Proprietary Notice

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by
any means without the express prior written permission of ARM Limited (“ARM”). No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information
for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and
content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,
directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to create or
refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All
rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. You must follow the

ARM trademark usage guidelines http://www.arm.com/about/trademarks/guidelines/index.php.
Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 1

http://www.arm.com/about/trademarks/guidelines/index.php

A64 -- Base Instructions (alphabetic order)

A64 -- Base Instructions (alphabetic order)

ADC: Add with Carry.
ADCS: Add with Carry, setting flags.

ADD (extended register): Add (extended register).

ADD (immediate): Add (immediate).

ADD (shifted register): Add (shifted register).

ADDS (extended register): Add (extended register), setting flags.

ADDS (immediate): Add (immediate), setting flags.

ADDS (shifted register): Add (shifted register), setting flags.

ADR: Form PC-relative address.
ADRP: Form PC-relative address to 4KB page.
AND (immediate): Bitwise AND (immediate).

AND (shifted register): Bitwise AND (shifted register).

ANDS (immediate): Bitwise AND (immediate), setting flags.

ANDS (shifted register): Bitwise AND (shifted register), setting flags.

ASR (immediate): Arithmetic Shift Right (immediate): an alias of SBFM.
ASR (register): Arithmetic Shift Right (register): an alias of ASRV.
ASRV: Arithmetic Shift Right Variable.

AT: Address Translate: an alias of SYS.

AUTDA, AUTDZA: Authenticate Data address, using key A.

AUTDB. AUTDZB: Authenticate Data address, using key B.

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA: Authenticate Instruction address, using key A.

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ., AUTIZB: Authenticate Instruction address, using key B.
B: Branch.

B.cond: Branch conditionally.

BFC: Bitfield Clear, leaving other bits unchanged: an alias of BFM.

BFI: Bitfield Insert: an alias of BFM.

BFM: Bitfield Move.

BEXIL: Bitfield extract and insert at low end: an alias of BFM.

BIC (shifted register): Bitwise Bit Clear (shifted register).

BICS (shifted register): Bitwise Bit Clear (shifted register), setting flags.

BL: Branch with Link.
BLR: Branch with Link to Register.

BLRAA, BLRAAZ, BLRAB, BLRABZ: Branch with Link to Register, with pointer authentication.

BR: Branch to Register.

Page 2

A64 -- Base Instructions (alphabetic order)

BRAA, BRAAZ, BRAB, BRABZ: Branch to Register, with pointer authentication.

BRK: Breakpoint instruction.

CAS, CASA, CASAL, CASL: Compare and Swap word or doubleword in memory.

CASB, CASAB, CASALB, CASLB: Compare and Swap byte in memory.

CASH, CASAH, CASALH, CASLH: Compare and Swap halfword in memory.

CASP, CASPA, CASPAL, CASPL: Compare and Swap Pair of words or doublewords in memory.

CBNZ: Compare and Branch on Nonzero.
CBZ: Compare and Branch on Zero.

CCMN (immediate): Conditional Compare Negative (immediate).

CCMN (register): Conditional Compare Negative (register).
CCMP (immediate): Conditional Compare (immediate).
CCMP (register): Conditional Compare (register).

CINC: Conditional Increment: an alias of CSINC.

CINV: Conditional Invert: an alias of CSINV.

CLREX: Clear Exclusive.

CLS: Count leading sign bits.

CLZ: Count leading zero bits.

CMN (extended register): Compare Negative (extended register): an alias of ADDS (extended register).

CMN (immediate): Compare Negative (immediate): an alias of ADDS (immediate).

CMN (shifted register): Compare Negative (shifted register): an alias of ADDS (shifted register).

CMP (extended register): Compare (extended register): an alias of SUBS (extended register).

CMP (immediate): Compare (immediate): an alias of SUBS (immediate).

CMP (shifted register): Compare (shifted register): an alias of SUBS (shifted register).

CNEG: Conditional Negate: an alias of CSNEG.

CRC32B, CRC32H, CRC32W, CRC32X: CRC32 checksum.

CRC32CB, CRC32CH, CRC32CW, CRC32CX: CRC32C checksum.

CSEL: Conditional Select.

CSET: Conditional Set: an alias of CSINC.
CSETM: Conditional Set Mask: an alias of CSINV.
CSINC: Conditional Select Increment.

CSINV: Conditional Select Invert.

CSNEG: Conditional Select Negation.

DC: Data Cache operation: an alias of SYS.
DCPS1: Debug Change PE State to EL1..

DCPS2: Debug Change PE State to EL2..

DCPS3: Debug Change PE State to EL3.

Page 3

A64 -- Base Instructions (alphabetic order)

DMB: Data Memory Barrier.
DRPS: Debug restore process state.

DSB: Data Synchronization Barrier.

EON (shifted register): Bitwise Exclusive OR NOT (shifted register).
EOR (immediate): Bitwise Exclusive OR (immediate).

EOR (shifted register): Bitwise Exclusive OR (shifted register).

ERET: Exception Return.

ERETAA, ERETAB: Exception Return, with pointer authentication.

ESB: Error Synchronization Barrier.

EXTR: Extract register.

HINT: Hint instruction.

HLT: Halt instruction.

HVC: Hypervisor Call.

IC: Instruction Cache operation: an alias of SYS.

