) && IsSecure() && NS == '1' then

secure_instr_fetch = if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF;
if secure_instr_fetch == '1' then xn = TRUE;

if acctype == AccType_IFETCH then
fail = xn;
failedread = TRUE;

elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW } then
fail = !r || !w;
failedread = !r;

elsif iswrite && !IsSecure() && PSTATE.EL == EL1 && (acctype != AccType_DC) then
fail = !w;
failedread = FALSE;

else
fail = !r;
failedread = TRUE;

if fail then
secondstage = FALSE;
s2fs1walk = FALSE;
ipaddress = bits(40) UNKNOWN;
return AArch32.PermissionFault(ipaddress, domain, level, acctype,

!failedread, secondstage, s2fs1walk);

Shared Pseudocode Functions Page 1396

else
return AArch32.NoFault();

Library pseudocode for aarch32/translation/checks/AArch32.CheckS2Permission

// AArch32.CheckS2Permission()
// ===========================
// Function used for permission checking from AArch32 stage 2 translations

FaultRecord AArch32.CheckS2Permission(Permissions perms, bits(32) vaddress, bits(40) ipaddress,
integer level, AccType acctype, boolean iswrite,
boolean s2fs1walk)

assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2) && HasS2Translation();

r = perms.ap<1> == '1';
w = perms.ap<2> == '1';
if HaveExtendedExecuteNeverExt() then

case perms.xn:perms.xxn of
when '00' xn = !r;
when '01' xn = !r || PSTATE.EL == EL1;
when '10' xn = TRUE;
when '11' xn = !r || PSTATE.EL == EL0;

else
xn = !r || perms.xn == '1';

// Stage 1 walk is checked as a read, regardless of the original type
if acctype == AccType_IFETCH && !s2fs1walk then

fail = xn;
failedread = TRUE;

elsif (acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW }) && !s2fs1walk then
fail = !r || !w;
failedread = !r;

elsif iswrite && !s2fs1walk then
fail = !w;
failedread = FALSE;

else
fail = !r;
failedread = !iswrite;

if fail then
domain = bits(4) UNKNOWN;
secondstage = TRUE;
return AArch32.PermissionFault(ipaddress, domain, level, acctype,

!failedread, secondstage, s2fs1walk);
else

return AArch32.NoFault();

Shared Pseudocode Functions Page 1397

Library pseudocode for aarch32/translation/debug/AArch32.CheckBreakpoint

// AArch32.CheckBreakpoint()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
// translation regime.
// The breakpoint can in fact be evaluated well ahead of execution, for example, at instruction
// fetch. This is the simple sequential execution of the program.

FaultRecord AArch32.CheckBreakpoint(bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());
assert size IN {2,4};

match = FALSE;
mismatch = FALSE;

for i = 0 to UInt(DBGDIDR.BRPs)
(match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, size);
match = match || match_i;
mismatch = mismatch || mismatch_i;

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Breakpoint;
Halt(reason);

elsif (match || mismatch) && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
acctype = AccType_IFETCH;
iswrite = FALSE;
debugmoe = DebugException_Breakpoint;
return AArch32.DebugFault(acctype, iswrite, debugmoe);

else
return AArch32.NoFault();

Library pseudocode for aarch32/translation/debug/AArch32.CheckDebug

// AArch32.CheckDebug()
// ====================
// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccType acctype, boolean iswrite, integer size)

FaultRecord fault = AArch32.NoFault();

d_side = (acctype != AccType_IFETCH);
generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
halt = HaltOnBreakpointOrWatchpoint();
// Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
vector_catch_first = ConstrainUnpredictableBool(Unpredictable_BPVECTORCATCHPRI);

if !d_side && vector_catch_first && generate_exception then
fault = AArch32.CheckVectorCatch(vaddress, size);

if fault.type == Fault_None && (generate_exception || halt) then
if d_side then

fault = AArch32.CheckWatchpoint(vaddress, acctype, iswrite, size);
else

fault = AArch32.CheckBreakpoint(vaddress, size);

if fault.type == Fault_None && !d_side && !vector_catch_first && generate_exception then
return AArch32.CheckVectorCatch(vaddress, size);

return fault;

Shared Pseudocode Functions Page 1398

Library pseudocode for aarch32/translation/debug/AArch32.CheckVectorCatch

// AArch32.CheckVectorCatch()
// ==========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
// translation regime.
// Vector Catch can in fact be evaluated well ahead of execution, for example, at instruction
// fetch. This is the simple sequential execution of the program.

FaultRecord AArch32.CheckVectorCatch(bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());

match = AArch32.VCRMatch(vaddress);
if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then

match = ConstrainUnpredictableBool(Unpredictable_VCMATCHHALF);

if match && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
acctype = AccType_IFETCH;
iswrite = FALSE;
debugmoe = DebugException_VectorCatch;
return AArch32.DebugFault(acctype, iswrite, debugmoe);

else
return AArch32.NoFault();

Library pseudocode for aarch32/translation/debug/AArch32.CheckWatchpoint

// AArch32.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "address".

FaultRecord AArch32.CheckWatchpoint(bits(32) vaddress, AccType acctype,
boolean iswrite, integer size)

assert ELUsingAArch32(S1TranslationRegime());

match = FALSE;
ispriv = AArch32.AccessIsPrivileged(acctype);

for i = 0 to UInt(DBGDIDR.WRPs)
match = match || AArch32.WatchpointMatch(i, vaddress, size, ispriv, iswrite);

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Watchpoint;
Halt(reason);

elsif match && DBGDSCRext.MDBGen == '1' && AArch32.GenerateDebugExceptions() then
debugmoe = DebugException_Watchpoint;
return AArch32.DebugFault(acctype, iswrite, debugmoe);

else
return AArch32.NoFault();

Library pseudocode for aarch32/translation/faults/AArch32.AccessFlagFault

// AArch32.AccessFlagFault()
// =========================

FaultRecord AArch32.AccessFlagFault(bits(40) ipaddress, bits(4) domain, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
debugmoe = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch32.CreateFaultRecord(Fault_AccessFlag, ipaddress, domain, level, acctype, iswrite,

extflag, debugmoe, errortype, secondstage, s2fs1walk);

Shared Pseudocode Functions Page 1399

Library pseudocode for aarch32/translation/faults/AArch32.AddressSizeFault

// AArch32.AddressSizeFault()
// ==========================

FaultRecord AArch32.AddressSizeFault(bits(40) ipaddress, bits(4) domain, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
debugmoe = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch32.CreateFaultRecord(Fault_AddressSize, ipaddress, domain, level, acctype, iswrite,

extflag, debugmoe, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch32/translation/faults/AArch32.AlignmentFault

// AArch32.AlignmentFault()
// ========================

FaultRecord AArch32.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)

ipaddress = bits(40) UNKNOWN;
domain = bits(4) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
debugmoe = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
s2fs1walk = boolean UNKNOWN;

return AArch32.CreateFaultRecord(Fault_Alignment, ipaddress, domain, level, acctype, iswrite,
extflag, debugmoe, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch32/translation/faults/AArch32.AsynchExternalAbort

// AArch32.AsynchExternalAbort()
// =============================
// Wrapper function for asynchronous external aborts

FaultRecord AArch32.AsynchExternalAbort(boolean parity, bits(2) errortype, bit extflag)

type = if parity then Fault_AsyncParity else Fault_AsyncExternal;
ipaddress = bits(40) UNKNOWN;
domain = bits(4) UNKNOWN;
level = integer UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
debugmoe = bits(4) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch32.CreateFaultRecord(type, ipaddress, domain, level, acctype, iswrite, extflag,
debugmoe, errortype, secondstage, s2fs1walk);

Shared Pseudocode Functions Page 1400

Library pseudocode for aarch32/translation/faults/AArch32.DebugFault

// AArch32.DebugFault()
// ====================

FaultRecord AArch32.DebugFault(AccType acctype, boolean iswrite, bits(4) debugmoe)

ipaddress = bits(40) UNKNOWN;
domain = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch32.CreateFaultRecord(Fault_Debug, ipaddress, domain, level, acctype, iswrite,
extflag, debugmoe, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch32/translation/faults/AArch32.DomainFault

// AArch32.DomainFault()
// =====================

FaultRecord AArch32.DomainFault(bits(4) domain, integer level, AccType acctype, boolean iswrite)

ipaddress = bits(40) UNKNOWN;
extflag = bit UNKNOWN;
debugmoe = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch32.CreateFaultRecord(Fault_Domain, ipaddress, domain, level, acctype, iswrite,
extflag, debugmoe, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch32/translation/faults/AArch32.NoFault

// AArch32.NoFault()
// =================

FaultRecord AArch32.NoFault()

ipaddress = bits(40) UNKNOWN;
domain = bits(4) UNKNOWN;
level = integer UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
extflag = bit UNKNOWN;
debugmoe = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch32.CreateFaultRecord(Fault_None, ipaddress, domain, level, acctype, iswrite,
extflag, debugmoe, errortype, secondstage, s2fs1walk);

Shared Pseudocode Functions Page 1401

Library pseudocode for aarch32/translation/faults/AArch32.PermissionFault

// AArch32.PermissionFault()
// =========================

FaultRecord AArch32.PermissionFault(bits(40) ipaddress, bits(4) domain, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
debugmoe = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch32.CreateFaultRecord(Fault_Permission, ipaddress, domain, level, acctype, iswrite,

extflag, debugmoe, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch32/translation/faults/AArch32.TranslationFault

// AArch32.TranslationFault()
// ==========================

FaultRecord AArch32.TranslationFault(bits(40) ipaddress, bits(4) domain, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
debugmoe = bits(4) UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch32.CreateFaultRecord(Fault_Translation, ipaddress, domain, level, acctype, iswrite,

extflag, debugmoe, errortype, secondstage, s2fs1walk);

Shared Pseudocode Functions Page 1402

Library pseudocode for aarch32/translation/translation/AArch32.FirstStageTranslate

// AArch32.FirstStageTranslate()
// =============================
// Perform a stage 1 translation walk. The function used by Address Translation operations is
// similar except it uses the translation regime specified for the instruction.

AddressDescriptor AArch32.FirstStageTranslate(bits(32) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

if PSTATE.EL == EL2 then
s1_enabled = HSCTLR.M == '1';

elsif HaveEL(EL2) && !IsSecure() then
tge = (if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE);
dc = (if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC);
s1_enabled = tge == '0' && dc == '0' && SCTLR.M == '1';

else
dc = (if ELUsingAArch32(EL2) then HCR.DC else HCR_EL2.DC);
s1_enabled = dc == '0' && SCTLR.M == '1';

ipaddress = bits(40) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

if s1_enabled then // First stage enabled
use_long_descriptor_format = PSTATE.EL == EL2 || TTBCR.EAE == '1';
if use_long_descriptor_format then

S1 = AArch32.TranslationTableWalkLD(ipaddress, vaddress, acctype, iswrite, secondstage,
s2fs1walk, size);

permissioncheck = TRUE; domaincheck = FALSE;
else

S1 = AArch32.TranslationTableWalkSD(vaddress, acctype, iswrite, size);
permissioncheck = TRUE; domaincheck = TRUE;

else
S1 = AArch32.TranslateAddressS1Off(vaddress, acctype, iswrite);
permissioncheck = FALSE; domaincheck = FALSE;

if UsingAArch32() && HaveTrapLoadStoreMultipleDeviceExt() && AArch32.ExecutingLSMInstr() then
if S1.addrdesc.memattrs.type == MemType_Device && S1.addrdesc.memattrs.device != DeviceType_GRE then

nTLSMD = if S1TranslationRegime() == EL2 then HSCTLR.nTLSMD else SCTLR.nTLSMD;
if nTLSMD == '0' then

S1.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);
// Check for unaligned data accesses to Device memory
if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))

&& S1.addrdesc.memattrs.type == MemType_Device && !IsFault(S1.addrdesc) then
S1.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);

if !IsFault(S1.addrdesc) && domaincheck then
(permissioncheck, abort) = AArch32.CheckDomain(S1.domain, vaddress, S1.level, acctype,

iswrite);
S1.addrdesc.fault = abort;

if !IsFault(S1.addrdesc) && permissioncheck then
S1.addrdesc.fault = AArch32.CheckPermission(S1.perms, vaddress, S1.level,

S1.domain, S1.addrdesc.paddress.NS,
acctype, iswrite);

// Check for instruction fetches from Device memory not marked as execute-never. If there has
// not been a Permission Fault then the memory is not marked execute-never.
if (!IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&

acctype == AccType_IFETCH) then
S1.addrdesc = AArch32.InstructionDevice(S1.addrdesc, vaddress, ipaddress, S1.level,

S1.domain, acctype, iswrite,
secondstage, s2fs1walk);

return S1.addrdesc;

Shared Pseudocode Functions Page 1403

Library pseudocode for aarch32/translation/translation/AArch32.FullTranslate

// AArch32.FullTranslate()
// =======================
// Perform both stage 1 and stage 2 translation walks for the current translation regime. The
// function used by Address Translation operations is similar except it uses the translation
// regime specified for the instruction.

AddressDescriptor AArch32.FullTranslate(bits(32) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

// First Stage Translation
S1 = AArch32.FirstStageTranslate(vaddress, acctype, iswrite, wasaligned, size);
if !IsFault(S1) && HasS2Translation() then

s2fs1walk = FALSE;
result = AArch32.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,

size);
else

result = S1;

return result;

Shared Pseudocode Functions Page 1404

Library pseudocode for aarch32/translation/translation/AArch32.SecondStageTranslate

// AArch32.SecondStageTranslate()
// ==============================
// Perform a stage 2 translation walk. The function used by Address Translation operations is
// similar except it uses the translation regime specified for the instruction.

AddressDescriptor AArch32.SecondStageTranslate(AddressDescriptor S1, bits(32) vaddress,
AccType acctype, boolean iswrite, boolean wasaligned,
boolean s2fs1walk, integer size)

assert HasS2Translation();
assert IsZero(S1.paddress.physicaladdress<47:40>);
hwupdatewalk = FALSE;
if !ELUsingAArch32(EL2) then

return AArch64.SecondStageTranslate(S1, ZeroExtend(vaddress, 64), acctype, iswrite,
wasaligned, s2fs1walk, size, hwupdatewalk);

s2_enabled = HCR.VM == '1' || HCR.DC == '1';
secondstage = TRUE;

if s2_enabled then // Second stage enabled
ipaddress = S1.paddress.physicaladdress<39:0>;

S2 = AArch32.TranslationTableWalkLD(ipaddress, vaddress, acctype, iswrite, secondstage,
s2fs1walk, size);

// Check for unaligned data accesses to Device memory
if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))

&& S2.addrdesc.memattrs.type == MemType_Device && !IsFault(S2.addrdesc) then
S2.addrdesc.fault = AArch32.AlignmentFault(acctype, iswrite, secondstage);

if !IsFault(S2.addrdesc) then
S2.addrdesc.fault = AArch32.CheckS2Permission(S2.perms, vaddress, ipaddress, S2.level,

acctype, iswrite, s2fs1walk);
// Check for instruction fetches from Device memory not marked as execute-never. As there
// has not been a Permission Fault then the memory is not marked execute-never.
if (!s2fs1walk && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&

acctype == AccType_IFETCH) then
domain = bits(4) UNKNOWN;
S2.addrdesc = AArch32.InstructionDevice(S2.addrdesc, vaddress, ipaddress, S2.level,

domain, acctype, iswrite,
secondstage, s2fs1walk);

// Check for protected table walk
if (s2fs1walk && !IsFault(S2.addrdesc) && HCR.PTW == '1' &&

S2.addrdesc.memattrs.type == MemType_Device) then
domain = bits(4) UNKNOWN;
S2.addrdesc.fault = AArch32.PermissionFault(ipaddress, domain, S2.level, acctype,

iswrite, secondstage, s2fs1walk);

result = CombineS1S2Desc(S1, S2.addrdesc);
else

result = S1;

return result;

Shared Pseudocode Functions Page 1405

Library pseudocode for aarch32/translation/translation/AArch32.SecondStageWalk

// AArch32.SecondStageWalk()
// =========================
// Perform a stage 2 translation on a stage 1 translation page table walk access.

AddressDescriptor AArch32.SecondStageWalk(AddressDescriptor S1, bits(32) vaddress, AccType acctype,
boolean iswrite, integer size)

assert HasS2Translation();

s2fs1walk = TRUE;
wasaligned = TRUE;
return AArch32.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,

size);

Library pseudocode for aarch32/translation/translation/AArch32.TranslateAddress

// AArch32.TranslateAddress()
// ==========================
// Main entry point for translating an address

AddressDescriptor AArch32.TranslateAddress(bits(32) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

if !ELUsingAArch32(S1TranslationRegime()) then
return AArch64.TranslateAddress(ZeroExtend(vaddress, 64), acctype, iswrite, wasaligned,

size);
result = AArch32.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);

if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
result.fault = AArch32.CheckDebug(vaddress, acctype, iswrite, size);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(vaddress);

return result;

Library pseudocode for aarch32/translation/translation/IsEL1TransRegimeRegs

// IsEL1TransRegimeRegs()
// ======================

// Returns TRUE if its a register in EL1 translation regime

boolean IsEL1TransRegimeRegs()
return !HaveEL(EL2) || PSTATE.EL == EL1 || (PSTATE.EL == EL0 && (HCR_EL2.E2H == '0' || HCR_EL2.TGE=='0'));

Shared Pseudocode Functions Page 1406

Library pseudocode for aarch32/translation/walk/AArch32.TranslationTableWalkLD

Shared Pseudocode Functions Page 1407

// AArch32.TranslationTableWalkLD()
// ================================
// Returns a result of a translation table walk using the Long-descriptor format
//
// Implementations might cache information from memory in any number of non-coherent TLB
// caching structures, and so avoid memory accesses that have been expressed in this
// pseudocode. The use of such TLBs is not expressed in this pseudocode.

TLBRecord AArch32.TranslationTableWalkLD(bits(40) ipaddress, bits(32) vaddress,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk, integer size)

if !secondstage then
assert ELUsingAArch32(S1TranslationRegime());

else
assert HaveEL(EL2) && !IsSecure() && ELUsingAArch32(EL2) && HasS2Translation();

TLBRecord result;
AddressDescriptor descaddr;
bits(64) baseregister;
bits(40) inputaddr; // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2
domain = bits(4) UNKNOWN;

descaddr.memattrs.type = MemType_Normal;

// Fixed parameters for the page table walk:
// grainsize = Log2(Size of Table) - Size of Table is 4KB in AArch32
// stride = Log2(Address per Level) - Bits of address consumed at each level
constant integer grainsize = 12; // Log2(4KB page size)
constant integer stride = grainsize - 3; // Log2(page size / 8 bytes)

// Derived parameters for the page table walk:
// inputsize = Log2(Size of Input Address) - Input Address size in bits
// level = Level to start walk from
// This means that the number of levels after start level = 3-level

if !secondstage then
// First stage translation
inputaddr = ZeroExtend(vaddress);
if PSTATE.EL == EL2 then

inputsize = 32 - UInt(HTCR.T0SZ);
basefound = inputsize == 32 || IsZero(inputaddr<31:inputsize>);
disabled = FALSE;
baseregister = HTTBR;
descaddr.memattrs = WalkAttrDecode(HTCR.SH0, HTCR.ORGN0, HTCR.IRGN0, secondstage);
reversedescriptors = HSCTLR.EE == '1';
lookupsecure = FALSE;
singlepriv = TRUE;
hierattrsdisabled = AArch32.HaveHPDExt() && HTCR.HPD == '1';

else
basefound = FALSE;
disabled = FALSE;
t0size = UInt(TTBCR.T0SZ);
if t0size == 0 || IsZero(inputaddr<31:(32-t0size)>) then

inputsize = 32 - t0size;
basefound = TRUE;
disabled = TTBCR.EPD0 == '1';
baseregister = TTBR0;
descaddr.memattrs = WalkAttrDecode(TTBCR.SH0, TTBCR.ORGN0, TTBCR.IRGN0, secondstage);
hierattrsdisabled = AArch32.HaveHPDExt() && TTBCR.T2E == '1' && TTBCR2.HPD0 == '1';

t1size = UInt(TTBCR.T1SZ);
if (t1size == 0 && !basefound) || (t1size > 0 && IsOnes(inputaddr<31:(32-t1size)>)) then

inputsize = 32 - t1size;
basefound = TRUE;
disabled = TTBCR.EPD1 == '1';
baseregister = TTBR1;
descaddr.memattrs = WalkAttrDecode(TTBCR.SH1, TTBCR.ORGN1, TTBCR.IRGN1, secondstage);
hierattrsdisabled = AArch32.HaveHPDExt() && TTBCR.T2E == '1' && TTBCR2.HPD1 == '1';

reversedescriptors = SCTLR.EE == '1';
lookupsecure = IsSecure();
singlepriv = FALSE;

Shared Pseudocode Functions Page 1408

// The starting level is the number of strides needed to consume the input address
level = 4 - RoundUp(Real(inputsize - grainsize) / Real(stride));

else
// Second stage translation
inputaddr = ipaddress;
inputsize = 32 - SInt(VTCR.T0SZ);
// VTCR.S must match VTCR.T0SZ[3]
if VTCR.S != VTCR.T0SZ<3> then

(-, inputsize) = ConstrainUnpredictableInteger(32-7, 32+8, Unpredictable_RESVTCRS);
basefound = inputsize == 40 || IsZero(inputaddr<39:inputsize>);
disabled = FALSE;
baseregister = VTTBR;
descaddr.memattrs = WalkAttrDecode(VTCR.IRGN0, VTCR.ORGN0, VTCR.SH0, secondstage);
reversedescriptors = HSCTLR.EE == '1';
lookupsecure = FALSE;
singlepriv = TRUE;

startlevel = UInt(VTCR.SL0);
level = 2 - startlevel;
if level <= 0 then basefound = FALSE;

// Number of entries in the starting level table =
// (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
startsizecheck = inputsize - ((3 - level)*stride + grainsize); // Log2(Num of entries)

// Check for starting level table with fewer than 2 entries or longer than 16 pages.
// Lower bound check is: startsizecheck < Log2(2 entries)
// That is, VTCR.SL0 == '00' and SInt(VTCR.T0SZ) > 1, Size of Input Address < 2^31 bytes
// Upper bound check is: startsizecheck > Log2(pagesize/8*16)
// That is, VTCR.SL0 == '01' and SInt(VTCR.T0SZ) < -2, Size of Input Address > 2^34 bytes
if startsizecheck < 1 || startsizecheck > stride + 4 then basefound = FALSE;

if !basefound || disabled then
level = 1; // AArch64 reports this as a level 0 fault
result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype, iswrite,

secondstage, s2fs1walk);
return result;

if !IsZero(baseregister<47:40>) then
level = 0;
result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype, iswrite,

secondstage, s2fs1walk);
return result;

// Bottom bound of the Base address is:
// Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
// Number of entries in starting level table =
// (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
baselowerbound = 3 + inputsize - ((3-level)*stride + grainsize); // Log2(Num of entries*8)
baseaddress = baseregister<39:baselowerbound>:Zeros(baselowerbound);

ns_table = if lookupsecure then '0' else '1';
ap_table = '00';
xn_table = '0';
pxn_table = '0';

addrselecttop = inputsize - 1;

repeat
addrselectbottom = (3-level)*stride + grainsize;

bits(40) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:'000');
descaddr.paddress.physicaladdress = ZeroExtend(baseaddress OR index);
descaddr.paddress.NS = ns_table;

// If there are two stages of translation, then the first stage table walk addresses
// are themselves subject to translation
if secondstage || !HasS2Translation() then

descaddr2 = descaddr;

Shared Pseudocode Functions Page 1409

else
descaddr2 = AArch32.SecondStageWalk(descaddr, vaddress, acctype, iswrite, 8);
// Check for a fault on the stage 2 walk
if IsFault(descaddr2) then

result.addrdesc.fault = descaddr2.fault;
return result;

// Update virtual address for abort functions
descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fs1walk, level);
desc = _Mem[descaddr2, 8, accdesc];

if reversedescriptors then desc = BigEndianReverse(desc);

if desc<0> == '0' || (desc<1:0> == '01' && level == 3) then
// Fault (00), Reserved (10), or Block (01) at level 3

result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

// Valid Block, Page, or Table entry
if desc<1:0> == '01' || level == 3 then // Block (01) or Page (11)

blocktranslate = TRUE;
else // Table (11)

if !IsZero(desc<47:40>) then
result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype,

iswrite, secondstage, s2fs1walk);
return result;

baseaddress = desc<39:grainsize>:Zeros(grainsize);
if !secondstage then

// Unpack the upper and lower table attributes
ns_table = ns_table OR desc<63>;

if !secondstage && !hierattrsdisabled then
ap_table<1> = ap_table<1> OR desc<62>; // read-only

xn_table = xn_table OR desc<60>;
// pxn_table and ap_table[0] apply only in EL1&0 translation regimes
if !singlepriv then

pxn_table = pxn_table OR desc<59>;
ap_table<0> = ap_table<0> OR desc<61>; // privileged

level = level + 1;
addrselecttop = addrselectbottom - 1;
blocktranslate = FALSE;

until blocktranslate;

// Check the output address is inside the supported range
if !IsZero(desc<47:40>) then

result.addrdesc.fault = AArch32.AddressSizeFault(ipaddress, domain, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

// Unpack the descriptor into address and upper and lower block attributes
outputaddress = desc<39:addrselectbottom>:inputaddr<addrselectbottom-1:0>;
// Check the access flag
if desc<10> == '0' then

result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;
xn = desc<54>;
pxn = desc<53>;
contiguousbit = desc<52>;
nG = desc<11>;
sh = desc<9:8>;
ap = desc<7:6>:'1';
memattr = desc<5:2>; // AttrIndx and NS bit in stage 1

result.domain = bits(4) UNKNOWN; // Domains not used

Shared Pseudocode Functions Page 1410

result.level = level;
result.blocksize = 2^((3-level)*stride + grainsize);

// Stage 1 translation regimes also inherit attributes from the tables
if !secondstage then

result.perms.xn = xn OR xn_table;
result.perms.ap<2> = ap<2> OR ap_table<1>; // Force read-only
// PXN, nG and AP[1] apply only in EL1&0 stage 1 translation regimes
if !singlepriv then

result.perms.ap<1> = ap<1> AND NOT(ap_table<0>); // Force privileged only
result.perms.pxn = pxn OR pxn_table;
// Pages from Non-secure tables are marked non-global in Secure EL1&0
if IsSecure() then

result.nG = nG OR ns_table;
else

result.nG = nG;
else

result.perms.ap<1> = '1';
result.perms.pxn = '0';
result.nG = '0';

result.perms.ap<0> = '1';
result.addrdesc.memattrs = AArch32.S1AttrDecode(sh, memattr<2:0>, acctype);
result.addrdesc.paddress.NS = memattr<3> OR ns_table;

else
result.perms.ap<2:1> = ap<2:1>;
result.perms.ap<0> = '1';
result.perms.xn = xn;
if HaveExtendedExecuteNeverExt() then result.perms.xxn = desc<53>;
result.perms.pxn = '0';
result.nG = '0';
result.addrdesc.memattrs = S2AttrDecode(sh, memattr, acctype);
result.addrdesc.paddress.NS = '1';

result.addrdesc.paddress.physicaladdress = ZeroExtend(outputaddress);
result.addrdesc.fault = AArch32.NoFault();
result.contiguous = contiguousbit == '1';
if HaveCommonNotPrivateTransExt() then result.CnP = baseregister<0>;
return result;

Shared Pseudocode Functions Page 1411

Library pseudocode for aarch32/translation/walk/AArch32.TranslationTableWalkSD

Shared Pseudocode Functions Page 1412

// AArch32.TranslationTableWalkSD()
// ================================
// Returns a result of a translation table walk using the Short-descriptor format
//
// Implementations might cache information from memory in any number of non-coherent TLB
// caching structures, and so avoid memory accesses that have been expressed in this
// pseudocode. The use of such TLBs is not expressed in this pseudocode.

TLBRecord AArch32.TranslationTableWalkSD(bits(32) vaddress, AccType acctype, boolean iswrite,
integer size)

assert ELUsingAArch32(S1TranslationRegime());

// This is only called when address translation is enabled
TLBRecord result;
AddressDescriptor l1descaddr;
AddressDescriptor l2descaddr;
bits(40) outputaddress;

// Variables for Abort functions
ipaddress = bits(40) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

// Default setting of the domain
domain = bits(4) UNKNOWN;

// Determine correct Translation Table Base Register to use.
bits(64) ttbr;
n = UInt(TTBCR.N);
if n == 0 || IsZero(vaddress<31:(32-n)>) then

ttbr = TTBR0;
disabled = (TTBCR.PD0 == '1');

else
ttbr = TTBR1;
disabled = (TTBCR.PD1 == '1');
n = 0; // TTBR1 translation always works like N=0 TTBR0 translation

// Check this Translation Table Base Register is not disabled.
if disabled then

level = 1;
result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype, iswrite,

secondstage, s2fs1walk);
return result;

// Obtain descriptor from initial lookup.
l1descaddr.paddress.physicaladdress = ZeroExtend(ttbr<31:14-n>:vaddress<31-n:20>:'00');
l1descaddr.paddress.NS = if IsSecure() then '0' else '1';
IRGN = ttbr<0>:ttbr<6>; // TTBR.IRGN
RGN = ttbr<4:3>; // TTBR.RGN
SH = ttbr<1>:ttbr<5>; // TTBR.S:TTBR.NOS
l1descaddr.memattrs = WalkAttrDecode(SH, RGN, IRGN, secondstage);

if !HaveEL(EL2) || IsSecure() then
// if only 1 stage of translation
l1descaddr2 = l1descaddr;

else
l1descaddr2 = AArch32.SecondStageWalk(l1descaddr, vaddress, acctype, iswrite, 4);
// Check for a fault on the stage 2 walk
if IsFault(l1descaddr2) then

result.addrdesc.fault = l1descaddr2.fault;
return result;

// Update virtual address for abort functions
l1descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fs1walk, level);
l1desc = _Mem[l1descaddr2, 4,accdesc];

if SCTLR.EE == '1' then l1desc = BigEndianReverse(l1desc);

Shared Pseudocode Functions Page 1413

// Process descriptor from initial lookup.
case l1desc<1:0> of

when '00' // Fault, Reserved
level = 1;
result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype,

iswrite, secondstage, s2fs1walk);
return result;

when '01' // Large page or Small page
domain = l1desc<8:5>;
level = 2;
pxn = l1desc<2>;
NS = l1desc<3>;

// Obtain descriptor from level 2 lookup.
l2descaddr.paddress.physicaladdress = ZeroExtend(l1desc<31:10>:vaddress<19:12>:'00');
l2descaddr.paddress.NS = if IsSecure() then '0' else '1';
l2descaddr.memattrs = l1descaddr.memattrs;

if !HaveEL(EL2) || IsSecure() then
// if only 1 stage of translation

l2descaddr2 = l2descaddr;
else

l2descaddr2 = AArch32.SecondStageWalk(l2descaddr, vaddress, acctype, iswrite, 4);
// Check for a fault on the stage 2 walk
if IsFault(l2descaddr2) then

result.addrdesc.fault = l2descaddr2.fault;
return result;

// Update virtual address for abort functions
l2descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fs1walk, level);
l2desc = _Mem[l2descaddr2, 4, accdesc];

if SCTLR.EE == '1' then l2desc = BigEndianReverse(l2desc);

// Process descriptor from level 2 lookup.
if l2desc<1:0> == '00' then

result.addrdesc.fault = AArch32.TranslationFault(ipaddress, domain, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

nG = l2desc<11>;
S = l2desc<10>;
ap = l2desc<9,5:4>;

if SCTLR.AFE == '1' && l2desc<4> == '0' then
// Hardware access to the Access Flag is not supported in ARMv8
result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,

iswrite, secondstage, s2fs1walk);
return result;

if l2desc<1> == '0' then // Large page
xn = l2desc<15>;
tex = l2desc<14:12>;
c = l2desc<3>;
b = l2desc<2>;
blocksize = 64;
outputaddress = ZeroExtend(l2desc<31:16>:vaddress<15:0>);

else // Small page
tex = l2desc<8:6>;
c = l2desc<3>;
b = l2desc<2>;
xn = l2desc<0>;
blocksize = 4;
outputaddress = ZeroExtend(l2desc<31:12>:vaddress<11:0>);

when '1x' // Section or Supersection
NS = l1desc<19>;

Shared Pseudocode Functions Page 1414

nG = l1desc<17>;
S = l1desc<16>;
ap = l1desc<15,11:10>;
tex = l1desc<14:12>;
xn = l1desc<4>;
c = l1desc<3>;
b = l1desc<2>;
pxn = l1desc<0>;
level = 1;

if SCTLR.AFE == '1' && l1desc<10> == '0' then
// Hardware management of the Access Flag is not supported in ARMv8
result.addrdesc.fault = AArch32.AccessFlagFault(ipaddress, domain, level, acctype,

iswrite, secondstage, s2fs1walk);
return result;

if l1desc<18> == '0' then // Section
domain = l1desc<8:5>;
blocksize = 1024;
outputaddress = ZeroExtend(l1desc<31:20>:vaddress<19:0>);

else // Supersection
domain = '0000';
blocksize = 16384;
outputaddress = l1desc<8:5>:l1desc<23:20>:l1desc<31:24>:vaddress<23:0>;

// Decode the TEX, C, B and S bits to produce the TLBRecord's memory attributes
if SCTLR.TRE == '0' then

if RemapRegsHaveResetValues() then
result.addrdesc.memattrs = AArch32.DefaultTEXDecode(tex, c, b, S, acctype);

else
result.addrdesc.memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

else
result.addrdesc.memattrs = AArch32.RemappedTEXDecode(tex, c, b, S, acctype);

// Set the rest of the TLBRecord, try to add it to the TLB, and return it.
result.perms.ap = ap;
result.perms.xn = xn;
result.perms.pxn = pxn;
result.nG = nG;
result.domain = domain;
result.level = level;
result.blocksize = blocksize;
result.addrdesc.paddress.physicaladdress = ZeroExtend(outputaddress);
result.addrdesc.paddress.NS = if IsSecure() then NS else '1';
result.addrdesc.fault = AArch32.NoFault();

return result;

Library pseudocode for aarch32/translation/walk/RemapRegsHaveResetValues

boolean RemapRegsHaveResetValues();

Shared Pseudocode Functions Page 1415

Library pseudocode for aarch64/debug/breakpoint/AArch64.BreakpointMatch

// AArch64.BreakpointMatch()
// =========================
// Breakpoint matching in an AArch64 translation regime.

boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(ID_AA64DFR0_EL1.BRPs);

enabled = DBGBCR_EL1[n].E == '1';
ispriv = PSTATE.EL != EL0;
linked = DBGBCR_EL1[n].BT == '0x01';
isbreakpnt = TRUE;
linked_to = FALSE;

state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
linked, DBGBCR_EL1[n].LBN, isbreakpnt, ispriv);

value_match = AArch64.BreakpointValueMatch(n, vaddress, linked_to);

if HaveAnyAArch32() && size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to);
if !value_match && match_i then

value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

if vaddress<1> == '1' && DBGBCR_EL1[n].BAS == '1111' then
// The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
// UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
// at the address DBGBVR_EL1[n]+2.
if value_match then value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

match = value_match && state_match && enabled;

return match;

Shared Pseudocode Functions Page 1416

Library pseudocode for aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

Shared Pseudocode Functions Page 1417

// AArch64.BreakpointValueMatch()
// ==============================

boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean linked_to)

// "n" is the identity of the breakpoint unit to match against
// "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
// matching breakpoints.
// "linked_to" is TRUE if this is a call from StateMatch for linking.

// If a non-existant breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
// no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n > UInt(ID_AA64DFR0_EL1.BRPs) then

(c, n) = ConstrainUnpredictableInteger(0, UInt(ID_AA64DFR0_EL1.BRPs), Unpredictable_BPNOTIMPL);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return FALSE;

// If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
// call from StateMatch for linking.)
if DBGBCR_EL1[n].E == '0' then return FALSE;

context_aware = (n >= UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));

// If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
type = DBGBCR_EL1[n].BT;

if ((type IN {'011x','11xx'} && !HaveVirtHostExt()) || // Context matching
type == '010x' || // Reserved
(type != '0x0x' && !context_aware) || // Context matching
(type == '1xxx' && !HaveEL(EL2))) then // EL2 extension

(c, type) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return FALSE;
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

// Determine what to compare against.
match_addr = (type == '0x0x');
match_vmid = (type == '10xx');
match_cid = (type == '001x');
match_cid1 = (type IN { '101x', 'x11x'});
match_cid2 = (type == '11xx');
linked = (type == 'xxx1');

// If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
// VMID and/or context ID match, of if not context-aware. The above assertions mean that the
// code can just test for match_addr == TRUE to confirm all these things.
if linked_to && (!linked || match_addr) then return FALSE;

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !linked_to && linked && !match_addr then return FALSE;

// Do the comparison.
if match_addr then

byte = UInt(vaddress<1:0>);
if HaveAnyAArch32() then

// T32 instructions can be executed at EL0 in an AArch64 translation regime.
assert byte IN {0,2}; // "vaddress" is halfword aligned.
byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');

else
assert byte == 0; // "vaddress" is word aligned
byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1

top = AddrTop(vaddress, TRUE, PSTATE.EL);
BVR_match = vaddress<top:2> == DBGBVR_EL1[n]<top:2> && byte_select_match;

elsif match_cid then
if IsInHost() then

BVR_match = (CONTEXTIDR_EL2 == DBGBVR_EL1[n]<31:0>);
else

BVR_match = (PSTATE.EL IN {EL0,EL1} && CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);
elsif match_cid1 then

BVR_match = (PSTATE.EL IN {EL0,EL1} && !IsInHost() && CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);

Shared Pseudocode Functions Page 1418

if match_vmid then
if !Have16bitVMID() || VTCR_EL2.VS == '0' then

vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);

else
vmid = VTTBR_EL2.VMID;
bvr_vmid = DBGBVR_EL1[n]<47:32>;

BXVR_match = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
!IsInHost() &&
vmid == bvr_vmid);

elsif match_cid2 then
BXVR_match = (!IsSecure() && HaveVirtHostExt() &&

DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2);

bvr_match_valid = (match_addr || match_cid || match_cid1);
bxvr_match_valid = (match_vmid || match_cid2);

match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

return match;

Shared Pseudocode Functions Page 1419

Library pseudocode for aarch64/debug/breakpoint/AArch64.StateMatch

// AArch64.StateMatch()
// ====================
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
boolean isbreakpnt, boolean ispriv)

// "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
// "linked" is TRUE if this is a linked breakpoint/watchpoint type.
// "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

// If parameters are set to a reserved type, behaves as either disabled or a defined type
if ((HMC:SSC:PxC) IN {'011xx','100x0','101x0','11010','11101','1111x'} || // Reserved

(HMC == '0' && PxC == '00' && (!isbreakpnt || !HaveAArch32EL(EL1))) || // Usr/Svc/Sys
(SSC IN {'01','10'} && !HaveEL(EL3)) || // No EL3
(HMC:SSC != '000' && HMC:SSC != '111' && !HaveEL(EL3) && !HaveEL(EL2)) || // No EL3/EL2
(HMC:SSC:PxC == '11100' && !HaveEL(EL2))) then // No EL2

(c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits(Unpredictable_RESBPWPCTRL);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return FALSE;
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';
EL2_match = HaveEL(EL2) && HMC == '1';
EL1_match = PxC<0> == '1';
EL0_match = PxC<1> == '1';

if !ispriv && !isbreakpnt then
priv_match = EL0_match;

else
case PSTATE.EL of

when EL3 priv_match = EL3_match;
when EL2 priv_match = EL2_match;
when EL1 priv_match = EL1_match;
when EL0 priv_match = EL0_match;

case SSC of
when '00' security_state_match = TRUE; // Both
when '01' security_state_match = !IsSecure(); // Non-secure only
when '10' security_state_match = IsSecure(); // Secure only
when '11' security_state_match = TRUE; // Both

if linked then
// "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
// it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
// UNKNOWN breakpoint that is context-aware.
lbn = UInt(LBN);
first_ctx_cmp = (UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));
last_ctx_cmp = UInt(ID_AA64DFR0_EL1.BRPs);
if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then

(c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp, Unpredictable_BPNOTCTXCMP);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE linked = FALSE; // No linking
// Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

if linked then
vaddress = bits(64) UNKNOWN;
linked_to = TRUE;
linked_match = AArch64.BreakpointValueMatch(lbn, vaddress, linked_to);

return priv_match && security_state_match && (!linked || linked_match);

Shared Pseudocode Functions Page 1420

Library pseudocode for aarch64/debug/enables/AArch64.GenerateDebugExceptions

// AArch64.GenerateDebugExceptions()
// =================================

boolean AArch64.GenerateDebugExceptions()
return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

Library pseudocode for aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

// AArch64.GenerateDebugExceptionsFrom()
// =====================================

boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)

if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
return FALSE;

route_to_el2 = HaveEL(EL2) && !secure && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');
target = (if route_to_el2 then EL2 else EL1);

enabled = !HaveEL(EL3) || !secure || MDCR_EL3.SDD == '0';

if from == target then
enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';

else
enabled = enabled && UInt(target) > UInt(from);

return enabled;

Library pseudocode for aarch64/debug/pmu/AArch64.CheckForPMUOverflow

// AArch64.CheckForPMUOverflow()
// =============================
// Signal Performance Monitors overflow IRQ and CTI overflow events

boolean AArch64.CheckForPMUOverflow()

pmuirq = (PMCR_EL0.E == '1' && PMINTENSET_EL1<31> == '1' && PMOVSSET_EL0<31> == '1');
for n = 0 to UInt(PMCR_EL0.N) - 1

if HaveEL(EL2) then
E = (if n < UInt(MDCR_EL2.HPMN) then PMCR_EL0.E else MDCR_EL2.HPME);

else
E = PMCR_EL0.E;

if E == '1' && PMINTENSET_EL1<n> == '1' && PMOVSSET_EL0<n> == '1' then pmuirq = TRUE;

SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

// The request remains set until the condition is cleared. (For example, an interrupt handler
// or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

return pmuirq;

Shared Pseudocode Functions Page 1421

Library pseudocode for aarch64/debug/pmu/AArch64.CountEvents

// AArch64.CountEvents()
// =====================
// Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.

boolean AArch64.CountEvents(integer n)
assert (n == 31 || n < UInt(PMCR_EL0.N));

// Event counting is disabled in Debug state
debug = Halted();

// In Non-secure state, some counters are reserved for EL2
if HaveEL(EL2) then

E = (if n < UInt(MDCR_EL2.HPMN) || n == 31 then PMCR_EL0.E else MDCR_EL2.HPME);
else

E = PMCR_EL0.E;
enabled = (E == '1' && PMCNTENSET_EL0<n> == '1');

if !IsSecure() then
// Event counting in Non-secure state is allowed unless all of:
// * EL2 and the HPMD Extension are implemented
// * Executing at EL2
// * PMNx is not reserved for EL2
// * MDCR_EL2.HPMD == 1
if HaveHPMDExt() && PSTATE.EL == EL2 && (n < UInt(MDCR_EL2.HPMN) || n == 31) then

prohibited = (MDCR_EL2.HPMD == '1');
else

prohibited = FALSE;
else

// Event counting in Secure state is prohibited unless any one of:
// * EL3 is not implemented
// * EL3 is using AArch64 and MDCR_EL3.SPME == 1
prohibited = (HaveEL(EL3) && MDCR_EL3.SPME == '0');

// The IMPLEMENTATION DEFINED authentication interface might override software controls
if ExternalSecureNoninvasiveDebugEnabled() then prohibited = FALSE;

// For the cycle counter, PMCR_EL0.DP enables counting when otherwise prohibited
if prohibited && n == 31 then prohibited = (PMCR_EL0.DP == '1');

// Event counting can be filtered by the {P, U, NSK, NSU, NSH, M} bits
filter = (if n == 31 then PMCCFILTR else PMEVTYPER[n]);

P = filter<31>;
U = filter<30>;
NSK = (if HaveEL(EL3) then filter<29> else '0');
NSU = (if HaveEL(EL3) then filter<28> else '0');
NSH = (if HaveEL(EL2) then filter<27> else '0');
M = (if HaveEL(EL3) then filter<26> else '0');

case PSTATE.EL of
when EL0 filtered = (if IsSecure() then U == '1' else U != NSU);
when EL1 filtered = (if IsSecure() then P == '1' else P != NSK);
when EL2 filtered = (NSH == '0');
when EL3 filtered = (M != P);

return !debug && enabled && !prohibited && !filtered;

Shared Pseudocode Functions Page 1422

Library pseudocode for aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess

// CheckProfilingBufferAccess()
// ============================

SysRegAccess CheckProfilingBufferAccess()
if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then

return SysRegAccess_UNDEFINED;

if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && MDCR_EL2.E2PB<0> != '1' then
return SysRegAccess_TrapToEL2;

if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
return SysRegAccess_TrapToEL3;

return SysRegAccess_OK;

Library pseudocode for aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess

// CheckStatisticalProfilingAccess()
// =================================

SysRegAccess CheckStatisticalProfilingAccess()
if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then

return SysRegAccess_UNDEFINED;

if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && MDCR_EL2.TPMS == '1' then
return SysRegAccess_TrapToEL2;

if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
return SysRegAccess_TrapToEL3;

return SysRegAccess_OK;

Library pseudocode for aarch64/debug/statisticalprofiling/CollectContextIDR1

// CollectContextIDR1()
// ====================

boolean CollectContextIDR1()
if !StatisticalProfilingEnabled() then return FALSE;
if PSTATE.EL == EL2 then return FALSE;
if HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then return FALSE;
return PMSCR_EL1.CX == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/CollectContextIDR2

// CollectContextIDR2()
// ====================

boolean CollectContextIDR2()
if !StatisticalProfilingEnabled() then return FALSE;
if !HaveEL(EL2) || IsSecure() then return FALSE;
return PMSCR_EL2.CX == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/CollectPhysicalAddress

// CollectPhysicalAddress()
// ========================

boolean CollectPhysicalAddress()
if !StatisticalProfilingEnabled() then return FALSE;
(secure, el) = ProfilingBufferOwner();
if !secure && HaveEL(EL2) then

return PMSCR_EL2.PA == '1' && (el == EL2 || PMSCR_EL1.PA == '1');
else

return PMSCR_EL1.PA == '1';

Shared Pseudocode Functions Page 1423

Library pseudocode for aarch64/debug/statisticalprofiling/CollectRecord

// CollectRecord()
// ===============

boolean CollectRecord(bits(64) events, integer total_latency, OpType optype)
assert StatisticalProfilingEnabled();
if PMSFCR_EL1.FE == '1' then

e = events<63:48,31:24,15:12,7,5,3,1>;
m = PMSEVFR_EL1<63:48,31:24,15:12,7,5,3,1>;
// Check for UNPREDICTABLE case
if IsZero(PMSEVFR_EL1) && ConstrainUnpredictableBool(Unpredictable_ZEROPMSEVFR) then return FALSE;
if !IsZero(NOT(e) AND m) then return FALSE;

if PMSFCR_EL1.FT == '1' then
// Check for UNPREDICTABLE case
if IsZero(PMSFCR_EL1.<B,LD,ST>) && ConstrainUnpredictableBool(Unpredictable_NOOPTYPES) then

return FALSE;
case optype of

when OpType_Branch if PMSFCR_EL1.B == '0' then return FALSE;
when OpType_Load if PMSFCR_EL1.LD == '0' then return FALSE;
when OpType_Store if PMSFCR_EL1.ST == '0' then return FALSE;
when OpType_LoadAtomic if PMSFCR_EL1.<LD,ST> == '00' then return FALSE;
otherwise return FALSE;

if PMSFCR_EL1.FL == '1' then
if IsZero(PMSLATFR_EL1.MINLAT) && ConstrainUnpredictableBool(Unpredictable_ZEROMINLATENCY) then // UNPREDICTABLE case

return FALSE;
if total_latency < UInt(PMSLATFR_EL1.MINLAT) then return FALSE;

return TRUE;

Library pseudocode for aarch64/debug/statisticalprofiling/CollectTimeStamp

// CollectTimeStamp()
// ==================

TimeStamp CollectTimeStamp()
if !StatisticalProfilingEnabled() then return TimeStamp_None;
(secure, el) = ProfilingBufferOwner();
if el == EL2 then

if PMSCR_EL2.TS == '0' then return TimeStamp_None;
else

if PMSCR_EL1.TS == '0' then return TimeStamp_None;
if !secure && HaveEL(EL2) then

pct = PMSCR_EL2.PCT == '1' && (el == EL2 || PMSCR_EL1.PCT == '1');
else

pct = PMSCR_EL1.PCT == '1';
return (if pct then TimeStamp_Physical else TimeStamp_Virtual);

Library pseudocode for aarch64/debug/statisticalprofiling/OpType

enumeration OpType {
OpType_Load, // Any memory-read operation other than atomics, compare-and-swap, and swap
OpType_Store, // Any memory-write operation, including atomics without return
OpType_LoadAtomic, // Atomics with return, compare-and-swap and swap
OpType_Branch, // Software write to the PC
OpType_Other // Any other class of operation
};

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

// ProfilingBufferEnabled()
// ========================

boolean ProfilingBufferEnabled()
if !HaveStatisticalProfiling() then return FALSE;
(secure, el) = ProfilingBufferOwner();
non_secure_bit = if secure then '0' else '1';
return (!ELUsingAArch32(el) && non_secure_bit == SCR_EL3.NS &&

PMBLIMITR_EL1.E == '1' && PMBSR_EL1.S == '0');

Shared Pseudocode Functions Page 1424

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingBufferOwner

// ProfilingBufferOwner()
// ======================

(boolean, bits(2)) ProfilingBufferOwner()
secure = if HaveEL(EL3) then (MDCR_EL3.NSPB<1> == '0') else IsSecure();
el = if !secure && HaveEL(EL2) && MDCR_EL2.E2PB == '00' then EL2 else EL1;
return (secure, el);

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier

// Barrier to ensure that all existing profiling data has been formatted, and profiling buffer
// addresses have been translated such that writes to the profiling buffer have been initiated.
// A following DSB completes when writes to the profiling buffer have completed.
ProfilingSynchronizationBarrier();

Library pseudocode for aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled

// StatisticalProfilingEnabled()
// =============================

boolean StatisticalProfilingEnabled()
if !HaveStatisticalProfiling() || UsingAArch32() || !ProfilingBufferEnabled() then

return FALSE;

in_host = !IsSecure() && HaveEL(EL2) && HCR_EL2.TGE == '1';
(secure, el) = ProfilingBufferOwner();
if UInt(el) < UInt(PSTATE.EL) || secure != IsSecure() || (in_host && el == EL1) then

return FALSE;

case PSTATE.EL of
when EL3 Unreachable();
when EL2 spe_bit = PMSCR_EL2.E2SPE;
when EL1 spe_bit = PMSCR_EL1.E1SPE;
when EL0 spe_bit = (if in_host then PMSCR_EL2.E0HSPE else PMSCR_EL1.E0SPE);

return spe_bit == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/SysRegAccess

enumeration SysRegAccess { SysRegAccess_OK,
SysRegAccess_UNDEFINED,
SysRegAccess_TrapToEL1,
SysRegAccess_TrapToEL2,
SysRegAccess_TrapToEL3 };

Library pseudocode for aarch64/debug/statisticalprofiling/TimeStamp

enumeration TimeStamp { TimeStamp_None,
TimeStamp_Virtual,
TimeStamp_Physical };

Shared Pseudocode Functions Page 1425

Library pseudocode for aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

// AArch64.TakeExceptionInDebugState()
// ===================================
// Take an exception in Debug state to an Exception Level using AArch64.

AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
SynchronizeContext();
assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero
from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();

AArch64.ReportException(exception, target_el);

PSTATE.EL = target_el; PSTATE.nRW = '0'; PSTATE.SP = '1';

SPSR[] = bits(32) UNKNOWN;
ELR[] = bits(64) UNKNOWN;

// PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(32) UNKNOWN;
PSTATE.IL = '0';
if from_32 then // Coming from AArch32

PSTATE.IT = '00000000'; PSTATE.T = '0'; // PSTATE.J is RES0
if HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) && SCTLR[].SPAN == '0' then

PSTATE.PAN = '1';

EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

// SCTLR[].IESB might be ignored in Debug state.
if HaveRASExt() && SCTLR[].IESB == '1' && ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

ErrorSynchronizationBarrier(MBReqDomain_FullSystem, MBReqTypes_All);

EndOfInstruction();

Shared Pseudocode Functions Page 1426

Library pseudocode for aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

// AArch64.WatchpointByteMatch()
// =============================

boolean AArch64.WatchpointByteMatch(integer n, bits(64) vaddress)

top = AddrTop(vaddress, FALSE, PSTATE.EL);
bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR_EL1[n].MASK);

// If DBGWCR_EL1[n].MASK is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
// DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
else

LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then

(c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

if mask > bottom then
WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then

WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);
else

WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

return WVR_match && byte_select_match;

Shared Pseudocode Functions Page 1427

Library pseudocode for aarch64/debug/watchpoint/AArch64.WatchpointMatch

// AArch64.WatchpointMatch()
// =========================
// Watchpoint matching in an AArch64 translation regime.

boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
boolean iswrite)

assert !ELUsingAArch32(S1TranslationRegime());
assert n <= UInt(ID_AA64DFR0_EL1.WRPs);

// "ispriv" is FALSE for LDTR/STTR instructions executed at EL1 and all
// load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
// loads.
enabled = DBGWCR_EL1[n].E == '1';
linked = DBGWCR_EL1[n].WT == '1';
isbreakpnt = FALSE;

state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
linked, DBGWCR_EL1[n].LBN, isbreakpnt, ispriv);

ls_match = (DBGWCR_EL1[n].LSC<(if iswrite then 1 else 0)> == '1');

value_match = FALSE;
for byte = 0 to size - 1

value_match = value_match || AArch64.WatchpointByteMatch(n, vaddress + byte);

return value_match && state_match && ls_match && enabled;

Library pseudocode for aarch64/exceptions/aborts/AArch64.Abort

// AArch64.Abort()
// ===============
// Abort and Debug exception handling in an AArch64 translation regime.

AArch64.Abort(bits(64) vaddress, FaultRecord fault)

if IsDebugException(fault) then
if fault.acctype == AccType_IFETCH then

if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
AArch64.VectorCatchException(fault);

else
AArch64.BreakpointException(fault);

else
AArch64.WatchpointException(vaddress, fault);

elsif fault.acctype == AccType_IFETCH then
AArch64.InstructionAbort(vaddress, fault);

else
AArch64.DataAbort(vaddress, fault);

Shared Pseudocode Functions Page 1428

Library pseudocode for aarch64/exceptions/aborts/AArch64.AbortSyndrome

// AArch64.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort and Watchpoint exceptions
// from an AArch64 translation regime.

ExceptionRecord AArch64.AbortSyndrome(Exception type, FaultRecord fault, bits(64) vaddress)

exception = ExceptionSyndrome(type);

d_side = type IN {Exception_DataAbort, Exception_Watchpoint};

exception.syndrome = AArch64.FaultSyndrome(d_side, fault);
exception.vaddress = ZeroExtend(vaddress);
if IPAValid(fault) then

exception.ipavalid = TRUE;
exception.ipaddress = fault.ipaddress;

else
exception.ipavalid = FALSE;

return exception;

Library pseudocode for aarch64/exceptions/aborts/AArch64.CheckPCAlignment

// AArch64.CheckPCAlignment()
// ==========================

AArch64.CheckPCAlignment()

bits(64) pc = ThisInstrAddr();
if pc<1:0> != '00' then

AArch64.PCAlignmentFault();

Library pseudocode for aarch64/exceptions/aborts/AArch64.DataAbort

// AArch64.DataAbort()
// ===================

AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault))));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);

if PSTATE.EL == EL3 || route_to_el3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1429

Library pseudocode for aarch64/exceptions/aborts/AArch64.InstructionAbort

// AArch64.InstructionAbort()
// ==========================

AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault);
route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault))));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);

if PSTATE.EL == EL3 || route_to_el3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/aborts/AArch64.PCAlignmentFault

// AArch64.PCAlignmentFault()
// ==========================
// Called on unaligned program counter in AArch64 state.

AArch64.PCAlignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_PCAlignment);
exception.vaddress = ThisInstrAddr();

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/aborts/AArch64.SPAlignmentFault

// AArch64.SPAlignmentFault()
// ==========================
// Called on an unaligned stack pointer in AArch64 state.

AArch64.SPAlignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SPAlignment);

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1430

Library pseudocode for aarch64/exceptions/asynch/AArch64.TakePhysicalFIQException

// AArch64.TakePhysicalFIQException()
// ==================================

AArch64.TakePhysicalFIQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x100;
exception = ExceptionSyndrome(Exception_FIQ);

if route_to_el3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
assert PSTATE.EL IN {EL0,EL1};
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException

// AArch64.TakePhysicalIRQException()
// ==================================
// Take an enabled physical IRQ exception.

AArch64.TakePhysicalIRQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x80;

exception = ExceptionSyndrome(Exception_IRQ);

if route_to_el3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
assert PSTATE.EL IN {EL0,EL1};
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1431

Library pseudocode for aarch64/exceptions/asynch/AArch64.TakePhysicalSErrorException

// AArch64.TakePhysicalSErrorException()
// =====================================

AArch64.TakePhysicalSErrorException(boolean impdef_syndrome, bits(24) syndrome)

route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&

(HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1')));
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x180;

exception = ExceptionSyndrome(Exception_SError);
exception.syndrome<24> = if impdef_syndrome then '1' else '0';
exception.syndrome<23:0> = syndrome;

ClearPendingPhysicalSError();

if PSTATE.EL == EL3 || route_to_el3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException

// AArch64.TakeVirtualFIQException()
// =================================

AArch64.TakeVirtualFIQException()
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x100;

exception = ExceptionSyndrome(Exception_FIQ);

AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException

// AArch64.TakeVirtualIRQException()
// =================================

AArch64.TakeVirtualIRQException()
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x80;

exception = ExceptionSyndrome(Exception_IRQ);

AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1432

Library pseudocode for aarch64/exceptions/asynch/AArch64.TakeVirtualSErrorException

// AArch64.TakeVirtualSErrorException()
// ====================================

AArch64.TakeVirtualSErrorException(boolean impdef_syndrome, bits(24) syndrome)

assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};
assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x180;

exception = ExceptionSyndrome(Exception_SError);
exception.syndrome<24> = if impdef_syndrome then '1' else '0';
exception.syndrome<23:0> = syndrome;

HCR_EL2.VSE = '0';
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.BreakpointException

// AArch64.BreakpointException()
// =============================

AArch64.BreakpointException(FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

vaddress = bits(64) UNKNOWN;
exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);

if PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

// AArch64.SoftwareBreakpoint()
// ============================

AArch64.SoftwareBreakpoint(bits(16) immediate)

route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);
exception.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1433

Library pseudocode for aarch64/exceptions/debug/AArch64.SoftwareStepException

// AArch64.SoftwareStepException()
// ===============================

AArch64.SoftwareStepException()
assert PSTATE.EL != EL3;

route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SoftwareStep);
if SoftwareStep_DidNotStep() then

exception.syndrome<24> = '0';
else

exception.syndrome<24> = '1';
exception.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';

if PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.VectorCatchException

// AArch64.VectorCatchException()
// ==============================
// Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
// being routed to EL2, as Vector Catch is a legacy debug event.

AArch64.VectorCatchException(FaultRecord fault)
assert PSTATE.EL != EL2;
assert HaveEL(EL2) && !IsSecure() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

vaddress = bits(64) UNKNOWN;
exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);

AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.WatchpointException

// AArch64.WatchpointException()
// =============================

AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);

if PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1434

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ExceptionClass

// AArch64.ExceptionClass()
// ========================
// Return the Exception Class and Instruction Length fields for reported in ESR

(integer,bit) AArch64.ExceptionClass(Exception type, bits(2) target_el)

il = if ThisInstrLength() == 32 then '1' else '0';
from_32 = UsingAArch32();
assert from_32 || il == '1'; // AArch64 instructions always 32-bit

case type of
when Exception_Uncategorized ec = 0x00; il = '1';
when Exception_WFxTrap ec = 0x01;
when Exception_CP15RTTrap ec = 0x03; assert from_32;
when Exception_CP15RRTTrap ec = 0x04; assert from_32;
when Exception_CP14RTTrap ec = 0x05; assert from_32;
when Exception_CP14DTTrap ec = 0x06; assert from_32;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;
when Exception_FPIDTrap ec = 0x08;
when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
when Exception_IllegalState ec = 0x0E; il = '1';
when Exception_SupervisorCall ec = 0x11;
when Exception_HypervisorCall ec = 0x12;
when Exception_MonitorCall ec = 0x13;
when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
when Exception_InstructionAbort ec = 0x20; il = '1';
when Exception_PCAlignment ec = 0x22; il = '1';
when Exception_DataAbort ec = 0x24;
when Exception_SPAlignment ec = 0x26; il = '1'; assert !from_32;
when Exception_FPTrappedException ec = 0x28;
when Exception_SError ec = 0x2F; il = '1';
when Exception_Breakpoint ec = 0x30; il = '1';
when Exception_SoftwareStep ec = 0x32; il = '1';
when Exception_Watchpoint ec = 0x34; il = '1';
when Exception_SoftwareBreakpoint ec = 0x38;
when Exception_VectorCatch ec = 0x3A; il = '1'; assert from_32;
otherwise Unreachable();

if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
ec = ec + 1;

if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
ec = ec + 4;

return (ec,il);

Shared Pseudocode Functions Page 1435

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ReportException

// AArch64.ReportException()
// =========================
// Report syndrome information for exception taken to AArch64 state.

AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)

Exception type = exception.type;

(ec,il) = AArch64.ExceptionClass(type, target_el);
iss = exception.syndrome;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then

il = '1';

ESR[target_el] = ec<5:0>:il:iss;

if type IN {Exception_InstructionAbort, Exception_PCAlignment, Exception_DataAbort,
Exception_Watchpoint} then

FAR[target_el] = exception.vaddress;
else

FAR[target_el] = bits(64) UNKNOWN;

if target_el == EL2 then
if exception.ipavalid then

HPFAR_EL2<43:4> = exception.ipaddress<51:12>;
else

HPFAR_EL2<43:4> = bits(40) UNKNOWN;

return;

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.
AArch64.ResetControlRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 1436

Library pseudocode for aarch64/exceptions/exceptions/AArch64.TakeReset

// AArch64.TakeReset()
// ===================
// Reset into AArch64 state

AArch64.TakeReset(boolean cold_reset)
assert !HighestELUsingAArch32();

// Enter the highest implemented Exception level in AArch64 state
PSTATE.nRW = '0';
if HaveEL(EL3) then

PSTATE.EL = EL3;
elsif HaveEL(EL2) then

PSTATE.EL = EL2;
else

PSTATE.EL = EL1;

// Reset the system registers and other system components
AArch64.ResetControlRegisters(cold_reset);

// Reset all other PSTATE fields
PSTATE.SP = '1'; // Select stack pointer
PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
PSTATE.SS = '0'; // Clear software step bit
PSTATE.IL = '0'; // Clear Illegal Execution state bit

// All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
// below are UNKNOWN bitstrings after reset. In particular, the return information registers
// ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
// is impossible to return from a reset in an architecturally defined way.
AArch64.ResetGeneralRegisters();
AArch64.ResetSIMDFPRegisters();
AArch64.ResetSpecialRegisters();
ResetExternalDebugRegisters(cold_reset);

bits(64) rv; // IMPLEMENTATION DEFINED reset vector

if HaveEL(EL3) then
rv = RVBAR_EL3;

elsif HaveEL(EL2) then
rv = RVBAR_EL2;

else
rv = RVBAR_EL1;

// The reset vector must be correctly aligned
assert IsZero(rv<63:PAMax()>) && IsZero(rv<1:0>);

BranchTo(rv, BranchType_UNKNOWN);

Shared Pseudocode Functions Page 1437

Library pseudocode for aarch64/exceptions/ieeefp/AArch64.FPTrappedException

// AArch64.FPTrappedException()
// ============================

AArch64.FPTrappedException(boolean is_ase, integer element, bits(8) accumulated_exceptions)
exception = ExceptionSyndrome(Exception_FPTrappedException);
exception.syndrome<23> = '1'; // TFV
if is_ase then exception.syndrome<10:8> = element<2:0>; // VECITR
exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF

route_to_el2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallHypervisor

// AArch64.CallHypervisor()
// ========================
// Performs a HVC call

AArch64.CallHypervisor(bits(16) immediate)
assert HaveEL(EL2);

if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();
bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_HypervisorCall);
exception.syndrome<15:0> = immediate;

if PSTATE.EL == EL3 then
AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

// AArch64.CallSecureMonitor()
// ===========================

AArch64.CallSecureMonitor(bits(16) immediate)
assert HaveEL(EL3) && !ELUsingAArch32(EL3);

if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();

bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_MonitorCall);
exception.syndrome<15:0> = immediate;

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1438

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallSupervisor

// AArch64.CallSupervisor()
// ========================
// Calls the Supervisor

AArch64.CallSupervisor(bits(16) immediate)

if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();
route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = NextInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SupervisorCall);
exception.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1439

Library pseudocode for aarch64/exceptions/takeexception/AArch64.TakeException

// AArch64.TakeException()
// =======================
// Take an exception to an Exception Level using AArch64.

AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,
bits(64) preferred_exception_return, integer vect_offset)

SynchronizeContext();
assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero
from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();

if UInt(target_el) > UInt(PSTATE.EL) then
boolean lower_32;
if target_el == EL3 then

if !IsSecure() && HaveEL(EL2) then
lower_32 = ELUsingAArch32(EL2);

else
lower_32 = ELUsingAArch32(EL1);

elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
lower_32 = ELUsingAArch32(EL0);

else
lower_32 = ELUsingAArch32(target_el - 1);

vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

elsif PSTATE.SP == '1' then
vect_offset = vect_offset + 0x200;

spsr = GetPSRFromPSTATE();

if HaveUAOExt() then PSTATE.UAO = '0';
if !(exception.type IN {Exception_IRQ, Exception_FIQ}) then

AArch64.ReportException(exception, target_el);

PSTATE.EL = target_el; PSTATE.nRW = '0'; PSTATE.SP = '1';

SPSR[] = spsr;
ELR[] = preferred_exception_return;

PSTATE.SS = '0';
PSTATE.<D,A,I,F> = '1111';
PSTATE.IL = '0';
if from_32 then // Coming from AArch32

PSTATE.IT = '00000000'; PSTATE.T = '0'; // PSTATE.J is RES0
if HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) && SCTLR[].SPAN == '0' then

PSTATE.PAN = '1';

BranchTo(VBAR[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION);

if HaveRASExt() && SCTLR[].IESB == '1' then
ErrorSynchronizationBarrier(MBReqDomain_FullSystem, MBReqTypes_All);
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

EndOfInstruction();

Shared Pseudocode Functions Page 1440

Library pseudocode for aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

// AArch64.AArch32SystemAccessTrap()
// =================================
// Trapped AArch32 System register access other than due to CPTR_EL2 or CPACR_EL1.

AArch64.AArch32SystemAccessTrap(bits(2) target_el, bits(32) aarch32_instr)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = AArch64.AArch32SystemAccessTrapSyndrome(aarch32_instr);

if target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1441

Library pseudocode for aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

// AArch64.AArch32SystemAccessTrapSyndrome()
// ===
// Return the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS instructions,
// other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr)

ExceptionRecord exception;
cpnum = UInt(instr<11:8>);

bits(20) iss = Zeros();
if instr<27:24> == '1110' && instr<4> == '1' && instr<31:28> != '1111' then

// MRC/MCR
case cpnum of

when 10 exception = ExceptionSyndrome(Exception_FPIDTrap);
when 14 exception = ExceptionSyndrome(Exception_CP14RTTrap);
when 15 exception = ExceptionSyndrome(Exception_CP15RTTrap);
otherwise Unreachable();

iss<19:17> = instr<7:5>; // opc2
iss<16:14> = instr<23:21>; // opc1
iss<13:10> = instr<19:16>; // CRn
if instr<20> == '1' && instr<15:12> == '1111' then // MRC, Rt==15

iss<9:5> = '11111';
elsif instr<20> == '0' && instr<15:12> == '1111' then // MCR, Rt==15

iss<9:5> = bits(5) UNKNOWN;
else

iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
iss<4:1> = instr<3:0>; // CRm

elsif instr<27:21> == '1100010' && instr<31:28> != '1111' then
// MRRC/MCRR
case cpnum of

when 14 exception = ExceptionSyndrome(Exception_CP14RRTTrap);
when 15 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
otherwise Unreachable();

iss<19:16> = instr<7:4>; // opc1
if instr<19:16> == '1111' then // Rt2==15

iss<14:10> = bits(5) UNKNOWN;
else

iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>;

if instr<15:12> == '1111' then // Rt==15
iss<9:5> = bits(5) UNKNOWN;

else
iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;

iss<4:1> = instr<3:0>; // CRm
elsif instr<27:25> == '110' && instr<31:28> != '1111' then

// LDC/STC
assert cpnum == 14;
exception = ExceptionSyndrome(Exception_CP14DTTrap);
iss<19:12> = instr<7:0>; // imm8
iss<4> = instr<23>; // U
iss<2:1> = instr<24,21>; // P,W
if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC

iss<9:5> = bits(5) UNKNOWN;
iss<3> = '1';

else
iss<9:5> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rn
iss<3> = '0';

else
Unreachable();

iss<0> = instr<20>; // Direction

exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<19:0> = iss;

return exception;

Shared Pseudocode Functions Page 1442

Library pseudocode for aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

// AArch64.AdvSIMDFPAccessTrap()
// =============================
// Trapped access to Advanced SIMD or FP registers due to CPACR[].

AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

route_to_el2 = (target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1');

if route_to_el2 then
exception = ExceptionSyndrome(Exception_Uncategorized);
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
exception.syndrome<24:20> = ConditionSyndrome();
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

return;

Shared Pseudocode Functions Page 1443

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckAArch32SystemAccess

Shared Pseudocode Functions Page 1444

// AArch64.CheckAArch32SystemAccess()
// ==================================
// Check AArch32 System register access instruction for enables and disables

AArch64.CheckAArch32SystemAccess(bits(32) instr)
cp_num = UInt(instr<11:8>);
assert cp_num IN {14,15};

// Decode the AArch32 System register access instruction
if instr<31:28> != '1111' && instr<27:24> == '1110' && instr<4> == '1' then // MRC/MCR

cprt = TRUE; cpdt = FALSE; nreg = 1;
opc1 = UInt(instr<23:21>);
opc2 = UInt(instr<7:5>);
CRn = UInt(instr<19:16>);
CRm = UInt(instr<3:0>);

elsif instr<31:28> != '1111' && instr<27:21> == '1100010' then // MRRC/MCRR
cprt = TRUE; cpdt = FALSE; nreg = 2;
opc1 = UInt(instr<7:4>);
CRm = UInt(instr<3:0>);

elsif instr<31:28> != '1111' && instr<27:25> == '110' && instr<22> == '0' then // LDC/STC
cprt = FALSE; cpdt = TRUE; nreg = 0;
opc1 = 0;
CRn = UInt(instr<15:12>);

else
allocated = FALSE;

//
// Coarse-grain decode into CP14 or CP15 encoding space. Each of the CPxxxInstrDecode functions
// returns TRUE if the instruction is allocated at the current Exception level, FALSE otherwise.
if cp_num == 14 then

// LDC and STC only supported for c5 in CP14 encoding space
if cpdt && CRn != 5 then

allocated = FALSE;
else

// Coarse-grained decode of CP14 based on opc1 field
case opc1 of

when 0 allocated = CP14DebugInstrDecode(instr);
when 1 allocated = CP14TraceInstrDecode(instr);
when 7 allocated = CP14JazelleInstrDecode(instr); // JIDR only
otherwise allocated = FALSE; // All other values are unallocated

elsif cp_num == 15 then
// LDC and STC not supported in CP15 encoding space
if !cprt then

allocated = FALSE;
else

allocated = CP15InstrDecode(instr);

// Coarse-grain traps to EL2 have a higher priority than exceptions generated because
// the access instruction is UNDEFINED
if AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm) then

// For a coarse-grain trap, if it is IMPLEMENTATION DEFINED whether an access from
// Non-secure User mode is UNDEFINED when the trap is disabled, then it is
// IMPLEMENTATION DEFINED whether the same access is UNDEFINED or generates a trap
// when the trap is enabled.
if PSTATE.EL == EL0 && !IsSecure() && !allocated then

if boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at NS EL0" then
UNDEFINED;

AArch64.AArch32SystemAccessTrap(EL2, instr);

else
allocated = FALSE;

if !allocated then
UNDEFINED;

// If the instruction is not UNDEFINED, it might be disabled or trapped to a higher EL.
AArch64.CheckAArch32SystemAccessTraps(instr);

return;

Shared Pseudocode Functions Page 1445

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckAArch32SystemAccessEL1Traps

// AArch64.CheckAArch32SystemAccessEL1Traps()
// ==
// Check for configurable disables or traps to EL1 or EL2 of an AArch32 System register
// access instruction.

AArch64.CheckAArch32SystemAccessEL1Traps(bits(32) instr)
assert PSTATE.EL == EL0;

trap = FALSE;

// Decode the AArch32 System register access instruction
(op, cp_num, opc1, CRn, CRm, opc2, write) = AArch32.DecodeSysRegAccess(instr);

if cp_num == 14 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 5 && opc2 == 0) || // DBGDTRRXint/DBGDTRTXint

(op == SystemAccessType_DT && CRn == 5 && opc2 == 0)) then // DBGDTRRXint/DBGDTRTXint (STC/LDC)
trap = !Halted() && MDSCR_EL1.TDCC == '1';

elsif opc1 == 0 then
trap = MDSCR_EL1.TDCC == '1';

elsif opc1 == 1 then
trap = CPACR[].TTA == '1';

elsif cp_num == 15 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 0) || // PMCR

(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 1) || // PMCNTENSET
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 2) || // PMCNTENCLR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 3) || // PMOVSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 6) || // PMCEID0
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 7) || // PMCEID1
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 13 && opc2 == 1) || // PMXEVTYPER
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 14 && opc2 == 3) || // PMOVSSET
(op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm >= 12)) then // PMEVTYPER<n>
trap = PMUSERENR_EL0.EN == '0';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 14 && opc2 == 4 then // PMSWINC
trap = PMUSERENR_EL0.EN == '0' && PMUSERENR_EL0.SW == '0';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 13 && opc2 == 0) || // PMCCNTR
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 9)) then // PMCCNTR (MRRC/MCRR)
trap = PMUSERENR_EL0.EN == '0' && (write || PMUSERENR_EL0.CR == '0');

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 13 && opc2 == 2) || // PMXEVCNTR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm >= 8 && CRm <= 11)) then // PMEVCNTR<n>
trap = PMUSERENR_EL0.EN == '0' && (write || PMUSERENR_EL0.ER == '0');

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 5 then // PMSELR
trap = PMUSERENR_EL0.EN == '0' && PMUSERENR_EL0.ER == '0';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm == 2 && opc2 IN {0,1,2} then // CNTP_TVAL CNTP_CTL CNTP_CVAL
trap = CNTKCTL[].EL0PTEN == '0';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm == 0 && opc2 == 0 then // CNTFRQ
trap = CNTKCTL[].EL0PTEN == '0' && CNTKCTL[].EL0VCTEN == '0';

elsif op == SystemAccessType_RRT && opc1 == 1 && CRm == 14 then // CNTVCT
trap = CNTKCTL[].EL0VCTEN == '0';

if trap then
AArch64.AArch32SystemAccessTrap(EL1, instr);

Shared Pseudocode Functions Page 1446

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckAArch32SystemAccessEL2Traps

Shared Pseudocode Functions Page 1447

// AArch64.CheckAArch32SystemAccessEL2Traps()
// ==
// Check for configurable traps to EL2 of an AArch32 System register access instruction.

AArch64.CheckAArch32SystemAccessEL2Traps(bits(32) instr)
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1};

trap = FALSE;

// Decode the AArch32 System register access instruction
(op, cp_num, opc1, CRn, CRm, opc2, write) = AArch32.DecodeSysRegAccess(instr);

if cp_num == 14 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 0) || // DBGDRAR

(op == SystemAccessType_RRT && opc1 == 0 && CRm == 1) || // DBGDRAR (MRRC)
(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 0) || // DBGDSAR
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 2)) then // DBGDSAR (MRRC)
trap = MDCR_EL2.TDRA == '1' || MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 4) || // DBGOSLAR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 1 && opc2 == 4) || // DBGOSLSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 3 && opc2 == 4) || // DBGOSDLR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 4 && opc2 == 4)) then // DBGPRCR
trap = MDCR_EL2.TDOSA == '1' || MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1';

elsif opc1 == 0 && (!Halted() || !(op == SystemAccessType_RT && CRn == 0 && CRm == 5 && opc2 == 0)) then
trap = MDCR_EL2.TDA == '1' || MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1';

elsif opc1 == 1 then
trap = CPTR_EL2.TTA == '1';

elsif op == SystemAccessType_RT && opc1 == 7 && CRn == 0 && CRm == 0 && opc2 == 0 then // JIDR
trap = HCR_EL2.TID0 == '1';

elsif cp_num == 15 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 0) || // SCTLR

(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 0) || // TTBR0
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 2) || // TTBR0 (MRRC/MCCR)
(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 1) || // TTBR1
(op == SystemAccessType_RRT && opc1 == 1 && CRm == 2) || // TTBR1 (MRRC/MCCR)
(op == SystemAccessType_RT && opc1 == 0 && CRn == 2 && CRm == 0 && opc2 == 2) || // TTBCR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 3 && CRm == 0 && opc2 == 0) || // DACR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 0 && opc2 == 0) || // DFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 0 && opc2 == 1) || // IFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 6 && CRm == 0 && opc2 == 0) || // DFAR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 6 && CRm == 0 && opc2 == 2) || // IFAR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 1 && opc2 == 0) || // ADFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 5 && CRm == 1 && opc2 == 1) || // AIFSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 2 && opc2 == 0) || // PRRR/MAIR0
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 2 && opc2 == 1) || // NMRR/MAIR1
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 3 && opc2 == 0) || // AMAIR0
(op == SystemAccessType_RT && opc1 == 0 && CRn == 10 && CRm == 3 && opc2 == 1) || // AMAIR1
(op == SystemAccessType_RT && opc1 == 0 && CRn == 13 && CRm == 0 && opc2 == 1)) then // CONTEXTIDR
trap = if write then HCR_EL2.TVM == '1' else HCR_EL2.TRVM == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 8 then // TLBI
trap = write && HCR_EL2.TTLB == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 6 && opc2 == 2) || // DCISW
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 10 && opc2 == 2) || // DCCSW
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 14 && opc2 == 2)) then // DCCISW
trap = write && HCR_EL2.TSW == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 6 && opc2 == 1) || // DCIMVAC
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 10 && opc2 == 1) || // DCCMVAC
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 14 && opc2 == 1)) then // DCCIMVAC
trap = write && HCR_EL2.TPC == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 5 && opc2 == 1) || // ICIMVAU
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 5 && opc2 == 0) || // ICIALLU
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 1 && opc2 == 0) || // ICIALLUIS
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 11 && opc2 == 1)) then // DCCMVAU

Shared Pseudocode Functions Page 1448

trap = write && HCR_EL2.TPU == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 1 then // ACTLR
trap = HCR_EL2.TACR == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 2) || // TCMTR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 3) || // TLBTR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 6) || // REVIDR
(op == SystemAccessType_RT && opc1 == 1 && CRn == 0 && CRm == 0 && opc2 == 7)) then // AIDR
trap = HCR_EL2.TID1 == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 0 && opc2 == 1) || // CTR
(op == SystemAccessType_RT && opc1 == 1 && CRn == 0 && CRm == 0 && opc2 == 0) || // CCSIDR
(op == SystemAccessType_RT && opc1 == 1 && CRn == 0 && CRm == 0 && opc2 == 1) || // CLIDR
(op == SystemAccessType_RT && opc1 == 2 && CRn == 0 && CRm == 0 && opc2 == 0)) then // CSSELR
trap = HCR_EL2.TID2 == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 1) || // ID_*
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 2 && opc2 <= 5) || // ID_*
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm >= 3 && opc2 <= 1) || // Reserved
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 3 && opc2 == 2) || // Reserved
(op == SystemAccessType_RT && opc1 == 0 && CRn == 0 && CRm == 5 && opc2 IN {4,5})) then // Reserved
trap = HCR_EL2.TID3 == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 2 then // CPACR
trap = CPTR_EL2.TCPAC == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm == 12 && opc2 == 0 then // PMCR
trap = MDCR_EL2.TPMCR == '1' || MDCR_EL2.TPM == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm >= 8) || // PMEVCNTR<n>/PMEVTYPER<n>
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm IN {12,13,14}) || // PM*
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 9)) then // PMCCNTR (MRRC/MCCR)
trap = MDCR_EL2.TPM == '1';

elsif op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm == 2 && opc2 IN {0,1,2} then // CNTP_TVAL CNTP_CTL CNTP_CVAL
if !HaveVirtHostExt() || HCR_EL2.E2H == '0' then

trap = CNTHCTL_EL2.EL1PCEN == '0';
else

trap = CNTHCTL_EL2.EL1PTEN == '0';
elsif op == SystemAccessType_RRT && opc1 == 0 && CRm == 14 then // CNTPCT

trap = CNTHCTL_EL2.EL1PCTEN == '0';

if trap then
AArch64.AArch32SystemAccessTrap(EL2, instr);

Shared Pseudocode Functions Page 1449

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckAArch32SystemAccessEL3Traps

// AArch64.CheckAArch32SystemAccessEL3Traps()
// ==
// Check for configurable traps to EL3 of an AArch32 System register access instruction.

AArch64.CheckAArch32SystemAccessEL3Traps(bits(32) instr)
assert HaveEL(EL3) && PSTATE.EL != EL3;

// Decode the AArch32 System register access instruction
(op, cp_num, opc1, CRn, CRm, opc2, write) = AArch32.DecodeSysRegAccess(instr);

trap = FALSE;

if cp_num == 14 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 4 && !write) || // DBGOSLAR

(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 1 && opc2 == 4 && write) || // DBGOSLSR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 3 && opc2 == 4) || // DBGOSDLR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 4 && opc2 == 4)) then // DBGPRCR
trap = MDCR_EL3.TDOSA == '1';

elsif opc1 == 0 && (!Halted() || !(op == SystemAccessType_RT && CRn == 0 && CRm == 5 && opc2 == 0)) then
trap = MDCR_EL3.TDA == '1';

elsif opc1 == 1 then
trap = CPTR_EL3.TTA == '1';

elsif cp_num == 15 then
if ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 1 && opc2 == 0) || // SCR

(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 1 && opc2 == 2) || // NSACR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 12 && CRm == 0 && opc2 == 1) || // MVBAR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 3 && opc2 == 1) || // SDCR
(op == SystemAccessType_RT && opc1 == 0 && CRn == 7 && CRm == 8 && opc2 >= 4)) then // ATS12NSOxx
trap = PSTATE.EL == EL1 && IsSecure();

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 1 && CRm == 0 && opc2 == 2) || // CPACR
(op == SystemAccessType_RT && opc1 == 4 && CRn == 1 && CRm == 1 && opc2 == 2)) then // HCPTR
trap = CPTR_EL3.TCPAC == '1';

elsif ((op == SystemAccessType_RT && opc1 == 0 && CRn == 14 && CRm >= 8) || // PMEVCNTR<n>/PMEVTYPER<n>
(op == SystemAccessType_RT && opc1 == 0 && CRn == 9 && CRm IN {12,13,14}) || // PM*
(op == SystemAccessType_RRT && opc1 == 0 && CRm == 9)) then // PMCCNTR (MRRC/MCCR)
trap = MDCR_EL3.TPM == '1';

if trap then
AArch64.AArch32SystemAccessTrap(EL3, instr);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckAArch32SystemAccessTraps

// AArch64.CheckAArch32SystemAccessTraps()
// =======================================
// Check for configurable disables or traps to a higher EL of an AArch32 System register access.

AArch64.CheckAArch32SystemAccessTraps(bits(32) instr)

if PSTATE.EL == EL0 then
AArch64.CheckAArch32SystemAccessEL1Traps(instr);

if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0, EL1} && !IsInHost() then
AArch64.CheckAArch32SystemAccessEL2Traps(instr);

AArch64.CheckAArch32SystemAccessEL3Traps(instr);

Shared Pseudocode Functions Page 1450

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

// AArch64.CheckCP15InstrCoarseTraps()
// ===================================
// Check for coarse-grained AArch32 CP15 traps in HSTR_EL2 and HCR_EL2.

boolean AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)

// Check for coarse-grained Hyp traps
if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1} then

// Check for MCR, MRC, MCRR and MRRC disabled by HSTR_EL2<CRn/CRm>
major = if nreg == 1 then CRn else CRm;
if !IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1' then

return TRUE;

// Check for MRC and MCR disabled by HCR_EL2.TIDCP
if (HCR_EL2.TIDCP == '1' && nreg == 1 &&

((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
(CRn == 10 && CRm IN {0,1, 4, 8 }) ||
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then

return TRUE;

return FALSE;

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

// AArch64.CheckFPAdvSIMDEnabled()
// ===============================
// Check against CPACR[]

AArch64.CheckFPAdvSIMDEnabled()
if PSTATE.EL IN {EL0, EL1} then

// Check if access disabled in CPACR_EL1
case CPACR[].FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

// AArch64.CheckFPAdvSIMDTrap()
// ============================
// Check against CPTR_EL2 and CPTR_EL3.

AArch64.CheckFPAdvSIMDTrap()

if HaveEL(EL2) && !IsSecure() then
// Check if access disabled in CPTR_EL2
if HaveVirtHostExt() && HCR_EL2.E2H == '1' then

case CPTR_EL2.FPEN of
when 'x0' disabled = !(PSTATE.EL == EL1 && HCR_EL2.TGE == '1');
when '01' disabled = (PSTATE.EL == EL0 && HCR_EL2.TGE == '1');
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
else

if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

if HaveEL(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

return;

Shared Pseudocode Functions Page 1451

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForERetTrap

// AArch64.CheckForERetTrap()
// ==========================
// Check for trap on ERET, ERETAA, ERETAB instruction

AArch64.CheckForERetTrap(boolean eret_with_pac, boolean pac_uses_key_a)

// Non-secure EL1 execution of ERET, ERETAA, ERETAB when HCR_EL2.NV bit is set, is trapped to EL2
route_to_el2 = (HaveNVExt() && HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.NV == '1');

if route_to_el2 then
ExceptionRecord exception;
bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = ExceptionSyndrome(Exception_ERetTrap);
exception.syndrome<24:2> = ZeroExtend('0', 23); // syndrome<24:2> is RES0
if !eret_with_pac then // ERET

exception.syndrome<1> = '0';
exception.syndrome<0> = '0'; // RES0

else
exception.syndrome<1> = '1';
if pac_uses_key_a then // ERETAA

exception.syndrome<0> = '0';
else // ERETAB

exception.syndrome<0> = '1';
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

// AArch64.CheckForSMCUndefOrTrap()
// ================================
// Check for UNDEFINED or trap on SMC instruction

AArch64.CheckForSMCUndefOrTrap(bits(16) imm)

if PSTATE.EL == EL0 then UnallocatedEncoding();
if !HaveEL(EL3) then

if HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 then
if HaveNVExt() && HCR_EL2.NV == '1' && HCR_EL2.TSC == '1' then

route_to_el2 = TRUE;
else

UnallocatedEncoding();
else

UnallocatedEncoding();
else

route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL1 && HCR_EL2.TSC == '1';
if route_to_el2 then

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;
exception = ExceptionSyndrome(Exception_MonitorCall);
exception.syndrome<15:0> = imm;
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1452

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForWFxTrap

// AArch64.CheckForWFxTrap()
// =========================
// Check for trap on WFE or WFI instruction

AArch64.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
assert HaveEL(target_el);

case target_el of
when EL1 trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';
when EL2 trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';
when EL3 trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';

if trap then
AArch64.WFxTrap(target_el, is_wfe);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckIllegalState

// AArch64.CheckIllegalState()
// ===========================
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

AArch64.CheckIllegalState()

if PSTATE.IL == '1' then
route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_IllegalState);

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.MonitorModeTrap

// AArch64.MonitorModeTrap()
// =========================
// Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

AArch64.MonitorModeTrap()

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_Uncategorized);

AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1453

Library pseudocode for aarch64/exceptions/traps/AArch64.SystemRegisterTrap

// AArch64.SystemRegisterTrap()
// ============================
// Trapped system register access other than due to CPTR_EL2 and CPACR_EL1

AArch64.SystemRegisterTrap(bits(2) target_el, bits(2) op0, bits(3) op2, bits(3) op1, bits(4) crn,
bits(5) rt, bits(4) crm, bit dir)

assert UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
exception.syndrome<21:20> = op0;
exception.syndrome<19:17> = op2;
exception.syndrome<16:14> = op1;
exception.syndrome<13:10> = crn;
exception.syndrome<9:5> = rt;
exception.syndrome<4:1> = crm;
exception.syndrome<0> = dir;

if target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.UndefinedFault

// AArch64.UndefinedFault()
// ========================

AArch64.UndefinedFault()

route_to_el2 = HaveEL(EL2) && !IsSecure() && PSTATE.EL == EL0 && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_Uncategorized);

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.WFxTrap

// AArch64.WFxTrap()
// =================

AArch64.WFxTrap(bits(2) target_el, boolean is_wfe)
assert UInt(target_el) > UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
vect_offset = 0x0;

exception = ExceptionSyndrome(Exception_WFxTrap);
exception.syndrome<24:20> = ConditionSyndrome();
exception.syndrome<0> = if is_wfe then '1' else '0';

if target_el == EL1 && HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1454

Library pseudocode for aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

// CheckFPAdvSIMDEnabled64()
// =========================
// AArch64 instruction wrapper

CheckFPAdvSIMDEnabled64()
AArch64.CheckFPAdvSIMDEnabled();

Library pseudocode for aarch64/functions/aborts/AArch64.CreateFaultRecord

// AArch64.CreateFaultRecord()
// ===========================

FaultRecord AArch64.CreateFaultRecord(Fault type, bits(52) ipaddress,
integer level, AccType acctype, boolean write, bit extflag,
bits(2) errortype, boolean secondstage, boolean s2fs1walk)

FaultRecord fault;
fault.type = type;
fault.domain = bits(4) UNKNOWN; // Not used from AArch64
fault.debugmoe = bits(4) UNKNOWN; // Not used from AArch64
fault.errortype = errortype;
fault.ipaddress = ipaddress;
fault.level = level;
fault.acctype = acctype;
fault.write = write;
fault.extflag = extflag;
fault.secondstage = secondstage;
fault.s2fs1walk = s2fs1walk;

return fault;

Library pseudocode for aarch64/functions/aborts/AArch64.FaultSyndrome

// AArch64.FaultSyndrome()
// =======================
// Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
// an Exception Level using AArch64.

bits(25) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
assert fault.type != Fault_None;

bits(25) iss = Zeros();
if HaveRASExt() && IsExternalSyncAbort(fault) then iss<12:11> = fault.errortype; // SET
if d_side then

if IsSecondStage(fault) && !fault.s2fs1walk then iss<24:14> = LSInstructionSyndrome();
if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT} then

iss<8> = '1'; iss<6> = '1';
else

iss<6> = if fault.write then '1' else '0';
if IsExternalAbort(fault) then iss<9> = fault.extflag;
iss<7> = if fault.s2fs1walk then '1' else '0';
iss<5:0> = EncodeLDFSC(fault.type, fault.level);

return iss;

Shared Pseudocode Functions Page 1455

Library pseudocode for aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

// AArch64.ExclusiveMonitorsPass()
// ===============================

// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
// before or after the check on the local Exclusives monitor. As a result a failure
// of the local monitor can occur on some implementations even if the memory
// access would give an memory abort.

acctype = AccType_ATOMIC;
iswrite = TRUE;
aligned = (address == Align(address, size));

if !aligned then
secondstage = FALSE;
AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));

passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);
if !passed then

return FALSE;
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

if passed then
ClearExclusiveLocal(ProcessorID());
if memaddrdesc.memattrs.shareable then

passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

return passed;

Library pseudocode for aarch64/functions/exclusive/AArch64.IsExclusiveVA

// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
//
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
//
// It is always safe to return TRUE which will check the physical address only.
boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

Library pseudocode for aarch64/functions/exclusive/AArch64.MarkExclusiveVA

// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.
AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);

Shared Pseudocode Functions Page 1456

Library pseudocode for aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

// AArch64.SetExclusiveMonitors()
// ==============================

// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.