ISB: Instruction Synchronization Barrier.

LDADD, LDADDA, LDADDAL, LDADDL: Atomic add on word or doubleword in memory.

LDADDB, LDADDAB, LDADDALB, LDADDLB: Atomic add on byte in memory.

LDADDH, LDADDAH., LDADDALH., LDADDLH: Atomic add on halfword in memory.

LDAPR: Load-Acquire RCpc Register.

LDAPRB: Load-Acquire RCpc Register Byte.
LDAPRH: Load-Acquire RCpc Register Halfword.
LDAR: Load-Acquire Register.

LDARB: Load-Acquire Register Byte.

LDARH: Load-Acquire Register Halfword.
LDAXP: Load-Acquire Exclusive Pair of Registers.
LDAXR: Load-Acquire Exclusive Register.
LDAXRB: Load-Acquire Exclusive Register Byte.

LDAXRH: Load-Acquire Exclusive Register Halfword.

LDCLR, LDCLRA, LDCLRAL, LDCLRL: Atomic bit clear on word or doubleword in memory.

LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB: Atomic bit clear on byte in memory.

LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH: Atomic bit clear on halfword in memory.

LDEOR, LDEORA, LDEORAL, LDEORL: Atomic exclusive OR on word or doubleword in memory.

LDEORB, LDEORAB, LDEORALB, LDEORLB: Atomic exclusive OR on byte in memory.

LDEORH, LDEORAH, LDEORALH, LDEORLH: Atomic exclusive OR on halfword in memory.

LDLAR: Load LOAcquire Register.

LDLARB: Load LOAcquire Register Byte.

Page 4

A64 -- Base Instructions (alphabetic order)

LDLARH: Load LOAcquire Register Halfword.
LDNP: Load Pair of Registers, with non-temporal hint.
LDP: Load Pair of Registers.

LDPSW: Load Pair of Registers Signed Word.

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRAA., LDRAB: Load Register, with pointer authentication.

LDRB (immediate): Load Register Byte (immediate).
LDRB (register): Load Register Byte (register).

LDRH (immediate): Load Register Halfword (immediate).
LDRH (register): Load Register Halfword (register).

LDRSB (immediate): Load Register Signed Byte (immediate).

LDRSB (register): Load Register Signed Byte (register).

LDRSH (immediate): Load Register Signed Halfword (immediate).

LDRSH (register): Load Register Signed Halfword (register).

LDRSW (immediate): Load Register Signed Word (immediate).

LDRSW (literal): Load Register Signed Word (literal).
LDRSW (register): Load Register Signed Word (register).

LDSET, LDSETA, LDSETAL, LDSETL: Atomic bit set on word or doubleword in memory.

LDSETB, LDSETAB, LDSETALB, LDSETLB: Atomic bit set on byte in memory.

LDSETH, LDSETAH, LDSETALH, LDSETLH: Atomic bit set on halfword in memory.

LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL: Atomic signed maximum on word or doubleword in memory.

LDSMAXB. LDSMAXAB, LDSMAXALB, LDSMAXIB: Atomic signed maximum on byte in memory.

LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXIH: Atomic signed maximum on halfword in memory.

LDSMIN, LDSMINA, LDSMINAL, LDSMINL: Atomic signed minimum on word or doubleword in memory.

LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB: Atomic signed minimum on byte in memory.

LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH: Atomic signed minimum on halfword in memory.

LDTR: Load Register (unprivileged).

LDTRB: Load Register Byte (unprivileged).

LDTRH: Load Register Halfword (unprivileged).
LDTRSB: Load Register Signed Byte (unprivileged).
LDTRSH: Load Register Signed Halfword (unprivileged).
LDTRSW: Load Register Signed Word (unprivileged).

LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL: Atomic unsigned maximum on word or doubleword in memory.

LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXI B: Atomic unsigned maximum on byte in memory.

Page 5

A64 -- Base Instructions (alphabetic order)

LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXIH: Atomic unsigned maximum on halfword in memory.

LDUMIN, LDUMINA, LDUMINAL, LDUMINL: Atomic unsigned minimum on word or doubleword in memory.

LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB: Atomic unsigned minimum on byte in memory.

LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH: Atomic unsigned minimum on halfword in memory.

LDUR: Load Register (unscaled).

LDURB: Load Register Byte (unscaled).

LDURH: Load Register Halfword (unscaled).

LDURSB: Load Register Signed Byte (unscaled).

LDURSH: Load Register Signed Halfword (unscaled).

LDURSW: Load Register Signed Word (unscaled).

LDXP: Load Exclusive Pair of Registers.

LDXR: Load Exclusive Register.

LDXRB: Load Exclusive Register Byte.

LDXRH: Load Exclusive Register Halfword.

LSL (immediate): Logical Shift Left (immediate): an alias of UBFM.
LSL (register): Logical Shift Left (register): an alias of LSLV.

LSLV: Logical Shift Left Variable.

LSR (immediate): Logical Shift Right (immediate): an alias of UBFM.
LSR (register): Logical Shift Right (register): an alias of LSRV.
LSRV: Logical Shift Right Variable.

MADD: Multiply-Add.

MNEG: Multiply-Negate: an alias of MSUB.

MOV (bitmask immediate): Move (bitmask immediate): an alias of ORR (immediate).