AArch64.SetExclusiveMonitors(bits(64) address, integer size)

acctype = AccType_ATOMIC;
iswrite = FALSE;
aligned = (address != Align(address, size));
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return;

if memaddrdesc.memattrs.shareable then
MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

AArch64.MarkExclusiveVA(address, ProcessorID(), size);

Library pseudocode for aarch64/functions/fusedrstep/FPRSqrtStepFused

// FPRSqrtStepFused()
// ==================

bits(N) FPRSqrtStepFused(bits(N) op1, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
op1 = FPNeg(op1);
(type1,sign1,value1) = FPUnpack(op1, FPCR);
(type2,sign2,value2) = FPUnpack(op2, FPCR);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if (inf1 && zero2) || (zero1 && inf2) then

result = FPOnePointFive('0');
elsif inf1 || inf2 then

result = FPInfinity(sign1 EOR sign2);
else

// Fully fused multiply-add and halve
result_value = (3.0 + (value1 * value2)) / 2.0;
if result_value == 0.0 then

// Sign of exact zero result depends on rounding mode
sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign);

else
result = FPRound(result_value, FPCR);

return result;

Shared Pseudocode Functions Page 1457

Library pseudocode for aarch64/functions/fusedrstep/FPRecipStepFused

// FPRecipStepFused()
// ==================

bits(N) FPRecipStepFused(bits(N) op1, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
op1 = FPNeg(op1);
(type1,sign1,value1) = FPUnpack(op1, FPCR);
(type2,sign2,value2) = FPUnpack(op2, FPCR);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if (inf1 && zero2) || (zero1 && inf2) then

result = FPTwo('0');
elsif inf1 || inf2 then

result = FPInfinity(sign1 EOR sign2);
else

// Fully fused multiply-add
result_value = 2.0 + (value1 * value2);
if result_value == 0.0 then

// Sign of exact zero result depends on rounding mode
sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign);

else
result = FPRound(result_value, FPCR);

return result;

Library pseudocode for aarch64/functions/memory/AArch64.CheckAlignment

// AArch64.CheckAlignment()
// ========================

boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype,
boolean iswrite)

aligned = (address == Align(address, alignment));
atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW };
ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED };
vector = acctype == AccType_VEC;
check = (atomic || ordered || SCTLR[].A == '1');

if check && !aligned then
secondstage = FALSE;
AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));

return aligned;

Shared Pseudocode Functions Page 1458

Library pseudocode for aarch64/functions/memory/AArch64.MemSingle

// AArch64.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned]
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
bits(size*8) value;
iswrite = FALSE;

// MMU or MPU
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
value = _Mem[memaddrdesc, size, accdesc];
return value;

// AArch64.MemSingle[] - assignment (write) form
// ===
// Perform an atomic, little-endian write of 'size' bytes.

AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8) value
assert size IN {1, 2, 4, 8, 16};
assert address == Align(address, size);

AddressDescriptor memaddrdesc;
iswrite = TRUE;

// MMU or MPU
memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareable then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// Memory array access
accdesc = CreateAccessDescriptor(acctype);
_Mem[memaddrdesc, size, accdesc] = value;
return;

Shared Pseudocode Functions Page 1459

Library pseudocode for aarch64/functions/memory/CheckSPAlignment

// CheckSPAlignment()
// ==================
// Check correct stack pointer alignment for AArch64 state.

CheckSPAlignment()
bits(64) sp = SP[];

if PSTATE.EL == EL0 then
stack_align_check = (SCTLR[].SA0 != '0');

else
stack_align_check = (SCTLR[].SA != '0');

if stack_align_check && sp != Align(sp, 16) then
AArch64.SPAlignmentFault();

return;

Shared Pseudocode Functions Page 1460

Library pseudocode for aarch64/functions/memory/Mem

Shared Pseudocode Functions Page 1461

// Mem[] - non-assignment (read) form
// ==================================
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch64.MemSingle directly.

bits(size*8) Mem[bits(64) address, integer size, AccType acctype]
assert size IN {1, 2, 4, 8, 16};
bits(size*8) value;
integer i;
boolean iswrite = FALSE;

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then

atomic = aligned;
else

// 128-bit SIMD&FP loads are treated as a pair of 64-bit single-copy atomic accesses
// 64-bit aligned.
atomic = address == Align(address, 8);

if !atomic then
assert size > 1;
value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if !aligned then

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, acctype, aligned];

elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
value<63:0> = AArch64.MemSingle[address, 8, acctype, aligned];
value<127:64> = AArch64.MemSingle[address+8, 8, acctype, aligned];

else
value = AArch64.MemSingle[address, size, acctype, aligned];

if BigEndian() then
value = BigEndianReverse(value);

return value;

// Mem[] - assignment (write) form
// ===============================
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem[bits(64) address, integer size, AccType acctype] = bits(size*8) value
integer i;
boolean iswrite = TRUE;

if BigEndian() then
value = BigEndianReverse(value);

aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then

atomic = aligned;
else

// 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
// 64-bit aligned.
atomic = address == Align(address, 8);

if !atomic then
assert size > 1;
AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if !aligned then

Shared Pseudocode Functions Page 1462

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;

elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
AArch64.MemSingle[address, 8, acctype, aligned] = value<63:0>;
AArch64.MemSingle[address+8, 8, acctype, aligned] = value<127:64>;

else
AArch64.MemSingle[address, size, acctype, aligned] = value;

return;

Shared Pseudocode Functions Page 1463

Library pseudocode for aarch64/functions/pac/addpac/AddPAC

// AddPAC()
// ========
// Calculates the pointer authentication code for a 64-bit quantity and then
// inserts that into pointer authentication code field of that 64-bit quantity.

bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
bits(64) PAC;
bits(64) result;
bits(64) ext_ptr;
bits(64) extfield;
bit selbit;
boolean tbi = CalculateTBI(ptr, data);
integer top_bit = if tbi then 55 else 63;

// If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
// the pointer to select between upper and lower ranges, and preserve this.
// This handles the awkward case where there is apparently no correct choice between
// the upper and lower address range - ie an addr of 1xxxxxxx0... with TBI0=0 and TBI1=1
// and 0xxxxxxx1 with TBI1=0 and TBI0=1:
if PtrHasUpperAndLowerAddRanges() then

if IsEL1TransRegimeRegs() then
if data then

selbit = if TCR_EL1.TBI1 == '1' || TCR_EL1.TBI0 == '1' then ptr<55> else ptr<63>;
else

if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||
(TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then
selbit = ptr<55>;

else
selbit = ptr<63>;

else
// EL2 translation regime registers
if data then

selbit = if ((HaveEL(EL2) && TCR_EL2.TBI1 == '1') ||
(HaveEL(EL2) && TCR_EL2.TBI0 == '1')) then ptr<55> else ptr<63>;

else
selbit = if ((HaveEL(EL2) && TCR_EL2.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||

(HaveEL(EL2) && TCR_EL2.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then ptr<55> else ptr<63>;
else selbit = if tbi then ptr<55> else ptr<63>;

integer bottom_PAC_bit = CalculateBottomPACBit(ptr, selbit);

// The pointer authentication code field takes all the available bits in between
extfield = Replicate(selbit, 64);

// Compute the pointer authentication code for a ptr with good extension bits
if tbi then

ext_ptr = ptr<63:56>:extfield<(56-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;
else

ext_ptr = extfield<(64-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;

PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>);

// Check if the ptr has good extension bits and corrupt the pointer authentication code if not;
if !IsZero(ptr<top_bit:bottom_PAC_bit>) && !IsOnes(ptr<top_bit:bottom_PAC_bit>) then

PAC<top_bit-1> = NOT(PAC<top_bit-1>);

// Preserve the determination between upper and lower address at bit<55> and insert PAC
if tbi then

result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
else

result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
return result;

Shared Pseudocode Functions Page 1464

Library pseudocode for aarch64/functions/pac/addpacda/AddPACDA

// AddPACDA()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDAKey_EL1.

bits(64) AddPACDA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDA;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APDAKey_EL1, TRUE);

Shared Pseudocode Functions Page 1465

Library pseudocode for aarch64/functions/pac/addpacdb/AddPACDB

// AddPACDB()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APDBKey_EL1.

bits(64) AddPACDB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDB;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APDBKey_EL1, TRUE);

Shared Pseudocode Functions Page 1466

Library pseudocode for aarch64/functions/pac/addpacga/AddPACGA

// AddPACGA()
// ==========
// Returns a 64-bit value where the lower 32 bits are 0, and the upper 32 bits contain
// a 32-bit pointer authentication code which is derived using a cryptographic
// algorithm as a combination of X, Y and the APGAKey_EL1.

bits(64) AddPACGA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(128) APGAKey_EL1;

APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = SCR_EL3.API == '0';

when EL1
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return ComputePAC(X, Y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>)<63:32>:Zeros(32);

Shared Pseudocode Functions Page 1467

Library pseudocode for aarch64/functions/pac/addpacia/AddPACIA

// AddPACIA()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y, and the
// APIAKey_EL1.

bits(64) AddPACIA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIA;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APIAKey_EL1, FALSE);

Shared Pseudocode Functions Page 1468

Library pseudocode for aarch64/functions/pac/addpacib/AddPACIB

// AddPACIB()
// ==========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of X, Y and the
// APIBKey_EL1.

bits(64) AddPACIB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIB;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return AddPAC(X, Y, APIBKey_EL1, FALSE);

Shared Pseudocode Functions Page 1469

Library pseudocode for aarch64/functions/pac/auth/Auth

// Auth()
// ======
// Restores the upper bits of the address to be all zeros or all ones (based on the
// value of bit[55]) and computes and checks the pointer authentication code. If the
// check passes, then the restored address is returned. If the check fails, the
// second-top and third-top bits of the extension bits in the pointer authentication code
// field are corrupted to ensure that accessing the address will give a translation fault.

bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit keynumber)
bits(64) PAC;
bits(64) result;
bits(64) original_ptr;
bits(2) error_code;
bits(64) extfield;

// Reconstruct the extension field used of adding the PAC to the pointer
boolean tbi = CalculateTBI(ptr, data);
integer bottom_PAC_bit = CalculateBottomPACBit(ptr, ptr<55>);
extfield = Replicate(ptr<55>, 64);

if tbi then
original_ptr = ptr<63:56>:extfield<56-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

else
original_ptr = extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>);
// Check pointer authentication code
if tbi then

if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then
result = original_ptr;

else
error_code = keynumber:NOT(keynumber);
result = original_ptr<63:55>:error_code:original_ptr<52:0>;

else
if ((PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit>) &&

(PAC<63:56> == ptr<63:56>)) then
result = original_ptr;

else
error_code = keynumber:NOT(keynumber);
result = original_ptr<63>:error_code:original_ptr<60:0>;

return result;

Shared Pseudocode Functions Page 1470

Library pseudocode for aarch64/functions/pac/authda/AuthDA

// AuthDA()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACDA().

bits(64) AuthDA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDA;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APDAKey_EL1, TRUE, '0');

Shared Pseudocode Functions Page 1471

Library pseudocode for aarch64/functions/pac/authdb/AuthDB

// AuthDB()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a
// pointer authentication code in the pointer authentication code field bits of X, using
// the same algorithm and key as AddPACDB().

bits(64) AuthDB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDB;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APDBKey_EL1, TRUE, '1');

Shared Pseudocode Functions Page 1472

Library pseudocode for aarch64/functions/pac/authia/AuthIA

// AuthIA()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACIA().

bits(64) AuthIA(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIA;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APIAKey_EL1, FALSE, '0');

Shared Pseudocode Functions Page 1473

Library pseudocode for aarch64/functions/pac/authib/AuthIB

// AuthIB()
// ========
// Returns a 64-bit value containing X, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of X, using the same
// algorithm and key as AddPACIB().

bits(64) AuthIB(bits(64) X, bits(64) Y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIB;
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then return X;
elsif TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return Auth(X, Y, APIBKey_EL1, FALSE, '1');

Shared Pseudocode Functions Page 1474

Library pseudocode for aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit

// CalculateBottomPACBit()
// =======================

integer CalculateBottomPACBit(bits(64) ptr, bit top_bit)
integer tsz_field;

if PtrHasUpperAndLowerAddRanges() then
if IsEL1TransRegimeRegs() then

tsz_field = if top_bit == '1' then UInt(TCR_EL1.T1SZ) else UInt(TCR_EL1.T0SZ);
using64k = if top_bit == '1' then TCR_EL1.TG1 == '11' else TCR_EL1.TG0 == '11';

else
// EL2 translation regime registers
assert HaveEL(EL2);
tsz_field = if top_bit == '1' then UInt(TCR_EL2.T1SZ) else UInt(TCR_EL2.T0SZ);
using64k = if top_bit == '1' then TCR_EL2.TG1 == '11' else TCR_EL2.TG0 == '11';

else
tsz_field = if PSTATE.EL == EL2 then UInt(TCR_EL2.T0SZ) else UInt(TCR_EL3.T0SZ);
using64k = if PSTATE.EL == EL2 then TCR_EL2.TG0 == '11' else TCR_EL3.TG0 == '11';

max_limit_tsz_field = 39;
if tsz_field > max_limit_tsz_field then

// TCR_ELx.TySZ is out of range
c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_NONE};
if c == Constraint_FORCE then tsz_field = max_limit_tsz_field;

tszmin = if using64k && VAMax() == 52 then 12 else 16;
if tsz_field < tszmin then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_NONE};
if c == Constraint_FORCE then tsz_field = tszmin;

return (64-tsz_field);

Library pseudocode for aarch64/functions/pac/calculatetbi/CalculateTBI

// CalculateTBI()
// ==============

boolean CalculateTBI(bits(64) ptr, boolean data)
boolean tbi = FALSE;

if PtrHasUpperAndLowerAddRanges() then
if IsEL1TransRegimeRegs() then

if data then
tbi = if ptr<55> == '1' then TCR_EL1.TBI1 == '1' else TCR_EL1.TBI0 == '1';

else
if ptr<55> == '1' then

tbi = TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0';
else

tbi = TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0';
else

// EL2 translation regime registers
if data then

tbi = if ptr<55> == '1' then TCR_EL2.TBI1 == '1' else TCR_EL2.TBI0 == '1';
else

if ptr<55> == '1' then
tbi = TCR_EL2.TBI1 == '1' && TCR_EL2.TBID1 == '0';

else
tbi = TCR_EL2.TBI0 == '1' && TCR_EL2.TBID0 == '0';

elsif PSTATE.EL == EL2 then
tbi = if data then TCR_EL2.TBI=='1' else TCR_EL2.TBI=='1' && TCR_EL2.TBID=='0';

elsif PSTATE.EL == EL3 then
tbi = if data then TCR_EL3.TBI=='1' else TCR_EL3.TBI=='1' && TCR_EL3.TBID=='0';

return tbi;

Shared Pseudocode Functions Page 1475

Library pseudocode for aarch64/functions/pac/computepac/ComputePAC

array bits(64) RC[0..4];

bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1)
bits(64) workingval;
bits(64) runningmod;
bits(64) roundkey;
bits(64) modk0;
constant bits(64) Alpha = 0xC0AC29B7C97C50DD<63:0>;

RC[0] = 0x0000000000000000<63:0>;
RC[1] = 0x13198A2E03707344<63:0>;
RC[2] = 0xA4093822299F31D0<63:0>;
RC[3] = 0x082EFA98EC4E6C89<63:0>;
RC[4] = 0x452821E638D01377<63:0>;

modk0 = key0<0>:key0<63:2>:(key0<63> EOR key0<1>);
runningmod = modifier;
workingval = data EOR key0;
for i = 0 to 4

roundkey = key1 EOR runningmod;
workingval = workingval EOR roundkey;
workingval = workingval EOR RC[i];
if i > 0 then

workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);

workingval = PACSub(workingval);
runningmod = TweakShuffle(runningmod<63:0>);

roundkey = modk0 EOR runningmod;
workingval = workingval EOR roundkey;
workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);
workingval = PACSub(workingval);
workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);
workingval = key1 EOR workingval;
workingval = PACCellInvShuffle(workingval);
workingval = PACInvSub(workingval);
workingval = PACMult(workingval);
workingval = PACCellInvShuffle(workingval);
workingval = workingval EOR key0;
workingval = workingval EOR runningmod;
for i = 0 to 4

workingval = PACInvSub(workingval);
if i < 4 then

workingval = PACMult(workingval);
workingval = PACCellInvShuffle(workingval);

runningmod = TweakInvShuffle(runningmod<63:0>);
roundkey = key1 EOR runningmod;
workingval = workingval EOR RC[4-i];
workingval = workingval EOR roundkey;
workingval = workingval EOR Alpha;

workingval = workingval EOR modk0;

return workingval;

Shared Pseudocode Functions Page 1476

Library pseudocode for aarch64/functions/pac/computepac/PACCellInvShuffle

// PACCellInvShuffle()
// ===================

bits(64) PACCellInvShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<15:12>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<51:48>;
outdata<15:12> = indata<39:36>;
outdata<19:16> = indata<59:56>;
outdata<23:20> = indata<47:44>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<19:16>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<31:28>;
outdata<47:44> = indata<11:8>;
outdata<51:48> = indata<23:20>;
outdata<55:52> = indata<3:0>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = indata<63:60>;
return outdata;

Library pseudocode for aarch64/functions/pac/computepac/PACCellShuffle

// PACCellShuffle()
// ================

bits(64) PACCellShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<55:52>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<47:44>;
outdata<15:12> = indata<3:0>;
outdata<19:16> = indata<31:28>;
outdata<23:20> = indata<51:48>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<43:40>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<15:12>;
outdata<43:40> = indata<59:56>;
outdata<47:44> = indata<23:20>;
outdata<51:48> = indata<11:8>;
outdata<55:52> = indata<39:36>;
outdata<59:56> = indata<19:16>;
outdata<63:60> = indata<63:60>;
return outdata;

Shared Pseudocode Functions Page 1477

Library pseudocode for aarch64/functions/pac/computepac/PACInvSub

// PACInvSub()
// ===========

bits(64) PACInvSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher

bits(64) Toutput;
for i = 0 to 15

case Tinput<4*i+3:4*i> of
when '0000' Toutput<4*i+3:4*i> = '0101';
when '0001' Toutput<4*i+3:4*i> = '1110';
when '0010' Toutput<4*i+3:4*i> = '1101';
when '0011' Toutput<4*i+3:4*i> = '1000';
when '0100' Toutput<4*i+3:4*i> = '1010';
when '0101' Toutput<4*i+3:4*i> = '1011';
when '0110' Toutput<4*i+3:4*i> = '0001';
when '0111' Toutput<4*i+3:4*i> = '1001';
when '1000' Toutput<4*i+3:4*i> = '0010';
when '1001' Toutput<4*i+3:4*i> = '0110';
when '1010' Toutput<4*i+3:4*i> = '1111';
when '1011' Toutput<4*i+3:4*i> = '0000';
when '1100' Toutput<4*i+3:4*i> = '0100';
when '1101' Toutput<4*i+3:4*i> = '1100';
when '1110' Toutput<4*i+3:4*i> = '0111';
when '1111' Toutput<4*i+3:4*i> = '0011';

return Toutput;

Library pseudocode for aarch64/functions/pac/computepac/PACMult

// PACMult()
// =========

bits(64) PACMult(bits(64) Sinput)
bits(4) t0;
bits(4) t1;
bits(4) t2;
bits(4) t3;
bits(64) Soutput;

for i = 0 to 3
t0<3:0> = RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 2);
t0<3:0> = t0<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
t1<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
t1<3:0> = t1<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
t2<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 2) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1);
t2<3:0> = t2<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
t3<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 2);
t3<3:0> = t3<3:0> EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
Soutput<4*i+3:4*i> = t3<3:0>;
Soutput<4*(i+4)+3:4*(i+4)> = t2<3:0>;
Soutput<4*(i+8)+3:4*(i+8)> = t1<3:0>;
Soutput<4*(i+12)+3:4*(i+12)> = t0<3:0>;

return Soutput;

Shared Pseudocode Functions Page 1478

Library pseudocode for aarch64/functions/pac/computepac/PACSub

// PACSub()
// ========

bits(64) PACSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher
bits(64) Toutput;
for i = 0 to 15

case Tinput<4*i+3:4*i> of
when '0000' Toutput<4*i+3:4*i> = '1011';
when '0001' Toutput<4*i+3:4*i> = '0110';
when '0010' Toutput<4*i+3:4*i> = '1000';
when '0011' Toutput<4*i+3:4*i> = '1111';
when '0100' Toutput<4*i+3:4*i> = '1100';
when '0101' Toutput<4*i+3:4*i> = '0000';
when '0110' Toutput<4*i+3:4*i> = '1001';
when '0111' Toutput<4*i+3:4*i> = '1110';
when '1000' Toutput<4*i+3:4*i> = '0011';
when '1001' Toutput<4*i+3:4*i> = '0111';
when '1010' Toutput<4*i+3:4*i> = '0100';
when '1011' Toutput<4*i+3:4*i> = '0101';
when '1100' Toutput<4*i+3:4*i> = '1101';
when '1101' Toutput<4*i+3:4*i> = '0010';
when '1110' Toutput<4*i+3:4*i> = '0001';
when '1111' Toutput<4*i+3:4*i> = '1010';

return Toutput;

Library pseudocode for aarch64/functions/pac/computepac/RotCell

// RotCell()
// =========

bits(4) RotCell(bits(4) incell, integer amount)
bits(8) tmp;
bits(4) outcell;

// assert amount>3 || amount<1;
tmp<7:0> = incell<3:0>:incell<3:0>;
outcell = tmp<7-amount:4-amount>;
return outcell;

Library pseudocode for aarch64/functions/pac/computepac/TweakCellInvRot

// TweakCellInvRot()
// =================

bits(4) TweakCellInvRot(bits(4)incell)
bits(4) outcell;
outcell<3> = incell<2>;
outcell<2> = incell<1>;
outcell<1> = incell<0>;
outcell<0> = incell<0> EOR incell<3>;
return outcell;

Library pseudocode for aarch64/functions/pac/computepac/TweakCellRot

// TweakCellRot()
// ==============

bits(4) TweakCellRot(bits(4) incell)
bits(4) outcell;
outcell<3> = incell<0> EOR incell<1>;
outcell<2> = incell<3>;
outcell<1> = incell<2>;
outcell<0> = incell<1>;
return outcell;

Shared Pseudocode Functions Page 1479

Library pseudocode for aarch64/functions/pac/computepac/TweakInvShuffle

// TweakInvShuffle()
// =================

bits(64) TweakInvShuffle(bits(64)indata)
bits(64) outdata;
outdata<3:0> = TweakCellInvRot(indata<51:48>);
outdata<7:4> = indata<55:52>;
outdata<11:8> = indata<23:20>;
outdata<15:12> = indata<27:24>;
outdata<19:16> = indata<3:0>;
outdata<23:20> = indata<7:4>;
outdata<27:24> = TweakCellInvRot(indata<11:8>);
outdata<31:28> = indata<15:12>;
outdata<35:32> = TweakCellInvRot(indata<31:28>);
outdata<39:36> = TweakCellInvRot(indata<63:60>);
outdata<43:40> = TweakCellInvRot(indata<59:56>);
outdata<47:44> = TweakCellInvRot(indata<19:16>);
outdata<51:48> = indata<35:32>;
outdata<55:52> = indata<39:36>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = TweakCellInvRot(indata<47:44>);
return outdata;

Library pseudocode for aarch64/functions/pac/computepac/TweakShuffle

// TweakShuffle()
// ==============

bits(64) TweakShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<19:16>;
outdata<7:4> = indata<23:20>;
outdata<11:8> = TweakCellRot(indata<27:24>);
outdata<15:12> = indata<31:28>;
outdata<19:16> = TweakCellRot(indata<47:44>);
outdata<23:20> = indata<11:8>;
outdata<27:24> = indata<15:12>;
outdata<31:28> = TweakCellRot(indata<35:32>);
outdata<35:32> = indata<51:48>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<59:56>;
outdata<47:44> = TweakCellRot(indata<63:60>);
outdata<51:48> = TweakCellRot(indata<3:0>);
outdata<55:52> = indata<7:4>;
outdata<59:56> = TweakCellRot(indata<43:40>);
outdata<63:60> = TweakCellRot(indata<39:36>);
return outdata;

Library pseudocode for aarch64/functions/pac/pac/HavePACExt

// HavePACExt()
// ============

boolean HavePACExt()
return HasArchVersion(ARMv8p3);

Library pseudocode for aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

// PtrHasUpperAndLowerAddRanges()
// ==============================

// Returns TRUE if the pointer has upper and lower address ranges

boolean PtrHasUpperAndLowerAddRanges()
return PSTATE.EL == EL1 || PSTATE.EL == EL0 || (PSTATE.EL == EL2 && HCR_EL2.E2H == '1');

Shared Pseudocode Functions Page 1480

Library pseudocode for aarch64/functions/pac/strip/Strip

// Strip()
// =======
// Strip() returns a 64-bit value containing A, but replacing the pointer authentication
// code field bits with the extension of the address bits. This can apply to either
// instructions or data, where, as the use of tagged pointers is distinct, it might be
// handled differently.

bits(64) Strip(bits(64) A, boolean data)
boolean TrapEL2;
boolean TrapEL3;
bits(64) original_ptr;
bits(64) extfield;
boolean tbi = CalculateTBI(A, data);
integer bottom_PAC_bit = CalculateBottomPACBit(A, A<55>);
extfield = Replicate(A<55>, 64);

if tbi then
original_ptr = A<63:56>:extfield< 56-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;

else
original_ptr = extfield< 64-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;

case PSTATE.EL of
when EL0

boolean IsEL1Regime = !HaveEL(EL2) || HCR_EL2.TGE=='0' || HCR_EL2.E2H=='0';
TrapEL2 = HaveEL(EL2) && IsEL1Regime && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
TrapEL2 = HaveEL(EL2) && !IsSecure() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if TrapEL2 then TrapPACUse(EL2);
elsif TrapEL3 then TrapPACUse(EL3);
else return original_ptr;

Library pseudocode for aarch64/functions/pac/trappacuse/TrapPACUse

// TrapPACUse()
// ============
// Used for the trapping of the pointer authentication functions by higher exception
// levels.

TrapPACUse(bits(2) target_el)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr();
ExceptionRecord exception;
vect_offset = 0;
exception = ExceptionSyndrome(Exception_PACTrap);
AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1481

Library pseudocode for aarch64/functions/ras/AArch64.ESBOperation

// AArch64.ESBOperation()
// ======================
// Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
// ESB in AArch32 state when SError interrupts are routed to an Exception level using
// AArch64

AArch64.ESBOperation()

route_to_el3 = (HaveEL(EL3) && SCR_EL3.EA == '1');
route_to_el2 = (HaveEL(EL2) && !IsSecure() &&

(HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1'));

target = (if route_to_el3 then EL3 elsif route_to_el2 then EL2 else EL1);

if target == EL1 then
mask_active = (PSTATE.EL IN {EL0,EL1});

elsif HaveVirtHostExt() && target == EL2 && HCR_EL2.<E2H,TGE> == '11' then
mask_active = (PSTATE.EL IN {EL0,EL2});

else
mask_active = (PSTATE.EL == target);

mask_set = (PSTATE.A == '1');
intdis = (Halted() || ExternalDebugInterruptsDisabled(target));
masked = (UInt(target) < UInt(PSTATE.EL)) || intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending
if SErrorPending() && masked then // ISR_EL1.A is set to 1

// This function might be called for an interworking case, and INTdis is masking
// the SError interrupt.
if ELUsingAArch32(S1TranslationRegime()) then

syndrome32 = AArch32.PhysicalSErrorSyndrome();
DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);

else
implicit_esb = FALSE;
syndrome64 = AArch64.PhysicalSErrorSyndrome(implicit_esb);
DISR_EL1 = AArch64.ReportDeferredSError(syndrome64);

ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

return;

Library pseudocode for aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

// Return the SError syndrome
bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb);

Library pseudocode for aarch64/functions/ras/AArch64.ReportDeferredSError

// AArch64.ReportDeferredSError()
// ==============================
// Generate deferred SError syndrome

bits(64) AArch64.ReportDeferredSError(bits(25) syndrome)
bits(64) target;
target<31> = '1'; // A
target<24> = syndrome<24>; // IDS
target<23:0> = syndrome<23:0>; // ISS
return target;

Shared Pseudocode Functions Page 1482

Library pseudocode for aarch64/functions/ras/AArch64.vESBOperation

// AArch64.vESBOperation()
// =======================
// Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
// executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

AArch64.vESBOperation()
assert HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {EL0,EL1};

// If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
// SError interrupt might be pending
vSEI_enabled = (HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1');
vSEI_pending = (vSEI_enabled && HCR_EL2.VSE == '1');
vintdis = (Halted() || ExternalDebugInterruptsDisabled(EL1));
vmasked = (vintdis || PSTATE.A == '1');

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then

// This function might be called for the interworking case, and INTdis is masking
// the virtual SError interrupt.
if ELUsingAArch32(EL1) then

VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
else

VDISR_EL2 = AArch64.ReportDeferredSError(VSESR_EL2<24:0>);
HCR_EL2.VSE = '0'; // Clear pending virtual SError

return;

Library pseudocode for aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

// AArch64.MaybeZeroRegisterUppers()
// =================================
// On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
// 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

AArch64.MaybeZeroRegisterUppers()
assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
first = 0; last = 14; include_R15 = FALSE;

elsif PSTATE.EL IN {EL0,EL1} && HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) then
first = 0; last = 30; include_R15 = FALSE;

else
first = 0; last = 30; include_R15 = TRUE;

for n = first to last
if (n != 15 || include_R15) && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then

_R[n]<63:32> = Zeros();

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetGeneralRegisters

// AArch64.ResetGeneralRegisters()
// ===============================

AArch64.ResetGeneralRegisters()

for i = 0 to 30
X[i] = bits(64) UNKNOWN;

return;

Shared Pseudocode Functions Page 1483

Library pseudocode for aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

// AArch64.ResetSIMDFPRegisters()
// ==============================

AArch64.ResetSIMDFPRegisters()

for i = 0 to 31
V[i] = bits(128) UNKNOWN;

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetSpecialRegisters

// AArch64.ResetSpecialRegisters()
// ===============================

AArch64.ResetSpecialRegisters()

// AArch64 special registers
SP_EL0 = bits(64) UNKNOWN;
SP_EL1 = bits(64) UNKNOWN;
SPSR_EL1 = bits(32) UNKNOWN;
ELR_EL1 = bits(64) UNKNOWN;
if HaveEL(EL2) then

SP_EL2 = bits(64) UNKNOWN;
SPSR_EL2 = bits(32) UNKNOWN;
ELR_EL2 = bits(64) UNKNOWN;

if HaveEL(EL3) then
SP_EL3 = bits(64) UNKNOWN;
SPSR_EL3 = bits(32) UNKNOWN;
ELR_EL3 = bits(64) UNKNOWN;

// AArch32 special registers that are not architecturally mapped to AArch64 registers
if HaveAArch32EL(EL1) then

SPSR_fiq = bits(32) UNKNOWN;
SPSR_irq = bits(32) UNKNOWN;
SPSR_abt = bits(32) UNKNOWN;
SPSR_und = bits(32) UNKNOWN;

// External debug special registers
DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(32) UNKNOWN;

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetSystemRegisters

AArch64.ResetSystemRegisters(boolean cold_reset);

Library pseudocode for aarch64/functions/registers/PC

// PC - non-assignment form
// ========================
// Read program counter.

bits(64) PC[]
return _PC;

Shared Pseudocode Functions Page 1484

Library pseudocode for aarch64/functions/registers/SP

// SP[] - assignment form
// ======================
// Write to stack pointer from either a 32-bit or a 64-bit value.

SP[] = bits(width) value
assert width IN {32,64};
if PSTATE.SP == '0' then

SP_EL0 = ZeroExtend(value);
else

case PSTATE.EL of
when EL0 SP_EL0 = ZeroExtend(value);
when EL1 SP_EL1 = ZeroExtend(value);
when EL2 SP_EL2 = ZeroExtend(value);
when EL3 SP_EL3 = ZeroExtend(value);

return;

// SP[] - non-assignment form
// ==========================
// Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.

bits(width) SP[]
assert width IN {8,16,32,64};
if PSTATE.SP == '0' then

return SP_EL0<width-1:0>;
else

case PSTATE.EL of
when EL0 return SP_EL0<width-1:0>;
when EL1 return SP_EL1<width-1:0>;
when EL2 return SP_EL2<width-1:0>;
when EL3 return SP_EL3<width-1:0>;

Library pseudocode for aarch64/functions/registers/V

// V[] - assignment form
// =====================
// Write to SIMD&FP register with implicit extension from
// 8, 16, 32, 64 or 128 bits.

V[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
_V[n] = ZeroExtend(value);
return;

// V[] - non-assignment form
// =========================
// Read from SIMD&FP register with implicit slice of 8, 16
// 32, 64 or 128 bits.

bits(width) V[integer n]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
return _V[n]<width-1:0>;

Shared Pseudocode Functions Page 1485

Library pseudocode for aarch64/functions/registers/Vpart

// Vpart[] - non-assignment form
// =============================
// Reads a 128-bit SIMD&FP register in up to two parts:
// part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
// part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
// value held in the register.

bits(width) Vpart[integer n, integer part]
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then

assert width IN {8,16,32,64};
return _V[n]<width-1:0>;

else
assert width == 64;
return _V[n]<(width * 2)-1:width>;

// Vpart[] - assignment form
// =========================
// Writes a 128-bit SIMD&FP register in up to two parts:
// part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
// part 1 inserts a 64-bit value into the top half of the register.

Vpart[integer n, integer part] = bits(width) value
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then

assert width IN {8,16,32,64};
_V[n] = ZeroExtend(value);

else
assert width == 64;
_V[n]<(width * 2)-1:width> = value<width-1:0>;

Library pseudocode for aarch64/functions/registers/X

// X[] - assignment form
// =====================
// Write to general-purpose register from either a 32-bit or a 64-bit value.

X[integer n] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {32,64};
if n != 31 then

_R[n] = ZeroExtend(value);
return;

// X[] - non-assignment form
// =========================
// Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

bits(width) X[integer n]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64};
if n != 31 then

return _R[n]<width-1:0>;
else

return Zeros(width);

Shared Pseudocode Functions Page 1486

Library pseudocode for aarch64/functions/sysregisters/CNTKCTL

// CNTKCTL[] - non-assignment form
// ===============================

CNTKCTLType CNTKCTL[]
if IsInHost() then

return CNTHCTL_EL2;
return CNTKCTL_EL1;

Library pseudocode for aarch64/functions/sysregisters/CNTKCTLType

type CNTKCTLType;

Library pseudocode for aarch64/functions/sysregisters/CPACR

// CPACR[] - non-assignment form
// =============================

CPACRType CPACR[]
if IsInHost() then

return CPTR_EL2;
return CPACR_EL1;

Library pseudocode for aarch64/functions/sysregisters/CPACRType

type CPACRType;

Shared Pseudocode Functions Page 1487

Library pseudocode for aarch64/functions/sysregisters/ELR

// ELR[] - non-assignment form
// ===========================

bits(64) ELR[bits(2) el]
bits(64) r;
case el of

when EL1 r = ELR_EL1;
when EL2 r = ELR_EL2;
when EL3 r = ELR_EL3;
otherwise Unreachable();

return r;

// ELR[] - non-assignment form
// ===========================

bits(64) ELR[]
assert PSTATE.EL != EL0;
return ELR[PSTATE.EL];

// ELR[] - assignment form
// =======================

ELR[bits(2) el] = bits(64) value
bits(64) r = value;
case el of

when EL1 ELR_EL1 = r;
when EL2 ELR_EL2 = r;
when EL3 ELR_EL3 = r;
otherwise Unreachable();

return;

// ELR[] - assignment form
// =======================

ELR[] = bits(64) value
assert PSTATE.EL != EL0;
ELR[PSTATE.EL] = value;
return;

Shared Pseudocode Functions Page 1488

Library pseudocode for aarch64/functions/sysregisters/ESR

// ESR[] - non-assignment form
// ===========================

ESRType ESR[bits(2) regime]
bits(32) r;
case regime of

when EL1 r = ESR_EL1;
when EL2 r = ESR_EL2;
when EL3 r = ESR_EL3;
otherwise Unreachable();

return r;

// ESR[] - non-assignment form
// ===========================

ESRType ESR[]
return ESR[S1TranslationRegime()];

// ESR[] - assignment form
// =======================

ESR[bits(2) regime] = ESRType value
bits(32) r = value;
case regime of

when EL1 ESR_EL1 = r;
when EL2 ESR_EL2 = r;
when EL3 ESR_EL3 = r;
otherwise Unreachable();

return;

// ESR[] - assignment form
// =======================

ESR[] = ESRType value
ESR[S1TranslationRegime()] = value;

Library pseudocode for aarch64/functions/sysregisters/ESRType

type ESRType;

Shared Pseudocode Functions Page 1489

Library pseudocode for aarch64/functions/sysregisters/FAR

// FAR[] - non-assignment form
// ===========================

bits(64) FAR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = FAR_EL1;
when EL2 r = FAR_EL2;
when EL3 r = FAR_EL3;
otherwise Unreachable();

return r;

// FAR[] - non-assignment form
// ===========================

bits(64) FAR[]
return FAR[S1TranslationRegime()];

// FAR[] - assignment form
// =======================

FAR[bits(2) regime] = bits(64) value
bits(64) r = value;
case regime of

when EL1 FAR_EL1 = r;
when EL2 FAR_EL2 = r;
when EL3 FAR_EL3 = r;
otherwise Unreachable();

return;

// FAR[] - assignment form
// =======================

FAR[] = bits(64) value
FAR[S1TranslationRegime()] = value;
return;

Library pseudocode for aarch64/functions/sysregisters/MAIR

// MAIR[] - non-assignment form
// ============================

MAIRType MAIR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = MAIR_EL1;
when EL2 r = MAIR_EL2;
when EL3 r = MAIR_EL3;
otherwise Unreachable();

return r;

// MAIR[] - non-assignment form
// ============================

MAIRType MAIR[]
return MAIR[S1TranslationRegime()];

Library pseudocode for aarch64/functions/sysregisters/MAIRType

type MAIRType;

Shared Pseudocode Functions Page 1490

Library pseudocode for aarch64/functions/sysregisters/SCTLR

// SCTLR[] - non-assignment form
// =============================

SCTLRType SCTLR[bits(2) regime]
bits(32) r;
case regime of

when EL1 r = SCTLR_EL1;
when EL2 r = SCTLR_EL2;
when EL3 r = SCTLR_EL3;
otherwise Unreachable();

return r;

// SCTLR[] - non-assignment form
// =============================

SCTLRType SCTLR[]
return SCTLR[S1TranslationRegime()];

Library pseudocode for aarch64/functions/sysregisters/SCTLRType

type SCTLRType;

Library pseudocode for aarch64/functions/sysregisters/VBAR

// VBAR[] - non-assignment form
// ============================

bits(64) VBAR[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = VBAR_EL1;
when EL2 r = VBAR_EL2;
when EL3 r = VBAR_EL3;
otherwise Unreachable();

return r;

// VBAR[] - non-assignment form
// ============================

bits(64) VBAR[]
return VBAR[S1TranslationRegime()];

Library pseudocode for aarch64/functions/system/AArch64.CheckAdvSIMDFPSystemRegisterTraps

// Checks if an AArch64 MSR, MRS or SYS instruction on a SIMD or floating-point
// register is trapped under the current configuration. Returns a boolean which
// is TRUE if trapping occurs, plus a binary value that specifies the Exception
// level trapped to.
(boolean, bits(2)) AArch64.CheckAdvSIMDFPSystemRegisterTraps(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm, bits(3) op2, bit read);

Shared Pseudocode Functions Page 1491

Library pseudocode for aarch64/functions/system/AArch64.CheckSystemAccess

// AArch64.CheckSystemAccess()
// ===========================

AArch64.CheckSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm, bits(3) op2, bits(5) rt, bit read)
// Checks if an AArch64 MSR, MRS or SYS instruction is UNALLOCATED or trapped at the current
// exception level, security state and configuration, based on the opcode's encoding.
boolean unallocated = FALSE;
boolean need_secure = FALSE;
bits(2) min_EL;

// Check for traps by HCR_EL2.TIDCP
if HaveEL(EL2) && !IsSecure() && HCR_EL2.TIDCP == 1 && op0 == 'x1' && crn == '1x11' then

// At Non-secure EL0, it is IMPLEMENTATION_DEFINED whether attempts to execute system
// register access instructions with reserved encodings are trapped to EL2 or UNDEFINED
rcs_el0_trap = boolean IMPLEMENTATION_DEFINED "Reserved Control Space EL0 Trapped";
if PSTATE.EL == EL0 && rcs_el0_trap then

AArch64.SystemRegisterTrap(EL2, op0, op2, op1, crn, rt, crm, read);
elsif PSTATE.EL == EL1 then

AArch64.SystemRegisterTrap(EL2, op0, op2, op1, crn, rt, crm, read);

// Check for unallocated encodings
case op1 of

when '00x', '010'
min_EL = EL1;

when '011'
min_EL = EL0;

when '100'
min_EL = EL2;

when '101'
if !HaveVirtHostExt() then UnallocatedEncoding();
min_EL = EL2;

when '110'
min_EL = EL3;

when '111'
min_EL = EL1;
need_secure = TRUE;

if UInt(PSTATE.EL) < UInt(min_EL) then
// Check for traps on read/write access to registers named _EL2, _EL02, _EL12 from non-secure EL1 when HCR_EL2.NV bit is set
if (PSTATE.EL == EL1 && min_EL == EL2 && HaveNVExt() && !IsSecure() && HaveEL(EL2) && HCR_EL2.NV == '1') then

AArch64.SystemRegisterTrap(EL2, op0, op2, op1, crn, rt, crm, read);
else

UnallocatedEncoding();
elsif need_secure && !IsSecure() then

UnallocatedEncoding();
elsif AArch64.CheckUnallocatedSystemAccess(op0, op1, crn, crm, op2, read) then

UnallocatedEncoding();

// Check for traps on accesses to SIMD or floating-point registers
(take_trap, target_el) = AArch64.CheckAdvSIMDFPSystemRegisterTraps(op0, op1, crn, crm, op2, read);
if take_trap then

AArch64.AdvSIMDFPAccessTrap(target_el);

// Check for traps on access to all other system registers
(take_trap, target_el) = AArch64.CheckSystemRegisterTraps(op0, op1, crn, crm, op2, read);

if take_trap then
AArch64.SystemRegisterTrap(target_el, op0, op2, op1, crn, rt, crm, read);

Library pseudocode for aarch64/functions/system/AArch64.CheckSystemRegisterTraps

// Checks if an AArch64 MSR, MRS or SYS instruction on a system register is trapped
// under the current configuration. Returns a boolean which is TRUE if trapping
// occurs, plus a binary value that specifies the Exception level trapped to.
(boolean, bits(2)) AArch64.CheckSystemRegisterTraps(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm, bits(3) op2, bit read);

Shared Pseudocode Functions Page 1492

Library pseudocode for aarch64/functions/system/AArch64.CheckUnallocatedSystemAccess

// Checks if an AArch64 MSR, MRS or SYS instruction is unallocated under the current
// configuration.
boolean AArch64.CheckUnallocatedSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm, bits(3) op2, bit read);

Library pseudocode for aarch64/functions/system/AArch64.ExecutingATS1xPInstr

// AArch64.ExecutingATS1xPInstr()
// ==============================
// Return TRUE if current instruction is AT S1E1R/WP

boolean AArch64.ExecutingATS1xPInstr()
if !HavePrivATExt() then return FALSE;

instr = ThisInstr();
if instr<22+:10> == '1101010100' then

op1 = instr<16+:3>;
CRn = instr<12+:4>;
CRm = instr<8+:4>;
op2 = instr<5+:3>;
return (op1 == '000' && CRn == '0111' && CRm == '1001' && op2 IN {'000','001'});

else
return FALSE;

Library pseudocode for aarch64/functions/system/AArch64.SysInstr

// Execute a system instruction with write (source operand).
AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

Library pseudocode for aarch64/functions/system/AArch64.SysInstrWithResult

// Execute a system instruction with read (result operand).
// Returns the result of the instruction.
bits(64) AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2);

Library pseudocode for aarch64/functions/system/AArch64.SysRegRead

// Read from a system register and return the contents of the register.
bits(64) System_Get(integer op0, integer op1, integer crn, integer crm, integer op2);

Library pseudocode for aarch64/functions/system/AArch64.SysRegWrite

// Write to a system register.
AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

Shared Pseudocode Functions Page 1493

Library pseudocode for aarch64/instrs/branch/eret/AArch64.ExceptionReturn

// AArch64.ExceptionReturn()
// =========================

AArch64.ExceptionReturn(bits(64) new_pc, bits(32) spsr)

SynchronizeContext();

if HaveRASExt() && SCTLR[].IESB == '1' then
ErrorSynchronizationBarrier(MBReqDomain_FullSystem, MBReqTypes_All);
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

// Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
SetPSTATEFromPSR(spsr);
ClearExclusiveLocal(ProcessorID());
SendEventLocal();

if PSTATE.IL == '1' then
// If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
new_pc<63:32> = bits(32) UNKNOWN;
new_pc<1:0> = bits(2) UNKNOWN;

elsif UsingAArch32() then // Return to AArch32
// ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the target instruction set state
if PSTATE.T == '0' then

new_pc<0> = '0'; // T32
else

new_pc<1:0> = '00'; // A32
else // Return to AArch64

// ELR_ELx[63:56] might include a tag
new_pc = AArch64.BranchAddr(new_pc);

if UsingAArch32() then
// 32 most significant bits are ignored.
BranchTo(new_pc<31:0>, BranchType_UNKNOWN);

else
BranchToAddr(new_pc, BranchType_ERET);

Library pseudocode for aarch64/instrs/countop/CountOp

enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

Library pseudocode for aarch64/instrs/extendreg/DecodeRegExtend

// DecodeRegExtend()
// =================
// Decode a register extension option

ExtendType DecodeRegExtend(bits(3) op)
case op of

when '000' return ExtendType_UXTB;
when '001' return ExtendType_UXTH;
when '010' return ExtendType_UXTW;
when '011' return ExtendType_UXTX;
when '100' return ExtendType_SXTB;
when '101' return ExtendType_SXTH;
when '110' return ExtendType_SXTW;
when '111' return ExtendType_SXTX;

Shared Pseudocode Functions Page 1494

Library pseudocode for aarch64/instrs/extendreg/ExtendReg

// ExtendReg()
// ===========
// Perform a register extension and shift

bits(N) ExtendReg(integer reg, ExtendType type, integer shift)
assert shift >= 0 && shift <= 4;
bits(N) val = X[reg];
boolean unsigned;
integer len;

case type of
when ExtendType_SXTB unsigned = FALSE; len = 8;
when ExtendType_SXTH unsigned = FALSE; len = 16;
when ExtendType_SXTW unsigned = FALSE; len = 32;
when ExtendType_SXTX unsigned = FALSE; len = 64;
when ExtendType_UXTB unsigned = TRUE; len = 8;
when ExtendType_UXTH unsigned = TRUE; len = 16;
when ExtendType_UXTW unsigned = TRUE; len = 32;
when ExtendType_UXTX unsigned = TRUE; len = 64;

// Note the extended width of the intermediate value and
// that sign extension occurs from bit <len+shift-1>, not
// from bit <len-1>. This is equivalent to the instruction
// [SU]BFIZ Rtmp, Rreg, #shift, #len
// It may also be seen as a sign/zero extend followed by a shift:
// LSL(Extend(val<len-1:0>, N, unsigned), shift);

len = Min(len, N - shift);
return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

Library pseudocode for aarch64/instrs/extendreg/ExtendType

enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

Library pseudocode for aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

Library pseudocode for aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
FPUnaryOp_NEG, FPUnaryOp_SQRT};

Library pseudocode for aarch64/instrs/float/convert/fpconvop/FPConvOp

enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
, FPConvOp_CVT_FtoI_JS

};

Shared Pseudocode Functions Page 1495

Library pseudocode for aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred

// BFXPreferred()
// ==============
//
// Return TRUE if UBFX or SBFX is the preferred disassembly of a
// UBFM or SBFM bitfield instruction. Must exclude more specific
// aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)
integer S = UInt(imms);
integer R = UInt(immr);

// must not match UBFIZ/SBFIX alias
if UInt(imms) < UInt(immr) then

return FALSE;

// must not match LSR/ASR/LSL alias (imms == 31 or 63)
if imms == sf:'11111' then

return FALSE;

// must not match UXTx/SXTx alias
if immr == '000000' then

// must not match 32-bit UXT[BH] or SXT[BH]
if sf == '0' && imms IN {'000111', '001111'} then

return FALSE;
// must not match 64-bit SXT[BHW]
if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then

return FALSE;

// must be UBFX/SBFX alias
return TRUE;

Shared Pseudocode Functions Page 1496

Library pseudocode for aarch64/instrs/integer/bitmasks/DecodeBitMasks

Shared Pseudocode Functions Page 1497

// DecodeBitMasks()
// ================

// Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

(bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)
bits(64) tmask, wmask;
bits(6) tmask_and, wmask_and;
bits(6) tmask_or, wmask_or;
bits(6) levels;

// Compute log2 of element size
// 2^len must be in range [2, M]
len = HighestSetBit(immN:NOT(imms));
if len < 1 then ReservedValue();
assert M >= (1 << len);

// Determine S, R and S - R parameters
levels = ZeroExtend(Ones(len), 6);

// For logical immediates an all-ones value of S is reserved
// since it would generate a useless all-ones result (many times)
if immediate && (imms AND levels) == levels then

ReservedValue();

S = UInt(imms AND levels);
R = UInt(immr AND levels);
diff = S - R; // 6-bit subtract with borrow

// From a software perspective, the remaining code is equivalant to:
// esize = 1 << len;
// d = UInt(diff<len-1:0>);
// welem = ZeroExtend(Ones(S + 1), esize);
// telem = ZeroExtend(Ones(d + 1), esize);
// wmask = Replicate(ROR(welem, R));
// tmask = Replicate(telem);
// return (wmask, tmask);

// Compute "top mask"
tmask_and = diff<5:0> OR NOT(levels);
tmask_or = diff<5:0> AND levels;

tmask = Ones(64);
tmask = ((tmask

AND Replicate(Replicate(tmask_and<0>, 1) : Ones(1), 32))
OR Replicate(Zeros(1) : Replicate(tmask_or<0>, 1), 32));

// optimization of first step:
// tmask = Replicate(tmask_and<0> : '1', 32);
tmask = ((tmask

AND Replicate(Replicate(tmask_and<1>, 2) : Ones(2), 16))
OR Replicate(Zeros(2) : Replicate(tmask_or<1>, 2), 16));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<2>, 4) : Ones(4), 8))
OR Replicate(Zeros(4) : Replicate(tmask_or<2>, 4), 8));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<3>, 8) : Ones(8), 4))
OR Replicate(Zeros(8) : Replicate(tmask_or<3>, 8), 4));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<4>, 16) : Ones(16), 2))
OR Replicate(Zeros(16) : Replicate(tmask_or<4>, 16), 2));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<5>, 32) : Ones(32), 1))
OR Replicate(Zeros(32) : Replicate(tmask_or<5>, 32), 1));

// Compute "wraparound mask"
wmask_and = immr OR NOT(levels);
wmask_or = immr AND levels;

wmask = Zeros(64);
wmask = ((wmask

Shared Pseudocode Functions Page 1498

AND Replicate(Ones(1) : Replicate(wmask_and<0>, 1), 32))
OR Replicate(Replicate(wmask_or<0>, 1) : Zeros(1), 32));

// optimization of first step:
// wmask = Replicate(wmask_or<0> : '0', 32);
wmask = ((wmask

AND Replicate(Ones(2) : Replicate(wmask_and<1>, 2), 16))
OR Replicate(Replicate(wmask_or<1>, 2) : Zeros(2), 16));

wmask = ((wmask
AND Replicate(Ones(4) : Replicate(wmask_and<2>, 4), 8))
OR Replicate(Replicate(wmask_or<2>, 4) : Zeros(4), 8));

wmask = ((wmask
AND Replicate(Ones(8) : Replicate(wmask_and<3>, 8), 4))
OR Replicate(Replicate(wmask_or<3>, 8) : Zeros(8), 4));

wmask = ((wmask
AND Replicate(Ones(16) : Replicate(wmask_and<4>, 16), 2))
OR Replicate(Replicate(wmask_or<4>, 16) : Zeros(16), 2));

wmask = ((wmask
AND Replicate(Ones(32) : Replicate(wmask_and<5>, 32), 1))
OR Replicate(Replicate(wmask_or<5>, 32) : Zeros(32), 1));

if diff<6> != '0' then // borrow from S - R
wmask = wmask AND tmask;

else
wmask = wmask OR tmask;

return (wmask<M-1:0>, tmask<M-1:0>);

Library pseudocode for aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp

enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};

Library pseudocode for aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

// MoveWidePreferred()
// ===================
//
// Return TRUE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single MOVZ or MOVN instruction.
// Used as a condition for the preferred MOV<-ORR alias.

boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
integer S = UInt(imms);
integer R = UInt(immr);
integer width = if sf == '1' then 64 else 32;

// element size must equal total immediate size
if sf == '1' && immN:imms != '1xxxxxx' then

return FALSE;
if sf == '0' && immN:imms != '00xxxxx' then

return FALSE;

// for MOVZ must contain no more than 16 ones
if S < 16 then

// ones must not span halfword boundary when rotated
return (-R MOD 16) <= (15 - S);

// for MOVN must contain no more than 16 zeros
if S >= width - 15 then

// zeros must not span halfword boundary when rotated
return (R MOD 16) <= (S - (width - 15));

return FALSE;

Shared Pseudocode Functions Page 1499

Library pseudocode for aarch64/instrs/integer/shiftreg/DecodeShift

// DecodeShift()
// =============
// Decode shift encodings

ShiftType DecodeShift(bits(2) op)
case op of

when '00' return ShiftType_LSL;
when '01' return ShiftType_LSR;
when '10' return ShiftType_ASR;
when '11' return ShiftType_ROR;

Library pseudocode for aarch64/instrs/integer/shiftreg/ShiftReg

// ShiftReg()
// ==========
// Perform shift of a register operand

bits(N) ShiftReg(integer reg, ShiftType type, integer amount)
bits(N) result = X[reg];
case type of

when ShiftType_LSL result = LSL(result, amount);
when ShiftType_LSR result = LSR(result, amount);
when ShiftType_ASR result = ASR(result, amount);
when ShiftType_ROR result = ROR(result, amount);

return result;

Library pseudocode for aarch64/instrs/integer/shiftreg/ShiftType

enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

Library pseudocode for aarch64/instrs/logicalop/LogicalOp

enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

Library pseudocode for aarch64/instrs/memory/memop/MemAtomicOp

enumeration MemAtomicOp {MemAtomicOp_ADD,
MemAtomicOp_BIC,
MemAtomicOp_EOR,
MemAtomicOp_ORR,
MemAtomicOp_SMAX,
MemAtomicOp_SMIN,
MemAtomicOp_UMAX,
MemAtomicOp_UMIN,
MemAtomicOp_SWP};

Library pseudocode for aarch64/instrs/memory/memop/MemOp

enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

Shared Pseudocode Functions Page 1500

Library pseudocode for aarch64/instrs/memory/prefetch/Prefetch

// Prefetch()
// ==========

// Decode and execute the prefetch hint on ADDRESS specified by PRFOP

Prefetch(bits(64) address, bits(5) prfop)
PrefetchHint hint;
integer target;
boolean stream;

case prfop<4:3> of
when '00' hint = Prefetch_READ; // PLD: prefetch for load
when '01' hint = Prefetch_EXEC; // PLI: preload instructions
when '10' hint = Prefetch_WRITE; // PST: prepare for store
when '11' return; // unallocated hint

target = UInt(prfop<2:1>); // target cache level
stream = (prfop<0> != '0'); // streaming (non-temporal)
Hint_Prefetch(address, hint, target, stream);
return;

Library pseudocode for aarch64/instrs/system/barriers/barrierop/MemBarrierOp

enumeration MemBarrierOp {MemBarrierOp_DSB, MemBarrierOp_DMB, MemBarrierOp_ISB};

Library pseudocode for aarch64/instrs/system/hints/syshintop/SystemHintOp

enumeration SystemHintOp {
SystemHintOp_NOP,
SystemHintOp_YIELD,
SystemHintOp_WFE,
SystemHintOp_WFI,
SystemHintOp_SEV,
SystemHintOp_SEVL,
SystemHintOp_ESB,
SystemHintOp_PSB,

};

Library pseudocode for aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
PSTATEField_PAN, // ARMv8.1
PSTATEField_UAO, // ARMv8.2
PSTATEField_SP
};

Shared Pseudocode Functions Page 1501

Library pseudocode for aarch64/instrs/system/sysops/sysop/SysOp

// SysOp()
// =======

SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
case op1:CRn:CRm:op2 of

when '000 0111 1000 000' return Sys_AT; // S1E1R
when '100 0111 1000 000' return Sys_AT; // S1E2R
when '110 0111 1000 000' return Sys_AT; // S1E3R
when '000 0111 1000 001' return Sys_AT; // S1E1W
when '100 0111 1000 001' return Sys_AT; // S1E2W
when '110 0111 1000 001' return Sys_AT; // S1E3W
when '000 0111 1000 010' return Sys_AT; // S1E0R
when '000 0111 1000 011' return Sys_AT; // S1E0W
when '100 0111 1000 100' return Sys_AT; // S12E1R
when '100 0111 1000 101' return Sys_AT; // S12E1W
when '100 0111 1000 110' return Sys_AT; // S12E0R
when '100 0111 1000 111' return Sys_AT; // S12E0W
when '011 0111 0100 001' return Sys_DC; // ZVA
when '000 0111 0110 001' return Sys_DC; // IVAC
when '000 0111 0110 010' return Sys_DC; // ISW
when '011 0111 1010 001' return Sys_DC; // CVAC
when '000 0111 1010 010' return Sys_DC; // CSW
when '011 0111 1011 001' return Sys_DC; // CVAU
when '011 0111 1110 001' return Sys_DC; // CIVAC
when '000 0111 1110 010' return Sys_DC; // CISW
when '000 0111 0001 000' return Sys_IC; // IALLUIS
when '000 0111 0101 000' return Sys_IC; // IALLU
when '011 0111 0101 001' return Sys_IC; // IVAU
when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS
when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
when '100 1000 0111 000' return Sys_TLBI; // ALLE2
when '110 1000 0111 000' return Sys_TLBI; // ALLE3
when '000 1000 0111 001' return Sys_TLBI; // VAE1
when '100 1000 0111 001' return Sys_TLBI; // VAE2
when '110 1000 0111 001' return Sys_TLBI; // VAE3
when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
when '000 1000 0111 011' return Sys_TLBI; // VAAE1
when '100 1000 0111 100' return Sys_TLBI; // ALLE1
when '000 1000 0111 101' return Sys_TLBI; // VALE1
when '100 1000 0111 101' return Sys_TLBI; // VALE2
when '110 1000 0111 101' return Sys_TLBI; // VALE3
when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
when '000 1000 0111 111' return Sys_TLBI; // VAALE1

return Sys_SYS;

Library pseudocode for aarch64/instrs/system/sysops/sysop/SystemOp

enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

Shared Pseudocode Functions Page 1502

Library pseudocode for aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp

enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

Library pseudocode for aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp

enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
CompareOp_LE, CompareOp_LT};

Library pseudocode for aarch64/instrs/vector/crypto/enabled/CheckCryptoEnabled64

// CheckCryptoEnabled64()
// ======================

CheckCryptoEnabled64()
AArch64.CheckFPAdvSIMDEnabled();
return;

Library pseudocode for aarch64/instrs/vector/logical/immediateop/ImmediateOp

enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
ImmediateOp_ORR, ImmediateOp_BIC};

Library pseudocode for aarch64/instrs/vector/reduce/reduceop/Reduce

// Reduce()
// ========

bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
integer half;
bits(esize) hi;
bits(esize) lo;
bits(esize) result;

if N == esize then
return input;

half = N DIV 2;
hi = Reduce(op, input<N-1:half>, esize);
lo = Reduce(op, input<half-1:0>, esize);

case op of
when ReduceOp_FMINNUM

result = FPMinNum(lo, hi, FPCR);
when ReduceOp_FMAXNUM

result = FPMaxNum(lo, hi, FPCR);
when ReduceOp_FMIN

result = FPMin(lo, hi, FPCR);
when ReduceOp_FMAX

result = FPMax(lo, hi, FPCR);
when ReduceOp_FADD

result = FPAdd(lo, hi, FPCR);
when ReduceOp_ADD

result = lo + hi;

return result;

Library pseudocode for aarch64/instrs/vector/reduce/reduceop/ReduceOp

enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
ReduceOp_FMIN, ReduceOp_FMAX,
ReduceOp_FADD, ReduceOp_ADD};

Shared Pseudocode Functions Page 1503

Library pseudocode for aarch64/translation/attrs/AArch64.InstructionDevice

// AArch64.InstructionDevice()
// ===========================
// Instruction fetches from memory marked as Device but not execute-never might generate a
// Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.

AddressDescriptor AArch64.InstructionDevice(AddressDescriptor addrdesc, bits(64) vaddress,
bits(52) ipaddress, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

c = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
assert c IN {Constraint_NONE, Constraint_FAULT};

if c == Constraint_FAULT then
addrdesc.fault = AArch64.PermissionFault(ipaddress, level, acctype, iswrite,

secondstage, s2fs1walk);
else

addrdesc.memattrs.type = MemType_Normal;
addrdesc.memattrs.inner.attrs = MemAttr_NC;
addrdesc.memattrs.inner.hints = MemHint_No;
addrdesc.memattrs.outer = addrdesc.memattrs.inner;
addrdesc.memattrs = MemAttrDefaults(addrdesc.memattrs);

return addrdesc;

Library pseudocode for aarch64/translation/attrs/AArch64.S1AttrDecode

// AArch64.S1AttrDecode()
// ======================
// Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
// attributes and hints.

MemoryAttributes AArch64.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)

MemoryAttributes memattrs;

mair = MAIR[];
index = 8 * UInt(attr);
attrfield = mair<index+7:index>;

if ((attrfield<7:4> != '0000' && attrfield<3:0> == '0000') ||
(attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
// Reserved, maps to an allocated value
(-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESMAIR);

if attrfield<7:4> == '0000' then // Device
memattrs.type = MemType_Device;
case attrfield<3:0> of

when '0000' memattrs.device = DeviceType_nGnRnE;
when '0100' memattrs.device = DeviceType_nGnRE;
when '1000' memattrs.device = DeviceType_nGRE;
when '1100' memattrs.device = DeviceType_GRE;
otherwise Unreachable(); // Reserved, handled above

elsif attrfield<3:0> != '0000' then // Normal
memattrs.type = MemType_Normal;
memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype);
memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';

else
Unreachable(); // Reserved, handled above

return MemAttrDefaults(memattrs);

Shared Pseudocode Functions Page 1504

Library pseudocode for aarch64/translation/attrs/AArch64.TranslateAddressS1Off

// AArch64.TranslateAddressS1Off()
// ===============================
// Called for stage 1 translations when translation is disabled to supply a default translation.
// Note that there are additional constraints on instruction prefetching that are not described in
// this pseudocode.

TLBRecord AArch64.TranslateAddressS1Off(bits(64) vaddress, AccType acctype, boolean iswrite)
assert !ELUsingAArch32(S1TranslationRegime());

TLBRecord result;

Top = AddrTop(vaddress, FALSE, PSTATE.EL);
if !IsZero(vaddress<Top:PAMax()>) then

level = 0;
ipaddress = bits(52) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;
result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,

iswrite, secondstage, s2fs1walk);
return result;

default_cacheable = (HasS2Translation() && HCR_EL2.DC == '1');

if default_cacheable then
// Use default cacheable settings
result.addrdesc.memattrs.type = MemType_Normal;
result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
result.addrdesc.memattrs.inner.hints = MemHint_RWA;
result.addrdesc.memattrs.shareable = FALSE;
result.addrdesc.memattrs.outershareable = FALSE;

elsif acctype != AccType_IFETCH then
// Treat data as Device
result.addrdesc.memattrs.type = MemType_Device;
result.addrdesc.memattrs.device = DeviceType_nGnRnE;
result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;

else
// Instruction cacheability controlled by SCTLR_ELx.I
cacheable = SCTLR[].I == '1';
result.addrdesc.memattrs.type = MemType_Normal;
if cacheable then

result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
result.addrdesc.memattrs.inner.hints = MemHint_RA;

else
result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
result.addrdesc.memattrs.inner.hints = MemHint_No;

result.addrdesc.memattrs.shareable = TRUE;
result.addrdesc.memattrs.outershareable = TRUE;

result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;

result.addrdesc.memattrs = MemAttrDefaults(result.addrdesc.memattrs);

result.perms.ap = bits(3) UNKNOWN;
result.perms.xn = '0';
result.perms.pxn = '0';

result.nG = bit UNKNOWN;
result.contiguous = boolean UNKNOWN;
result.domain = bits(4) UNKNOWN;
result.level = integer UNKNOWN;
result.blocksize = integer UNKNOWN;
result.addrdesc.paddress.physicaladdress = vaddress<51:0>;
result.addrdesc.paddress.NS = if IsSecure() then '0' else '1';
result.addrdesc.fault = AArch64.NoFault();
return result;

Shared Pseudocode Functions Page 1505

Library pseudocode for aarch64/translation/checks/AArch64.AccessIsPrivileged

// AArch64.AccessIsPrivileged()
// ============================

boolean AArch64.AccessIsPrivileged(AccType acctype)

if PSTATE.EL == EL0 then
ispriv = FALSE;

elsif PSTATE.EL == EL3 then
ispriv = TRUE;

elsif PSTATE.EL == EL2 && (!IsInHost() || HCR_EL2.TGE == '0') then
ispriv = TRUE;

elsif HaveUAOExt() && PSTATE.UAO == '1' then
ispriv = TRUE;

else
ispriv = (acctype != AccType_UNPRIV);

return ispriv;

Shared Pseudocode Functions Page 1506

Library pseudocode for aarch64/translation/checks/AArch64.CheckPermission

// AArch64.CheckPermission()
// =========================
// Function used for permission checking from AArch64 stage 1 translations

FaultRecord AArch64.CheckPermission(Permissions perms, bits(64) vaddress, integer level,
bit NS, AccType acctype, boolean iswrite)

assert !ELUsingAArch32(S1TranslationRegime());

wxn = SCTLR[].WXN == '1';

if PSTATE.EL IN {EL0,EL1} || IsInHost() then
priv_r = TRUE;
priv_w = perms.ap<2> == '0';
user_r = perms.ap<1> == '1';
user_w = perms.ap<2:1> == '01';

ispriv = AArch64.AccessIsPrivileged(acctype);

pan = if HavePANExt() then PSTATE.PAN else '0';
if (HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1 && !IsSecure() && PSTATE.EL == EL1) then

pan = '0';
if (pan == '1' && user_r && ispriv &&

!(acctype IN {AccType_DC,AccType_AT,AccType_IFETCH}) ||
(acctype == AccType_AT && AArch64.ExecutingATS1xPInstr())) then
priv_r = FALSE;
priv_w = FALSE;

user_xn = perms.xn == '1' || (user_w && wxn);
priv_xn = perms.pxn == '1' || (priv_w && wxn) || user_w;

if ispriv then
(r, w, xn) = (priv_r, priv_w, priv_xn);

else
(r, w, xn) = (user_r, user_w, user_xn);

else
// Access from EL2 or EL3
r = TRUE;
w = perms.ap<2> == '0';
xn = perms.xn == '1' || (w && wxn);

// Restriction on Secure instruction fetch
if HaveEL(EL3) && IsSecure() && NS == '1' && SCR_EL3.SIF == '1' then

xn = TRUE;

if acctype == AccType_IFETCH then
fail = xn;
failedread = TRUE;

elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW } then
fail = !r || !w;
failedread = !r;

elsif iswrite then
fail = !w;
failedread = FALSE;

else
fail = !r;
failedread = TRUE;

if fail then
secondstage = FALSE;
s2fs1walk = FALSE;
ipaddress = bits(52) UNKNOWN;
return AArch64.PermissionFault(ipaddress, level, acctype,

!failedread, secondstage, s2fs1walk);
else

return AArch64.NoFault();

Shared Pseudocode Functions Page 1507

Library pseudocode for aarch64/translation/checks/AArch64.CheckS2Permission

// AArch64.CheckS2Permission()
// ===========================
// Function used for permission checking from AArch64 stage 2 translations

FaultRecord AArch64.CheckS2Permission(Permissions perms, bits(64) vaddress, bits(52) ipaddress,
integer level, AccType acctype, boolean iswrite,
boolean s2fs1walk, boolean hwupdatewalk)

assert HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HasS2Translation();

r = perms.ap<1> == '1';
w = perms.ap<2> == '1';
if HaveExtendedExecuteNeverExt() then

case perms.xn:perms.xxn of
when '00' xn = FALSE;
when '01' xn = PSTATE.EL == EL1;
when '10' xn = TRUE;
when '11' xn = PSTATE.EL == EL0;

else
xn = perms.xn == '1';

// Stage 1 walk is checked as a read, regardless of the original type
if acctype == AccType_IFETCH && !s2fs1walk then

fail = xn;
failedread = TRUE;

elsif (acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW }) && !s2fs1walk then
fail = !r || !w;
failedread = !r;

elsif iswrite && !s2fs1walk then
fail = !w;
failedread = FALSE;

elsif hwupdatewalk then
fail = !w;
failedread = !iswrite;

else
fail = !r;
failedread = !iswrite;

if fail then
domain = bits(4) UNKNOWN;
secondstage = TRUE;
return AArch64.PermissionFault(ipaddress, level, acctype,

!failedread, secondstage, s2fs1walk);
else

return AArch64.NoFault();

Shared Pseudocode Functions Page 1508

Library pseudocode for aarch64/translation/debug/AArch64.CheckBreakpoint

// AArch64.CheckBreakpoint()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
// translation regime.
// The breakpoint can in fact be evaluated well ahead of execution, for example, at instruction
// fetch. This is the simple sequential execution of the program.

FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, integer size)
assert !ELUsingAArch32(S1TranslationRegime());
assert (UsingAArch32() && size IN {2,4}) || size == 4;

match = FALSE;

for i = 0 to UInt(ID_AA64DFR0_EL1.BRPs)
match_i = AArch64.BreakpointMatch(i, vaddress, size);
match = match || match_i;

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Breakpoint;
Halt(reason);

elsif match && MDSCR_EL1.MDE == '1' && AArch64.GenerateDebugExceptions() then
acctype = AccType_IFETCH;
iswrite = FALSE;
return AArch64.DebugFault(acctype, iswrite);

else
return AArch64.NoFault();

Library pseudocode for aarch64/translation/debug/AArch64.CheckDebug

// AArch64.CheckDebug()
// ====================
// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)

FaultRecord fault = AArch64.NoFault();

d_side = (acctype != AccType_IFETCH);
generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';
halt = HaltOnBreakpointOrWatchpoint();

if generate_exception || halt then
if d_side then

fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
else

fault = AArch64.CheckBreakpoint(vaddress, size);

return fault;

Shared Pseudocode Functions Page 1509

Library pseudocode for aarch64/translation/debug/AArch64.CheckWatchpoint

// AArch64.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "address".

FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
boolean iswrite, integer size)

assert !ELUsingAArch32(S1TranslationRegime());

match = FALSE;
ispriv = AArch64.AccessIsPrivileged(acctype);

for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
match = match || AArch64.WatchpointMatch(i, vaddress, size, ispriv, iswrite);

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Watchpoint;
Halt(reason);

elsif match && MDSCR_EL1.MDE == '1' && AArch64.GenerateDebugExceptions() then
return AArch64.DebugFault(acctype, iswrite);

else
return AArch64.NoFault();

Library pseudocode for aarch64/translation/faults/AArch64.AccessFlagFault

// AArch64.AccessFlagFault()
// =========================

FaultRecord AArch64.AccessFlagFault(bits(52) ipaddress, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch64.CreateFaultRecord(Fault_AccessFlag, ipaddress, level, acctype, iswrite,

extflag, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch64/translation/faults/AArch64.AddressSizeFault

// AArch64.AddressSizeFault()
// ==========================

FaultRecord AArch64.AddressSizeFault(bits(52) ipaddress, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch64.CreateFaultRecord(Fault_AddressSize, ipaddress, level, acctype, iswrite,

extflag, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch64/translation/faults/AArch64.AlignmentFault

// AArch64.AlignmentFault()
// ========================

FaultRecord AArch64.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)

ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
s2fs1walk = boolean UNKNOWN;

return AArch64.CreateFaultRecord(Fault_Alignment, ipaddress, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

Shared Pseudocode Functions Page 1510

Library pseudocode for aarch64/translation/faults/AArch64.AsynchExternalAbort

// AArch64.AsynchExternalAbort()
// =============================
// Wrapper function for asynchronous external aborts

FaultRecord AArch64.AsynchExternalAbort(boolean parity, bits(2) errortype, bit extflag)

type = if parity then Fault_AsyncParity else Fault_AsyncExternal;
ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch64.CreateFaultRecord(type, ipaddress, level, acctype, iswrite, extflag,
errortype, secondstage, s2fs1walk);

Library pseudocode for aarch64/translation/faults/AArch64.DebugFault

// AArch64.DebugFault()
// ====================

FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)

ipaddress = bits(52) UNKNOWN;
errortype = bits(2) UNKNOWN;
level = integer UNKNOWN;
extflag = bit UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch64.CreateFaultRecord(Fault_Debug, ipaddress, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch64/translation/faults/AArch64.NoFault

// AArch64.NoFault()
// =================

FaultRecord AArch64.NoFault()

ipaddress = bits(52) UNKNOWN;
level = integer UNKNOWN;
acctype = AccType_NORMAL;
iswrite = boolean UNKNOWN;
extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

return AArch64.CreateFaultRecord(Fault_None, ipaddress, level, acctype, iswrite,
extflag, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch64/translation/faults/AArch64.PermissionFault

// AArch64.PermissionFault()
// =========================

FaultRecord AArch64.PermissionFault(bits(52) ipaddress, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch64.CreateFaultRecord(Fault_Permission, ipaddress, level, acctype, iswrite,

extflag, errortype, secondstage, s2fs1walk);

Shared Pseudocode Functions Page 1511

Library pseudocode for aarch64/translation/faults/AArch64.TranslationFault

// AArch64.TranslationFault()
// ==========================

FaultRecord AArch64.TranslationFault(bits(52) ipaddress, integer level,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk)

extflag = bit UNKNOWN;
errortype = bits(2) UNKNOWN;
return AArch64.CreateFaultRecord(Fault_Translation, ipaddress, level, acctype, iswrite,

extflag, errortype, secondstage, s2fs1walk);

Library pseudocode for aarch64/translation/translation/AArch64.CheckAndUpdateDescriptor

// AArch64.CheckAndUpdateDescriptor()
// ==================================
// Check and update translation table descriptor if hardware update is configured

FaultRecord AArch64.CheckAndUpdateDescriptor(DescriptorUpdate result, FaultRecord fault,
boolean secondstage, bits(64) vaddress, AccType acctype,
boolean iswrite, boolean s2fs1walk, boolean hwupdatewalk)

// Check if access flag can be updated
// Address translation instructions are permitted to update AF but not required
if result.AF then

if fault.type == Fault_None then
hw_update_AF = TRUE;

elsif ConstrainUnpredictable(Unpredictable_AFUPDATE) == Constraint_TRUE then
hw_update_AF = TRUE;

else
hw_update_AF = FALSE;

if result.AP && fault.type == Fault_None then
write_perm_req = (iswrite || acctype IN {AccType_ATOMICRW,AccType_ORDEREDRW}) && !s2fs1walk;
hw_update_AP = (write_perm_req && !(acctype IN {AccType_AT,AccType_DC})) || hwupdatewalk;

else
hw_update_AP = FALSE;

if hw_update_AF || hw_update_AP then
if secondstage || !HasS2Translation() then

descaddr2 = result.descaddr;
else

hwupdatewalk = TRUE;
descaddr2 = AArch64.SecondStageWalk(result.descaddr, vaddress, acctype, iswrite, 8, hwupdatewalk);
if IsFault(descaddr2) then

return descaddr2.fault;

accdesc = CreateAccessDescriptor(AccType_ATOMICRW);
desc = _Mem[descaddr2, 8, accdesc];

if hw_update_AF then
desc<10> = '1';

if hw_update_AP then
desc<7> = (if secondstage then '1' else '0');

_Mem[descaddr2,8,accdesc] = desc;

return fault;

Shared Pseudocode Functions Page 1512

Library pseudocode for aarch64/translation/translation/AArch64.FirstStageTranslate

// AArch64.FirstStageTranslate()
// =============================
// Perform a stage 1 translation walk. The function used by Address Translation operations is
// similar except it uses the translation regime specified for the instruction.

AddressDescriptor AArch64.FirstStageTranslate(bits(64) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

if HasS2Translation() then
s1_enabled = HCR_EL2.TGE == '0' && HCR_EL2.DC == '0' && SCTLR_EL1.M == '1';

else
s1_enabled = SCTLR[].M == '1';

ipaddress = bits(52) UNKNOWN;
secondstage = FALSE;
s2fs1walk = FALSE;

if s1_enabled then // First stage enabled
S1 = AArch64.TranslationTableWalk(ipaddress, vaddress, acctype, iswrite, secondstage,

s2fs1walk, size);
permissioncheck = TRUE;

else
S1 = AArch64.TranslateAddressS1Off(vaddress, acctype, iswrite);
permissioncheck = FALSE;

if UsingAArch32() && HaveTrapLoadStoreMultipleDeviceExt() && AArch32.ExecutingLSMInstr() then
if S1.addrdesc.memattrs.type == MemType_Device && S1.addrdesc.memattrs.device != DeviceType_GRE then

nTLSMD = if S1TranslationRegime() == EL2 then SCTLR_EL2.nTLSMD else SCTLR_EL1.nTLSMD;
if nTLSMD == '0' then

S1.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);
// Check for unaligned data accesses to Device memory
if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))

&& S1.addrdesc.memattrs.type == MemType_Device && !IsFault(S1.addrdesc) then
S1.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);

if !IsFault(S1.addrdesc) && permissioncheck then
S1.addrdesc.fault = AArch64.CheckPermission(S1.perms, vaddress, S1.level,

S1.addrdesc.paddress.NS,
acctype, iswrite);

// Check for instruction fetches from Device memory not marked as execute-never. If there has
// not been a Permission Fault then the memory is not marked execute-never.
if (!IsFault(S1.addrdesc) && S1.addrdesc.memattrs.type == MemType_Device &&

acctype == AccType_IFETCH) then
S1.addrdesc = AArch64.InstructionDevice(S1.addrdesc, vaddress, ipaddress, S1.level,

acctype, iswrite,
secondstage, s2fs1walk);

// Check and update translation table descriptor if required
hwupdatewalk = FALSE;
s2fs1walk = FALSE;
S1.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S1.descupdate, S1.addrdesc.fault,

secondstage, vaddress, acctype,
iswrite, s2fs1walk, hwupdatewalk);

return S1.addrdesc;

Shared Pseudocode Functions Page 1513

Library pseudocode for aarch64/translation/translation/AArch64.FullTranslate

// AArch64.FullTranslate()
// =======================
// Perform both stage 1 and stage 2 translation walks for the current translation regime. The
// function used by Address Translation operations is similar except it uses the translation
// regime specified for the instruction.

AddressDescriptor AArch64.FullTranslate(bits(64) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

// First Stage Translation
S1 = AArch64.FirstStageTranslate(vaddress, acctype, iswrite, wasaligned, size);
if !IsFault(S1) && HasS2Translation() then

s2fs1walk = FALSE;
hwupdatewalk = FALSE;
result = AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,

size, hwupdatewalk);
else

result = S1;

return result;

Shared Pseudocode Functions Page 1514

Library pseudocode for aarch64/translation/translation/AArch64.SecondStageTranslate

// AArch64.SecondStageTranslate()
// ==============================
// Perform a stage 2 translation walk. The function used by Address Translation operations is
// similar except it uses the translation regime specified for the instruction.

AddressDescriptor AArch64.SecondStageTranslate(AddressDescriptor S1, bits(64) vaddress,
AccType acctype, boolean iswrite, boolean wasaligned,
boolean s2fs1walk, integer size, boolean hwupdatewalk)

assert HasS2Translation();

s2_enabled = HCR_EL2.VM == '1' || HCR_EL2.DC == '1';
secondstage = TRUE;

if s2_enabled then // Second stage enabled
ipaddress = S1.paddress.physicaladdress<51:0>;

S2 = AArch64.TranslationTableWalk(ipaddress, vaddress, acctype, iswrite, secondstage,
s2fs1walk, size);

// Check for unaligned data accesses to Device memory
if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))

&& S2.addrdesc.memattrs.type == MemType_Device && !IsFault(S2.addrdesc) then
S2.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);

if !IsFault(S2.addrdesc) then
S2.addrdesc.fault = AArch64.CheckS2Permission(S2.perms, vaddress, ipaddress, S2.level,

acctype, iswrite, s2fs1walk, hwupdatewalk);
// Check for instruction fetches from Device memory not marked as execute-never. As there
// has not been a Permission Fault then the memory is not marked execute-never.
if (!s2fs1walk && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.type == MemType_Device &&

acctype == AccType_IFETCH) then
S2.addrdesc = AArch64.InstructionDevice(S2.addrdesc, vaddress, ipaddress, S2.level,

acctype, iswrite,
secondstage, s2fs1walk);

// Check for protected table walk
if (s2fs1walk && !IsFault(S2.addrdesc) && HCR_EL2.PTW == '1' &&

S2.addrdesc.memattrs.type == MemType_Device) then
S2.addrdesc.fault = AArch64.PermissionFault(ipaddress, S2.level, acctype,

iswrite, secondstage, s2fs1walk);

// Check and update translation table descriptor if required
S2.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S2.descupdate, S2.addrdesc.fault,

secondstage, vaddress, acctype,
iswrite, s2fs1walk, hwupdatewalk);

result = CombineS1S2Desc(S1, S2.addrdesc);
else

result = S1;

return result;

Library pseudocode for aarch64/translation/translation/AArch64.SecondStageWalk

// AArch64.SecondStageWalk()
// =========================
// Perform a stage 2 translation on a stage 1 translation page table walk access.

AddressDescriptor AArch64.SecondStageWalk(AddressDescriptor S1, bits(64) vaddress, AccType acctype,
boolean iswrite, integer size, boolean hwupdatewalk)

assert HasS2Translation();

s2fs1walk = TRUE;
wasaligned = TRUE;
return AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,

size, hwupdatewalk);

Shared Pseudocode Functions Page 1515

Library pseudocode for aarch64/translation/translation/AArch64.TranslateAddress

// AArch64.TranslateAddress()
// ==========================
// Main entry point for translating an address

AddressDescriptor AArch64.TranslateAddress(bits(64) vaddress, AccType acctype, boolean iswrite,
boolean wasaligned, integer size)

result = AArch64.FullTranslate(vaddress, acctype, iswrite, wasaligned, size);

if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
result.fault = AArch64.CheckDebug(vaddress, acctype, iswrite, size);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(vaddress);

return result;

Library pseudocode for aarch64/translation/translation/IsEL1TransRegimeRegs

// IsEL1TransRegimeRegs()
// ======================

// Returns TRUE if its a register in EL1 translation regime

boolean IsEL1TransRegimeRegs()
return !HaveEL(EL2) || PSTATE.EL == EL1 || (PSTATE.EL == EL0 && (HCR_EL2.E2H == '0' || HCR_EL2.TGE=='0'));

Shared Pseudocode Functions Page 1516

Library pseudocode for aarch64/translation/walk/AArch64.TranslationTableWalk

Shared Pseudocode Functions Page 1517

// AArch64.TranslationTableWalk()
// ==============================
// Returns a result of a translation table walk
//
// Implementations might cache information from memory in any number of non-coherent TLB
// caching structures, and so avoid memory accesses that have been expressed in this
// pseudocode. The use of such TLBs is not expressed in this pseudocode.