MOV (inverted wide immediate): Move (inverted wide immediate): an alias of MOVN.

MOV (register): Move (register): an alias of ORR (shifted register).
MOV (to/from SP): Move between register and stack pointer: an alias of ADD (immediate).

MOV (wide immediate): Move (wide immediate): an alias of MOVZ.

MOVK: Move wide with keep.

MOVN: Move wide with NOT.

MOVZ: Move wide with zero.

MRS: Move System Register.

MSR (immediate): Move immediate value to Special Register.
MSR (register): Move general-purpose register to System Register.
MSUB: Multiply-Subtract.

MUL: Multiply: an alias of MADD.

MVN: Bitwise NOT: an alias of ORN (shifted register).

Page 6

A64 -- Base Instructions (alphabetic order)

NEG (shifted register): Negate (shifted register): an alias of SUB (shifted register).

NEGS: Negate, setting flags: an alias of SUBS (shifted register).
NGC: Negate with Carry: an alias of SBC.

NGCS: Negate with Carry, setting flags: an alias of SBCS.
NOP: No Operation.

ORN (shifted register): Bitwise OR NOT (shifted register).

ORR (immediate): Bitwise OR (immediate).

ORR (shifted register): Bitwise OR (shifted register).

PACDA, PACDZA: Pointer Authentication Code for Data address, using key A.

PACDB, PACDZB: Pointer Authentication Code for Data address, using key B.

PACGA: Pointer Authentication Code, using Generic key.

PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA: Pointer Authentication Code for Instruction address, using key A.

PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB: Pointer Authentication Code for Instruction address, using key B.

PRFM (immediate): Prefetch Memory (immediate).
PRFM (literal): Prefetch Memory (literal).

PRFM (register): Prefetch Memory (register).

PRFM (unscaled offset): Prefetch Memory (unscaled offset).

PSB CSYNC: Profiling Synchronization Barrier.
RBIT: Reverse Bits.
RET: Return from subroutine.

RETAA, RETAB: Return from subroutine, with pointer authentication.

REV: Reverse Bytes.

REV16: Reverse bytes in 16-bit halfwords.

REV32: Reverse bytes in 32-bit words.

REV64: Reverse Bytes: an alias of REV.

ROR (immediate): Rotate right (immediate): an alias of EXTR.
ROR (register): Rotate Right (register): an alias of RORV.
RORV: Rotate Right Variable.

SBC: Subtract with Carry.

SBCS: Subtract with Carry, setting flags.

SBFIZ: Signed Bitfield Insert in Zero: an alias of SBFM.
SBFM: Signed Bitfield Move.

SBFX: Signed Bitfield Extract: an alias of SBFM.

SDIV: Signed Divide.

SEV: Send Event.

SEVL: Send Event Local.

Page 7

A64 -- Base Instructions (alphabetic order)

SMADDL: Signed Multiply-Add Long.

SMC: Secure Monitor Call.

SMNEGL: Signed Multiply-Negate Long: an alias of SMSUBL.
SMSUBL: Signed Multiply-Subtract Long.

SMULH: Signed Multiply High.

SMULL: Signed Multiply Long: an alias of SMADDL.

STADD, STADDL: Atomic add on word or doubleword in memory, without return.

STADDB, STADDLB: Atomic add on byte in memory, without return.

STADDH, STADDLH: Atomic add on halfword in memory, without return.

STCLR, STCLRL: Atomic bit clear on word or doubleword in memory, without return.

STCLRB, STCLRLB: Atomic bit clear on byte in memory, without return.

STCLRH, STCLRLH: Atomic bit clear on halfword in memory, without return.

STEOR, STEORL: Atomic exclusive OR on word or doubleword in memory, without return.

STEORB, STEORLB: Atomic exclusive OR on byte in memory, without return.

STEORH, STEORLH: Atomic exclusive OR on halfword in memory, without return.

STLLR: Store LORelease Register.

STLLRB: Store LORelease Register Byte.

STLLRH: Store LORelease Register Halfword.

STLR: Store-Release Register.

STLRB: Store-Release Register Byte.

STLRH: Store-Release Register Halfword.

STLXP: Store-Release Exclusive Pair of registers.
STLXR: Store-Release Exclusive Register.

STLXRB: Store-Release Exclusive Register Byte.
STLXRH: Store-Release Exclusive Register Halfword.
STNP: Store Pair of Registers, with non-temporal hint.
STP: Store Pair of Registers.

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).
STRB (register): Store Register Byte (register).

STRH (immediate): Store Register Halfword (immediate).
STRH (register): Store Register Halfword (register).

STSET, STSETL: Atomic bit set on word or doubleword in memory, without return.

STSETB, STSETLB: Atomic bit set on byte in memory, without return.

STSETH, STSETLH: Atomic bit set on halfword in memory, without return.

Page 8

A64 -- Base Instructions (alphabetic order)

STSMAX, STSMAXL: Atomic signed maximum on word or doubleword in memory, without return.

STSMAXB, STSMAXLB: Atomic signed maximum on byte in memory, without return.

STSMAXH, STSMAXIH: Atomic signed maximum on halfword in memory, without return.

STSMIN, STSMINL: Atomic signed minimum on word or doubleword in memory, without return.

STSMINB, STSMINLB: Atomic signed minimum on byte in memory, without return.

STSMINH, STSMINLH: Atomic signed minimum on halfword in memory, without return.

STTR: Store Register (unprivileged).
STTRB: Store Register Byte (unprivileged).

STTRH: Store Register Halfword (unprivileged).

STUMAX, STUMAXL: Atomic unsigned maximum on word or doubleword in memory, without return.

STUMAXB, STUMAXILB: Atomic unsigned maximum on byte in memory, without return.

STUMAXH, STUMAXILH: Atomic unsigned maximum on halfword in memory, without return.

STUMIN, STUMINL: Atomic unsigned minimum on word or doubleword in memory, without return.

STUMINB, STUMINLB: Atomic unsigned minimum on byte in memory, without return.

STUMINH, STUMINLH: Atomic unsigned minimum on halfword in memory, without return.

STUR: Store Register (unscaled).

STURB: Store Register Byte (unscaled).
STURH: Store Register Halfword (unscaled).
STXP: Store Exclusive Pair of registers.
STXR: Store Exclusive Register.

STXRB: Store Exclusive Register Byte.
STXRH: Store Exclusive Register Halfword.

SUB (extended register): Subtract (extended register).

SUB (immediate): Subtract (immediate).

SUB (shifted register): Subtract (shifted register).

SUBS (extended register): Subtract (extended register), setting flags.

SUBS (immediate): Subtract (immediate), setting flags.

SUBS (shifted register): Subtract (shifted register), setting flags.

SVC: Supervisor Call.

SWP, SWPA, SWPAL, SWPL: Swap word or doubleword in memory.

SWPB, SWPAB, SWPALB. SWPLB: Swap byte in memory.

SWPH, SWPAH, SWPALH., SWPLH: Swap halfword in memory.

SXTB: Signed Extend Byte: an alias of SBFM.
SXTH: Sign Extend Halfword: an alias of SBFM.
SXTW: Sign Extend Word: an alias of SBFM.

SYS: System instruction.

Page 9

A64 -- Base Instructions (alphabetic order)

SYSL: System instruction with result.

TBNZ: Test bit and Branch if Nonzero.

TBZ: Test bit and Branch if Zero.

TLBI: TLB Invalidate operation: an alias of SYS.

TST (immediate): Test bits (immediate): an alias of ANDS (immediate).

TST (shifted register): Test (shifted register): an alias of ANDS (shifted register).

UBFIZ: Unsigned Bitfield Insert in Zero: an alias of UBFM.
UBFM: Unsigned Bitfield Move.

UBFX: Unsigned Bitfield Extract: an alias of UBFM.
UDIV: Unsigned Divide.

UMADDL: Unsigned Multiply-Add Long.

UMNEGL: Unsigned Multiply-Negate Long: an alias of UMSUBL.
UMSUBL: Unsigned Multiply-Subtract Long.

UMULH: Unsigned Multiply High.

UMULL: Unsigned Multiply Long: an alias of UMADDL.
UXTB: Unsigned Extend Byte: an alias of UBFM.

UXTH: Unsigned Extend Halfword: an alias of UBFM.
WEFE: Wait For Event.

WEI: Wait For Interrupt.

XPACD, XPACI, XPACLRI: Strip Pointer Authentication Code.

YIELD: YIELD.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 10

A64 -- SIMD and Floating-point Instructions (alphabetic order)

A64 -- SIMD and Floating-point Instructions (alphabetic order)

ABS: Absolute value (vector).

ADD (vector): Add (vector).

ADDHN, ADDHN2: Add returning High Narrow.

ADDP (scalar): Add Pair of elements (scalar).
ADDP (vector): Add Pairwise (vector).
ADDV: Add across Vector.

AESD: AES single round decryption.

AESE: AES single round encryption.
AESIMC: AES inverse mix columns.
AESMC: AES mix columns.

AND (vector): Bitwise AND (vector).
BCAX: Bit Clear and XOR.

BIC (vector, immediate): Bitwise bit Clear (vector, immediate).

BIC (vector, register): Bitwise bit Clear (vector, register).

BIF: Bitwise Insert if False.

BIT: Bitwise Insert if True.

BSL: Bitwise Select.

CLS (vector): Count Leading Sign bits (vector).

CLZ (vector): Count Leading Zero bits (vector).
CMEQ (register): Compare bitwise Equal (vector).
CMEQ (zero): Compare bitwise Equal to zero (vector).

CMGE (register): Compare signed Greater than or Equal (vector).

CMGE (zero): Compare signed Greater than or Equal to zero (vector).

CMGT (register): Compare signed Greater than (vector).

CMGT (zero): Compare signed Greater than zero (vector).

CMHI (register): Compare unsigned Higher (vector).

CMHS (register): Compare unsigned Higher or Same (vector).
CMLE (zero): Compare signed Less than or Equal to zero (vector).
CMLT (zero): Compare signed Less than zero (vector).

CMTST: Compare bitwise Test bits nonzero (vector).

CNT: Population Count per byte.

DUP (element): Duplicate vector element to vector or scalar.

DUP (general): Duplicate general-purpose register to vector.

EOR (vector): Bitwise Exclusive OR (vector).

Page 11

A64 -- SIMD and Floating-point Instructions (alphabetic order)

EOR3: Three-way Exclusive OR.