TLBRecord AArch64.TranslationTableWalk(bits(52) ipaddress, bits(64) vaddress,
AccType acctype, boolean iswrite, boolean secondstage,
boolean s2fs1walk, integer size)

if !secondstage then
assert !ELUsingAArch32(S1TranslationRegime());

else
assert HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HasS2Translation();

TLBRecord result;
AddressDescriptor descaddr;
bits(64) baseregister;
bits(64) inputaddr; // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2

descaddr.memattrs.type = MemType_Normal;

// Derived parameters for the page table walk:
// grainsize = Log2(Size of Table) - Size of Table is 4KB, 16KB or 64KB in AArch64
// stride = Log2(Address per Level) - Bits of address consumed at each level
// firstblocklevel = First level where a block entry is allowed
// ps = Physical Address size as encoded in TCR_EL1.IPS or TCR_ELx/VTCR_EL2.PS
// inputsize = Log2(Size of Input Address) - Input Address size in bits
// level = Level to start walk from
// This means that the number of levels after start level = 3-level

if !secondstage then
// First stage translation
inputaddr = ZeroExtend(vaddress);
top = AddrTop(inputaddr, (acctype == AccType_IFETCH), PSTATE.EL);
if PSTATE.EL == EL3 then

largegrain = TCR_EL3.TG0 == '01';
midgrain = TCR_EL3.TG0 == '10';
inputsize = 64 - UInt(TCR_EL3.T0SZ);
inputsize_max = (if Have52BitVAExt() && largegrain then 52 else 48);
if inputsize > inputsize_max then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - 39;
if inputsize < inputsize_min then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;

ps = TCR_EL3.PS;
basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsZero(inputaddr<top:inputsize>);
disabled = FALSE;
baseregister = TTBR0_EL3;
descaddr.memattrs = WalkAttrDecode(TCR_EL3.SH0, TCR_EL3.ORGN0, TCR_EL3.IRGN0, secondstage);
reversedescriptors = SCTLR_EL3.EE == '1';
lookupsecure = TRUE;
singlepriv = TRUE;
update_AF = HaveAccessFlagUpdateExt() && TCR_EL3.HA == '1';
update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL3.HD == '1';
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL3.HPD == '1';

elsif IsInHost() then
if inputaddr<top> == '0' then

largegrain = TCR_EL2.TG0 == '01';
midgrain = TCR_EL2.TG0 == '10';
inputsize = 64 - UInt(TCR_EL2.T0SZ);
inputsize_max = (if Have52BitVAExt() && largegrain then 52 else 48);
if inputsize > inputsize_max then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};

Shared Pseudocode Functions Page 1518

if c == Constraint_FORCE then inputsize = inputsize_max;
inputsize_min = 64 - 39;
if inputsize < inputsize_min then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;

basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsZero(inputaddr<top:inputsize>);
disabled = TCR_EL2.EPD0 == '1';
baseregister = TTBR0_EL2;
descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH0, TCR_EL2.ORGN0, TCR_EL2.IRGN0, secondstage);
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD0 == '1';

else
inputsize = 64 - UInt(TCR_EL2.T1SZ);
largegrain = TCR_EL2.TG1 == '11'; // TG1 and TG0 encodings differ
midgrain = TCR_EL2.TG1 == '01';
inputsize_max = (if Have52BitVAExt() && largegrain then 52 else 48);
if inputsize > inputsize_max then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - 39;
if inputsize < inputsize_min then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;

basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsOnes(inputaddr<top:inputsize>);
disabled = TCR_EL2.EPD1 == '1';
baseregister = TTBR1_EL2;
descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH1, TCR_EL2.ORGN1, TCR_EL2.IRGN1, secondstage);
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD1 == '1';

ps = TCR_EL2.IPS;
reversedescriptors = SCTLR_EL2.EE == '1';
lookupsecure = FALSE;
singlepriv = FALSE;
update_AF = HaveAccessFlagUpdateExt() && TCR_EL2.HA == '1';
update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL2.HD == '1';

elsif PSTATE.EL == EL2 then
inputsize = 64 - UInt(TCR_EL2.T0SZ);
largegrain = TCR_EL2.TG0 == '01';
midgrain = TCR_EL2.TG0 == '10';
inputsize_max = (if Have52BitVAExt() && largegrain then 52 else 48);
if inputsize > inputsize_max then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - 39;
if inputsize < inputsize_min then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;

ps = TCR_EL2.PS;
basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsZero(inputaddr<top:inputsize>);
disabled = FALSE;
baseregister = TTBR0_EL2;
descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH0, TCR_EL2.ORGN0, TCR_EL2.IRGN0, secondstage);
reversedescriptors = SCTLR_EL2.EE == '1';
lookupsecure = FALSE;
singlepriv = TRUE;
update_AF = HaveAccessFlagUpdateExt() && TCR_EL2.HA == '1';
update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL2.HD == '1';
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD == '1';

else
if inputaddr<top> == '0' then

inputsize = 64 - UInt(TCR_EL1.T0SZ);
largegrain = TCR_EL1.TG0 == '01';
midgrain = TCR_EL1.TG0 == '10';
inputsize_max = (if Have52BitVAExt() && largegrain then 52 else 48);
if inputsize > inputsize_max then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};

Shared Pseudocode Functions Page 1519

if c == Constraint_FORCE then inputsize = inputsize_max;
inputsize_min = 64 - 39;
if inputsize < inputsize_min then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;

basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsZero(inputaddr<top:inputsize>);
disabled = TCR_EL1.EPD0 == '1';
baseregister = TTBR0_EL1;
descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH0, TCR_EL1.ORGN0, TCR_EL1.IRGN0, secondstage);
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL1.HPD0 == '1';

else
inputsize = 64 - UInt(TCR_EL1.T1SZ);
largegrain = TCR_EL1.TG1 == '11'; // TG1 and TG0 encodings differ
midgrain = TCR_EL1.TG1 == '01';
inputsize_max = (if Have52BitVAExt() && largegrain then 52 else 48);
if inputsize > inputsize_max then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - 39;
if inputsize < inputsize_min then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;

basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsOnes(inputaddr<top:inputsize>);
disabled = TCR_EL1.EPD1 == '1';
baseregister = TTBR1_EL1;
descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH1, TCR_EL1.ORGN1, TCR_EL1.IRGN1, secondstage);
hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL1.HPD1 == '1';

ps = TCR_EL1.IPS;
reversedescriptors = SCTLR_EL1.EE == '1';
lookupsecure = IsSecure();
singlepriv = FALSE;
update_AF = HaveAccessFlagUpdateExt() && TCR_EL1.HA == '1';
update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL1.HD == '1';

if largegrain then
grainsize = 16; // Log2(64KB page size)
firstblocklevel = (if Have52BitPAExt() then 1 else 2); // Largest block is 4TB (2^42 bytes) for 52 bit PA

// and 512MB (2^29 bytes) otherwise
elsif midgrain then

grainsize = 14; // Log2(16KB page size)
firstblocklevel = 2; // Largest block is 32MB (2^25 bytes)

else // Small grain
grainsize = 12; // Log2(4KB page size)
firstblocklevel = 1; // Largest block is 1GB (2^30 bytes)

stride = grainsize - 3; // Log2(page size / 8 bytes)
// The starting level is the number of strides needed to consume the input address
level = 4 - RoundUp(Real(inputsize - grainsize) / Real(stride));

else
// Second stage translation
inputaddr = ZeroExtend(ipaddress);
inputsize = 64 - UInt(VTCR_EL2.T0SZ);
largegrain = VTCR_EL2.TG0 == '01';
midgrain = VTCR_EL2.TG0 == '10';
inputsize_max = (if Have52BitVAExt() && largegrain then 52 else 48);
if inputsize > inputsize_max then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_max;

inputsize_min = 64 - 39;
if inputsize < inputsize_min then

c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
assert c IN {Constraint_FORCE, Constraint_FAULT};
if c == Constraint_FORCE then inputsize = inputsize_min;

ps = VTCR_EL2.PS;
basefound = inputsize >= inputsize_min && inputsize <= inputsize_max && IsZero(inputaddr<63:inputsize>);
disabled = FALSE;
baseregister = VTTBR_EL2;

Shared Pseudocode Functions Page 1520

descaddr.memattrs = WalkAttrDecode(VTCR_EL2.IRGN0, VTCR_EL2.ORGN0, VTCR_EL2.SH0, secondstage);
reversedescriptors = SCTLR_EL2.EE == '1';
lookupsecure = FALSE;
singlepriv = TRUE;
update_AF = HaveAccessFlagUpdateExt() && VTCR_EL2.HA == '1';
update_AP = HaveDirtyBitModifierExt() && update_AF && VTCR_EL2.HD == '1';

startlevel = UInt(VTCR_EL2.SL0);
if largegrain then

grainsize = 16; // Log2(64KB page size)
level = 3 - startlevel;
firstblocklevel = (if Have52BitPAExt() then 1 else 2); // Largest block is 4TB (2^42 bytes) for 52 bit PA

// and 512MB (2^29 bytes) otherwise
elsif midgrain then

grainsize = 14; // Log2(16KB page size)
level = 3 - startlevel;
firstblocklevel = 2; // Largest block is 32MB (2^25 bytes)

else // Small grain
grainsize = 12; // Log2(4KB page size)
level = 2 - startlevel;
firstblocklevel = 1; // Largest block is 1GB (2^30 bytes)

stride = grainsize - 3; // Log2(page size / 8 bytes)

// Limits on IPA controls based on implemented PA size. Level 0 is only
// supported by small grain translations
if largegrain then // 64KB pages

// Level 1 only supported if implemented PA size is greater than 2^42 bytes
if level == 0 || (level == 1 && PAMax() <= 42) then basefound = FALSE;

elsif midgrain then // 16KB pages
// Level 1 only supported if implemented PA size is greater than 2^40 bytes
if level == 0 || (level == 1 && PAMax() <= 40) then basefound = FALSE;

else // Small grain, 4KB pages
// Level 0 only supported if implemented PA size is greater than 2^42 bytes
if level < 0 || (level == 0 && PAMax() <= 42) then basefound = FALSE;

// If the inputsize exceeds the PAMax value, the behavior is CONSTRAINED UNPREDICTABLE
inputsizecheck = inputsize;
if inputsize > PAMax() && (!ELUsingAArch32(EL1) || inputsize > 40) then

case ConstrainUnpredictable(Unpredictable_LARGEIPA) of
when Constraint_FORCE

// Restrict the inputsize to the PAMax value
inputsize = PAMax();
inputsizecheck = PAMax();

when Constraint_FORCENOSLCHECK
// As FORCE, except use the configured inputsize in the size checks below
inputsize = PAMax();

when Constraint_FAULT
// Generate a translation fault
basefound = FALSE;

otherwise
Unreachable();

// Number of entries in the starting level table =
// (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
startsizecheck = inputsizecheck - ((3 - level)*stride + grainsize); // Log2(Num of entries)

// Check for starting level table with fewer than 2 entries or longer than 16 pages.
// Lower bound check is: startsizecheck < Log2(2 entries)
// Upper bound check is: startsizecheck > Log2(pagesize/8*16)
if startsizecheck < 1 || startsizecheck > stride + 4 then basefound = FALSE;

if !basefound || disabled then
level = 0; // AArch32 reports this as a level 1 fault
result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype, iswrite,

secondstage, s2fs1walk);
return result;

case ps of
when '000' outputsize = 32;
when '001' outputsize = 36;

Shared Pseudocode Functions Page 1521

when '010' outputsize = 40;
when '011' outputsize = 42;
when '100' outputsize = 44;
when '101' outputsize = 48;
when '110' outputsize = (if Have52BitPAExt() && largegrain then 52 else 48);
otherwise outputsize = 48;

if outputsize > PAMax() then outputsize = PAMax();

if outputsize < 48 && !IsZero(baseregister<47:outputsize>) then
level = 0;
result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype, iswrite,

secondstage, s2fs1walk);
return result;

// Bottom bound of the Base address is:
// Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
// Number of entries in starting level table =
// (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
baselowerbound = 3 + inputsize - ((3-level)*stride + grainsize); // Log2(Num of entries*8)
if outputsize == 52 then

z = (if baselowerbound < 6 then 6 else baselowerbound);
baseaddress = baseregister<5:2>:baseregister<47:z>:Zeros(z);

else
baseaddress = ZeroExtend(baseregister<47:baselowerbound>:Zeros(baselowerbound));

ns_table = if lookupsecure then '0' else '1';
ap_table = '00';
xn_table = '0';
pxn_table = '0';

addrselecttop = inputsize - 1;

apply_nvnv1_effect = HaveNVExt() && HaveEL(EL2) && HCR_EL2.NV == 1 && HCR_EL2.NV1 == 1;

repeat
addrselectbottom = (3-level)*stride + grainsize;

bits(52) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:'000');
descaddr.paddress.physicaladdress = baseaddress OR index;
descaddr.paddress.NS = ns_table;

// If there are two stages of translation, then the first stage table walk addresses
// are themselves subject to translation
if secondstage || !HasS2Translation() then

descaddr2 = descaddr;
else

hwupdatewalk = FALSE;
descaddr2 = AArch64.SecondStageWalk(descaddr, vaddress, acctype, iswrite, 8, hwupdatewalk);
// Check for a fault on the stage 2 walk
if IsFault(descaddr2) then

result.addrdesc.fault = descaddr2.fault;
return result;

// Update virtual address for abort functions
descaddr2.vaddress = ZeroExtend(vaddress);

accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fs1walk, level);
desc = _Mem[descaddr2, 8, accdesc];

if reversedescriptors then desc = BigEndianReverse(desc);

if desc<0> == '0' || (desc<1:0> == '01' && level == 3) then
// Fault (00), Reserved (10), or Block (01) at level 3

result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

// Valid Block, Page, or Table entry
if desc<1:0> == '01' || level == 3 then // Block (01) or Page (11)

Shared Pseudocode Functions Page 1522

blocktranslate = TRUE;
else // Table (11)

if (outputsize < 52 && largegrain && !IsZero(desc<15:12>)) || (outputsize < 48 && !IsZero(desc<47:outputsize>)) then
result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,

iswrite, secondstage, s2fs1walk);
return result;

if outputsize == 52 then
baseaddress = desc<15:12>:desc<47:grainsize>:Zeros(grainsize);

else
baseaddress = ZeroExtend(desc<47:grainsize>:Zeros(grainsize));

if !secondstage then
// Unpack the upper and lower table attributes
ns_table = ns_table OR desc<63>;

if !secondstage && !hierattrsdisabled then
ap_table<1> = ap_table<1> OR desc<62>; // read-only

if apply_nvnv1_effect then
pxn_table = pxn_table OR desc<60>;

else
xn_table = xn_table OR desc<60>;

// pxn_table and ap_table[0] apply in EL1&0 or EL2&0 translation regimes
if !singlepriv then

if !apply_nvnv1_effect then
pxn_table = pxn_table OR desc<59>;
ap_table<0> = ap_table<0> OR desc<61>; // privileged

level = level + 1;
addrselecttop = addrselectbottom - 1;
blocktranslate = FALSE;

until blocktranslate;

// Check block size is supported at this level
if level < firstblocklevel then

result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

// Check for misprogramming of the contiguous bit
if largegrain then

contiguousbitcheck = level == 2 && inputsize < 34;
elsif midgrain then

contiguousbitcheck = level == 2 && inputsize < 30;
else

contiguousbitcheck = level == 1 && inputsize < 34;

if contiguousbitcheck && desc<52> == '1' then
if boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit" then

result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

// Check the output address is inside the supported range
if (outputsize < 52 && largegrain && !IsZero(desc<15:12>)) || (outputsize < 48 && !IsZero(desc<47:outputsize>)) then

result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,
iswrite, secondstage, s2fs1walk);

return result;

// Unpack the descriptor into address and upper and lower block attributes
if outputsize == 52 then

outputaddress = desc<15:12>:desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>;
else

outputaddress = ZeroExtend(desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>);
// Check Access Flag
if desc<10> == '0' then

if !update_AF then
result.addrdesc.fault = AArch64.AccessFlagFault(ipaddress, level, acctype,

iswrite, secondstage, s2fs1walk);
return result;

else

Shared Pseudocode Functions Page 1523

result.descupdate.AF = TRUE;

if update_AP && desc<51> == '1' then
// If hw update of access permission field is configured consider AP[2] as '0' / S2AP[2] as '1'
if !secondstage && desc<7> == '1' then

desc<7> = '0';
result.descupdate.AP = TRUE;

elsif secondstage && desc<7> == '0' then
desc<7> = '1';
result.descupdate.AP = TRUE;

// Required descriptor if AF or AP[2]/S2AP[2] needs update
result.descupdate.descaddr = descaddr;

if apply_nvnv1_effect then
pxn = desc<54>;
xn = '0';

else
xn = desc<54>;
pxn = desc<53>;

contiguousbit = desc<52>;
nG = desc<11>;
sh = desc<9:8>;
if apply_nvnv1_effect then

ap = desc<7>:'01'; // Bit[6] is treated as 0 regardless of value programmed
else

ap = desc<7:6>:'1';
memattr = desc<5:2>; // AttrIndx and NS bit in stage 1

result.domain = bits(4) UNKNOWN; // Domains not used
result.level = level;
result.blocksize = 2^((3-level)*stride + grainsize);

// Stage 1 translation regimes also inherit attributes from the tables
if !secondstage then

result.perms.xn = xn OR xn_table;
result.perms.ap<2> = ap<2> OR ap_table<1>; // Force read-only
// PXN, nG and AP[1] apply in EL1&0 or EL2&0 stage 1 translation regimes
if !singlepriv then

result.perms.ap<1> = ap<1> AND NOT(ap_table<0>); // Force privileged only
result.perms.pxn = pxn OR pxn_table;
// Pages from Non-secure tables are marked non-global in Secure EL1&0
if IsSecure() then

result.nG = nG OR ns_table;
else

result.nG = nG;
else

result.perms.ap<1> = '1';
result.perms.pxn = '0';
result.nG = '0';

result.perms.ap<0> = '1';
result.addrdesc.memattrs = AArch64.S1AttrDecode(sh, memattr<2:0>, acctype);
result.addrdesc.paddress.NS = memattr<3> OR ns_table;

else
result.perms.ap<2:1> = ap<2:1>;
result.perms.ap<0> = '1';
result.perms.xn = xn;
if HaveExtendedExecuteNeverExt() then result.perms.xxn = desc<53>;
result.perms.pxn = '0';
result.nG = '0';
result.addrdesc.memattrs = S2AttrDecode(sh, memattr, acctype);
result.addrdesc.paddress.NS = '1';

result.addrdesc.paddress.physicaladdress = outputaddress;
result.addrdesc.fault = AArch64.NoFault();
result.contiguous = contiguousbit == '1';
if HaveCommonNotPrivateTransExt() then result.CnP = baseregister<0>;
return result;

Shared Pseudocode Functions Page 1524

Library pseudocode for shared/debug/ClearStickyErrors/ClearStickyErrors

// ClearStickyErrors()
// ===================

ClearStickyErrors()
EDSCR.TXU = '0'; // Clear TX underrun flag
EDSCR.RXO = '0'; // Clear RX overrun flag

if Halted() then // in Debug state
EDSCR.ITO = '0'; // Clear ITR overrun flag

// If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
// The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
// in the pseudocode.
if Halted() && EDSCR.ITE == '0' && ConstrainUnpredictableBool(Unpredictable_CLEARERRITEZERO) then

return;
EDSCR.ERR = '0'; // Clear cumulative error flag

return;

Library pseudocode for shared/debug/DebugTarget/DebugTarget

// DebugTarget()
// =============
// Returns the debug exception target Exception level

bits(2) DebugTarget()
secure = IsSecure();
return DebugTargetFrom(secure);

Library pseudocode for shared/debug/DebugTarget/DebugTargetFrom

// DebugTargetFrom()
// =================

bits(2) DebugTargetFrom(boolean secure)
if HaveEL(EL2) && !secure then

if ELUsingAArch32(EL2) then
route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');

else
route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');

else
route_to_el2 = FALSE;

if route_to_el2 then
target = EL2;

elsif HaveEL(EL3) && HighestELUsingAArch32() && secure then
target = EL3;

else
target = EL1;

return target;

Library pseudocode for shared/debug/DoubleLockStatus/DoubleLockStatus

// DoubleLockStatus()
// ==================
// Returns the state of the OS Double Lock.
// FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
// TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

boolean DoubleLockStatus()
if ELUsingAArch32(EL1) then

return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
else

return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

Shared Pseudocode Functions Page 1525

Library pseudocode for shared/debug/authentication/AllowExternalDebugAccess

// AllowExternalDebugAccess()
// ==========================
// Returns the status of EDPRSR.EDAD.

boolean AllowExternalDebugAccess()
// The access may also be subject to OS lock, power-down, etc.
if ExternalInvasiveDebugEnabled() then

if ExternalSecureInvasiveDebugEnabled() then
return TRUE;

elsif HaveEL(EL3) then
return (if ELUsingAArch32(EL3) then SDCR.EDAD else MDCR_EL3.EDAD) == '0';

else
return !IsSecure();

else
return FALSE;

Library pseudocode for shared/debug/authentication/AllowExternalPMUAccess

// AllowExternalPMUAccess()
// ========================
// Returns the status of EDPRSR.EPMAD.

boolean AllowExternalPMUAccess()
// The access may also be subject to OS lock, power-down, etc.
if ExternalNoninvasiveDebugEnabled() then

if ExternalSecureNoninvasiveDebugEnabled() then
return TRUE;

elsif HaveEL(EL3) then
return (if ELUsingAArch32(EL3) then SDCR.EPMAD else MDCR_EL3.EPMAD) == '0';

else
return !IsSecure();

else
return FALSE;

Library pseudocode for shared/debug/authentication/Debug_authentication

signal DBGEN;
signal NIDEN;
signal SPIDEN;
signal SPNIDEN;

Library pseudocode for shared/debug/authentication/ExternalInvasiveDebugEnabled

// ExternalInvasiveDebugEnabled()
// ==============================

boolean ExternalInvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, ExternalInvasiveDebugEnabled returns the state of the DBGEN
// signal.
return DBGEN == HIGH;

Library pseudocode for shared/debug/authentication/ExternalNoninvasiveDebugAllowed

// ExternalNoninvasiveDebugAllowed()
// =================================

boolean ExternalNoninvasiveDebugAllowed()
// Return TRUE if Trace and PC Sample-based Profiling are allowed
return (ExternalNoninvasiveDebugEnabled() &&

(!IsSecure() || ExternalSecureNoninvasiveDebugEnabled() ||
(ELUsingAArch32(EL1) && PSTATE.EL == EL0 && SDER.SUNIDEN == '1')));

Shared Pseudocode Functions Page 1526

Library pseudocode for shared/debug/authentication/ExternalNoninvasiveDebugEnabled

// ExternalNoninvasiveDebugEnabled()
// =================================

boolean ExternalNoninvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
// OR NIDEN) signal.
return ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

Library pseudocode for shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

// ExternalSecureInvasiveDebugEnabled()
// ====================================

boolean ExternalSecureInvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, ExternalSecureInvasiveDebugEnabled returns the state of the
// (DBGEN AND SPIDEN) signal.
// CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

Library pseudocode for shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

// ExternalSecureNoninvasiveDebugEnabled()
// =======================================

boolean ExternalSecureNoninvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, ExternalSecureNoninvasiveDebugEnabled returns the state of the
// (DBGEN OR NIDEN) AND (SPIDEN OR SPNIDEN) signal.
if !HaveEL(EL3) && !IsSecure() then return FALSE;
return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);

Library pseudocode for shared/debug/cti/CTI_SetEventLevel

// Set a Cross Trigger multi-cycle input event trigger to the specified level.
CTI_SetEventLevel(CrossTriggerIn id, signal level);

Library pseudocode for shared/debug/cti/CTI_SignalEvent

// Signal a discrete event on a Cross Trigger input event trigger.
CTI_SignalEvent(CrossTriggerIn id);

Library pseudocode for shared/debug/cti/CrossTrigger

enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

Shared Pseudocode Functions Page 1527

Library pseudocode for shared/debug/dccanditr/CheckForDCCInterrupts

// CheckForDCCInterrupts()
// =======================

CheckForDCCInterrupts()
commrx = (EDSCR.RXfull == '1');
commtx = (EDSCR.TXfull == '0');

// COMMRX and COMMTX support is optional and not recommended for new designs.
// SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
// SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

// The value to be driven onto the common COMMIRQ signal.
if ELUsingAArch32(EL1) then

commirq = ((commrx && DBGDCCINT.RX == '1') ||
(commtx && DBGDCCINT.TX == '1'));

else
commirq = ((commrx && MDCCINT_EL1.RX == '1') ||

(commtx && MDCCINT_EL1.TX == '1'));
SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);

return;

Shared Pseudocode Functions Page 1528

Library pseudocode for shared/debug/dccanditr/DBGDTRRX_EL0

// DBGDTRRX_EL0[] (external write)
// ===============================
// Called on writes to debug register 0x08C.

DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "signal slave-generated error";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
return;

EDSCR.RXfull = '1';
DTRRX = value;

if Halted() && EDSCR.MA == '1' then
EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

if !UsingAArch32() then
ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
X[1] = bits(64) UNKNOWN;

else
ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
R[1] = bits(32) UNKNOWN;

// If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then

EDSCR.RXfull = bit UNKNOWN;
DBGDTRRX_EL0 = bits(32) UNKNOWN;

else
// "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
assert EDSCR.RXfull == '0';

EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
return;

// DBGDTRRX_EL0[] (external read)
// ==============================

bits(32) DBGDTRRX_EL0[boolean memory_mapped]
return DTRRX;

Shared Pseudocode Functions Page 1529

Library pseudocode for shared/debug/dccanditr/DBGDTRTX_EL0

// DBGDTRTX_EL0[] (external read)
// ==============================
// Called on reads of debug register 0x080.

bits(32) DBGDTRTX_EL0[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "signal slave-generated error";
return bits(32) UNKNOWN;

underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
value = if underrun then bits(32) UNKNOWN else DTRTX;

if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects

return value;

if underrun then
EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
return value; // Return UNKNOWN

EDSCR.TXfull = '0';
if Halted() && EDSCR.MA == '1' then

EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

if !UsingAArch32() then
ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"

else
ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"

// If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then

EDSCR.TXfull = bit UNKNOWN;
DBGDTRTX_EL0 = bits(32) UNKNOWN;

else
if !UsingAArch32() then

ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
else

ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
// "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
assert EDSCR.TXfull == '1';

if !UsingAArch32() then
X[1] = bits(64) UNKNOWN;

else
R[1] = bits(32) UNKNOWN;

EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

return value;

// DBGDTRTX_EL0[] (external write)
// ===============================

DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
DTRTX = value;
return;

Shared Pseudocode Functions Page 1530

Library pseudocode for shared/debug/dccanditr/DBGDTR_EL0

// DBGDTR_EL0[] (write)
// ====================
// System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

DBGDTR_EL0[] = bits(N) value
// For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
// For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
assert N IN {32,64};
if EDSCR.TXfull == '1' then

value = bits(N) UNKNOWN;
// On a 64-bit write, implement a half-duplex channel
if N == 64 then DTRRX = value<63:32>;
DTRTX = value<31:0>; // 32-bit or 64-bit write
EDSCR.TXfull = '1';
return;

// DBGDTR_EL0[] (read)
// ===================
// System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

bits(N) DBGDTR_EL0[]
// For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
// For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
assert N IN {32,64};
bits(N) result;
if EDSCR.RXfull == '0' then

result = bits(N) UNKNOWN;
else

// On a 64-bit read, implement a half-duplex channel
// NOTE: the word order is reversed on reads with regards to writes
if N == 64 then result<63:32> = DTRTX;
result<31:0> = DTRRX;

EDSCR.RXfull = '0';
return result;

Library pseudocode for shared/debug/dccanditr/DTR

bits(32) DTRRX;
bits(32) DTRTX;

Shared Pseudocode Functions Page 1531

Library pseudocode for shared/debug/dccanditr/EDITR

// EDITR[] (external write)
// ========================
// Called on writes to debug register 0x084.

EDITR[boolean memory_mapped] = bits(32) value
if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits

IMPLEMENTATION_DEFINED "signal slave-generated error";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

// The Software lock is OPTIONAL.
if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

if !Halted() then return; // Non-debug state: ignore write

if EDSCR.ITE == '0' || EDSCR.MA == '1' then
EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
return;

// ITE indicates whether the processor is ready to accept another instruction; the processor
// may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
// is no indication that the pipeline is empty (all instructions have completed). In this
// pseudocode, the assumption is that only one instruction can be executed at a time,
// meaning ITE acts like "InstrCompl".
EDSCR.ITE = '0';

if !UsingAArch32() then
ExecuteA64(value);

else
ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

EDSCR.ITE = '1';

return;

Shared Pseudocode Functions Page 1532

Library pseudocode for shared/debug/halting/DCPSInstruction

Shared Pseudocode Functions Page 1533

// DCPSInstruction()
// =================
// Operation of the DCPS instruction in Debug state

DCPSInstruction(bits(2) target_el)

SynchronizeContext();

case target_el of
when EL1

if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
elsif HaveEL(EL2) && !IsSecure() && HCR_EL2.TGE == '1' then UndefinedFault();
else handle_el = EL1;

when EL2
if !HaveEL(EL2) then UndefinedFault();
elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
elsif IsSecure() then UndefinedFault();
else handle_el = EL2;

when EL3
if EDSCR.SDD == '1' || !HaveEL(EL3) then UndefinedFault();
handle_el = EL3;

otherwise
Unreachable();

from_secure = IsSecure();
if ELUsingAArch32(handle_el) then

if PSTATE.M == M32_Monitor then SCR.NS = '0';
assert UsingAArch32(); // Cannot move from AArch64 to AArch32
case handle_el of

when EL1
AArch32.WriteMode(M32_Svc);
if HavePANExt() && SCTLR.SPAN == '0' then

PSTATE.PAN = '1';
when EL2 AArch32.WriteMode(M32_Hyp);
when EL3

AArch32.WriteMode(M32_Monitor);
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

if handle_el == EL2 then
ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;

else
LR = bits(32) UNKNOWN;

SPSR[] = bits(32) UNKNOWN;
PSTATE.E = SCTLR[].EE;
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

else // Targeting AArch64
if UsingAArch32() then

AArch64.MaybeZeroRegisterUppers();
PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;
if (HavePANExt() && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||

(handle_el == EL2 && HCR_EL2.E2H == '1' &&
HCR_EL2.TGE == '1' && SCTLR_EL2.SPAN == '0'))) then

PSTATE.PAN = '1';
ELR[] = bits(64) UNKNOWN; SPSR[] = bits(32) UNKNOWN; ESR[] = bits(32) UNKNOWN;
DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(32) UNKNOWN;

if HaveUAOExt() then PSTATE.UAO = '0';

UpdateEDSCRFields(); // Update EDSCR PE state flags.

// SCTLR[].IESB might be ignored in Debug state.
if HaveRASExt() && SCTLR[].IESB == '1' && ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

ErrorSynchronizationBarrier(MBReqDomain_FullSystem, MBReqTypes_All);
return;

Shared Pseudocode Functions Page 1534

Library pseudocode for shared/debug/halting/DRPSInstruction

// DRPSInstruction()
// =================
// Operation of the A64 DRPS and T32 ERET instructions in Debug state

DRPSInstruction()

SynchronizeContext();

// SCTLR[].IESB might be ignored in Debug state.
if HaveRASExt() && SCTLR[].IESB == '1' && ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

ErrorSynchronizationBarrier(MBReqDomain_FullSystem, MBReqTypes_All);

SetPSTATEFromPSR(SPSR[]);

// PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
// behave as if UNKNOWN.
if UsingAArch32() then

PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
// In AArch32, all instructions are T32 and unconditional.
PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

else
PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(32) UNKNOWN;

UpdateEDSCRFields(); // Update EDSCR PE state flags.

return;

Library pseudocode for shared/debug/halting/DebugHalt

constant bits(6) DebugHalt_Breakpoint = '000111';
constant bits(6) DebugHalt_EDBGRQ = '010011';
constant bits(6) DebugHalt_Step_Normal = '011011';
constant bits(6) DebugHalt_Step_Exclusive = '011111';
constant bits(6) DebugHalt_OSUnlockCatch = '100011';
constant bits(6) DebugHalt_ResetCatch = '100111';
constant bits(6) DebugHalt_Watchpoint = '101011';
constant bits(6) DebugHalt_HaltInstruction = '101111';
constant bits(6) DebugHalt_SoftwareAccess = '110011';
constant bits(6) DebugHalt_ExceptionCatch = '110111';
constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

Library pseudocode for shared/debug/halting/DisableITRAndResumeInstructionPrefetch

DisableITRAndResumeInstructionPrefetch();

Library pseudocode for shared/debug/halting/ExecuteA64

// Execute an A64 instruction in Debug state.
ExecuteA64(bits(32) instr);

Library pseudocode for shared/debug/halting/ExecuteT32

// Execute a T32 instruction in Debug state.
ExecuteT32(bits(16) hw1, bits(16) hw2);

Shared Pseudocode Functions Page 1535

Library pseudocode for shared/debug/halting/ExitDebugState

// ExitDebugState()
// ================

ExitDebugState()
assert Halted();
SynchronizeContext();

// Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
// detect that the PE has restarted.
EDSCR.STATUS = '000001'; // Signal restarting
EDESR<2:0> = '000'; // Clear any pending Halting debug events

bits(64) new_pc;
bits(32) spsr;

if UsingAArch32() then
new_pc = ZeroExtend(DLR);
spsr = DSPSR;

else
new_pc = DLR_EL0;
spsr = DSPSR_EL0;

// If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0.

if UsingAArch32() then
if ConstrainUnpredictableBool(Unpredictable_RESTARTALIGNPC) then new_pc<0> = '0';
BranchTo(new_pc<31:0>, BranchType_UNKNOWN); // AArch32 branch

else
// If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
if spsr<4> == '1' && ConstrainUnpredictableBool(Unpredictable_RESTARTZEROUPPERPC) then

new_pc<63:32> = Zeros();
BranchTo(new_pc, BranchType_DBGEXIT); // A type of branch that is never predicted

(EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
UpdateEDSCRFields(); // Stop signalling PE state.
DisableITRAndResumeInstructionPrefetch();

return;

Shared Pseudocode Functions Page 1536

Library pseudocode for shared/debug/halting/Halt

// Halt()
// ======

Halt(bits(6) reason)

CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt
if UsingAArch32() then

DLR = ThisInstrAddr();
DSPSR = GetPSRFromPSTATE();
DSPSR.SS = PSTATE.SS; // Always save PSTATE.SS

else
DLR_EL0 = ThisInstrAddr();
DSPSR_EL0 = GetPSRFromPSTATE();
DSPSR_EL0.SS = PSTATE.SS; // Always save PSTATE.SS

EDSCR.ITE = '1'; EDSCR.ITO = '0';
if IsSecure() then

EDSCR.SDD = '0'; // If entered in Secure state, allow debug
elsif HaveEL(EL3) then

EDSCR.SDD = (if ExternalSecureInvasiveDebugEnabled() then '0' else '1');
else

assert EDSCR.SDD == '1'; // Otherwise EDSCR.SDD is RES1
EDSCR.MA = '0';
// PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if
// UNKNOWN. PSTATE.{N,Z,C,V,Q,GE} are also not observable, but since these are not changed on
// exception entry, this function also leaves them unchanged. PSTATE.{E,M,nRW,EL,SP} are
// unchanged. PSTATE.IL is set to 0.
if UsingAArch32() then

PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
// In AArch32, all instructions are T32 and unconditional.
PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0

else
PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;

PSTATE.IL = '0';

StopInstructionPrefetchAndEnableITR();
EDSCR.STATUS = reason; // Signal entered Debug state
UpdateEDSCRFields(); // Update EDSCR PE state flags.

return;

Library pseudocode for shared/debug/halting/HaltOnBreakpointOrWatchpoint

// HaltOnBreakpointOrWatchpoint()
// ==============================
// Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
// state entry, FALSE if they should be considered for a debug exception.

boolean HaltOnBreakpointOrWatchpoint()
return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

Library pseudocode for shared/debug/halting/Halted

// Halted()
// ========

boolean Halted()
return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

Shared Pseudocode Functions Page 1537

Library pseudocode for shared/debug/halting/HaltingAllowed

// HaltingAllowed()
// ================
// Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

boolean HaltingAllowed()
if Halted() || DoubleLockStatus() then

return FALSE;
elsif IsSecure() then

return ExternalSecureInvasiveDebugEnabled();
else

return ExternalInvasiveDebugEnabled();

Library pseudocode for shared/debug/halting/Restarting

// Restarting()
// ============

boolean Restarting()
return EDSCR.STATUS == '000001'; // Restarting

Library pseudocode for shared/debug/halting/StopInstructionPrefetchAndEnableITR

StopInstructionPrefetchAndEnableITR();

Library pseudocode for shared/debug/halting/UpdateEDSCRFields

// UpdateEDSCRFields()
// ===================
// Update EDSCR PE state fields

UpdateEDSCRFields()

if !Halted() then
EDSCR.EL = '00';
EDSCR.NS = bit UNKNOWN;
EDSCR.RW = '1111';

else
EDSCR.EL = PSTATE.EL;
EDSCR.NS = if IsSecure() then '0' else '1';

bits(4) RW;
RW<1> = (if ELUsingAArch32(EL1) then '0' else '1');
if PSTATE.EL != EL0 then

RW<0> = RW<1>;
else

RW<0> = (if UsingAArch32() then '0' else '1');
if !HaveEL(EL2) || (HaveEL(EL3) && SCR_GEN[].NS == '0') then

RW<2> = RW<1>;
else

RW<2> = (if ELUsingAArch32(EL2) then '0' else '1');
if !HaveEL(EL3) then

RW<3> = RW<2>;
else

RW<3> = (if ELUsingAArch32(EL3) then '0' else '1');

// The least-significant bits of EDSCR.RW are UNKNOWN if any higher EL is using AArch32.
if RW<3> == '0' then RW<2:0> = bits(3) UNKNOWN;
elsif RW<2> == '0' then RW<1:0> = bits(2) UNKNOWN;
elsif RW<1> == '0' then RW<0> = bit UNKNOWN;
EDSCR.RW = RW;

return;

Shared Pseudocode Functions Page 1538

Library pseudocode for shared/debug/haltingevents/CheckExceptionCatch

// CheckExceptionCatch()
// =====================
// Check whether an Exception Catch debug event is set on the current Exception level

CheckExceptionCatch(boolean exception_entry)
// Called after an exception entry or exit, that is, such that IsSecure() and PSTATE.EL are correct
// for the exception target.
base = if IsSecure() then 0 else 4;
if HaltingAllowed() then

if HaveExtendedECDebugEvents() then
exception_exit = !exception_entry;
ctrl = EDECCR<UInt(PSTATE.EL) + base + 8>:EDECCR<UInt(PSTATE.EL) + base>;
case ctrl of

when '00' halt = FALSE;
when '01' halt = TRUE;
when '10' halt = (exception_exit == TRUE);
when '11' halt = (exception_entry == TRUE);

else
halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');

if halt then Halt(DebugHalt_ExceptionCatch);

Library pseudocode for shared/debug/haltingevents/CheckHaltingStep

// CheckHaltingStep()
// ==================
// Check whether EDESR.SS has been set by Halting Step

CheckHaltingStep()
if HaltingAllowed() && EDESR.SS == '1' then

// The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
if HaltingStep_DidNotStep() then

Halt(DebugHalt_Step_NoSyndrome);
elsif HaltingStep_SteppedEX() then

Halt(DebugHalt_Step_Exclusive);
else

Halt(DebugHalt_Step_Normal);

Library pseudocode for shared/debug/haltingevents/CheckOSUnlockCatch

// CheckOSUnlockCatch()
// ====================
// Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

CheckOSUnlockCatch()
if EDECR.OSUCE == '1' && !Halted() then EDESR.OSUC = '1';

Library pseudocode for shared/debug/haltingevents/CheckPendingOSUnlockCatch

// CheckPendingOSUnlockCatch()
// ===========================
// Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

CheckPendingOSUnlockCatch()
if HaltingAllowed() && EDESR.OSUC == '1' then

Halt(DebugHalt_OSUnlockCatch);

Library pseudocode for shared/debug/haltingevents/CheckPendingResetCatch

// CheckPendingResetCatch()
// ========================
// Check whether EDESR.RC has been set by a Reset Catch debug event

CheckPendingResetCatch()
if HaltingAllowed() && EDESR.RC == '1' then

Halt(DebugHalt_ResetCatch);

Shared Pseudocode Functions Page 1539

Library pseudocode for shared/debug/haltingevents/CheckResetCatch

// CheckResetCatch()
// =================
// Called after reset

CheckResetCatch()
if EDECR.RCE == '1' then

EDESR.RC = '1';
// If halting is allowed then halt immediately
if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

Library pseudocode for shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

// CheckSoftwareAccessToDebugRegisters()
// =====================================
// Check for access to Breakpoint and Watchpoint registers.

CheckSoftwareAccessToDebugRegisters()
os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then

Halt(DebugHalt_SoftwareAccess);

Library pseudocode for shared/debug/haltingevents/ExternalDebugRequest

// ExternalDebugRequest()
// ======================

ExternalDebugRequest()
if HaltingAllowed() then

Halt(DebugHalt_EDBGRQ);
// Otherwise the CTI continues to assert the debug request until it is taken.

Library pseudocode for shared/debug/haltingevents/HaltingStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.
boolean HaltingStep_DidNotStep();

Library pseudocode for shared/debug/haltingevents/HaltingStep_SteppedEX

// Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
// executed in the active-not-pending state.
boolean HaltingStep_SteppedEX();

Shared Pseudocode Functions Page 1540

Library pseudocode for shared/debug/haltingevents/RunHaltingStep

// RunHaltingStep()
// ================

RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
boolean reset)

// "exception_generated" is TRUE if the previous instruction generated a synchronous exception
// or was cancelled by an asynchronous exception.
// if "exception_generated" is TRUE then "exception_target" is the target of the exception, and
// "syscall" is TRUE if the exception is a synchronous exception where the preferred return
// address is the instruction following that which generated the exeception.
// "reset" is TRUE if exiting reset state into the highest EL.

if reset then assert !Halted(); // Cannot come out of reset halted
active = EDECR.SS == '1' && !Halted();

if active && reset then // Coming out of reset with EDECR.SS set.
EDESR.SS = '1';

elsif active && HaltingAllowed() then
if exception_generated && exception_target == EL3 then

advance = syscall || ExternalSecureInvasiveDebugEnabled();
else

advance = TRUE;
if advance then EDESR.SS = '1';

return;

Library pseudocode for shared/debug/interrupts/ExternalDebugInterruptsDisabled

// ExternalDebugInterruptsDisabled()
// =================================
// Determine whether EDSCR disables interrupts routed to 'target'

boolean ExternalDebugInterruptsDisabled(bits(2) target)
case target of

when EL3
int_dis = (EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled());

when EL2
int_dis = (EDSCR.INTdis == '1x' && ExternalInvasiveDebugEnabled());

when EL1
if IsSecure() then

int_dis = (EDSCR.INTdis == '1x' && ExternalSecureInvasiveDebugEnabled());
else

int_dis = (EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled());
return int_dis;

Library pseudocode for shared/debug/interrupts/InterruptID

enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
InterruptID_COMMRX, InterruptID_COMMTX};

Library pseudocode for shared/debug/interrupts/SetInterruptRequestLevel

// Set a level-sensitive interrupt to the specified level.
SetInterruptRequestLevel(InterruptID id, signal level);

Shared Pseudocode Functions Page 1541

Library pseudocode for shared/debug/samplebasedprofiling/CreatePCSample

// CreatePCSample()
// ================

CreatePCSample()
// In a simple sequential execution of the program, CreatePCSample is executed each time the PE
// executes an instruction that can be sampled. An implementation is not constrained such that
// reads of EDPCSRlo return the current values of PC, etc.

pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
pc_sample.pc = ThisInstrAddr();
pc_sample.el = PSTATE.EL;
pc_sample.rw = if UsingAArch32() then '0' else '1';
pc_sample.ns = if IsSecure() then '0' else '1';
pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1;
if HaveEL(EL2) && !IsSecure() then

if ELUsingAArch32(EL2) then
pc_sample.vmid = ZeroExtend(VTTBR.VMID, 16);

elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
pc_sample.vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);

else
pc_sample.vmid = VTTBR_EL2.VMID;

if HaveVirtHostExt() && !IsSecure() && !ELUsingAArch32(EL2) then
pc_sample.contextidr_el2 = CONTEXTIDR_EL2;

else
pc_sample.contextidr_el2 = bits(32) UNKNOWN;

return;

Shared Pseudocode Functions Page 1542

Library pseudocode for shared/debug/samplebasedprofiling/EDPCSRlo

// EDPCSRlo[] (read)
// =================

bits(32) EDPCSRlo[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "signal slave-generated error";
return bits(32) UNKNOWN;

// The Software lock is OPTIONAL.
update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects

if pc_sample.valid then
sample = pc_sample.pc<31:0>;
if update then

if HaveVirtHostExt() && EDSCR.SC2 == '1' then
EDPCSRhi.PC = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
EDPCSRhi.EL = pc_sample.el;
EDPCSRhi.NS = pc_sample.ns;

else
EDPCSRhi = (if pc_sample.rw == '0' then Zeros(32) else pc_sample.pc<63:32>);

EDCIDSR = pc_sample.contextidr;
if HaveVirtHostExt() && EDSCR.SC2 == '1' then

EDVIDSR = pc_sample.contextidr_el2;
else

EDVIDSR.VMID = (if HaveEL(EL2) && pc_sample.ns == '1' && pc_sample.el IN {EL1,EL0}
then pc_sample.vmid else Zeros(16));

EDVIDSR.NS = pc_sample.ns;
EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
EDVIDSR.E3 = (if pc_sample.el == EL3 then '1' else '0') AND pc_sample.rw;
// The conditions for setting HV are not specified if PCSRhi is zero.
// An example implementation may be "pc_sample.rw".
EDVIDSR.HV = (if !IsZero(EDPCSRhi) then '1' else bit IMPLEMENTATION_DEFINED "0 or 1");

else
sample = Ones(32);
if update then

EDPCSRhi = bits(32) UNKNOWN;
EDCIDSR = bits(32) UNKNOWN;
EDVIDSR = bits(32) UNKNOWN;

return sample;

Library pseudocode for shared/debug/samplebasedprofiling/PCSample

type PCSample is (
boolean valid,
bits(64) pc,
bits(2) el,
bit rw,
bit ns,
bits(32) contextidr,
bits(32) contextidr_el2,
bits(16) vmid

)

PCSample pc_sample;

Shared Pseudocode Functions Page 1543

Library pseudocode for shared/debug/softwarestep/CheckSoftwareStep

// CheckSoftwareStep()
// ===================
// Take a Software Step exception if in the active-pending state

CheckSoftwareStep()

// Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
// AArch32 state. However, because Software Step is only active when the debug target Exception
// level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
if !ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() then

if MDSCR_EL1.SS == '1' && PSTATE.SS == '0' then
AArch64.SoftwareStepException();

Library pseudocode for shared/debug/softwarestep/DebugExceptionReturnSS

// DebugExceptionReturnSS()
// ========================
// Returns value to write to PSTATE.SS on an exception return or Debug state exit.

bit DebugExceptionReturnSS(bits(32) spsr)
assert Halted() || Restarting() || PSTATE.EL != EL0;

SS_bit = '0';

if MDSCR_EL1.SS == '1' then
if Restarting() then

enabled_at_source = FALSE;
elsif UsingAArch32() then

enabled_at_source = AArch32.GenerateDebugExceptions();
else

enabled_at_source = AArch64.GenerateDebugExceptions();

if IllegalExceptionReturn(spsr) then
dest = PSTATE.EL;

else
(valid, dest) = ELFromSPSR(spsr); assert valid;

secure = IsSecureBelowEL3() || dest == EL3;

if ELUsingAArch32(dest) then
enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest, secure);

else
mask = spsr<9>;
enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, secure, mask);

ELd = DebugTargetFrom(secure);
if !ELUsingAArch32(ELd) && !enabled_at_source && enabled_at_dest then

SS_bit = spsr<21>;
return SS_bit;

Shared Pseudocode Functions Page 1544

Library pseudocode for shared/debug/softwarestep/SSAdvance

// SSAdvance()
// ===========
// Advance the Software Step state machine.