EXT: Extract vector from pair of vectors.

FABD: Floating-point Absolute Difference (vector).

FABS (scalar): Floating-point Absolute value (scalar).

FABS (vector): Floating-point Absolute value (vector).

FACGE: Floating-point Absolute Compare Greater than or Equal (vector).
FACGT: Floating-point Absolute Compare Greater than (vector).

FADD (scalar): Floating-point Add (scalar).

FADD (vector): Floating-point Add (vector).

FADDP (scalar): Floating-point Add Pair of elements (scalar).

FADDP (vector): Floating-point Add Pairwise (vector).

FCADD: Floating-point Complex Add.

FCCMP: Floating-point Conditional quiet Compare (scalar).

FCCMPE: Floating-point Conditional signaling Compare (scalar).
FCMEQ (register): Floating-point Compare Equal (vector).

FCMEQ (zero): Floating-point Compare Equal to zero (vector).

FCMGE (register): Floating-point Compare Greater than or Equal (vector).
FCMGE (zero): Floating-point Compare Greater than or Equal to zero (vector).
FCMGT (register): Floating-point Compare Greater than (vector).
FCMGT (zero): Floating-point Compare Greater than zero (vector).
FCMLA: Floating-point Complex Multiply Accumulate.

FCMLA (by element): Floating-point Complex Multiply Accumulate (by element).

FCMLE (zero): Floating-point Compare Less than or Equal to zero (vector).
FCMLT (zero): Floating-point Compare Less than zero (vector).

FCMP: Floating-point quiet Compare (scalar).

FCMPE: Floating-point signaling Compare (scalar).

FCSEL: Floating-point Conditional Select (scalar).

FCVT: Floating-point Convert precision (scalar).

FCVTAS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar).

FCVTAS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector).

FCVTAU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar).

FCVTAU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector).

FCVTL, FCVTL2: Floating-point Convert to higher precision Long (vector).

FCVTMS (scalar): Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar).
FCVTMS (vector): Floating-point Convert to Signed integer, rounding toward Minus infinity (vector).

FCVTMU (scalar): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar).

A64 -- SIMD and Floating-point Instructions (alphabetic order)

FCVTMU (vector): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector).

FCVTN, FCVTN2: Floating-point Convert to lower precision Narrow (vector).

FCVTNS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar).
FCVTNS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector).
FCVTNU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar).
FCVTNU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector).
FCVTPS (scalar): Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar).

FCVTPS (vector): Floating-point Convert to Signed integer, rounding toward Plus infinity (vector).

FCVTPU (scalar): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar).
FCVTPU (vector): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector).

FCVTXN, FCVTXN?2: Floating-point Convert to lower precision Narrow, rounding to odd (vector).

FCVTZS (scalar, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar).

FCVTZS (scalar, integer): Floating-point Convert to Signed integer, rounding toward Zero (scalar).

FCVTZS (vector, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (vector).

FCVTZS (vector, integer): Floating-point Convert to Signed integer, rounding toward Zero (vector).

FCVTZU (scalar, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar).

FCVTZU (scalar, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (scalar).

FCVTZU (vector, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector).

FCVTZU (vector, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (vector).

FDIV (scalar): Floating-point Divide (scalar).

FDIV (vector): Floating-point Divide (vector).

FICVTZS: Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero.
FMADD: Floating-point fused Multiply-Add (scalar).

FMAX (scalar): Floating-point Maximum (scalar).

FMAX (vector): Floating-point Maximum (vector).

FMAXNM (scalar): Floating-point Maximum Number (scalar).

FMAXNM (vector): Floating-point Maximum Number (vector).

FMAXNMP (scalar): Floating-point Maximum Number of Pair of elements (scalar).

FMAXNMP (vector): Floating-point Maximum Number Pairwise (vector).

FMAXNMYV: Floating-point Maximum Number across Vector.
FMAXP (scalar): Floating-point Maximum of Pair of elements (scalar).
FMAXP (vector): Floating-point Maximum Pairwise (vector).
FMAXYV: Floating-point Maximum across Vector.

FMIN (scalar): Floating-point Minimum (scalar).

FMIN (vector): Floating-point minimum (vector).

FMINNM (scalar): Floating-point Minimum Number (scalar).

Page 13

A64 -- SIMD and Floating-point Instructions (alphabetic order)

FMINNM (vector): Floating-point Minimum Number (vector).
FMINNMP (scalar): Floating-point Minimum Number of Pair of elements (scalar).

FMINNMP (vector): Floating-point Minimum Number Pairwise (vector).

FMINNMYV: Floating-point Minimum Number across Vector.

FMINP (scalar): Floating-point Minimum of Pair of elements (scalar).
FMINP (vector): Floating-point Minimum Pairwise (vector).

FMINV: Floating-point Minimum across Vector.

FMLA (by element): Floating-point fused Multiply-Add to accumulator (by element).

FMLA (vector): Floating-point fused Multiply-Add to accumulator (vector).

FMLS (by element): Floating-point fused Multiply-Subtract from accumulator (by element).
FMLS (vector): Floating-point fused Multiply-Subtract from accumulator (vector).

FMOV (general): Floating-point Move to or from general-purpose register without conversion.

FMOV (register): Floating-point Move register without conversion.

FMOV (scalar, immediate): Floating-point move immediate (scalar).

FMOV (vector, immediate): Floating-point move immediate (vector).

FMSUB: Floating-point Fused Multiply-Subtract (scalar).

FMUL (by element): Floating-point Multiply (by element).

FMUL (scalar): Floating-point Multiply (scalar).
FMUL (vector): Floating-point Multiply (vector).
FMULX: Floating-point Multiply extended.

FMULX (by element): Floating-point Multiply extended (by element).

FNEG (scalar): Floating-point Negate (scalar).

FNEG (vector): Floating-point Negate (vector).

FNMADD: Floating-point Negated fused Multiply-Add (scalar).

FNMSUB: Floating-point Negated fused Multiply-Subtract (scalar).

FNMUL (scalar): Floating-point Multiply-Negate (scalar).

FRECPE: Floating-point Reciprocal Estimate.

FRECPS: Floating-point Reciprocal Step.

FRECPX: Floating-point Reciprocal exponent (scalar).

FRINTA (scalar): Floating-point Round to Integral, to nearest with ties to Away (scalar).
FRINTA (vector): Floating-point Round to Integral, to nearest with ties to Away (vector).
FRINTI (scalar): Floating-point Round to Integral, using current rounding mode (scalar).
FRINTI (vector): Floating-point Round to Integral, using current rounding mode (vector).
FRINTM (scalar): Floating-point Round to Integral, toward Minus infinity (scalar).
FRINTM (vector): Floating-point Round to Integral, toward Minus infinity (vector).

FRINTN (scalar): Floating-point Round to Integral, to nearest with ties to even (scalar).

Page 14

A64 -- SIMD and Floating-point Instructions (alphabetic order)

FRINTN (vector): Floating-point Round to Integral, to nearest with ties to even (vector).
FRINTP (scalar): Floating-point Round to Integral, toward Plus infinity (scalar).

FRINTP (vector): Floating-point Round to Integral, toward Plus infinity (vector).

FRINTX (scalar): Floating-point Round to Integral exact, using current rounding mode (scalar).
FRINTX (vector): Floating-point Round to Integral exact, using current rounding mode (vector).
FRINTZ (scalar): Floating-point Round to Integral, toward Zero (scalar).

FRINTZ (vector): Floating-point Round to Integral, toward Zero (vector).

FRSQRTE: Floating-point Reciprocal Square Root Estimate.

FRSQRTS: Floating-point Reciprocal Square Root Step.

FSQRT (scalar): Floating-point Square Root (scalar).

FSQRT (vector): Floating-point Square Root (vector).

FSUB (scalar): Floating-point Subtract (scalar).

FSUB (vector): Floating-point Subtract (vector).

INS (element): Insert vector element from another vector element.

INS (general): Insert vector element from general-purpose register.

LD1 (multiple structures): Load multiple single-element structures to one, two, three, or four registers.

LD1 (single structure): Load one single-element structure to one lane of one register.

LDI1R: Load one single-element structure and Replicate to all lanes (of one register).

LD2 (multiple structures): Load multiple 2-element structures to two registers.

LD2 (single structure): Load single 2-element structure to one lane of two registers.

LD2R: Load single 2-element structure and Replicate to all lanes of two registers.

LD3 (multiple structures): Load multiple 3-element structures to three registers.

LD3 (single structure): Load single 3-element structure to one lane of three registers).

LD3R: Load single 3-element structure and Replicate to all lanes of three registers.

LD4 (multiple structures): Load multiple 4-element structures to four registers.

LD4 (single structure): Load single 4-element structure to one lane of four registers.

LD4R: Load single 4-element structure and Replicate to all lanes of four registers.
LDNP (SIMD&FP): Load Pair of SIMD&FP registers, with Non-temporal hint.
LDP (SIMD&FP): Load Pair of SIMD&FP registers.

LDR (immediate, SIMD&FP): Load SIMD&FP Register (immediate offset).

LDR (literal, SIMD&FP): Load SIMD&FP Register (PC-relative literal).

LDR (register, SIMD&FP): Load SIMD&FP Register (register offset).

LDUR (SIMD&FP): Load SIMD&FP Register (unscaled offset).

MLA (by element): Multiply-Add to accumulator (vector, by element).
MLA (vector): Multiply-Add to accumulator (vector).

MLS (by element): Multiply-Subtract from accumulator (vector, by element).

Page 15

A64 -- SIMD and Floating-point Instructions (alphabetic order)

MLS (vector): Multiply-Subtract from accumulator (vector).
MOV (element): Move vector element to another vector element: an alias of INS (element).

MOV (from general): Move general-purpose register to a vector element: an alias of INS (general).

MOV (scalar): Move vector element to scalar: an alias of DUP (element).

MOV (to general): Move vector element to general-purpose register: an alias of UMOV.
MOV (vector): Move vector: an alias of ORR (vector, register).

MOVI: Move Immediate (vector).

MUL (by element): Multiply (vector, by element).

MUL (vector): Multiply (vector).

MVN: Bitwise NOT (vector): an alias of NOT.
MVNI: Move inverted Immediate (vector).

NEG (vector): Negate (vector).

NOT: Bitwise NOT (vector).

ORN (vector): Bitwise inclusive OR NOT (vector).

ORR (vector, immediate): Bitwise inclusive OR (vector, immediate).