SSAdvance()

// A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
// current Software Step state machine. However, this check is made to illustrate that the
// processor only needs to consider advancing the state machine from the active-not-pending
// state.
target = DebugTarget();
step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
active_not_pending = step_enabled && PSTATE.SS == '1';

if active_not_pending then PSTATE.SS = '0';

return;

Library pseudocode for shared/debug/softwarestep/SoftwareStep_DidNotStep

// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.
boolean SoftwareStep_DidNotStep();

Library pseudocode for shared/debug/softwarestep/SoftwareStep_SteppedEX

// Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
// executed in the active-not-pending state.
boolean SoftwareStep_SteppedEX();

Shared Pseudocode Functions Page 1545

Library pseudocode for shared/exceptions/exceptions/ConditionSyndrome

// ConditionSyndrome()
// ===================
// Return CV and COND fields of instruction syndrome

bits(5) ConditionSyndrome()

bits(5) syndrome;

if UsingAArch32() then
cond = AArch32.CurrentCond();
if PSTATE.T == '0' then // A32

syndrome<4> = '1';
// A conditional A32 instruction that is known to pass its condition code check
// can be presented either with COND set to 0xE, the value for unconditional, or
// the COND value held in the instruction.
if ConditionHolds(cond) && ConstrainUnpredictableBool(Unpredictable_ESRCONDPASS) then

syndrome<3:0> = '1110';
else

syndrome<3:0> = cond;
else // T32

// When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
// * CV set to 0 and COND is set to an UNKNOWN value
// * CV set to 1 and COND is set to the condition code for the condition that
// applied to the instruction.
if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then

syndrome<4> = '1';
syndrome<3:0> = cond;

else
syndrome<4> = '0';
syndrome<3:0> = bits(4) UNKNOWN;

else
syndrome<4> = '1';
syndrome<3:0> = '1110';

return syndrome;

Shared Pseudocode Functions Page 1546

Library pseudocode for shared/exceptions/exceptions/Exception

enumeration Exception {Exception_Uncategorized, // Uncategorized or unknown reason
Exception_WFxTrap, // Trapped WFI or WFE instruction
Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access to CP15
Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access to CP15
Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access to CP14
Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access to CP14
Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
// Trapped BXJ instruction not supported in ARMv8
Exception_PACTrap, // Trapped invalid PAC use
Exception_CP14RRTTrap, // Trapped MRRC access to CP14 from AArch32
Exception_IllegalState, // Illegal Execution state
Exception_SupervisorCall, // Supervisor Call
Exception_HypervisorCall, // Hypervisor Call
Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
Exception_SystemRegisterTrap, // Trapped MRS or MSR system register access
Exception_ERetTrap, // Trapped invalid ERET use
Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
Exception_PCAlignment, // PC alignment fault
Exception_DataAbort, // Data Abort
Exception_SPAlignment, // SP alignment fault
Exception_FPTrappedException, // IEEE trapped FP exception
Exception_SError, // SError interrupt
Exception_Breakpoint, // (Hardware) Breakpoint
Exception_SoftwareStep, // Software Step
Exception_Watchpoint, // Watchpoint
Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
Exception_VectorCatch, // AArch32 Vector Catch
Exception_IRQ, // IRQ interrupt
Exception_FIQ}; // FIQ interrupt

Library pseudocode for shared/exceptions/exceptions/ExceptionRecord

type ExceptionRecord is (Exception type, // Exception class
bits(25) syndrome, // Syndrome record
bits(64) vaddress, // Virtual fault address
boolean ipavalid, // Physical fault address is valid
bits(52) ipaddress) // Physical fault address for second stage faults

Library pseudocode for shared/exceptions/exceptions/ExceptionSyndrome

// ExceptionSyndrome()
// ===================
// Return a blank exception syndrome record for an exception of the given type.

ExceptionRecord ExceptionSyndrome(Exception type)

ExceptionRecord r;

r.type = type;

// Initialize all other fields
r.syndrome = Zeros();
r.vaddress = Zeros();
r.ipavalid = FALSE;
r.ipaddress = Zeros();

return r;

Shared Pseudocode Functions Page 1547

Library pseudocode for shared/exceptions/traps/ReservedValue

// ReservedValue()
// ===============

ReservedValue()

if UsingAArch32() && !AArch32.GeneralExceptionsToAArch64() then
AArch32.TakeUndefInstrException();

else
AArch64.UndefinedFault();

Library pseudocode for shared/exceptions/traps/SystemAccessType

enumeration SystemAccessType { SystemAccessType_RT, SystemAccessType_RRT, SystemAccessType_DT };

Library pseudocode for shared/exceptions/traps/UnallocatedEncoding

// UnallocatedEncoding()
// =====================

UnallocatedEncoding()
if UsingAArch32() && AArch32.ExecutingCP10or11Instr() then

FPEXC.DEX = '0';
if UsingAArch32() && !AArch32.GeneralExceptionsToAArch64() then

AArch32.TakeUndefInstrException();
else

AArch64.UndefinedFault();

Library pseudocode for shared/functions/aborts/EncodeLDFSC

// EncodeLDFSC()
// =============
// Function that gives the Long-descriptor FSC code for types of Fault

bits(6) EncodeLDFSC(Fault type, integer level)

bits(6) result;
case type of

when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {1,2,3};
when Fault_Permission result = '0011':level<1:0>; assert level IN {1,2,3};
when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncExternal result = '010000';
when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncParity result = '011000';
when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
when Fault_AsyncParity result = '011001';
when Fault_AsyncExternal result = '010001';
when Fault_Alignment result = '100001';
when Fault_Debug result = '100010';
when Fault_TLBConflict result = '110000';
when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
otherwise Unreachable();

return result;

Shared Pseudocode Functions Page 1548

Library pseudocode for shared/functions/aborts/IPAValid

// IPAValid()
// ==========
// Return TRUE if the IPA is reported for the abort

boolean IPAValid(FaultRecord fault)
assert fault.type != Fault_None;

if fault.s2fs1walk then
return fault.type IN {Fault_AccessFlag, Fault_Permission, Fault_Translation,

Fault_AddressSize};
elsif fault.secondstage then

return fault.type IN {Fault_AccessFlag, Fault_Translation, Fault_AddressSize};
else

return FALSE;

Library pseudocode for shared/functions/aborts/IsAsyncAbort

// IsAsyncAbort()
// ==============
// Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
// otherwise.

boolean IsAsyncAbort(Fault type)
assert type != Fault_None;

return (type IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsAsyncAbort()
// ==============

boolean IsAsyncAbort(FaultRecord fault)
return IsAsyncAbort(fault.type);

Library pseudocode for shared/functions/aborts/IsDebugException

// IsDebugException()
// ==================

boolean IsDebugException(FaultRecord fault)
assert fault.type != Fault_None;
return fault.type == Fault_Debug;

Library pseudocode for shared/functions/aborts/IsExternalAbort

// IsExternalAbort()
// =================
// Returns TRUE if the abort currently being processed is an external abort and FALSE otherwise.

boolean IsExternalAbort(Fault type)
assert type != Fault_None;

return (type IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk,
Fault_AsyncExternal, Fault_AsyncParity });

// IsExternalAbort()
// =================

boolean IsExternalAbort(FaultRecord fault)
return IsExternalAbort(fault.type);

Shared Pseudocode Functions Page 1549

Library pseudocode for shared/functions/aborts/IsExternalSyncAbort

// IsExternalSyncAbort()
// =====================
// Returns TRUE if the abort currently being processed is an external synchronous abort and FALSE otherwise.

boolean IsExternalSyncAbort(Fault type)
assert type != Fault_None;

return (type IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk});

// IsExternalSyncAbort()
// =====================

boolean IsExternalSyncAbort(FaultRecord fault)
return IsExternalSyncAbort(fault.type);

Library pseudocode for shared/functions/aborts/IsFault

// IsFault()
// =========
// Return TRUE if a fault is associated with an address descriptor

boolean IsFault(AddressDescriptor addrdesc)
return addrdesc.fault.type != Fault_None;

Library pseudocode for shared/functions/aborts/IsSErrorInterrupt

// IsSErrorInterrupt()
// ===================
// Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
// otherwise.

boolean IsSErrorInterrupt(Fault type)
assert type != Fault_None;

return (type IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsSErrorInterrupt()
// ===================

boolean IsSErrorInterrupt(FaultRecord fault)
return IsSErrorInterrupt(fault.type);

Library pseudocode for shared/functions/aborts/IsSecondStage

// IsSecondStage()
// ===============

boolean IsSecondStage(FaultRecord fault)
assert fault.type != Fault_None;

return fault.secondstage;

Library pseudocode for shared/functions/aborts/LSInstructionSyndrome

bits(11) LSInstructionSyndrome();

Shared Pseudocode Functions Page 1550

Library pseudocode for shared/functions/common/ASR

// ASR()
// =====

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = ASR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/ASR_C

// ASR_C()
// =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = SignExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

Library pseudocode for shared/functions/common/Abs

// Abs()
// =====

integer Abs(integer x)
return if x >= 0 then x else -x;

// Abs()
// =====

real Abs(real x)
return if x >= 0.0 then x else -x;

Library pseudocode for shared/functions/common/Align

// Align()
// =======

integer Align(integer x, integer y)
return y * (x DIV y);

// Align()
// =======

bits(N) Align(bits(N) x, integer y)
return Align(UInt(x), y)<N-1:0>;

Library pseudocode for shared/functions/common/BitCount

// BitCount()
// ==========

integer BitCount(bits(N) x)
integer result = 0;
for i = 0 to N-1

if x<i> == '1' then
result = result + 1;

return result;

Shared Pseudocode Functions Page 1551

Library pseudocode for shared/functions/common/CountLeadingSignBits

// CountLeadingSignBits()
// ======================

integer CountLeadingSignBits(bits(N) x)
return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

Library pseudocode for shared/functions/common/CountLeadingZeroBits

// CountLeadingZeroBits()
// ======================

integer CountLeadingZeroBits(bits(N) x)
return N - 1 - HighestSetBit(x);

Library pseudocode for shared/functions/common/Elem

// Elem[] - non-assignment form
// ============================

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 && (e+1)*size <= N;
return vector<e*size+size-1 : e*size>;

// Elem[] - non-assignment form
// ============================

bits(size) Elem[bits(N) vector, integer e]
return Elem[vector, e, size];

// Elem[] - assignment form
// ========================

Elem[bits(N) &vector, integer e, integer size] = bits(size) value
assert e >= 0 && (e+1)*size <= N;
vector<(e+1)*size-1:e*size> = value;
return;

// Elem[] - assignment form
// ========================

Elem[bits(N) &vector, integer e] = bits(size) value
Elem[vector, e, size] = value;
return;

Library pseudocode for shared/functions/common/Extend

// Extend()
// ========

bits(N) Extend(bits(M) x, integer N, boolean unsigned)
return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

// Extend()
// ========

bits(N) Extend(bits(M) x, boolean unsigned)
return Extend(x, N, unsigned);

Shared Pseudocode Functions Page 1552

Library pseudocode for shared/functions/common/HighestSetBit

// HighestSetBit()
// ===============

integer HighestSetBit(bits(N) x)
for i = N-1 downto 0

if x<i> == '1' then return i;
return -1;

Library pseudocode for shared/functions/common/Int

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
result = if unsigned then UInt(x) else SInt(x);
return result;

Library pseudocode for shared/functions/common/IsOnes

// IsOnes()
// ========

boolean IsOnes(bits(N) x)
return x == Ones(N);

Library pseudocode for shared/functions/common/IsZero

// IsZero()
// ========

boolean IsZero(bits(N) x)
return x == Zeros(N);

Library pseudocode for shared/functions/common/IsZeroBit

// IsZeroBit()
// ===========

bit IsZeroBit(bits(N) x)
return if IsZero(x) then '1' else '0';

Library pseudocode for shared/functions/common/LSL

// LSL()
// =====

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = LSL_C(x, shift);
return result;

Shared Pseudocode Functions Page 1553

Library pseudocode for shared/functions/common/LSL_C

// LSL_C()
// =======

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

Library pseudocode for shared/functions/common/LSR

// LSR()
// =====

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = LSR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/LSR_C

// LSR_C()
// =======

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

Library pseudocode for shared/functions/common/LowestSetBit

// LowestSetBit()
// ==============

integer LowestSetBit(bits(N) x)
for i = 0 to N-1

if x<i> == '1' then return i;
return N;

Library pseudocode for shared/functions/common/Max

// Max()
// =====

integer Max(integer a, integer b)
return if a >= b then a else b;

// Max()
// =====

real Max(real a, real b)
return if a >= b then a else b;

Shared Pseudocode Functions Page 1554

Library pseudocode for shared/functions/common/Min

// Min()
// =====

integer Min(integer a, integer b)
return if a <= b then a else b;

// Min()
// =====

real Min(real a, real b)
return if a <= b then a else b;

Library pseudocode for shared/functions/common/NOT

bits(N) NOT(bits(N) x);

Library pseudocode for shared/functions/common/Ones

// Ones()
// ======

bits(N) Ones(integer N)
return Replicate('1',N);

// Ones()
// ======

bits(N) Ones()
return Ones(N);

Library pseudocode for shared/functions/common/ROR

// ROR()
// =====

bits(N) ROR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

result = x;
else

(result, -) = ROR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/ROR_C

// ROR_C()
// =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

Shared Pseudocode Functions Page 1555

Library pseudocode for shared/functions/common/Replicate

// Replicate()
// ===========

bits(N) Replicate(bits(M) x)
assert N MOD M == 0;
return Replicate(x, N DIV M);

bits(M*N) Replicate(bits(M) x, integer N);

Library pseudocode for shared/functions/common/RoundDown

integer RoundDown(real x);

Library pseudocode for shared/functions/common/RoundTowardsZero

// RoundTowardsZero()
// ==================

integer RoundTowardsZero(real x)
return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);

Library pseudocode for shared/functions/common/RoundUp

integer RoundUp(real x);

Library pseudocode for shared/functions/common/SInt

// SInt()
// ======

integer SInt(bits(N) x)
result = 0;
for i = 0 to N-1

if x<i> == '1' then result = result + 2^i;
if x<N-1> == '1' then result = result - 2^N;
return result;

Library pseudocode for shared/functions/common/SignExtend

// SignExtend()
// ============

bits(N) SignExtend(bits(M) x, integer N)
assert N >= M;
return Replicate(x<M-1>, N-M) : x;

// SignExtend()
// ============

bits(N) SignExtend(bits(M) x)
return SignExtend(x, N);

Library pseudocode for shared/functions/common/UInt

// UInt()
// ======

integer UInt(bits(N) x)
result = 0;
for i = 0 to N-1

if x<i> == '1' then result = result + 2^i;
return result;

Shared Pseudocode Functions Page 1556

Library pseudocode for shared/functions/common/ZeroExtend

// ZeroExtend()
// ============

bits(N) ZeroExtend(bits(M) x, integer N)
assert N >= M;
return Zeros(N-M) : x;

// ZeroExtend()
// ============

bits(N) ZeroExtend(bits(M) x)
return ZeroExtend(x, N);

Library pseudocode for shared/functions/common/Zeros

// Zeros()
// =======

bits(N) Zeros(integer N)
return Replicate('0',N);

// Zeros()
// =======

bits(N) Zeros()
return Zeros(N);

Library pseudocode for shared/functions/crc/BitReverse

// BitReverse()
// ============

bits(N) BitReverse(bits(N) data)
bits(N) result;
for i = 0 to N-1

result<N-i-1> = data<i>;
return result;

Library pseudocode for shared/functions/crc/HaveCRCExt

// HaveCRCExt()
// ============

boolean HaveCRCExt()
return HasArchVersion(ARMv8p1) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

Library pseudocode for shared/functions/crc/Poly32Mod2

// Poly32Mod2()
// ============

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
assert N > 32;
for i = N-1 downto 32

if data<i> == '1' then
data<i-1:0> = data<i-1:0> EOR poly:Zeros(i-32);

return data<31:0>;

Library pseudocode for shared/functions/crypto/AESInvMixColumns

bits(128) AESInvMixColumns(bits (128) op);

Shared Pseudocode Functions Page 1557

Library pseudocode for shared/functions/crypto/AESInvShiftRows

bits(128) AESInvShiftRows(bits(128) op);

Library pseudocode for shared/functions/crypto/AESInvSubBytes

bits(128) AESInvSubBytes(bits(128) op);

Library pseudocode for shared/functions/crypto/AESMixColumns

bits(128) AESMixColumns(bits (128) op);

Library pseudocode for shared/functions/crypto/AESShiftRows

bits(128) AESShiftRows(bits(128) op);

Library pseudocode for shared/functions/crypto/AESSubBytes

bits(128) AESSubBytes(bits(128) op);

Library pseudocode for shared/functions/crypto/HaveChCryptoExt

// HaveChCryptoExt()
// =================
// TRUE if SM3 and SM4 extended cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveChCryptoExt()
if !HasArchVersion(ARMv8p2) then

return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SM3 and SM4 Crypto instructions";

Library pseudocode for shared/functions/crypto/HaveCryptoExt

// HaveCryptoExt()
// ===============
// TRUE if AES, SHA1, SHA2 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveCryptoExt()
return boolean IMPLEMENTATION_DEFINED "Has basic Crypto instructions";

Library pseudocode for shared/functions/crypto/HaveCryptoExt2

// HaveCryptoExt2()
// ================
// TRUE if SHA512 and SHA3 extended cryptographic instructions support is implemented,
// and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveCryptoExt2()
if !HasArchVersion(ARMv8p2) || !HaveCryptoExt() then

return FALSE;
return boolean IMPLEMENTATION_DEFINED "Has SHA512 and SHA3 Crypto instructions";

Shared Pseudocode Functions Page 1558

Library pseudocode for shared/functions/crypto/ROL

// ROL()
// =====

bits(N) ROL(bits(N) x, integer shift)
assert shift >= 0 && shift <= N;
if (shift == 0) then

return x;
return ROR(x, N-shift);

Library pseudocode for shared/functions/crypto/SHA256hash

// SHA256hash()
// ============

bits(128) SHA256hash(bits (128) X, bits(128) Y, bits(128) W, boolean part1)
bits(32) chs, maj, t;

for e = 0 to 3
chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
X<127:96> = t + X<127:96>;
Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
<Y, X> = ROL(Y : X, 32);

return (if part1 then X else Y);

Library pseudocode for shared/functions/crypto/SHAchoose

// SHAchoose()
// ===========

bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
return (((y EOR z) AND x) EOR z);

Library pseudocode for shared/functions/crypto/SHAhashSIGMA0

// SHAhashSIGMA0()
// ===============

bits(32) SHAhashSIGMA0(bits(32) x)
return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

Library pseudocode for shared/functions/crypto/SHAhashSIGMA1

// SHAhashSIGMA1()
// ===============

bits(32) SHAhashSIGMA1(bits(32) x)
return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

Library pseudocode for shared/functions/crypto/SHAmajority

// SHAmajority()
// =============

bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
return ((x AND y) OR ((x OR y) AND z));

Shared Pseudocode Functions Page 1559

Library pseudocode for shared/functions/crypto/SHAparity

// SHAparity()
// ===========

bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
return (x EOR y EOR z);

Library pseudocode for shared/functions/crypto/Sbox

// Sbox()
// ======
// Used in SM4E crypto instruction

bits(8) Sbox(bits(8) sboxin)
bits(8) sboxout;
bits(2048) sboxstring = 0xd690e9fecce13db716b614c228fb2c052b679a762abe04c3aa441326498606999c4250f491ef987a33540b43edcfac62e4b31ca9c908e89580df94fa758f3fa64707a7fcf37317ba83593c19e6854fa8686b81b27164da8bf8eb0f4b70569d351e240e5e6358d1a225227c3b01217887d40046579fd327524c3602e7a0c4c89eeabf8ad240c738b5a3f7f2cef96115a1e0ae5da49b341a55ad933230f58cb1e31df6e22e8266ca60c02923ab0d534e6fd5db3745defd8e2f03ff6a726d6c5b518d1baf92bbddbc7f11d95c411f105ad80ac13188a5cd7bbd2d74d012b8e5b4b08969974a0c96777e65b9f109c56ec68418f07dec3adc4d2079ee5f3ed7cb3948<2047:0>;

sboxout = sboxstring<(255-UInt(sboxin))*8+7:(255-UInt(sboxin))*8>;
return sboxout;

Library pseudocode for shared/functions/exclusive/ClearExclusiveByAddress

// Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
// record any part of the physical address region of size bytes starting at paddress.
// It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
// is also cleared if it records any part of the address region.
ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/ClearExclusiveLocal

// Clear the local Exclusives monitor for the specified processorid.
ClearExclusiveLocal(integer processorid);

Library pseudocode for shared/functions/exclusive/ClearExclusiveMonitors

// ClearExclusiveMonitors()
// ========================

// Clear the local Exclusives monitor for the executing PE.

ClearExclusiveMonitors()
ClearExclusiveLocal(ProcessorID());

Library pseudocode for shared/functions/exclusive/ExclusiveMonitorsStatus

// Returns '0' to indicate success if the last memory write by this PE was to
// the same physical address region endorsed by ExclusiveMonitorsPass().
// Returns '1' to indicate failure if address translation resulted in a different
// physical address.
bit ExclusiveMonitorsStatus();

Library pseudocode for shared/functions/exclusive/IsExclusiveGlobal

// Return TRUE if the global Exclusives monitor for processorid includes all of
// the physical address region of size bytes starting at paddress.
boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/IsExclusiveLocal

// Return TRUE if the local Exclusives monitor for processorid includes all of
// the physical address region of size bytes starting at paddress.
boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

Shared Pseudocode Functions Page 1560

Library pseudocode for shared/functions/exclusive/MarkExclusiveGlobal

// Record the physical address region of size bytes starting at paddress in
// the global Exclusives monitor for processorid.
MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/MarkExclusiveLocal

// Record the physical address region of size bytes starting at paddress in
// the local Exclusives monitor for processorid.
MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/ProcessorID

// Return the ID of the currently executing PE.
integer ProcessorID();

Library pseudocode for shared/functions/extension/AArch32.HaveHPDExt

// AArch32.HaveHPDExt()
// ====================

boolean AArch32.HaveHPDExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/AArch64.HaveHPDExt

// AArch64.HaveHPDExt()
// ====================

boolean AArch64.HaveHPDExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/Have52BitPAExt

// Have52BitPAExt()
// ================

boolean Have52BitPAExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/Have52BitVAExt

// Have52BitVAExt()
// ================

boolean Have52BitVAExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveAtomicExt

// HaveAtomicExt()
// ===============

boolean HaveAtomicExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/HaveCommonNotPrivateTransExt

// HaveCommonNotPrivateTransExt()
// ==============================

boolean HaveCommonNotPrivateTransExt()
return HasArchVersion(ARMv8p2);

Shared Pseudocode Functions Page 1561

Library pseudocode for shared/functions/extension/HaveDOTPExt

// HaveDOTPExt()
// =============
// Returns TRUE if has Dot Product feature support, and FALSE otherwise.

boolean HaveDOTPExt()
return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has Dot Product extension";

Library pseudocode for shared/functions/extension/HaveExtendedECDebugEvents

// HaveExtendedECDebugEvents()
// ===========================

boolean HaveExtendedECDebugEvents()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveExtendedExecuteNeverExt

// HaveExtendedExecuteNeverExt()
// =============================

boolean HaveExtendedExecuteNeverExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveFCADDExt

// HaveFCADDExt()
// ==============

boolean HaveFCADDExt()
return HasArchVersion(ARMv8p3);

Library pseudocode for shared/functions/extension/HaveFJCVTZSExt

// HaveFJCVTZSExt()
// ================

boolean HaveFJCVTZSExt()
return HasArchVersion(ARMv8p3);

Library pseudocode for shared/functions/extension/HaveHPMDExt

// HaveHPMDExt()
// =============

boolean HaveHPMDExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/HaveNVExt

// HaveNVExt()
// ===========

boolean HaveNVExt()
return HasArchVersion(ARMv8p3);

Library pseudocode for shared/functions/extension/HavePANExt

// HavePANExt()
// ============

boolean HavePANExt()
return HasArchVersion(ARMv8p1);

Shared Pseudocode Functions Page 1562

Library pseudocode for shared/functions/extension/HavePageBasedHardwareAttributes

// HavePageBasedHardwareAttributes()
// =================================

boolean HavePageBasedHardwareAttributes()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HavePrivATExt

// HavePrivATExt()
// ===============

boolean HavePrivATExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveQRDMLAHExt

// HaveQRDMLAHExt()
// ================

boolean HaveQRDMLAHExt()
return HasArchVersion(ARMv8p1);

boolean HaveAccessFlagUpdateExt()
return HasArchVersion(ARMv8p1);

boolean HaveDirtyBitModifierExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/extension/HaveRASExt

// HaveRASExt()
// ============

boolean HaveRASExt()
return (HasArchVersion(ARMv8p2) ||

boolean IMPLEMENTATION_DEFINED "Has RAS extension");

Library pseudocode for shared/functions/extension/HaveStatisticalProfiling

// HaveStatisticalProfiling()
// ==========================

boolean HaveStatisticalProfiling()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt

// HaveTrapLoadStoreMultipleDeviceExt()
// ====================================

boolean HaveTrapLoadStoreMultipleDeviceExt()
return HasArchVersion(ARMv8p2);

Library pseudocode for shared/functions/extension/HaveUAOExt

// HaveUAOExt()
// ============

boolean HaveUAOExt()
return HasArchVersion(ARMv8p2);

Shared Pseudocode Functions Page 1563

Library pseudocode for shared/functions/extension/HaveVirtHostExt

// HaveVirtHostExt()
// =================

boolean HaveVirtHostExt()
return HasArchVersion(ARMv8p1);

Library pseudocode for shared/functions/float/fixedtofp/FixedToFP

// FixedToFP()
// ===========

// Convert M-bit fixed point OP with FBITS fractional bits to
// N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
assert N IN {16,32,64};
assert M IN {16,32,64};
bits(N) result;
assert fbits >= 0;
assert rounding != FPRounding_ODD;

// Correct signed-ness
int_operand = Int(op, unsigned);

// Scale by fractional bits and generate a real value
real_operand = Real(int_operand) / 2.0^fbits;

if real_operand == 0.0 then
result = FPZero('0');

else
result = FPRound(real_operand, fpcr, rounding);

return result;

Library pseudocode for shared/functions/float/fpabs/FPAbs

// FPAbs()
// =======

bits(N) FPAbs(bits(N) op)
assert N IN {16,32,64};
return '0' : op<N-2:0>;

Shared Pseudocode Functions Page 1564

Library pseudocode for shared/functions/float/fpadd/FPAdd

// FPAdd()
// =======

bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == NOT(sign2) then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
result = FPInfinity('0');

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
result = FPInfinity('1');

elsif zero1 && zero2 && sign1 == sign2 then
result = FPZero(sign1);

else
result_value = value1 + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr, rounding);

return result;

Library pseudocode for shared/functions/float/fpcompare/FPCompare

// FPCompare()
// ===========

bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then

result = '0011';
if type1==FPType_SNaN || type2==FPType_SNaN || signal_nans then

FPProcessException(FPExc_InvalidOp, fpcr);
else

// All non-NaN cases can be evaluated on the values produced by FPUnpack()
if value1 == value2 then

result = '0110';
elsif value1 < value2 then

result = '1000';
else // value1 > value2

result = '0010';
return result;

Shared Pseudocode Functions Page 1565

Library pseudocode for shared/functions/float/fpcompareeq/FPCompareEQ

// FPCompareEQ()
// =============

boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then

result = FALSE;
if type1==FPType_SNaN || type2==FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
else

// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 == value2);

return result;

Library pseudocode for shared/functions/float/fpcomparege/FPCompareGE

// FPCompareGE()
// =============

boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then

result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);

else
// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 >= value2);

return result;

Library pseudocode for shared/functions/float/fpcomparegt/FPCompareGT

// FPCompareGT()
// =============

boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then

result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);

else
// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 > value2);

return result;

Shared Pseudocode Functions Page 1566

Library pseudocode for shared/functions/float/fpconvert/FPConvert

// FPConvert()
// ===========

// Convert floating point OP with N-bit precision to M-bit precision,
// with rounding controlled by ROUNDING.
// This is used by the FP-to-FP conversion instructions and so for
// half-precision data ignores FZ16, but observes AHP.

bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)
assert M IN {16,32,64};
assert N IN {16,32,64};
bits(M) result;

// Unpack floating-point operand optionally with flush-to-zero.
(type,sign,value) = FPUnpackCV(op, fpcr);

alt_hp = (M == 16) && (fpcr.AHP == '1');

if type == FPType_SNaN || type == FPType_QNaN then
if alt_hp then

result = FPZero(sign);
elsif fpcr.DN == '1' then

result = FPDefaultNaN();
else

result = FPConvertNaN(op);
if type == FPType_SNaN || alt_hp then

FPProcessException(FPExc_InvalidOp,fpcr);
elsif type == FPType_Infinity then

if alt_hp then
result = sign:Ones(M-1);
FPProcessException(FPExc_InvalidOp, fpcr);

else
result = FPInfinity(sign);

elsif type == FPType_Zero then
result = FPZero(sign);

else
result = FPRoundCV(value, fpcr, rounding);

return result;

// FPConvert()
// ===========

bits(M) FPConvert(bits(N) op, FPCRType fpcr)
return FPConvert(op, fpcr, FPRoundingMode(fpcr));

Shared Pseudocode Functions Page 1567

Library pseudocode for shared/functions/float/fpconvertnan/FPConvertNaN

// FPConvertNaN()
// ==============

// Converts a NaN of one floating-point type to another

bits(M) FPConvertNaN(bits(N) op)
assert N IN {16,32,64};
assert M IN {16,32,64};
bits(M) result;
bits(51) frac;

sign = op<N-1>;

// Unpack payload from input NaN
case N of

when 64 frac = op<50:0>;
when 32 frac = op<21:0>:Zeros(29);
when 16 frac = op<8:0>:Zeros(42);

// Repack payload into output NaN, while
// converting an SNaN to a QNaN.
case M of

when 64 result = sign:Ones(M-52):frac;
when 32 result = sign:Ones(M-23):frac<50:29>;
when 16 result = sign:Ones(M-10):frac<50:42>;

return result;

Library pseudocode for shared/functions/float/fpcrtype/FPCRType

type FPCRType;

Library pseudocode for shared/functions/float/fpdecoderm/FPDecodeRM

// FPDecodeRM()
// ============

// Decode most common AArch32 floating-point rounding encoding.

FPRounding FPDecodeRM(bits(2) rm)
case rm of

when '00' return FPRounding_TIEAWAY; // A
when '01' return FPRounding_TIEEVEN; // N
when '10' return FPRounding_POSINF; // P
when '11' return FPRounding_NEGINF; // M

Library pseudocode for shared/functions/float/fpdecoderounding/FPDecodeRounding

// FPDecodeRounding()
// ==================

// Decode floating-point rounding mode and common AArch64 encoding.

FPRounding FPDecodeRounding(bits(2) rmode)
case rmode of

when '00' return FPRounding_TIEEVEN; // N
when '01' return FPRounding_POSINF; // P
when '10' return FPRounding_NEGINF; // M
when '11' return FPRounding_ZERO; // Z

Shared Pseudocode Functions Page 1568

Library pseudocode for shared/functions/float/fpdefaultnan/FPDefaultNaN

// FPDefaultNaN()
// ==============

bits(N) FPDefaultNaN()
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
sign = '0';
exp = Ones(E);
frac = '1':Zeros(F-1);
return sign : exp : frac;

Library pseudocode for shared/functions/float/fpdiv/FPDiv

// FPDiv()
// =======

bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if (inf1 && inf2) || (zero1 && zero2) then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

elsif inf1 || zero2 then
result = FPInfinity(sign1 EOR sign2);
if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);

elsif zero1 || inf2 then
result = FPZero(sign1 EOR sign2);

else
result = FPRound(value1/value2, fpcr);

return result;

Library pseudocode for shared/functions/float/fpexc/FPExc

enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

Library pseudocode for shared/functions/float/fpinfinity/FPInfinity

// FPInfinity()
// ============

bits(N) FPInfinity(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
exp = Ones(E);
frac = Zeros(F);
return sign : exp : frac;

Shared Pseudocode Functions Page 1569

Library pseudocode for shared/functions/float/fpmax/FPMax

// FPMax()
// =======

bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

if value1 > value2 then
(type,sign,value) = (type1,sign1,value1);

else
(type,sign,value) = (type2,sign2,value2);

if type == FPType_Infinity then
result = FPInfinity(sign);

elsif type == FPType_Zero then
sign = sign1 AND sign2; // Use most positive sign
result = FPZero(sign);

else
result = FPRound(value, fpcr);

return result;

Library pseudocode for shared/functions/float/fpmaxnormal/FPMaxNormal

// FPMaxNormal()
// =============

bits(N) FPMaxNormal(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
exp = Ones(E-1):'0';
frac = Ones(F);
return sign : exp : frac;

Library pseudocode for shared/functions/float/fpmaxnum/FPMaxNum

// FPMaxNum()
// ==========

bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,-,-) = FPUnpack(op1, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

// treat a single quiet-NaN as -Infinity
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = FPInfinity('1');
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = FPInfinity('1');

return FPMax(op1, op2, fpcr);

Shared Pseudocode Functions Page 1570

Library pseudocode for shared/functions/float/fpmin/FPMin

// FPMin()
// =======

bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

if value1 < value2 then
(type,sign,value) = (type1,sign1,value1);

else
(type,sign,value) = (type2,sign2,value2);

if type == FPType_Infinity then
result = FPInfinity(sign);

elsif type == FPType_Zero then
sign = sign1 OR sign2; // Use most negative sign
result = FPZero(sign);

else
result = FPRound(value, fpcr);

return result;

Library pseudocode for shared/functions/float/fpminnum/FPMinNum

// FPMinNum()
// ==========

bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,-,-) = FPUnpack(op1, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

// Treat a single quiet-NaN as +Infinity
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = FPInfinity('0');
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = FPInfinity('0');

return FPMin(op1, op2, fpcr);

Library pseudocode for shared/functions/float/fpmul/FPMul

// FPMul()
// =======

bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if (inf1 && zero2) || (zero1 && inf2) then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2);

elsif zero1 || zero2 then
result = FPZero(sign1 EOR sign2);

else
result = FPRound(value1*value2, fpcr);

return result;

Shared Pseudocode Functions Page 1571

Library pseudocode for shared/functions/float/fpmuladd/FPMulAdd

// FPMulAdd()
// ==========
//
// Calculates addend + op1*op2 with a single rounding.

bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(typeA,signA,valueA) = FPUnpack(addend, fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
(done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr);

if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an Invalid
// Operation.
signP = sign1 EOR sign2;
infP = inf1 || inf2;
zeroP = zero1 || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
// additions of opposite-signed infinities.
if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP) then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then

result = FPInfinity('0');
elsif (infA && signA == '1') || (infP && signP == '1') then

result = FPInfinity('1');

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then

result = FPZero(signA);

// Otherwise calculate numerical result and round it.
else

result_value = valueA + (value1 * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr);

return result;

Shared Pseudocode Functions Page 1572

Library pseudocode for shared/functions/float/fpmuladdh/FPMulAddH

// FPMulAddH()
// ===========

bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)
assert N IN {32,64};
rounding = FPRoundingMode(fpcr);
(typeA,signA,valueA) = FPUnpack(addend, fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
(done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr);
if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);
// Determine sign and type product will have if it does not cause an Invalid
// Operation.
signP = sign1 EOR sign2;
infP = inf1 || inf2;
zeroP = zero1 || zero2;
// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
// additions of opposite-signed infinities.
if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP) then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then

result = FPInfinity('0');
elsif (infA && signA == '1') || (infP && signP == '1') then

result = FPInfinity('1');
// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then

result = FPZero(signA);
// Otherwise calculate numerical result and round it.
else

result_value = valueA + (value1 * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr);

return result;

Shared Pseudocode Functions Page 1573

Library pseudocode for shared/functions/float/fpmuladdh/FPProcessNaNs3H

// FPProcessNaNs3H()
// =================

(boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3, bits(N) op1, bits(N DIV 2) op2, bits(N DIV 2) op3, FPCRType fpcr)
assert N IN {32,64};
bits(N) result;
if type1 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
elsif type3 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
elsif type1 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
elsif type3 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
else

done = FALSE; result = Zeros(); // 'Don't care' result
return (done, result);

Library pseudocode for shared/functions/float/fpmulx/FPMulX

// FPMulX()
// ========

bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
bits(N) result;
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if (inf1 && zero2) || (zero1 && inf2) then

result = FPTwo(sign1 EOR sign2);
elsif inf1 || inf2 then

result = FPInfinity(sign1 EOR sign2);
elsif zero1 || zero2 then

result = FPZero(sign1 EOR sign2);
else

result = FPRound(value1*value2, fpcr);
return result;

Library pseudocode for shared/functions/float/fpneg/FPNeg

// FPNeg()
// =======

bits(N) FPNeg(bits(N) op)
assert N IN {16,32,64};
return NOT(op<N-1>) : op<N-2:0>;

Shared Pseudocode Functions Page 1574

Library pseudocode for shared/functions/float/fponepointfive/FPOnePointFive

// FPOnePointFive()
// ================

bits(N) FPOnePointFive(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
exp = '0':Ones(E-1);
frac = '1':Zeros(F-1);
return sign : exp : frac;

Library pseudocode for shared/functions/float/fpprocessexception/FPProcessException

// FPProcessException()
// ====================
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

FPProcessException(FPExc exception, FPCRType fpcr)
// Determine the cumulative exception bit number
case exception of

when FPExc_InvalidOp cumul = 0;
when FPExc_DivideByZero cumul = 1;
when FPExc_Overflow cumul = 2;
when FPExc_Underflow cumul = 3;
when FPExc_Inexact cumul = 4;
when FPExc_InputDenorm cumul = 7;

enable = cumul + 8;
if fpcr<enable> == '1' then

// Trapping of the exception enabled.
// It is IMPLEMENTATION DEFINED whether the enable bit may be set at all, and
// if so then how exceptions may be accumulated before calling FPTrapException()
IMPLEMENTATION_DEFINED "floating-point trap handling";

elsif UsingAArch32() then
// Set the cumulative exception bit
FPSCR<cumul> = '1';

else
// Set the cumulative exception bit
FPSR<cumul> = '1';

return;

Library pseudocode for shared/functions/float/fpprocessnan/FPProcessNaN

// FPProcessNaN()
// ==============

bits(N) FPProcessNaN(FPType type, bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};
assert type IN {FPType_QNaN, FPType_SNaN};

case N of
when 16 topfrac = 9;
when 32 topfrac = 22;
when 64 topfrac = 51;

result = op;
if type == FPType_SNaN then

result<topfrac> = '1';
FPProcessException(FPExc_InvalidOp, fpcr);

if fpcr.DN == '1' then // DefaultNaN requested
result = FPDefaultNaN();

return result;

Shared Pseudocode Functions Page 1575

Library pseudocode for shared/functions/float/fpprocessnans/FPProcessNaNs

// FPProcessNaNs()
// ===============
//
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2,
bits(N) op1, bits(N) op2,
FPCRType fpcr)

assert N IN {16,32,64};
if type1 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elsif type1 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
else

done = FALSE; result = Zeros(); // 'Don't care' result
return (done, result);

Library pseudocode for shared/functions/float/fpprocessnans3/FPProcessNaNs3

// FPProcessNaNs3()
// ================
//
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N) op2, bits(N) op3,
FPCRType fpcr)

assert N IN {16,32,64};
if type1 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elsif type3 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
elsif type1 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
elsif type3 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
else

done = FALSE; result = Zeros(); // 'Don't care' result
return (done, result);

Shared Pseudocode Functions Page 1576

Library pseudocode for shared/functions/float/fprecipestimate/FPRecipEstimate

Shared Pseudocode Functions Page 1577

// FPRecipEstimate()
// =================

bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)
assert N IN {16,32,64};
(type,sign,value) = FPUnpack(operand, fpcr);
if type == FPType_SNaN || type == FPType_QNaN then

result = FPProcessNaN(type, operand, fpcr);
elsif type == FPType_Infinity then

result = FPZero(sign);
elsif type == FPType_Zero then

result = FPInfinity(sign);
FPProcessException(FPExc_DivideByZero, fpcr);

elsif (
(N == 16 && Abs(value) < 2.0^-16) ||
(N == 32 && Abs(value) < 2.0^-128) ||
(N == 64 && Abs(value) < 2.0^-1024)

) then
case FPRoundingMode(fpcr) of

when FPRounding_TIEEVEN
overflow_to_inf = TRUE;

when FPRounding_POSINF
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
overflow_to_inf = (sign == '1');

when FPRounding_ZERO
overflow_to_inf = FALSE;

result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
FPProcessException(FPExc_Overflow, fpcr);
FPProcessException(FPExc_Inexact, fpcr);

elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
&& (

(N == 16 && Abs(value) >= 2.0^14) ||
(N == 32 && Abs(value) >= 2.0^126) ||
(N == 64 && Abs(value) >= 2.0^1022)

) then
// Result flushed to zero of correct sign
result = FPZero(sign);
if UsingAArch32() then

FPSCR.UFC = '1';
else

FPSR.UFC = '1';
else

// Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
// calculate result exponent. Scaled value has copied sign bit,
// exponent = 1022 = double-precision biased version of -1,
// fraction = original fraction
case N of

when 16
fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);

when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);

when 64
fraction = operand<51:0>;
exp = UInt(operand<62:52>);

if exp == 0 then
if fraction<51> == 0 then

exp = -1;
fraction = fraction<49:0>:'00';

else
fraction = fraction<50:0>:'0';

integer scaled = UInt('1':fraction<51:44>);

case N of
when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254

Shared Pseudocode Functions Page 1578

when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

// scaled is in range 256..511 representing a fixed-point number in range [0.5..1.0)
estimate = RecipEstimate(scaled);

// estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
// Convert to scaled floating point result with copied sign bit,
// high-order bits from estimate, and exponent calculated above.

fraction = estimate<7:0> : Zeros(44);
if result_exp == 0 then

fraction = '1' : fraction<51:1>;
elsif result_exp == -1 then

fraction = '01' : fraction<51:2>;
result_exp = 0;

case N of
when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;

return result;

Library pseudocode for shared/functions/float/fprecipestimate/RecipEstimate

// Compute estimate of reciprocal of 9-bit fixed-point number
//
// a is in range 256 .. 511 representing a number in the range 0.5 <= x < 1.0.
// result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.

integer RecipEstimate(integer a)
assert 256 <= a && a < 512;
a = a*2+1; // round to nearest
integer b = (2 ^ 19) DIV a;
r = (b+1) DIV 2; // round to nearest
assert 256 <= r && r < 512;
return r;

Shared Pseudocode Functions Page 1579

Library pseudocode for shared/functions/float/fprecpx/FPRecpX

// FPRecpX()
// =========

bits(N) FPRecpX(bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};

case N of
when 16 esize = 5;
when 32 esize = 8;
when 64 esize = 11;

bits(N) result;
bits(esize) exp;
bits(esize) max_exp;
bits(N-esize-1) frac = Zeros();

case N of
when 16 exp = op<10+esize-1:10>;
when 32 exp = op<23+esize-1:23>;
when 64 exp = op<52+esize-1:52>;

max_exp = Ones(esize) - 1;

(type,sign,value) = FPUnpack(op, fpcr);
if type == FPType_SNaN || type == FPType_QNaN then

result = FPProcessNaN(type, op, fpcr);
else

if IsZero(exp) then // Zero and denormals
result = sign:max_exp:frac;

else // Infinities and normals
result = sign:NOT(exp):frac;

return result;

Shared Pseudocode Functions Page 1580

Library pseudocode for shared/functions/float/fpround/FPRound

Shared Pseudocode Functions Page 1581

// FPRound()
// =========
// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
fpcr.AHP = '0';
return FPRoundBase(op, fpcr, rounding);

// Convert a real number OP into an N-bit floating-point value using the
// supplied rounding mode RMODE.

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding)
assert N IN {16,32,64};
assert op != 0.0;
assert rounding != FPRounding_TIEAWAY;
bits(N) result;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then

minimum_exp = -14; E = 5; F = 10;
elsif N == 32 then

minimum_exp = -126; E = 8; F = 23;
else // N == 64

minimum_exp = -1022; E = 11; F = 52;

// Split value into sign, unrounded mantissa and exponent.
if op < 0.0 then

sign = '1'; mantissa = -op;
else

sign = '0'; mantissa = op;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Deal with flush-to-zero.
if ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) && exponent < minimum_exp then

// Flush-to-zero never generates a trapped exception
if UsingAArch32() then

FPSCR.UFC = '1';
else

FPSR.UFC = '1';
return FPZero(sign);

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);
if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
error = mantissa * 2.0^F - Real(int_mant);

// Underflow occurs if exponent is too small before rounding, and result is inexact or
// the Underflow exception is trapped.
if biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then

FPProcessException(FPExc_Underflow, fpcr);

// Round result according to rounding mode.
case rounding of

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
overflow_to_inf = TRUE;

when FPRounding_POSINF
round_up = (error != 0.0 && sign == '0');
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
round_up = (error != 0.0 && sign == '1');

Shared Pseudocode Functions Page 1582

overflow_to_inf = (sign == '1');
when FPRounding_ZERO, FPRounding_ODD

round_up = FALSE;
overflow_to_inf = FALSE;

if round_up then
int_mant = int_mant + 1;
if int_mant == 2^F then // Rounded up from denormalized to normalized

biased_exp = 1;
if int_mant == 2^(F+1) then // Rounded up to next exponent

biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;

// Handle rounding to odd aka Von Neumann rounding
if error != 0.0 && rounding == FPRounding_ODD then

int_mant<0> = '1';

// Deal with overflow and generate result.
if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision

if biased_exp >= 2^E - 1 then
result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
FPProcessException(FPExc_Overflow, fpcr);
error = 1.0; // Ensure that an Inexact exception occurs

else
result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;

else // Alternative half precision
if biased_exp >= 2^E then

result = sign : Ones(N-1);
FPProcessException(FPExc_InvalidOp, fpcr);
error = 0.0; // Ensure that an Inexact exception does not occur

else
result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;

// Deal with Inexact exception.
if error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

// FPRound()
// =========

bits(N) FPRound(real op, FPCRType fpcr)
return FPRound(op, fpcr, FPRoundingMode(fpcr));

Library pseudocode for shared/functions/float/fpround/FPRoundCV

// FPRoundCV()
// ===========
// Used for FP <-> FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

bits(N) FPRoundCV(real op, FPCRType fpcr, FPRounding rounding)
fpcr.FZ16 = '0';
return FPRoundBase(op, fpcr, rounding);

Library pseudocode for shared/functions/float/fprounding/FPRounding

enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
FPRounding_NEGINF, FPRounding_ZERO,
FPRounding_TIEAWAY, FPRounding_ODD};

Shared Pseudocode Functions Page 1583

Library pseudocode for shared/functions/float/fproundingmode/FPRoundingMode

// FPRoundingMode()
// ================

// Return the current floating-point rounding mode.

FPRounding FPRoundingMode(FPCRType fpcr)
return FPDecodeRounding(fpcr.RMode);

Library pseudocode for shared/functions/float/fproundint/FPRoundInt

// FPRoundInt()
// ============

// Round OP to nearest integral floating point value using rounding mode ROUNDING.
// If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to OP.

bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)
assert rounding != FPRounding_ODD;
assert N IN {16,32,64};

// Unpack using FPCR to determine if subnormals are flushed-to-zero
(type,sign,value) = FPUnpack(op, fpcr);

if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, op, fpcr);

elsif type == FPType_Infinity then
result = FPInfinity(sign);

elsif type == FPType_Zero then
result = FPZero(sign);

else
// extract integer component
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment
case rounding of

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));

when FPRounding_POSINF
round_up = (error != 0.0);

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = (error != 0.0 && int_result < 0);

when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Convert integer value into an equivalent real value
real_result = Real(int_result);

// Re-encode as a floating-point value, result is always exact
if real_result == 0.0 then

result = FPZero(sign);
else

result = FPRound(real_result, fpcr, FPRounding_ZERO);

// Generate inexact exceptions
if error != 0.0 && exact then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 1584

Library pseudocode for shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

// FPRSqrtEstimate()
// =================

bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)
assert N IN {16,32,64};
(type,sign,value) = FPUnpack(operand, fpcr);
if type == FPType_SNaN || type == FPType_QNaN then

result = FPProcessNaN(type, operand, fpcr);
elsif type == FPType_Zero then

result = FPInfinity(sign);
FPProcessException(FPExc_DivideByZero, fpcr);

elsif sign == '1' then
result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

elsif type == FPType_Infinity then
result = FPZero('0');

else
// Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
// evenness or oddness of the exponent unchanged, and calculate result exponent.
// Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
// biased version of -1 or -2, fraction = original fraction extended with zeros.

case N of
when 16

fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);

when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);

when 64
fraction = operand<51:0>;
exp = UInt(operand<62:52>);

if exp == 0 then
while fraction<51> == 0 do

fraction = fraction<50:0> : '0';
exp = exp - 1;

fraction = fraction<50:0> : '0';

if exp<0> == '0' then
scaled = UInt('1':fraction<51:44>);

else
scaled = UInt('01':fraction<51:45>);

case N of
when 16 result_exp = (44 - exp) DIV 2;
when 32 result_exp = (380 - exp) DIV 2;
when 64 result_exp = (3068 - exp) DIV 2;

estimate = RecipSqrtEstimate(scaled);

// estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
// Convert to scaled floating point result with copied sign bit and high-order
// fraction bits, and exponent calculated above.
case N of

when 16 result = '0' : result_exp<N-12:0> : estimate<7:0>:Zeros(2);
when 32 result = '0' : result_exp<N-25:0> : estimate<7:0>:Zeros(15);
when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

return result;

Shared Pseudocode Functions Page 1585

Library pseudocode for shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

// Compute estimate of reciprocal square root of 9-bit fixed-point number
//
// a is in range 128 .. 511 representing a number in the range 0.25 <= x < 1.0.
// result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.

integer RecipSqrtEstimate(integer a)
assert 128 <= a && a < 512;
if a < 256 then // 0.25 .. 0.5

a = a*2+1; // a in units of 1/512 rounded to nearest
else // 0.5 .. 1.0

a = (a >> 1) << 1; // discard bottom bit
a = (a+1)*2; // a in units of 1/256 rounded to nearest

integer b = 512;
while a*(b+1)*(b+1) < 2^28 do

b = b+1;
// b = largest b such that b < 2^14 / sqrt(a) do
r = (b+1) DIV 2; // round to nearest
assert 256 <= r && r < 512;
return r;

Library pseudocode for shared/functions/float/fpsqrt/FPSqrt

// FPSqrt()
// ========

bits(N) FPSqrt(bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};
(type,sign,value) = FPUnpack(op, fpcr);
if type == FPType_SNaN || type == FPType_QNaN then

result = FPProcessNaN(type, op, fpcr);
elsif type == FPType_Zero then

result = FPZero(sign);
elsif type == FPType_Infinity && sign == '0' then

result = FPInfinity(sign);
elsif sign == '1' then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

else
result = FPRound(Sqrt(value), fpcr);

return result;

Shared Pseudocode Functions Page 1586

Library pseudocode for shared/functions/float/fpsub/FPSub

// FPSub()
// =======

bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == sign2 then

result = FPDefaultNaN();
FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0');

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1');

elsif zero1 && zero2 && sign1 == NOT(sign2) then
result = FPZero(sign1);

else
result_value = value1 - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign);

else
result = FPRound(result_value, fpcr, rounding);

return result;

Library pseudocode for shared/functions/float/fpthree/FPThree

// FPThree()
// =========

bits(N) FPThree(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
exp = '1':Zeros(E-1);
frac = '1':Zeros(F-1);
return sign : exp : frac;

Shared Pseudocode Functions Page 1587

Library pseudocode for shared/functions/float/fptofixed/FPToFixed

// FPToFixed()
// ===========

// Convert N-bit precision floating point OP to M-bit fixed point with
// FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
assert N IN {16,32,64};
assert M IN {16,32,64};
assert fbits >= 0;
assert rounding != FPRounding_ODD;

// Unpack using fpcr to determine if subnormals are flushed-to-zero
(type,sign,value) = FPUnpack(op, fpcr);

// If NaN, set cumulative flag or take exception
if type == FPType_SNaN || type == FPType_QNaN then

FPProcessException(FPExc_InvalidOp, fpcr);

// Scale by fractional bits and produce integer rounded towards minus-infinity
value = value * 2.0^fbits;
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment
case rounding of

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));

when FPRounding_POSINF
round_up = (error != 0.0);

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = (error != 0.0 && int_result < 0);

when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Generate saturated result and exceptions
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then

FPProcessException(FPExc_InvalidOp, fpcr);
elsif error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 1588

Library pseudocode for shared/functions/float/fptofixedjs/FPToFixedJS

// FPToFixedJS()
// =============

// Converts a double precision floating point input value
// to a signed integer, with rounding to zero.

bits(N) FPToFixedJS(bits(M) op, FPCRType fpcr, boolean Is64)

assert M == 64 && N == 32;

// Unpack using fpcr to determine if subnormals are flushed-to-zero
(type,sign,value) = FPUnpack(op, fpcr);

Z = '1';
// If NaN, set cumulative flag or take exception
if type == FPType_SNaN || type == FPType_QNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
Z = '0';

int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment

round_it_up = (error != 0.0 && int_result < 0);
if round_it_up then int_result = int_result + 1;

if int_result < 0 then
result = int_result - 2^32*RoundUp(Real(int_result)/Real(2^32));

else
result = int_result - 2^32*RoundDown(Real(int_result)/Real(2^32));

// Generate exceptions
if int_result < -(2^31) || int_result > (2^31)-1 then

FPProcessException(FPExc_InvalidOp, fpcr);
Z = '0';

elsif error != 0.0 then
FPProcessException(FPExc_Inexact, fpcr);
Z = '0';

if sign == '1'&& value == 0.0 then
Z = '0';

if type == FPType_Infinity then result = 0;

if Is64 then
PSTATE.<N,Z,C,V> = '0':Z:'00';

else
FPSCR<31:28> = '0':Z:'00';

return result<31:0>;

Library pseudocode for shared/functions/float/fptwo/FPTwo

// FPTwo()
// =======

bits(N) FPTwo(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
exp = '1':Zeros(E-1);
frac = Zeros(F);
return sign : exp : frac;

Shared Pseudocode Functions Page 1589

Library pseudocode for shared/functions/float/fptype/FPType

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity,
FPType_QNaN, FPType_SNaN};

Library pseudocode for shared/functions/float/fpunpack/FPUnpack

// FPUnpack()
// ==========
//
// Used by data processing and int/fixed <-> FP conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

(FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
fpcr.AHP = '0';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
return (fp_type, sign, value);

Shared Pseudocode Functions Page 1590

Library pseudocode for shared/functions/float/fpunpack/FPUnpackBase

Shared Pseudocode Functions Page 1591

// FPUnpackBase()
// ==============
//
// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

(FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr)
assert N IN {16,32,64};

if N == 16 then
sign = fpval<15>;
exp16 = fpval<14:10>;
frac16 = fpval<9:0>;
if IsZero(exp16) then

// Produce zero if value is zero or flush-to-zero is selected
if IsZero(frac16) || fpcr.FZ16 == '1' then

type = FPType_Zero; value = 0.0;
else

type = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format

if IsZero(frac16) then
type = FPType_Infinity; value = 2.0^1000000;

else
type = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
type = FPType_Nonzero;
value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

elsif N == 32 then

sign = fpval<31>;
exp32 = fpval<30:23>;
frac32 = fpval<22:0>;
if IsZero(exp32) then

// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac32) || fpcr.FZ == '1' then

type = FPType_Zero; value = 0.0;
if !IsZero(frac32) then // Denormalized input flushed to zero

FPProcessException(FPExc_InputDenorm, fpcr);
else

type = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
elsif IsOnes(exp32) then

if IsZero(frac32) then
type = FPType_Infinity; value = 2.0^1000000;

else
type = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
type = FPType_Nonzero;
value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

else // N == 64

sign = fpval<63>;
exp64 = fpval<62:52>;
frac64 = fpval<51:0>;
if IsZero(exp64) then

// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac64) || fpcr.FZ == '1' then

type = FPType_Zero; value = 0.0;
if !IsZero(frac64) then // Denormalized input flushed to zero

FPProcessException(FPExc_InputDenorm, fpcr);
else

Shared Pseudocode Functions Page 1592

type = FPType_Nonzero; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
elsif IsOnes(exp64) then

if IsZero(frac64) then
type = FPType_Infinity; value = 2.0^1000000;

else
type = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
type = FPType_Nonzero;
value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

if sign == '1' then value = -value;
return (type, sign, value);

Library pseudocode for shared/functions/float/fpunpack/FPUnpackCV

// FPUnpackCV()
// ============
//
// Used for FP <-> FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

(FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr)
fpcr.FZ16 = '0';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
return (fp_type, sign, value);

Library pseudocode for shared/functions/float/fpzero/FPZero

// FPZero()
// ========

bits(N) FPZero(bit sign)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
exp = Zeros(E);
frac = Zeros(F);
return sign : exp : frac;

Library pseudocode for shared/functions/float/vfpexpandimm/VFPExpandImm

// VFPExpandImm()
// ==============

bits(N) VFPExpandImm(bits(8) imm8)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - E - 1;
sign = imm8<7>;
exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
frac = imm8<3:0>:Zeros(F-4);
return sign : exp : frac;

Shared Pseudocode Functions Page 1593

Library pseudocode for shared/functions/integer/AddWithCarry

// AddWithCarry()
// ==============
// Integer addition with carry input, returning result and NZCV flags

(bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
bit n = result<N-1>;
bit z = if IsZero(result) then '1' else '0';
bit c = if UInt(result) == unsigned_sum then '0' else '1';
bit v = if SInt(result) == signed_sum then '0' else '1';
return (result, n:z:c:v);

Library pseudocode for shared/functions/memory/AArch64.BranchAddr

// AArch64.BranchAddr()
// ====================
// Return the virtual address with tag bits removed for storing to the program counter.

bits(64) AArch64.BranchAddr(bits(64) vaddress)
assert !UsingAArch32();
msbit = AddrTop(vaddress, TRUE, PSTATE.EL);
if msbit == 63 then

return vaddress;
elsif (PSTATE.EL IN {EL0, EL1} || IsInHost()) && vaddress<msbit> == '1' then

return SignExtend(vaddress<msbit:0>);
else

return ZeroExtend(vaddress<msbit:0>);

Library pseudocode for shared/functions/memory/AccType

enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal loads and stores
AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
AccType_ATOMIC, AccType_ATOMICRW, // Atomic loads and stores
AccType_ORDERED, AccType_ORDEREDRW, // Load-Acquire and Store-Release
AccType_LIMITEDORDERED, // Load-LOAcquire and Store-LORelease
AccType_UNPRIV, // Load and store unprivileged
AccType_IFETCH, // Instruction fetch
AccType_PTW, // Page table walk
// Other operations
AccType_DC, // Data cache maintenance
AccType_IC, // Instruction cache maintenance
AccType_DCZVA, // DC ZVA instructions
AccType_AT}; // Address translation

Library pseudocode for shared/functions/memory/AccessDescriptor

type AccessDescriptor is (
AccType acctype,
boolean page_table_walk,
boolean secondstage,
boolean s2fs1walk,
integer level

)

Shared Pseudocode Functions Page 1594

Library pseudocode for shared/functions/memory/AddrTop

// AddrTop()
// =========
// Return the MSB number of a virtual address in the stage 1 translation regime for "el".
// If EL1 is using AArch64 then addresses from EL0 using AArch32 are zero-extended to 64 bits.

integer AddrTop(bits(64) address, boolean IsInstr, bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
if ELUsingAArch32(regime) then

// AArch32 translation regime.
return 31;

else
// AArch64 translation regime.
case regime of

when EL1
tbi = (if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0);
if HavePACExt() then

tbid = if address<55> == '1' then TCR_EL1.TBID1 else TCR_EL1.TBID0;
when EL2

if HaveVirtHostExt() && ELIsInHost(el) then
tbi = (if address<55> == '1' then TCR_EL2.TBI1 else TCR_EL2.TBI0);
if HavePACExt() then

tbid = if address<55> == '1' then TCR_EL2.TBID1 else TCR_EL2.TBID0;
else

tbi = TCR_EL2.TBI;
if HavePACExt() then tbid = TCR_EL2.TBID;

when EL3
tbi = TCR_EL3.TBI;
if HavePACExt() then tbid = TCR_EL3.TBID;

return (if tbi == '1' && (!HavePACExt() || tbid == '0' || !IsInstr) then 55 else 63);

Library pseudocode for shared/functions/memory/AddressDescriptor

type AddressDescriptor is (
FaultRecord fault, // fault.type indicates whether the address is valid
MemoryAttributes memattrs,
FullAddress paddress,
bits(64) vaddress

)

Library pseudocode for shared/functions/memory/Allocation

constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate

Library pseudocode for shared/functions/memory/BigEndian

// BigEndian()
// ===========

boolean BigEndian()
boolean bigend;
if UsingAArch32() then

bigend = (PSTATE.E != '0');
elsif PSTATE.EL == EL0 then

bigend = (SCTLR[].E0E != '0');
else

bigend = (SCTLR[].EE != '0');
return bigend;

Shared Pseudocode Functions Page 1595

Library pseudocode for shared/functions/memory/BigEndianReverse

// BigEndianReverse()
// ==================

bits(width) BigEndianReverse (bits(width) value)
assert width IN {8, 16, 32, 64, 128};
integer half = width DIV 2;
if width == 8 then return value;
return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

Library pseudocode for shared/functions/memory/Cacheability

constant bits(2) MemAttr_NC = '00'; // Non-cacheable
constant bits(2) MemAttr_WT = '10'; // Write-through
constant bits(2) MemAttr_WB = '11'; // Write-back

Library pseudocode for shared/functions/memory/CreateAccessDescriptor

// CreateAccessDescriptor()
// ========================

AccessDescriptor CreateAccessDescriptor(AccType acctype)
AccessDescriptor accdesc;
accdesc.acctype = acctype;
accdesc.page_table_walk = FALSE;
return accdesc;

Library pseudocode for shared/functions/memory/CreateAccessDescriptorPTW

// CreateAccessDescriptorPTW()
// ===========================

AccessDescriptor CreateAccessDescriptorPTW(AccType acctype, boolean secondstage,
boolean s2fs1walk, integer level)

AccessDescriptor accdesc;
accdesc.acctype = acctype;
accdesc.page_table_walk = TRUE;
accdesc.secondstage = s2fs1walk;
accdesc.secondstage = secondstage;
accdesc.level = level;
return accdesc;

Library pseudocode for shared/functions/memory/DataMemoryBarrier

DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

Library pseudocode for shared/functions/memory/DataSynchronizationBarrier

DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types);

Library pseudocode for shared/functions/memory/DescriptorUpdate

type DescriptorUpdate is (
boolean AF, // AF needs to be set
boolean AP, // AP[2] / S2AP[2] will be modified
AddressDescriptor descaddr // Descriptor to be updated

)

Library pseudocode for shared/functions/memory/DeviceType

enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

Shared Pseudocode Functions Page 1596

Library pseudocode for shared/functions/memory/Fault

enumeration Fault {Fault_None,
Fault_AccessFlag,
Fault_Alignment,
Fault_Background,
Fault_Domain,
Fault_Permission,
Fault_Translation,
Fault_AddressSize,
Fault_SyncExternal,
Fault_SyncExternalOnWalk,
Fault_SyncParity,
Fault_SyncParityOnWalk,
Fault_AsyncParity,
Fault_AsyncExternal,
Fault_Debug,
Fault_TLBConflict,
Fault_Lockdown,
Fault_Exclusive,
Fault_ICacheMaint};

Library pseudocode for shared/functions/memory/FaultRecord

type FaultRecord is (Fault type, // Fault Status
AccType acctype, // Type of access that faulted
bits(52) ipaddress, // Intermediate physical address
boolean s2fs1walk, // Is on a Stage 1 page table walk
boolean write, // TRUE for a write, FALSE for a read
integer level, // For translation, access flag and permission faults
bit extflag, // IMPLEMENTATION DEFINED syndrome for external aborts
boolean secondstage, // Is a Stage 2 abort
bits(4) domain, // Domain number, AArch32 only
bits(2) errortype, // [ARMv8.2 RAS] AArch32 AET or AArch64 SET
bits(4) debugmoe) // Debug method of entry, from AArch32 only

Library pseudocode for shared/functions/memory/FullAddress

type FullAddress is (
bits(52) physicaladdress,
bit NS // '0' = Secure, '1' = Non-secure

)

Library pseudocode for shared/functions/memory/Hint_Prefetch

// Signals the memory system that memory accesses of type HINT to or from the specified address are
// likely in the near future. The memory system may take some action to speed up the memory
// accesses when they do occur, such as pre-loading the the specified address into one or more
// caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
// stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
// synchronous abort due to Alignment or Translation faults and the like. Its only effect on
// software-visiblestate should be on caches and TLBs associated with address, which must be
// accessable by reads, writes or execution, as defined in the translation regime of the current
// Exception level. It is guaranteed not to access Device memory.
// A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
// instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
// memory location that cannot be accessed by instruction fetches.
Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

Library pseudocode for shared/functions/memory/MBReqDomain

enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

Shared Pseudocode Functions Page 1597

Library pseudocode for shared/functions/memory/MBReqTypes

enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

Library pseudocode for shared/functions/memory/MemAttrHints

type MemAttrHints is (
bits(2) attrs, // The possible encodings for each attributes field are as below
bits(2) hints, // The possible encodings for the hints are below
boolean transient

)

Library pseudocode for shared/functions/memory/MemType

enumeration MemType {MemType_Normal, MemType_Device};

Library pseudocode for shared/functions/memory/MemoryAttributes

type MemoryAttributes is (
MemType type,

DeviceType device, // For Device memory types
MemAttrHints inner, // Inner hints and attributes
MemAttrHints outer, // Outer hints and attributes

boolean shareable,
boolean outershareable

)

Library pseudocode for shared/functions/memory/Permissions

type Permissions is (
bits(3) ap, // Access permission bits
bit xn, // Execute-never bit
bit xxn, // [ARMv8.2] Extended execute-never bit for stage 2
bit pxn // Privileged execute-never bit

)

Library pseudocode for shared/functions/memory/PrefetchHint

enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

Library pseudocode for shared/functions/memory/TLBRecord

type TLBRecord is (
Permissions perms,
bit nG, // '0' = Global, '1' = not Global
bits(4) domain, // AArch32 only
boolean contiguous, // Contiguous bit from page table
integer level, // AArch32 Short-descriptort format: Indicates Section/Page
integer blocksize, // Describes size of memory translated in KBytes
DescriptorUpdate descupdate, // [ARMv8.1] Context for h/w update of table descriptor
bit CnP, // [ARMv8.2] TLB entry can be shared between different PEs
AddressDescriptor addrdesc

)

Shared Pseudocode Functions Page 1598

Library pseudocode for shared/functions/memory/_Mem

// These two _Mem[] accessors are the hardware operations which perform single-copy atomic,
// aligned, little-endian memory accesses of size bytes from/to the underlying physical
// memory array of bytes.
//
// The functions address the array using desc.paddress which supplies:
// * A 52-bit physical address
// * A single NS bit to select between Secure and Non-secure parts of the array.
//
// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// register in the event of an external abort.
bits(8*size) _Mem[AddressDescriptor desc, integer size, AccessDescriptor accdesc];

_Mem[AddressDescriptor desc, integer size, AccessDescriptor accdesc] = bits(8*size) value;

Library pseudocode for shared/functions/registers/BranchTo

// BranchTo()
// ==========

// Set program counter to a new address, which might include a tag in the top eight bits,
// with a branch reason hint for possible use by hardware fetching the next instruction.

BranchTo(bits(N) target, BranchType branch_type)
Hint_Branch(branch_type);
if N == 32 then

assert UsingAArch32();
_PC = ZeroExtend(target);

else
assert N == 64 && !UsingAArch32();
_PC = AArch64.BranchAddr(target<63:0>);

return;

Library pseudocode for shared/functions/registers/BranchToAddr

// BranchToAddr()
// ==============

// Set program counter to a new address, which does not include a tag in the top eight bits,
// with a branch reason hint for possible use by hardware fetching the next instruction.

BranchToAddr(bits(N) target, BranchType branch_type)
Hint_Branch(branch_type);
if N == 32 then

assert UsingAArch32();
_PC = ZeroExtend(target);

else
assert N == 64 && !UsingAArch32();
_PC = target<63:0>;

return;

Library pseudocode for shared/functions/registers/BranchType

enumeration BranchType {BranchType_CALL, BranchType_ERET, BranchType_DBGEXIT,
BranchType_RET, BranchType_JMP, BranchType_EXCEPTION,
BranchType_UNKNOWN};

Library pseudocode for shared/functions/registers/Hint_Branch

// Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
// the next instruction.
Hint_Branch(BranchType hint);

Shared Pseudocode Functions Page 1599

Library pseudocode for shared/functions/registers/NextInstrAddr

// Return address of the next instruction.
bits(N) NextInstrAddr();

Library pseudocode for shared/functions/registers/ResetExternalDebugRegisters

// Reset the External Debug registers in the Core power domain.
ResetExternalDebugRegisters(boolean cold_reset);

Library pseudocode for shared/functions/registers/ThisInstrAddr

// ThisInstrAddr()
// ===============
// Return address of the current instruction.

bits(N) ThisInstrAddr()
assert N == 64 || (N == 32 && UsingAArch32());
return _PC<N-1:0>;

Library pseudocode for shared/functions/registers/_PC

bits(64) _PC;

Library pseudocode for shared/functions/registers/_R

array bits(64) _R[0..30];

Library pseudocode for shared/functions/registers/_V

array bits(128) _V[0..31];

Shared Pseudocode Functions Page 1600

Library pseudocode for shared/functions/sysregisters/SPSR

// SPSR[] - non-assignment form
// ============================

bits(32) SPSR[]
bits(32) result;
if UsingAArch32() then

case PSTATE.M of
when M32_FIQ result = SPSR_fiq;
when M32_IRQ result = SPSR_irq;
when M32_Svc result = SPSR_svc;
when M32_Monitor result = SPSR_mon;
when M32_Abort result = SPSR_abt;
when M32_Hyp result = SPSR_hyp;
when M32_Undef result = SPSR_und;
otherwise Unreachable();

else
case PSTATE.EL of

when EL1 result = SPSR_EL1;
when EL2 result = SPSR_EL2;
when EL3 result = SPSR_EL3;
otherwise Unreachable();

return result;

// SPSR[] - assignment form
// ========================

SPSR[] = bits(32) value
if UsingAArch32() then

case PSTATE.M of
when M32_FIQ SPSR_fiq = value;
when M32_IRQ SPSR_irq = value;
when M32_Svc SPSR_svc = value;
when M32_Monitor SPSR_mon = value;
when M32_Abort SPSR_abt = value;
when M32_Hyp SPSR_hyp = value;
when M32_Undef SPSR_und = value;
otherwise Unreachable();

else
case PSTATE.EL of

when EL1 SPSR_EL1 = value;
when EL2 SPSR_EL2 = value;
when EL3 SPSR_EL3 = value;
otherwise Unreachable();

return;

Library pseudocode for shared/functions/system/ArchVersion

enumeration ArchVersion {
ARMv8p0
, ARMv8p1
, ARMv8p2
, ARMv8p3

};

Library pseudocode for shared/functions/system/ClearEventRegister

// ClearEventRegister()
// ====================
// Clear the Event Register of this PE

ClearEventRegister()
EventRegister = '0';
return;

Shared Pseudocode Functions Page 1601

Library pseudocode for shared/functions/system/ClearPendingPhysicalSError

// Clear a pending physical SError interrupt
ClearPendingPhysicalSError();

Library pseudocode for shared/functions/system/ConditionHolds

// ConditionHolds()
// ================

// Return TRUE iff COND currently holds

boolean ConditionHolds(bits(4) cond)
// Evaluate base condition.
case cond<3:1> of

when '000' result = (PSTATE.Z == '1'); // EQ or NE
when '001' result = (PSTATE.C == '1'); // CS or CC
when '010' result = (PSTATE.N == '1'); // MI or PL
when '011' result = (PSTATE.V == '1'); // VS or VC
when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
when '111' result = TRUE; // AL

// Condition flag values in the set '111x' indicate always true
// Otherwise, invert condition if necessary.
if cond<0> == '1' && cond != '1111' then

result = !result;

return result;

Library pseudocode for shared/functions/system/CurrentInstrSet

// CurrentInstrSet()
// =================

InstrSet CurrentInstrSet()

if UsingAArch32() then
result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
// PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.

else
result = InstrSet_A64;

return result;

Library pseudocode for shared/functions/system/CurrentPL

// CurrentPL()
// ===========

PrivilegeLevel CurrentPL()
return PLOfEL(PSTATE.EL);

Library pseudocode for shared/functions/system/EL0

constant bits(2) EL3 = '11';
constant bits(2) EL2 = '10';
constant bits(2) EL1 = '01';
constant bits(2) EL0 = '00';

Shared Pseudocode Functions Page 1602

Library pseudocode for shared/functions/system/ELFromM32

// ELFromM32()
// ===========

(boolean,bits(2)) ELFromM32(bits(5) mode)
// Convert an AArch32 mode encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
// and the current value of SCR.NS/SCR_EL3.NS.
// 'EL' is the Exception level decoded from 'mode'.
bits(2) el;
boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation
case mode of

when M32_Monitor
el = EL3;

when M32_Hyp
el = EL2;
valid = valid && (!HaveEL(EL3) || SCR_GEN[].NS == '1');

when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
// If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
// state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
// AArch64, then these modes are EL1 modes.
el = (if HaveEL(EL3) && HighestELUsingAArch32() && SCR.NS == '0' then EL3 else EL1);

when M32_User
el = EL0;

otherwise
valid = FALSE; // Passed an illegal mode value

if !valid then el = bits(2) UNKNOWN;
return (valid, el);

Library pseudocode for shared/functions/system/ELFromSPSR

// ELFromSPSR()
// ============

// Convert an SPSR value encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
// 'EL' is the Exception level decoded from 'spsr'.

(boolean,bits(2)) ELFromSPSR(bits(32) spsr)
if spsr<4> == '0' then // AArch64 state

el = spsr<3:2>;
if HighestELUsingAArch32() then // No AArch64 support

valid = FALSE;
elsif !HaveEL(el) then // Exception level not implemented

valid = FALSE;
elsif spsr<1> == '1' then // M[1] must be 0

valid = FALSE;
elsif el == EL0 && spsr<0> == '1' then // for EL0, M[0] must be 0

valid = FALSE;
elsif el == EL2 && HaveEL(EL3) && SCR_EL3.NS == '0' then

valid = FALSE; // EL2 only valid in Non-secure state
else

valid = TRUE;
elsif !HaveAnyAArch32() then // AArch32 not supported

valid = FALSE;
else // AArch32 state

(valid, el) = ELFromM32(spsr<4:0>);
if !valid then el = bits(2) UNKNOWN;
return (valid,el);

Shared Pseudocode Functions Page 1603

Library pseudocode for shared/functions/system/ELIsInHost

// ELIsInHost()
// ============
// Returns TRUE if HaveVirtHostExt() is TRUE and executing at 'el' would mean be executing within
// an EL2 Host OS or an EL0 application of a Host OS in Non-secure state using AArch64 with
// HCR_EL2.E2H set to 1, and FALSE otherwise.

boolean ELIsInHost(bits(2) el)
return (!IsSecureBelowEL3() && HaveVirtHostExt() && !ELUsingAArch32(EL2) &&

HCR_EL2.E2H == '1' && (el == EL2 || (el == EL0 && HCR_EL2.TGE == '1')));

Library pseudocode for shared/functions/system/ELStateUsingAArch32

// ELStateUsingAArch32()
// =====================

boolean ELStateUsingAArch32(bits(2) el, boolean secure)
// See ELStateUsingAArch32K() for description. Must only be called in circumstances where
// result is valid (typically, that means 'el IN {EL1,EL2,EL3}').
(known, aarch32) = ELStateUsingAArch32K(el, secure);
assert known;
return aarch32;

Library pseudocode for shared/functions/system/ELStateUsingAArch32K

// ELStateUsingAArch32K()
// ======================

(boolean,boolean) ELStateUsingAArch32K(bits(2) el, boolean secure)
// Returns (known, aarch32):
// 'known' is FALSE for EL0 if the current Exception level is not EL0 and EL1 is
// using AArch64, since it cannot determine the state of EL0; TRUE otherwise.
// 'aarch32' is TRUE if the specified Exception level is using AArch32; FALSE otherwise.
boolean aarch32;
known = TRUE;
if !HaveAArch32EL(el) then

aarch32 = FALSE; // Exception level is using AArch64
elsif HighestELUsingAArch32() then

aarch32 = TRUE; // All levels are using AArch32
else

aarch32_below_el3 = HaveEL(EL3) && SCR_EL3.RW == '0';

aarch32_at_el1 = (aarch32_below_el3 || (HaveEL(EL2) && !secure && HCR_EL2.RW == '0' &&
!(HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' && HaveVirtHostExt())));

if el == EL0 && !aarch32_at_el1 then // Only know if EL0 using AArch32 from PSTATE
if PSTATE.EL == EL0 then

aarch32 = PSTATE.nRW == '1'; // EL0 controlled by PSTATE
else

known = FALSE; // EL0 state is UNKNOWN
else

aarch32 = (aarch32_below_el3 && el != EL3) || (aarch32_at_el1 && el IN {EL1,EL0});
if !known then aarch32 = boolean UNKNOWN;
return (known, aarch32);

Library pseudocode for shared/functions/system/ELUsingAArch32

// ELUsingAArch32()
// ================

boolean ELUsingAArch32(bits(2) el)
return ELStateUsingAArch32(el, IsSecureBelowEL3());

Shared Pseudocode Functions Page 1604

Library pseudocode for shared/functions/system/ELUsingAArch32K

// ELUsingAArch32K()
// =================

(boolean,boolean) ELUsingAArch32K(bits(2) el)
return ELStateUsingAArch32K(el, IsSecureBelowEL3());

Library pseudocode for shared/functions/system/EndOfInstruction

// Terminate processing of the current instruction.
EndOfInstruction();

Library pseudocode for shared/functions/system/EnterLowPowerState

// PE enters a low-power state
EnterLowPowerState();

Library pseudocode for shared/functions/system/ErrorSynchronizationBarrier

// Perform an Error Synchronization Barrier operation
ErrorSynchronizationBarrier(MBReqDomain domain, MBReqTypes types);

Library pseudocode for shared/functions/system/EventRegister

bits(1) EventRegister;

Library pseudocode for shared/functions/system/GetPSRFromPSTATE

// GetPSRFromPSTATE()
// ==================
// Return a PSR value which represents the current PSTATE

bits(32) GetPSRFromPSTATE()
bits(32) spsr = Zeros();
spsr<31:28> = PSTATE.<N,Z,C,V>;
if HavePANExt() then spsr<22> = PSTATE.PAN;
spsr<21> = PSTATE.SS;
spsr<20> = PSTATE.IL;
if PSTATE.nRW == '1' then // AArch32 state

spsr<27> = PSTATE.Q;
spsr<26:25> = PSTATE.IT<1:0>;
if HaveUAOExt() then spsr<23> = '0';
spsr<19:16> = PSTATE.GE;
spsr<15:10> = PSTATE.IT<7:2>;
spsr<9> = PSTATE.E;
spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
spsr<5> = PSTATE.T;
assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
spsr<4:0> = PSTATE.M;

else // AArch64 state
if HaveUAOExt() then spsr<23> = PSTATE.UAO;
spsr<9:6> = PSTATE.<D,A,I,F>;
spsr<4> = PSTATE.nRW;
spsr<3:2> = PSTATE.EL;
spsr<0> = PSTATE.SP;

return spsr;

Shared Pseudocode Functions Page 1605

Library pseudocode for shared/functions/system/HasArchVersion

// HasArchVersion()
// ================

// Return TRUE if the implemented architecture includes the extensions defined in the specified
// architecture version.

boolean HasArchVersion(ArchVersion version)
return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HaveAArch32EL

// HaveAArch32EL()
// ===============

boolean HaveAArch32EL(bits(2) el)
// Return TRUE if Exception level 'el' supports AArch32 in this implementation
if !HaveEL(el) then

return FALSE; // The Exception level is not implemented
elsif !HaveAnyAArch32() then

return FALSE; // No Exception level can use AArch32
elsif HighestELUsingAArch32() then

return TRUE; // All Exception levels are using AArch32
elsif el == HighestEL() then

return FALSE; // The highest Exception level is using AArch64
elsif el == EL0 then

return TRUE; // EL0 must support using AArch32 if any AArch32
return boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HaveAnyAArch32

// HaveAnyAArch32()
// ================
// Return TRUE if AArch32 state is supported at any Exception level

boolean HaveAnyAArch32()
return boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HaveAnyAArch64

// HaveAnyAArch64()
// ================
// Return TRUE if AArch64 state is supported at any Exception level

boolean HaveAnyAArch64()
return !HighestELUsingAArch32();

Library pseudocode for shared/functions/system/HaveEL

// HaveEL()
// ========
// Return TRUE if Exception level 'el' is supported

boolean HaveEL(bits(2) el)
if el IN {EL1,EL0} then

return TRUE; // EL1 and EL0 must exist
return boolean IMPLEMENTATION_DEFINED;

Shared Pseudocode Functions Page 1606

Library pseudocode for shared/functions/system/HaveFP16Ext

// HaveFP16Ext()
// =============
// Return TRUE if FP16 extension is supported

boolean HaveFP16Ext()
return boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/HighestEL

// HighestEL()
// ===========
// Returns the highest implemented Exception level.

bits(2) HighestEL()
if HaveEL(EL3) then

return EL3;
elsif HaveEL(EL2) then

return EL2;
else

return EL1;

Library pseudocode for shared/functions/system/HighestELUsingAArch32

// HighestELUsingAArch32()
// =======================
// Return TRUE if configured to boot into AArch32 operation

boolean HighestELUsingAArch32()
if !HaveAnyAArch32() then return FALSE;
return boolean IMPLEMENTATION_DEFINED; // e.g. CFG32SIGNAL == HIGH

Library pseudocode for shared/functions/system/Hint_Yield

Hint_Yield();

Shared Pseudocode Functions Page 1607

Library pseudocode for shared/functions/system/IllegalExceptionReturn

// IllegalExceptionReturn()
// ========================

boolean IllegalExceptionReturn(bits(32) spsr)

// Check for return:
// * To an unimplemented Exeception level.
// * To EL2 in Secure state.
// * To EL0 using AArch64 state, with SPSR.M[0]==1.
// * To AArch64 state with SPSR.M[1]==1.
// * To AArch32 state with an illegal value of SPSR.M.
(valid, target) = ELFromSPSR(spsr);
if !valid then return TRUE;

// Check for return to higher Exception level
if UInt(target) > UInt(PSTATE.EL) then return TRUE;

spsr_mode_is_aarch32 = (spsr<4> == '1');

// Check for return:
// * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
// Execution state used in the Exception level being returned to, as determined by
// the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
// * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
// SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
// * To AArch64 state from AArch32 state (should be caught by above)
(known, target_el_is_aarch32) = ELUsingAArch32K(target);
assert known || (target == EL0 && !ELUsingAArch32(EL1));
if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

// Check for illegal return from AArch32 to AArch64
if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

// Check for return to EL1 in Non-secure state when HCR.TGE is set
if HaveEL(EL2) && target == EL1 && !IsSecureBelowEL3() && HCR_EL2.TGE == '1' then return TRUE;
return FALSE;

Library pseudocode for shared/functions/system/InstrSet

enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

Library pseudocode for shared/functions/system/InstructionSynchronizationBarrier

InstructionSynchronizationBarrier();

Library pseudocode for shared/functions/system/InterruptPending

// Return TRUE if there are any pending physical or virtual interrupts, and FALSE otherwise
boolean InterruptPending();

Library pseudocode for shared/functions/system/IsEventRegisterSet

// IsEventRegisterSet()
// ====================
// Return TRUE if the Event Register of this PE is set, and FALSE otherwise

boolean IsEventRegisterSet()
return EventRegister == '1';

Shared Pseudocode Functions Page 1608

Library pseudocode for shared/functions/system/IsInHost

// IsInHost()
// ==========
// Returns TRUE if HaveVirtHostExt() is TRUE and executing within a Host OS or an EL0 application
// of a Host OS using AArch64 with HCR_EL2.E2H set to 1, and FALSE otherwise.

boolean IsInHost()
return ELIsInHost(PSTATE.EL);

Library pseudocode for shared/functions/system/IsSecure

// IsSecure()
// ==========

boolean IsSecure()
// Return TRUE if current Exception level is in Secure state.
if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then

return TRUE;
elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then

return TRUE;
return IsSecureBelowEL3();

Library pseudocode for shared/functions/system/IsSecureBelowEL3

// IsSecureBelowEL3()
// ==================

// Return TRUE if an Exception level below EL3 is in Secure state
// or would be following an exception return to that level.
//
// Differs from IsSecure in that it ignores the current EL or Mode
// in considering security state.
// That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
// exception return would pass to Secure or Non-secure state.

boolean IsSecureBelowEL3()
if HaveEL(EL3) then

return SCR_GEN[].NS == '0';
elsif HaveEL(EL2) then

return FALSE;
else

// TRUE if processor is Secure or FALSE if Non-secure;
return boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/system/Mode_Bits

constant bits(5) M32_User = '10000';
constant bits(5) M32_FIQ = '10001';
constant bits(5) M32_IRQ = '10010';
constant bits(5) M32_Svc = '10011';
constant bits(5) M32_Monitor = '10110';
constant bits(5) M32_Abort = '10111';
constant bits(5) M32_Hyp = '11010';
constant bits(5) M32_Undef = '11011';
constant bits(5) M32_System = '11111';

Shared Pseudocode Functions Page 1609

Library pseudocode for shared/functions/system/PLOfEL

// PLOfEL()
// ========

PrivilegeLevel PLOfEL(bits(2) el)
case el of

when EL3 return if HighestELUsingAArch32() then PL1 else PL3;
when EL2 return PL2;
when EL1 return PL1;
when EL0 return PL0;

Library pseudocode for shared/functions/system/PSTATE

ProcState PSTATE;

Library pseudocode for shared/functions/system/PrivilegeLevel

enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

Library pseudocode for shared/functions/system/ProcState

type ProcState is (
bits (1) N, // Negative condition flag
bits (1) Z, // Zero condition flag
bits (1) C, // Carry condition flag
bits (1) V, // oVerflow condition flag
bits (1) D, // Debug mask bit [AArch64 only]
bits (1) A, // SError interrupt mask bit
bits (1) I, // IRQ mask bit
bits (1) F, // FIQ mask bit
bits (1) PAN, // Privileged Access Never Bit [v8.1]
bits (1) UAO, // User Access Override [v8.2]
bits (1) SS, // Software step bit
bits (1) IL, // Illegal Execution state bit
bits (2) EL, // Exception Level
bits (1) nRW, // not Register Width: 0=64, 1=32
bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
bits (1) Q, // Cumulative saturation flag [AArch32 only]
bits (4) GE, // Greater than or Equal flags [AArch32 only]
bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
bits (1) E, // Endianness bit [AArch32 only]
bits (5) M // Mode field [AArch32 only]

)

Shared Pseudocode Functions Page 1610

Library pseudocode for shared/functions/system/RestoredITBits

// RestoredITBits()
// ================
// Get the value of PSTATE.IT to be restored on this exception return.

bits(8) RestoredITBits(bits(32) spsr)
it = spsr<15:10,26:25>;

// When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
// to zero or copied from the SPSR.
if PSTATE.IL == '1' then

if ConstrainUnpredictableBool(Unpredictable_ILZEROIT) then return '00000000';
else return it;

// The IT bits are forced to zero when they are set to a reserved value.
if !IsZero(it<7:4>) && IsZero(it<3:0>) then

return '00000000';

// The IT bits are forced to zero when returning to A32 state, or when returning to an EL
// with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then

return '00000000';
else

return it;

Library pseudocode for shared/functions/system/SCRType

type SCRType;

Library pseudocode for shared/functions/system/SCR_GEN

// SCR_GEN[]
// =========

SCRType SCR_GEN[]
// AArch32 secure & AArch64 EL3 registers are not architecturally mapped
assert HaveEL(EL3);
bits(32) r;
if HighestELUsingAArch32() then

r = SCR;
else

r = SCR_EL3;
return r;

Library pseudocode for shared/functions/system/SErrorPending

// Return TRUE if a physical SError interrupt is pending; that is, if ISR_EL1.A == 1
boolean SErrorPending();

Library pseudocode for shared/functions/system/SendEvent

// Signal an event to all PEs in a multiprocessor system to set their Event Registers.
// When a PE executes the SEV instruction, it causes this function to be executed
SendEvent();

Shared Pseudocode Functions Page 1611

Library pseudocode for shared/functions/system/SendEventLocal

// SendEventLocal()
// ================
// Set the local Event Register of this PE.
// When a PE executes the SEVL instruction, it causes this function to be executed

SendEventLocal()
EventRegister = '1';
return;

Library pseudocode for shared/functions/system/SetPSTATEFromPSR

// SetPSTATEFromPSR()
// ==================
// Set PSTATE based on a PSR value

SetPSTATEFromPSR(bits(32) spsr)

PSTATE.SS = DebugExceptionReturnSS(spsr);
if IllegalExceptionReturn(spsr) then

PSTATE.IL = '1';
else

// State that is reinstated only on a legal exception return
PSTATE.IL = spsr<20>;
if spsr<4> == '1' then // AArch32 state

AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
else // AArch64 state

PSTATE.nRW = '0';
PSTATE.EL = spsr<3:2>;
PSTATE.SP = spsr<0>;

// If PSTATE.IL is set and returning to AArch32 state, it is CONSTRAINED UNPREDICTABLE whether
// the T bit is set to zero or copied from SPSR.
if PSTATE.IL == '1' && PSTATE.nRW == '1' then

if ConstrainUnpredictableBool(Unpredictable_ILZEROT) then spsr<5> = '0';

// State that is reinstated regardless of illegal exception return
PSTATE.<N,Z,C,V> = spsr<31:28>;
if PSTATE.nRW == '1' then // AArch32 state

PSTATE.Q = spsr<27>;
PSTATE.IT = RestoredITBits(spsr);
PSTATE.GE = spsr<19:16>;
PSTATE.E = spsr<9>;
PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.D in AArch32 state
PSTATE.T = spsr<5>; // PSTATE.J is RES0

else // AArch64 state
PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state

if HavePANExt() then PSTATE.<PAN> = spsr<22>;
if HaveUAOExt() then PSTATE.UAO = spsr<23>;
return;

Library pseudocode for shared/functions/system/SynchronizeContext

SynchronizeContext();

Library pseudocode for shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

// Take any pending unmasked physical SError interrupt
TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);

Library pseudocode for shared/functions/system/TakeUnmaskedSErrorInterrupts

// Take any pending unmasked physical SError interrupt or unmasked virtual SError
// interrupt.
TakeUnmaskedSErrorInterrupts();

Shared Pseudocode Functions Page 1612

Library pseudocode for shared/functions/system/ThisInstr

bits(32) ThisInstr();

Library pseudocode for shared/functions/system/ThisInstrLength

integer ThisInstrLength();

Library pseudocode for shared/functions/system/Unreachable

Unreachable()
assert FALSE;

Library pseudocode for shared/functions/system/UsingAArch32

// UsingAArch32()
// ==============
// Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

boolean UsingAArch32()
boolean aarch32 = (PSTATE.nRW == '1');
if !HaveAnyAArch32() then assert !aarch32;
if HighestELUsingAArch32() then assert aarch32;
return aarch32;

Library pseudocode for shared/functions/system/WaitForEvent

// WaitForEvent()
// ==============
// PE suspends its operation and enters a low-power state
// if the Event Register is clear when the WFE is executed

WaitForEvent()
if EventRegister == '0' then

EnterLowPowerState();
return;

Library pseudocode for shared/functions/system/WaitForInterrupt

// WaitForInterrupt()
// ==================
// PE suspends its operation to enter a low-power state
// until a WFI wake-up event occurs or the PE is reset

WaitForInterrupt()
EnterLowPowerState();
return;

Shared Pseudocode Functions Page 1613

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictable

Shared Pseudocode Functions Page 1614

// ConstrainUnpredictable()
// ========================
// Return the appropriate Constraint result to control the caller's behavior. The return value
// is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
// (The permitted list is determined by an assert or case statement at the call site.)