ORR (vector, register): Bitwise inclusive OR (vector, register).

PMUL: Polynomial Multiply.

PMULL, PMULLZ2: Polynomial Multiply Long.

RADDHN, RADDHN2: Rounding Add returning High Narrow.

RAXI1: Rotate and Exclusive OR.

RBIT (vector): Reverse Bit order (vector).

REV16 (vector): Reverse elements in 16-bit halfwords (vector).
REV32 (vector): Reverse elements in 32-bit words (vector).
REV64: Reverse elements in 64-bit doublewords (vector).

RSHRN, RSHRN2: Rounding Shift Right Narrow (immediate).

RSUBHN, RSUBHN2: Rounding Subtract returning High Narrow.

SABA: Signed Absolute difference and Accumulate.

SABAL. SABAL2: Signed Absolute difference and Accumulate Long.

SABD: Signed Absolute Difference.

SABDL. SABDL2: Signed Absolute Difference Long.

SADALP: Signed Add and Accumulate Long Pairwise.

SADDL, SADDL2: Signed Add Long (vector).

SADDLP: Signed Add Long Pairwise.
SADDLV: Signed Add Long across Vector.

SADDW, SADDW?2: Signed Add Wide.

SCVTF (scalar, fixed-point): Signed fixed-point Convert to Floating-point (scalar).

Page 16

A64 -- SIMD and Floating-point Instructions (alphabetic order)

SCVTF (scalar, integer): Signed integer Convert to Floating-point (scalar).

SCVTF (vector, fixed-point): Signed fixed-point Convert to Floating-point (vector).

SCVTF (vector, integer): Signed integer Convert to Floating-point (vector).

SDOT (by element): Dot Product signed arithmetic (vector, by element).

SDOT (vector): Dot Product signed arithmetic (vector).

SHA1C: SHA1 hash update (choose).
SHA1H: SHA1 fixed rotate.

SHAIM: SHAT1 hash update (majority).
SHA1P: SHA1 hash update (parity).
SHA1SUQ: SHAT1 schedule update 0.
SHA1SU1: SHAT1 schedule update 1.
SHA256H: SHA256 hash update (part 1).
SHA256H2: SHA256 hash update (part 2).
SHA256SUO: SHA256 schedule update 0.
SHA256SU1: SHA256 schedule update 1.
SHAS512H: SHAS512 Hash update part 1.
SHAS512H2: SHA512 Hash update part 2.
SHAS512SUO: SHA512 Schedule Update 0.
SHAS512SU1: SHA512 Schedule Update 1.
SHADD: Signed Halving Add.

SHL: Shift Left (immediate).

SHLL, SHLL2: Shift Left Long (by element size).

SHRN, SHRN2: Shift Right Narrow (immediate).

SHSUB: Signed Halving Subtract.
SLI: Shift Left and Insert (immediate).
SM3PARTWI1: SM3PARTWI1.
SM3PARTW2: SM3PARTW?2.
SM3SS1: SM3SSI.

SM3TTI1A: SM3TT1A.
SM3TT1B: SM3TTI1B.
SM3TT2A: SM3TT2A.
SM3TT2B: SM3TT2B.

SMA4E: SM4 Encode.

SMA4EKEY: SM4 Key.

SMAX: Signed Maximum (vector).

SMAXP: Signed Maximum Pairwise.

Page 17

A64 -- SIMD and Floating-point Instructions (alphabetic order)

SMAXYV: Signed Maximum across Vector.
SMIN: Signed Minimum (vector).
SMINP: Signed Minimum Pairwise.
SMINV: Signed Minimum across Vector.

SMLAL, SMLAL2 (by element): Signed Multiply-Add Long (vector, by element).

SMLAL, SMLAL2 (vector): Signed Multiply-Add Long (vector).

SMLSL, SMLSL2 (by element): Signed Multiply-Subtract Long (vector, by element).

SMLSL, SMLSL2 (vector): Signed Multiply-Subtract Long (vector).

SMOV: Signed Move vector element to general-purpose register.

SMULL, SMULL2 (by element): Signed Multiply Long (vector, by element).

SMULL, SMULL2 (vector): Signed Multiply Long (vector).

SQABS: Signed saturating Absolute value.
SQADD: Signed saturating Add.

SODMLAL, SODMLAL2 (by element): Signed saturating Doubling Multiply-Add Long (by element).

SODMLAL, SODMLAL2 (vector): Signed saturating Doubling Multiply-Add Long.

SQDMLSL, SQDMLSIL .2 (by element): Signed saturating Doubling Multiply-Subtract Long (by element).

SQODMLSL, SQDMLSL2 (vector): Signed saturating Doubling Multiply-Subtract Long.

SQODMULH (by element): Signed saturating Doubling Multiply returning High half (by element).

SQDMULH (vector): Signed saturating Doubling Multiply returning High half.

SODMULL, SODMULL2 (by element): Signed saturating Doubling Multiply Long (by element).

SODMULL, SQDMULLZ2 (vector): Signed saturating Doubling Multiply Long.

SONEG: Signed saturating Negate.

SQORDMLAH (by element): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (by element).

SQRDMLAH (vector): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half (vector).

SQORDMLSH (by element): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (by element).

SQRDMLSH (vector): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector).