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the ARMv8 Architecture Reference Manual.
// The extra argument is used here to allow this example definition. This is an example only and
// does not imply a fixed implementation of these behaviors. Indeed the intention is that it should
// be defined by each implementation, according to its implementation choices.

Constraint ConstrainUnpredictable(Unpredictable which)
case which of

when Unpredictable_WBOVERLAPLD
return Constraint_WBSUPPRESS; // return loaded value

when Unpredictable_WBOVERLAPST
return Constraint_NONE; // store pre-writeback value

when Unpredictable_LDPOVERLAP
return Constraint_UNDEF; // instruction is UNDEFINED

when Unpredictable_BASEOVERLAP
return Constraint_NONE; // use original address

when Unpredictable_DATAOVERLAP
return Constraint_NONE; // store original value

when Unpredictable_DEVPAGE2
return Constraint_FAULT; // take an alignment fault

when Unpredictable_INSTRDEVICE
return Constraint_NONE; // Do not take a fault

when Unpredictable_RESCPACR
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESMAIR
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESTEXCB
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESDACR
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESPRRR
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESVTCRS
return Constraint_UNKNOWN; // Map to UNKNOWN value

when Unpredictable_RESTnSZ
return Constraint_FORCE; // Map to the limit value

when Unpredictable_OORTnSZ
return Constraint_FORCE; // Map to the limit value

when Unpredictable_LARGEIPA
return Constraint_FORCE; // Restrict the inputsize to the PAMax value

when Unpredictable_ESRCONDPASS
return Constraint_FALSE; // Report as "AL"

when Unpredictable_ILZEROIT
return Constraint_FALSE; // Do not zero PSTATE.IT

when Unpredictable_ILZEROT
return Constraint_FALSE; // Do not zero PSTATE.T

when Unpredictable_BPVECTORCATCHPRI
return Constraint_TRUE; // Debug Vector Catch: match on 2nd halfword

when Unpredictable_VCMATCHHALF
return Constraint_FALSE; // No match

when Unpredictable_VCMATCHDAPA
return Constraint_FALSE; // No match on Data Abort or Prefetch abort

when Unpredictable_WPMASKANDBAS
return Constraint_FALSE; // Watchpoint disabled

when Unpredictable_WPBASCONTIGUOUS
return Constraint_FALSE; // Watchpoint disabled

when Unpredictable_RESWPMASK
return Constraint_DISABLED; // Watchpoint disabled

when Unpredictable_WPMASKEDBITS
return Constraint_FALSE; // Watchpoint disabled

when Unpredictable_RESBPWPCTRL
return Constraint_DISABLED; // Breakpoint/watchpoint disabled

when Unpredictable_BPNOTIMPL
return Constraint_DISABLED; // Breakpoint disabled

Shared Pseudocode Functions Page 1615

when Unpredictable_RESBPTYPE
return Constraint_DISABLED; // Breakpoint disabled

when Unpredictable_BPNOTCTXCMP
return Constraint_DISABLED; // Breakpoint disabled

when Unpredictable_BPMATCHHALF
return Constraint_FALSE; // No match

when Unpredictable_BPMISMATCHHALF
return Constraint_FALSE; // No match

when Unpredictable_RESTARTALIGNPC
return Constraint_FALSE; // Do not force alignment

when Unpredictable_RESTARTZEROUPPERPC
return Constraint_TRUE; // Force zero extension

when Unpredictable_ZEROUPPER
return Constraint_TRUE; // zero top halves of X registers

when Unpredictable_ERETZEROUPPERPC
return Constraint_TRUE; // zero top half of PC

when Unpredictable_A32FORCEALIGNPC
return Constraint_FALSE; // Do not force alignment

when Unpredictable_SMD
return Constraint_UNDEF; // disabled SMC is Unallocated

when Unpredictable_AFUPDATE // AF update for alignment or permission fault
return Constraint_TRUE;

when Unpredictable_IESBinDebug // Use SCTLR[].IESB in Debug state
return Constraint_TRUE;

when Unpredictable_CLEARERRITEZERO // Clearing sticky errors when instruction in flight
return Constraint_FALSE;

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableBits

// ConstrainUnpredictableBits()
// ============================

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
// If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
// value is always an allocated value; that is, one for which the behavior is not itself
// CONSTRAINED.

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the ARMv8 Architecture Reference Manual.
// See the NOTE on ConstrainUnpredictable() for more information.

// This is an example placeholder only and does not imply a fixed implementation of the bits part
// of the result, and may not be applicable in all cases.

(Constraint,bits(width)) ConstrainUnpredictableBits(Unpredictable which)

c = ConstrainUnpredictable(which);

if c == Constraint_UNKNOWN then
return (c, Zeros(width)); // See notes; this is an example implementation only

else
return (c, bits(width) UNKNOWN); // bits result not used

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableBool

// ConstrainUnpredictableBool()
// ============================

// This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the ARMv8 Architecture Reference Manual.
// See the NOTE on ConstrainUnpredictable() for more information.

boolean ConstrainUnpredictableBool(Unpredictable which)

c = ConstrainUnpredictable(which);
assert c IN {Constraint_TRUE, Constraint_FALSE};
return (c == Constraint_TRUE);

Shared Pseudocode Functions Page 1616

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableInteger

// ConstrainUnpredictableInteger()
// ===============================

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
// the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
// low to high, inclusive.

// NOTE: This version of the function uses an Unpredictable argument to define the call site.
// This argument does not appear in the version used in the ARMv8 Architecture Reference Manual.
// See the NOTE on ConstrainUnpredictable() for more information.

// This is an example placeholder only and does not imply a fixed implementation of the integer part
// of the result.

(Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high, Unpredictable which)

c = ConstrainUnpredictable(which);

if c == Constraint_UNKNOWN then
return (c, low); // See notes; this is an example implementation only

else
return (c, integer UNKNOWN); // integer result not used

Library pseudocode for shared/functions/unpredictable/Constraint

enumeration Constraint {// General:
Constraint_NONE, // Instruction executes with

// no change or side-effect to its described behaviour
Constraint_UNKNOWN, // Destination register has UNKNOWN value
Constraint_UNDEF, // Instruction is UNDEFINED
Constraint_UNDEFEL0, // Instruction is UNDEFINED at EL0 only
Constraint_NOP, // Instruction executes as NOP
Constraint_TRUE,
Constraint_FALSE,
Constraint_DISABLED,
Constraint_UNCOND, // Instruction executes unconditionally
Constraint_COND, // Instruction executes conditionally
Constraint_ADDITIONAL_DECODE, // Instruction executes with additional decode
// Load-store:
Constraint_WBSUPPRESS, Constraint_FAULT,
// IPA too large
Constraint_FORCE, Constraint_FORCENOSLCHECK};

Shared Pseudocode Functions Page 1617

Library pseudocode for shared/functions/unpredictable/Unpredictable

Shared Pseudocode Functions Page 1618

enumeration Unpredictable {// Writeback/transfer register overlap (load):
Unpredictable_WBOVERLAPLD,
// Writeback/transfer register overlap (store):
Unpredictable_WBOVERLAPST,
// Load Pair transfer register overlap:
Unpredictable_LDPOVERLAP,
// Store-exclusive base/status register overlap
Unpredictable_BASEOVERLAP,
// Store-exclusive data/status register overlap
Unpredictable_DATAOVERLAP,
// Load-store alignment checks:
Unpredictable_DEVPAGE2,
// Instruction fetch from Device memory
Unpredictable_INSTRDEVICE,
// Reserved CPACR value
Unpredictable_RESCPACR,
// Reserved MAIR value
Unpredictable_RESMAIR,
// Reserved TEX:C:B value
Unpredictable_RESTEXCB,
// Reserved PRRR value
Unpredictable_RESPRRR,
// Reserved DACR field
Unpredictable_RESDACR,
// Reserved VTCR.S value
Unpredictable_RESVTCRS,
// Reserved TCR.TnSZ value
Unpredictable_RESTnSZ,
// Out-of-range TCR.TnSZ value
Unpredictable_OORTnSZ,
// IPA size exceeds PA size
Unpredictable_LARGEIPA,
// Syndrome for a known-passing conditional A32 instruction
Unpredictable_ESRCONDPASS,
// Illegal State exception: zero PSTATE.IT
Unpredictable_ILZEROIT,
// Illegal State exception: zero PSTATE.T
Unpredictable_ILZEROT,
// Debug: prioritization of Vector Catch
Unpredictable_BPVECTORCATCHPRI,
// Debug Vector Catch: match on 2nd halfword
Unpredictable_VCMATCHHALF,
// Debug Vector Catch: match on Data Abort or Prefetch abort
Unpredictable_VCMATCHDAPA,
// Debug watchpoints: non-zero MASK and non-ones BAS
Unpredictable_WPMASKANDBAS,
// Debug watchpoints: non-contiguous BAS
Unpredictable_WPBASCONTIGUOUS,
// Debug watchpoints: reserved MASK
Unpredictable_RESWPMASK,
// Debug watchpoints: non-zero MASKed bits of address
Unpredictable_WPMASKEDBITS,
// Debug breakpoints and watchpoints: reserved control bits
Unpredictable_RESBPWPCTRL,
// Debug breakpoints: not implemented
Unpredictable_BPNOTIMPL,
// Debug breakpoints: reserved type
Unpredictable_RESBPTYPE,
// Debug breakpoints: not-context-aware breakpoint
Unpredictable_BPNOTCTXCMP,
// Debug breakpoints: match on 2nd halfword of instruction
Unpredictable_BPMATCHHALF,
// Debug breakpoints: mismatch on 2nd halfword of instruction
Unpredictable_BPMISMATCHHALF,
// Debug: restart to a misaligned AArch32 PC value
Unpredictable_RESTARTALIGNPC,
// Debug: restart to a not-zero-extended AArch32 PC value
Unpredictable_RESTARTZEROUPPERPC,
// Zero top 32 bits of X registers in AArch32 state:
Unpredictable_ZEROUPPER,

Shared Pseudocode Functions Page 1619

// Zero top 32 bits of PC on illegal return to AArch32 state
Unpredictable_ERETZEROUPPERPC,
// Force address to be aligned when interworking branch to A32 state
Unpredictable_A32FORCEALIGNPC,
// SMC disabled
Unpredictable_SMD,
// Access Flag Update by HW
Unpredictable_AFUPDATE,
// Consider SCTLR[].IESB in Debug state
Unpredictable_IESBinDebug,
// No events selected in PMSEVFR_EL1
Unpredictable_ZEROPMSEVFR,
// No operation type selected in PMSFCR_EL1
Unpredictable_NOOPTYPES,
// Zero latency in PMSLATFR_EL1
Unpredictable_ZEROMINLATENCY,
// Clearing DCC/ITR sticky flags when instruction is in flight
Unpredictable_CLEARERRITEZERO,
// To be determined -- THESE SHOULD BE RESOLVED (catch-all)
Unpredictable_TBD};

Library pseudocode for shared/functions/vector/AdvSIMDExpandImm

// AdvSIMDExpandImm()
// ==================

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
case cmode<3:1> of

when '000'
imm64 = Replicate(Zeros(24):imm8, 2);

when '001'
imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);

when '010'
imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);

when '011'
imm64 = Replicate(imm8:Zeros(24), 2);

when '100'
imm64 = Replicate(Zeros(8):imm8, 4);

when '101'
imm64 = Replicate(imm8:Zeros(8), 4);

when '110'
if cmode<0> == '0' then

imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
else

imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
when '111'

if cmode<0> == '0' && op == '0' then
imm64 = Replicate(imm8, 8);

if cmode<0> == '0' && op == '1' then
imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;

if cmode<0> == '1' && op == '0' then
imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
imm64 = Replicate(imm32, 2);

if cmode<0> == '1' && op == '1' then
if UsingAArch32() then ReservedEncoding();
imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

return imm64;

Shared Pseudocode Functions Page 1620

Library pseudocode for shared/functions/vector/PolynomialMult

// PolynomialMult()
// ================

bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
result = Zeros(M+N);
extended_op2 = ZeroExtend(op2, M+N);
for i=0 to M-1

if op1<i> == '1' then
result = result EOR LSL(extended_op2, i);

return result;

Library pseudocode for shared/functions/vector/SatQ

// SatQ()
// ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

Library pseudocode for shared/functions/vector/SignedSatQ

// SignedSatQ()
// ============

(bits(N), boolean) SignedSatQ(integer i, integer N)
if i > 2^(N-1) - 1 then

result = 2^(N-1) - 1; saturated = TRUE;
elsif i < -(2^(N-1)) then

result = -(2^(N-1)); saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

Library pseudocode for shared/functions/vector/UnsignedRSqrtEstimate

// UnsignedRSqrtEstimate()
// =======================

bits(N) UnsignedRSqrtEstimate(bits(N) operand)
assert N IN {16,32};
if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF

result = Ones(N);
else

// input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)

// estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
case N of

when 16 estimate = RecipSqrtEstimate(UInt(operand<15:7>));
when 32 estimate = RecipSqrtEstimate(UInt(operand<31:23>));

// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

Shared Pseudocode Functions Page 1621

Library pseudocode for shared/functions/vector/UnsignedRecipEstimate

// UnsignedRecipEstimate()
// =======================

bits(N) UnsignedRecipEstimate(bits(N) operand)
assert N IN {16,32};
if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF

result = Ones(N);
else

// input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)

// estimate is in the range 256 to 511 representing [1.0 .. 2.0)
case N of

when 16 estimate = RecipEstimate(UInt(operand<15:7>));
when 32 estimate = RecipEstimate(UInt(operand<31:23>));

// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

Library pseudocode for shared/functions/vector/UnsignedSatQ

// UnsignedSatQ()
// ==============

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2^N - 1 then

result = 2^N - 1; saturated = TRUE;
elsif i < 0 then

result = 0; saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

Library pseudocode for shared/translation/attrs/CombineS1S2AttrHints

// CombineS1S2AttrHints()
// ======================

MemAttrHints CombineS1S2AttrHints(MemAttrHints s1desc, MemAttrHints s2desc)

MemAttrHints result;

if s2desc.attrs == '01' || s1desc.attrs == '01' then
result.attrs = bits(2) UNKNOWN; // Reserved

elsif s2desc.attrs == MemAttr_NC || s1desc.attrs == MemAttr_NC then
result.attrs = MemAttr_NC; // Non-cacheable

elsif s2desc.attrs == MemAttr_WT || s1desc.attrs == MemAttr_WT then
result.attrs = MemAttr_WT; // Write-through

else
result.attrs = MemAttr_WB; // Write-back

result.hints = s1desc.hints;
result.transient = s1desc.transient;

return result;

Shared Pseudocode Functions Page 1622

Library pseudocode for shared/translation/attrs/CombineS1S2Desc

// CombineS1S2Desc()
// =================
// Combines the address descriptors from stage 1 and stage 2

AddressDescriptor CombineS1S2Desc(AddressDescriptor s1desc, AddressDescriptor s2desc)

AddressDescriptor result;

result.paddress = s2desc.paddress;

if IsFault(s1desc) || IsFault(s2desc) then
result = if IsFault(s1desc) then s1desc else s2desc;

elsif s2desc.memattrs.type == MemType_Device || s1desc.memattrs.type == MemType_Device then
result.memattrs.type = MemType_Device;
if s1desc.memattrs.type == MemType_Normal then

result.memattrs.device = s2desc.memattrs.device;
elsif s2desc.memattrs.type == MemType_Normal then

result.memattrs.device = s1desc.memattrs.device;
else // Both Device

result.memattrs.device = CombineS1S2Device(s1desc.memattrs.device,
s2desc.memattrs.device);

else // Both Normal
result.memattrs.type = MemType_Normal;
result.memattrs.device = DeviceType UNKNOWN;
result.memattrs.inner = CombineS1S2AttrHints(s1desc.memattrs.inner, s2desc.memattrs.inner);
result.memattrs.outer = CombineS1S2AttrHints(s1desc.memattrs.outer, s2desc.memattrs.outer);
result.memattrs.shareable = (s1desc.memattrs.shareable || s2desc.memattrs.shareable);
result.memattrs.outershareable = (s1desc.memattrs.outershareable ||

s2desc.memattrs.outershareable);

result.memattrs = MemAttrDefaults(result.memattrs);

return result;

Library pseudocode for shared/translation/attrs/CombineS1S2Device

// CombineS1S2Device()
// ===================
// Combines device types from stage 1 and stage 2

DeviceType CombineS1S2Device(DeviceType s1device, DeviceType s2device)

if s2device == DeviceType_nGnRnE || s1device == DeviceType_nGnRnE then
result = DeviceType_nGnRnE;

elsif s2device == DeviceType_nGnRE || s1device == DeviceType_nGnRE then
result = DeviceType_nGnRE;

elsif s2device == DeviceType_nGRE || s1device == DeviceType_nGRE then
result = DeviceType_nGRE;

else
result = DeviceType_GRE;

return result;

Shared Pseudocode Functions Page 1623

Library pseudocode for shared/translation/attrs/LongConvertAttrsHints

// LongConvertAttrsHints()
// =======================
// Convert the long attribute fields for Normal memory as used in the MAIR fields
// to orthogonal attributes and hints

MemAttrHints LongConvertAttrsHints(bits(4) attrfield, AccType acctype)
assert !IsZero(attrfield);
MemAttrHints result;
if S1CacheDisabled(acctype) then // Force Non-cacheable

result.attrs = MemAttr_NC;
result.hints = MemHint_No;

else
if attrfield<3:2> == '00' then // Write-through transient

result.attrs = MemAttr_WT;
result.hints = attrfield<1:0>;
result.transient = TRUE;

elsif attrfield<3:0> == '0100' then // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.hints = MemHint_No;
result.transient = FALSE;

elsif attrfield<3:2> == '01' then // Write-back transient
result.attrs = attrfield<1:0>;
result.hints = MemAttr_WB;
result.transient = TRUE;

else // Write-through/Write-back non-transient
result.attrs = attrfield<3:2>;
result.hints = attrfield<1:0>;
result.transient = FALSE;

return result;

Library pseudocode for shared/translation/attrs/MemAttrDefaults

// MemAttrDefaults()
// =================
// Supply default values for memory attributes, including overriding the shareability attributes
// for Device and Non-cacheable memory types.

MemoryAttributes MemAttrDefaults(MemoryAttributes memattrs)

if memattrs.type == MemType_Device then
memattrs.inner = MemAttrHints UNKNOWN;
memattrs.outer = MemAttrHints UNKNOWN;
memattrs.shareable = TRUE;
memattrs.outershareable = TRUE;

else
memattrs.device = DeviceType UNKNOWN;
if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then

memattrs.shareable = TRUE;
memattrs.outershareable = TRUE;

return memattrs;

Shared Pseudocode Functions Page 1624

Library pseudocode for shared/translation/attrs/S1CacheDisabled

// S1CacheDisabled()
// =================

boolean S1CacheDisabled(AccType acctype)
if ELUsingAArch32(S1TranslationRegime()) then

if PSTATE.EL == EL2 then
enable = if acctype == AccType_IFETCH then HSCTLR.I else HSCTLR.C;

else
enable = if acctype == AccType_IFETCH then SCTLR.I else SCTLR.C;

else
enable = if acctype == AccType_IFETCH then SCTLR[].I else SCTLR[].C;

return enable == '0';

Library pseudocode for shared/translation/attrs/S2AttrDecode

// S2AttrDecode()
// ==============
// Converts the Stage 2 attribute fields into orthogonal attributes and hints

MemoryAttributes S2AttrDecode(bits(2) SH, bits(4) attr, AccType acctype)

MemoryAttributes memattrs;

if attr<3:2> == '00' then // Device
memattrs.type = MemType_Device;
case attr<1:0> of

when '00' memattrs.device = DeviceType_nGnRnE;
when '01' memattrs.device = DeviceType_nGnRE;
when '10' memattrs.device = DeviceType_nGRE;
when '11' memattrs.device = DeviceType_GRE;

elsif attr<1:0> != '00' then // Normal
memattrs.type = MemType_Normal;
memattrs.outer = S2ConvertAttrsHints(attr<3:2>, acctype);
memattrs.inner = S2ConvertAttrsHints(attr<1:0>, acctype);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';

else
memattrs = MemoryAttributes UNKNOWN; // Reserved

return MemAttrDefaults(memattrs);

Library pseudocode for shared/translation/attrs/S2CacheDisabled

// S2CacheDisabled()
// =================

boolean S2CacheDisabled(AccType acctype)
if ELUsingAArch32(EL2) then

disable = if acctype == AccType_IFETCH then HCR2.ID else HCR2.CD;
else

disable = if acctype == AccType_IFETCH then HCR_EL2.ID else HCR_EL2.CD;

return disable == '1';

Shared Pseudocode Functions Page 1625

Library pseudocode for shared/translation/attrs/S2ConvertAttrsHints

// S2ConvertAttrsHints()
// =====================
// Converts the attribute fields for Normal memory as used in stage 2
// descriptors to orthogonal attributes and hints

MemAttrHints S2ConvertAttrsHints(bits(2) attr, AccType acctype)
assert !IsZero(attr);

MemAttrHints result;

if S2CacheDisabled(acctype) then // Force Non-cacheable
result.attrs = MemAttr_NC;
result.hints = MemHint_No;

else
case attr of

when '01' // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.hints = MemHint_No;

when '10' // Write-through
result.attrs = MemAttr_WT;
result.hints = MemHint_RWA;

when '11' // Write-back
result.attrs = MemAttr_WB;
result.hints = MemHint_RWA;

result.transient = FALSE;

return result;

Library pseudocode for shared/translation/attrs/ShortConvertAttrsHints

// ShortConvertAttrsHints()
// ========================
// Converts the short attribute fields for Normal memory as used in the TTBR and
// TEX fields to orthogonal attributes and hints

MemAttrHints ShortConvertAttrsHints(bits(2) RGN, AccType acctype, boolean secondstage)

MemAttrHints result;

if (!secondstage && S1CacheDisabled(acctype)) || (secondstage && S2CacheDisabled(acctype)) then
// Force Non-cacheable
result.attrs = MemAttr_NC;
result.hints = MemHint_No;

else
case RGN of

when '00' // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.hints = MemHint_No;

when '01' // Write-back, Read and Write allocate
result.attrs = MemAttr_WB;
result.hints = MemHint_RWA;

when '10' // Write-through, Read allocate
result.attrs = MemAttr_WT;
result.hints = MemHint_RA;

when '11' // Write-back, Read allocate
result.attrs = MemAttr_WB;
result.hints = MemHint_RA;

result.transient = FALSE;

return result;

Shared Pseudocode Functions Page 1626

Library pseudocode for shared/translation/attrs/WalkAttrDecode

// WalkAttrDecode()
// ================

MemoryAttributes WalkAttrDecode(bits(2) SH, bits(2) ORGN, bits(2) IRGN, boolean secondstage)

MemoryAttributes memattrs;

AccType acctype = AccType_NORMAL;

memattrs.type = MemType_Normal;
memattrs.inner = ShortConvertAttrsHints(IRGN, acctype, secondstage);
memattrs.outer = ShortConvertAttrsHints(ORGN, acctype, secondstage);
memattrs.shareable = SH<1> == '1';
memattrs.outershareable = SH == '10';

return MemAttrDefaults(memattrs);

Library pseudocode for shared/translation/translation/HasS2Translation

// HasS2Translation()
// ==================
// Returns TRUE if stage 2 translation is present for the current translation regime

boolean HasS2Translation()
return (HaveEL(EL2) && !IsSecure() && !IsInHost() && PSTATE.EL IN {EL0,EL1});

Library pseudocode for shared/translation/translation/Have16bitVMID

// Have16bitVMID()
// ===============
// Returns TRUE if EL2 and support for a 16-bit VMID are implemented.

boolean Have16bitVMID()
return HaveEL(EL2) && boolean IMPLEMENTATION_DEFINED;

Library pseudocode for shared/translation/translation/IsEL1TransRegimeRegs

// IsEL1TransRegimeRegs()
// ======================

// Returns TRUE if its a register in EL1 translation regime

boolean IsEL1TransRegimeRegs()
return !HaveEL(EL2) || PSTATE.EL == EL1 || (PSTATE.EL == EL0 && (HCR_EL2.E2H == '0' || HCR_EL2.TGE=='0'));

Library pseudocode for shared/translation/translation/PAMax

// PAMax()
// =======
// Returns the IMPLEMENTATION DEFINED upper limit on the physical address
// size for this processor, as log2().

integer PAMax()
return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

Shared Pseudocode Functions Page 1627

Library pseudocode for shared/translation/translation/S1TranslationRegime

// S1TranslationRegime()
// =====================
// Stage 1 translation regime for the given Exception level

bits(2) S1TranslationRegime(bits(2) el)
if el != EL0 then

return el;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' then

return EL3;
elsif HaveVirtHostExt() && ELIsInHost(el) then

return EL2;
else

return EL1;

// S1TranslationRegime()
// =====================
// Returns the Exception level controlling the current Stage 1 translation regime. For the most
// part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
// return the correct value.

bits(2) S1TranslationRegime()
return S1TranslationRegime(PSTATE.EL);

Library pseudocode for shared/translation/translation/VAMax

// VAMax()
// =======
// Returns the IMPLEMENTATION DEFINED upper limit on the virtual address
// size for this processor, as log2().

integer VAMax()
return integer IMPLEMENTATION_DEFINED "Maximum Virtual Address Size";

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Shared Pseudocode Functions Page 1628

	Proprietary Notice
	A64 -- Base Instructions (alphabetic order)
	A64 -- SIMD and Floating-point Instructions (alphabetic order)
	ABS
	ADC
	ADCS
	ADD (extended register)
	ADD (immediate)
	ADD (shifted register)
	ADD (vector)
	ADDHN, ADDHN2
	ADDP (scalar)
	ADDP (vector)
	ADDS (extended register)
	ADDS (immediate)
	ADDS (shifted register)
	ADDV
	ADR
	ADRP
	AESD
	AESE
	AESIMC
	AESMC
	AND (vector)
	AND (immediate)
	AND (shifted register)
	ANDS (immediate)
	ANDS (shifted register)
	ASR (register)
	ASR (immediate)
	ASRV
	AT
	AUTDA, AUTDZA
	AUTDB, AUTDZB
	AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA
	AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB
	B.cond
	B
	BCAX
	BFC
	BFI
	BFM
	BFXIL
	BIC (vector, immediate)
	BIC (vector, register)
	BIC (shifted register)
	BICS (shifted register)
	BIF
	BIT
	BL
	BLR
	BLRAA, BLRAAZ, BLRAB, BLRABZ
	BR
	BRAA, BRAAZ, BRAB, BRABZ
	BRK
	BSL
	CAS, CASA, CASAL, CASL
	CASB, CASAB, CASALB, CASLB
	CASH, CASAH, CASALH, CASLH
	CASP, CASPA, CASPAL, CASPL
	CBNZ
	CBZ
	CCMN (immediate)
	CCMN (register)
	CCMP (immediate)
	CCMP (register)
	CINC
	CINV
	CLREX
	CLS (vector)
	CLS
	CLZ (vector)
	CLZ
	CMEQ (register)
	CMEQ (zero)
	CMGE (register)
	CMGE (zero)
	CMGT (register)
	CMGT (zero)
	CMHI (register)
	CMHS (register)
	CMLE (zero)
	CMLT (zero)
	CMN (extended register)
	CMN (immediate)
	CMN (shifted register)
	CMP (extended register)
	CMP (immediate)
	CMP (shifted register)
	CMTST
	CNEG
	CNT
	CRC32B, CRC32H, CRC32W, CRC32X
	CRC32CB, CRC32CH, CRC32CW, CRC32CX
	CSEL
	CSET
	CSETM
	CSINC
	CSINV
	CSNEG
	DC
	DCPS1
	DCPS2
	DCPS3
	DMB
	DRPS
	DSB
	DUP (element)
	DUP (general)
	EON (shifted register)
	EOR3
	EOR (vector)
	EOR (immediate)
	EOR (shifted register)
	ERET
	ERETAA, ERETAB
	ESB
	EXT
	EXTR
	FABD
	FABS (vector)
	FABS (scalar)
	FACGE
	FACGT
	FADD (vector)
	FADD (scalar)
	FADDP (scalar)
	FADDP (vector)
	FCADD
	FCCMP
	FCCMPE
	FCMEQ (register)
	FCMEQ (zero)
	FCMGE (register)
	FCMGE (zero)
	FCMGT (register)
	FCMGT (zero)
	FCMLA (by element)
	FCMLA
	FCMLE (zero)
	FCMLT (zero)
	FCMP
	FCMPE
	FCSEL
	FCVT
	FCVTAS (vector)
	FCVTAS (scalar)
	FCVTAU (vector)
	FCVTAU (scalar)
	FCVTL, FCVTL2
	FCVTMS (vector)
	FCVTMS (scalar)
	FCVTMU (vector)
	FCVTMU (scalar)
	FCVTN, FCVTN2
	FCVTNS (vector)
	FCVTNS (scalar)
	FCVTNU (vector)
	FCVTNU (scalar)
	FCVTPS (vector)
	FCVTPS (scalar)
	FCVTPU (vector)
	FCVTPU (scalar)
	FCVTXN, FCVTXN2
	FCVTZS (vector, fixed-point)
	FCVTZS (vector, integer)
	FCVTZS (scalar, fixed-point)
	FCVTZS (scalar, integer)
	FCVTZU (vector, fixed-point)
	FCVTZU (vector, integer)
	FCVTZU (scalar, fixed-point)
	FCVTZU (scalar, integer)
	FDIV (vector)
	FDIV (scalar)
	FJCVTZS
	FMADD
	FMAX (vector)
	FMAX (scalar)
	FMAXNM (vector)
	FMAXNM (scalar)
	FMAXNMP (scalar)
	FMAXNMP (vector)
	FMAXNMV
	FMAXP (scalar)
	FMAXP (vector)
	FMAXV
	FMIN (vector)
	FMIN (scalar)
	FMINNM (vector)
	FMINNM (scalar)
	FMINNMP (scalar)
	FMINNMP (vector)
	FMINNMV
	FMINP (scalar)
	FMINP (vector)
	FMINV
	FMLA (by element)
	FMLA (vector)
	FMLS (by element)
	FMLS (vector)
	FMOV (vector, immediate)
	FMOV (register)
	FMOV (general)
	FMOV (scalar, immediate)
	FMSUB
	FMUL (by element)
	FMUL (vector)
	FMUL (scalar)
	FMULX (by element)
	FMULX
	FNEG (vector)
	FNEG (scalar)
	FNMADD
	FNMSUB
	FNMUL (scalar)
	FRECPE
	FRECPS
	FRECPX
	FRINTA (vector)
	FRINTA (scalar)
	FRINTI (vector)
	FRINTI (scalar)
	FRINTM (vector)
	FRINTM (scalar)
	FRINTN (vector)
	FRINTN (scalar)
	FRINTP (vector)
	FRINTP (scalar)
	FRINTX (vector)
	FRINTX (scalar)
	FRINTZ (vector)
	FRINTZ (scalar)
	FRSQRTE
	FRSQRTS
	FSQRT (vector)
	FSQRT (scalar)
	FSUB (vector)
	FSUB (scalar)
	HINT
	HLT
	HVC
	IC
	INS (element)
	INS (general)
	ISB
	LD1 (multiple structures)
	LD1 (single structure)
	LD1R
	LD2 (multiple structures)
	LD2 (single structure)
	LD2R
	LD3 (multiple structures)
	LD3 (single structure)
	LD3R
	LD4 (multiple structures)
	LD4 (single structure)
	LD4R
	LDADD, LDADDA, LDADDAL, LDADDL
	LDADDB, LDADDAB, LDADDALB, LDADDLB
	LDADDH, LDADDAH, LDADDALH, LDADDLH
	LDAPR
	LDAPRB
	LDAPRH
	LDAR
	LDARB
	LDARH
	LDAXP
	LDAXR
	LDAXRB
	LDAXRH
	LDCLR, LDCLRA, LDCLRAL, LDCLRL
	LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB
	LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH
	LDEOR, LDEORA, LDEORAL, LDEORL
	LDEORB, LDEORAB, LDEORALB, LDEORLB
	LDEORH, LDEORAH, LDEORALH, LDEORLH
	LDLAR
	LDLARB
	LDLARH
	LDNP (SIMD&FP)
	LDNP
	LDP (SIMD&FP)
	LDP
	LDPSW
	LDR (immediate, SIMD&FP)
	LDR (immediate)
	LDR (literal, SIMD&FP)
	LDR (literal)
	LDR (register, SIMD&FP)
	LDR (register)
	LDRAA, LDRAB
	LDRB (immediate)
	LDRB (register)
	LDRH (immediate)
	LDRH (register)
	LDRSB (immediate)
	LDRSB (register)
	LDRSH (immediate)
	LDRSH (register)
	LDRSW (immediate)
	LDRSW (literal)
	LDRSW (register)
	LDSET, LDSETA, LDSETAL, LDSETL
	LDSETB, LDSETAB, LDSETALB, LDSETLB
	LDSETH, LDSETAH, LDSETALH, LDSETLH
	LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL
	LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB
	LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH
	LDSMIN, LDSMINA, LDSMINAL, LDSMINL
	LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB
	LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH
	LDTR
	LDTRB
	LDTRH
	LDTRSB
	LDTRSH
	LDTRSW
	LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL
	LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB
	LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
	LDUMIN, LDUMINA, LDUMINAL, LDUMINL
	LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB
	LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH
	LDUR (SIMD&FP)
	LDUR
	LDURB
	LDURH
	LDURSB
	LDURSH
	LDURSW
	LDXP
	LDXR
	LDXRB
	LDXRH
	LSL (register)
	LSL (immediate)
	LSLV
	LSR (register)
	LSR (immediate)
	LSRV
	MADD
	MLA (by element)
	MLA (vector)
	MLS (by element)
	MLS (vector)
	MNEG
	MOV (to/from SP)
	MOV (scalar)
	MOV (element)
	MOV (from general)
	MOV (inverted wide immediate)
	MOV (wide immediate)
	MOV (vector)
	MOV (bitmask immediate)
	MOV (register)
	MOV (to general)
	MOVI
	MOVK
	MOVN
	MOVZ
	MRS
	MSR (immediate)
	MSR (register)
	MSUB
	MUL (by element)
	MUL (vector)
	MUL
	MVN
	MVN
	MVNI
	NEG (vector)
	NEG (shifted register)
	NEGS
	NGC
	NGCS
	NOP
	NOT
	ORN (vector)
	ORN (shifted register)
	ORR (vector, immediate)
	ORR (vector, register)
	ORR (immediate)
	ORR (shifted register)
	PACDA, PACDZA
	PACDB, PACDZB
	PACGA
	PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA
	PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB
	PMUL
	PMULL, PMULL2
	PRFM (immediate)
	PRFM (literal)
	PRFM (register)
	PRFM (unscaled offset)
	PSB CSYNC
	RADDHN, RADDHN2
	RAX1
	RBIT (vector)
	RBIT
	RET
	RETAA, RETAB
	REV
	REV16 (vector)
	REV16
	REV32 (vector)
	REV32
	REV64
	REV64
	ROR (immediate)
	ROR (register)
	RORV
	RSHRN, RSHRN2
	RSUBHN, RSUBHN2
	SABA
	SABAL, SABAL2
	SABD
	SABDL, SABDL2
	SADALP
	SADDL, SADDL2
	SADDLP
	SADDLV
	SADDW, SADDW2
	SBC
	SBCS
	SBFIZ
	SBFM
	SBFX
	SCVTF (vector, fixed-point)
	SCVTF (vector, integer)
	SCVTF (scalar, fixed-point)
	SCVTF (scalar, integer)
	SDIV
	SDOT (by element)
	SDOT (vector)
	SEV
	SEVL
	SHA1C
	SHA1H
	SHA1M
	SHA1P
	SHA1SU0
	SHA1SU1
	SHA256H2
	SHA256H
	SHA256SU0
	SHA256SU1
	SHA512H2
	SHA512H
	SHA512SU0
	SHA512SU1
	SHADD
	SHL
	SHLL, SHLL2
	SHRN, SHRN2
	SHSUB
	SLI
	SM3PARTW1
	SM3PARTW2
	SM3SS1
	SM3TT1A
	SM3TT1B
	SM3TT2A
	SM3TT2B
	SM4E
	SM4EKEY
	SMADDL
	SMAX
	SMAXP
	SMAXV
	SMC
	SMIN
	SMINP
	SMINV
	SMLAL, SMLAL2 (by element)
	SMLAL, SMLAL2 (vector)
	SMLSL, SMLSL2 (by element)
	SMLSL, SMLSL2 (vector)
	SMNEGL
	SMOV
	SMSUBL
	SMULH
	SMULL, SMULL2 (by element)
	SMULL, SMULL2 (vector)
	SMULL
	SQABS
	SQADD
	SQDMLAL, SQDMLAL2 (by element)
	SQDMLAL, SQDMLAL2 (vector)
	SQDMLSL, SQDMLSL2 (by element)
	SQDMLSL, SQDMLSL2 (vector)
	SQDMULH (by element)
	SQDMULH (vector)
	SQDMULL, SQDMULL2 (by element)
	SQDMULL, SQDMULL2 (vector)
	SQNEG
	SQRDMLAH (by element)
	SQRDMLAH (vector)
	SQRDMLSH (by element)
	SQRDMLSH (vector)
	SQRDMULH (by element)
	SQRDMULH (vector)
	SQRSHL
	SQRSHRN, SQRSHRN2
	SQRSHRUN, SQRSHRUN2
	SQSHL (immediate)
	SQSHL (register)
	SQSHLU
	SQSHRN, SQSHRN2
	SQSHRUN, SQSHRUN2
	SQSUB
	SQXTN, SQXTN2
	SQXTUN, SQXTUN2
	SRHADD
	SRI
	SRSHL
	SRSHR
	SRSRA
	SSHL
	SSHLL, SSHLL2
	SSHR
	SSRA
	SSUBL, SSUBL2
	SSUBW, SSUBW2
	ST1 (multiple structures)
	ST1 (single structure)
	ST2 (multiple structures)
	ST2 (single structure)
	ST3 (multiple structures)
	ST3 (single structure)
	ST4 (multiple structures)
	ST4 (single structure)
	STADD, STADDL
	STADDB, STADDLB
	STADDH, STADDLH
	STCLR, STCLRL
	STCLRB, STCLRLB
	STCLRH, STCLRLH
	STEOR, STEORL
	STEORB, STEORLB
	STEORH, STEORLH
	STLLR
	STLLRB
	STLLRH
	STLR
	STLRB
	STLRH
	STLXP
	STLXR
	STLXRB
	STLXRH
	STNP (SIMD&FP)
	STNP
	STP (SIMD&FP)
	STP
	STR (immediate, SIMD&FP)
	STR (immediate)
	STR (register, SIMD&FP)
	STR (register)
	STRB (immediate)
	STRB (register)
	STRH (immediate)
	STRH (register)
	STSET, STSETL
	STSETB, STSETLB
	STSETH, STSETLH
	STSMAX, STSMAXL
	STSMAXB, STSMAXLB
	STSMAXH, STSMAXLH
	STSMIN, STSMINL
	STSMINB, STSMINLB
	STSMINH, STSMINLH
	STTR
	STTRB
	STTRH
	STUMAX, STUMAXL
	STUMAXB, STUMAXLB
	STUMAXH, STUMAXLH
	STUMIN, STUMINL
	STUMINB, STUMINLB
	STUMINH, STUMINLH
	STUR (SIMD&FP)
	STUR
	STURB
	STURH
	STXP
	STXR
	STXRB
	STXRH
	SUB (extended register)
	SUB (immediate)
	SUB (shifted register)
	SUB (vector)
	SUBHN, SUBHN2
	SUBS (extended register)
	SUBS (immediate)
	SUBS (shifted register)
	SUQADD
	SVC
	SWP, SWPA, SWPAL, SWPL
	SWPB, SWPAB, SWPALB, SWPLB
	SWPH, SWPAH, SWPALH, SWPLH
	SXTB
	SXTH
	SXTL, SXTL2
	SXTW
	SYS
	SYSL
	TBL
	TBNZ
	TBX
	TBZ
	TLBI
	TRN1
	TRN2
	TST (immediate)
	TST (shifted register)
	UABA
	UABAL, UABAL2
	UABD
	UABDL, UABDL2
	UADALP
	UADDL, UADDL2
	UADDLP
	UADDLV
	UADDW, UADDW2
	UBFIZ
	UBFM
	UBFX
	UCVTF (vector, fixed-point)
	UCVTF (vector, integer)
	UCVTF (scalar, fixed-point)
	UCVTF (scalar, integer)
	UDIV
	UDOT (by element)
	UDOT (vector)
	UHADD
	UHSUB
	UMADDL
	UMAX
	UMAXP
	UMAXV
	UMIN
	UMINP
	UMINV
	UMLAL, UMLAL2 (by element)
	UMLAL, UMLAL2 (vector)
	UMLSL, UMLSL2 (by element)
	UMLSL, UMLSL2 (vector)
	UMNEGL
	UMOV
	UMSUBL
	UMULH
	UMULL, UMULL2 (by element)
	UMULL, UMULL2 (vector)
	UMULL
	UQADD
	UQRSHL
	UQRSHRN, UQRSHRN2
	UQSHL (immediate)
	UQSHL (register)
	UQSHRN, UQSHRN2
	UQSUB
	UQXTN, UQXTN2
	URECPE
	URHADD
	URSHL
	URSHR
	URSQRTE
	URSRA
	USHL
	USHLL, USHLL2
	USHR
	USQADD
	USRA
	USUBL, USUBL2
	USUBW, USUBW2
	UXTB
	UXTH
	UXTL, UXTL2
	UZP1
	UZP2
	WFE
	WFI
	XAR
	XPACD, XPACI, XPACLRI
	XTN, XTN2
	YIELD
	ZIP1
	ZIP2

	Top-level encodings for A64
	Shared Pseudocode Functions