SQRDMULH (by element): Signed saturating Rounding Doubling Multiply returning High half (by element).

SQRDMULH (vector): Signed saturating Rounding Doubling Multiply returning High half.

SQRSHL: Signed saturating Rounding Shift Left (register).

SQRSHRN, SQRSHRN?: Signed saturating Rounded Shift Right Narrow (immediate).

SQRSHRUN, SQRSHRUN?2: Signed saturating Rounded Shift Right Unsigned Narrow (immediate).

SQSHL (immediate): Signed saturating Shift Left (immediate).

SQSHL (register): Signed saturating Shift Left (register).
SQSHLU: Signed saturating Shift Left Unsigned (immediate).

SQSHRN, SQSHRN2: Signed saturating Shift Right Narrow (immediate).

SQSHRUN, SQSHRUNZ2: Signed saturating Shift Right Unsigned Narrow (immediate).

Page 18

A64 -- SIMD and Floating-point Instructions (alphabetic order)

SQSUB: Signed saturating Subtract.
SQXTN, SQXTN2: Signed saturating extract Narrow.

SQOXTUN, SQXTUN2: Signed saturating extract Unsigned Narrow.

SRHADD: Signed Rounding Halving Add.

SRI: Shift Right and Insert (immediate).

SRSHL: Signed Rounding Shift Left (register).

SRSHR: Signed Rounding Shift Right (immediate).

SRSRA: Signed Rounding Shift Right and Accumulate (immediate).
SSHL: Signed Shift Left (register).

SSHLL, SSHLL2: Signed Shift Left Long (immediate).

SSHR: Signed Shift Right (immediate).
SSRA: Signed Shift Right and Accumulate (immediate).

SSUBL, SSUBL2: Signed Subtract Long.

SSUBW, SSUBW2: Signed Subtract Wide.

ST1 (multiple structures): Store multiple single-element structures from one, two, three, or four registers.

ST1 (single structure): Store a single-element structure from one lane of one register.

ST2 (multiple structures): Store multiple 2-element structures from two registers.

ST2 (single structure): Store single 2-element structure from one lane of two registers.

ST3 (multiple structures): Store multiple 3-element structures from three registers.

ST3 (single structure): Store single 3-element structure from one lane of three registers.

ST4 (multiple structures): Store multiple 4-element structures from four registers.

ST4 (single structure): Store single 4-element structure from one lane of four registers.

STNP (SIMD&EFP): Store Pair of SIMD&FP registers, with Non-temporal hint.
STP (SIMD&EFP): Store Pair of SIMD&FP registers.

STR (immediate, SIMD&FP): Store SIMD&FP register (immediate offset).

STR (register, SIMD&FP): Store SIMD&FP register (register offset).

STUR (SIMD&EFP): Store SIMD&FP register (unscaled offset).

SUB (vector): Subtract (vector).

SUBHN, SUBHN2: Subtract returning High Narrow.

SUQADD: Signed saturating Accumulate of Unsigned value.

SXTL, SXTL2: Signed extend Long: an alias of SSHLL, SSHLL2.

TBL: Table vector Lookup.

TBX: Table vector lookup extension.
TRNI1: Transpose vectors (primary).
TRN2: Transpose vectors (secondary).

UABA: Unsigned Absolute difference and Accumulate.

Page 19

A64 -- SIMD and Floating-point Instructions (alphabetic order)

UABAL. UABAL2: Unsigned Absolute difference and Accumulate Long.

UABD: Unsigned Absolute Difference (vector).

UABDL. UABDL2: Unsigned Absolute Difference Long.

UADALP: Unsigned Add and Accumulate Long Pairwise.

UADDL, UADDL2: Unsigned Add Long (vector).

UADDLP: Unsigned Add Long Pairwise.
UADDLV: Unsigned sum Long across Vector.

UADDW, UADDW?2: Unsigned Add Wide.

UCVTF (scalar, fixed-point): Unsigned fixed-point Convert to Floating-point (scalar).

UCVTF (scalar, integer): Unsigned integer Convert to Floating-point (scalar).

UCVTF (vector, fixed-point): Unsigned fixed-point Convert to Floating-point (vector).

UCVTF (vector, integer): Unsigned integer Convert to Floating-point (vector).

UDOT (by element): Dot Product unsigned arithmetic (vector, by element).

UDOT (vector): Dot Product unsigned arithmetic (vector).
UHADD: Unsigned Halving Add.

UHSUB: Unsigned Halving Subtract.

UMAX: Unsigned Maximum (vector).

UMAXP: Unsigned Maximum Pairwise.

UMAXYV: Unsigned Maximum across Vector.

UMIN: Unsigned Minimum (vector).

UMINP: Unsigned Minimum Pairwise.

UMINV: Unsigned Minimum across Vector.

UMLAL, UMLAL2 (by element): Unsigned Multiply-Add Long (vector, by element).

UMLAL, UMLAL2 (vector): Unsigned Multiply-Add Long (vector).

UMLSL, UMLSL2 (by element): Unsigned Multiply-Subtract Long (vector, by element).

UMLSL, UMLSL2 (vector): Unsigned Multiply-Subtract Long (vector).

UMOV: Unsigned Move vector element to general-purpose register.

UMULL, UMULL2 (by element): Unsigned Multiply Long (vector, by element).

UMULL, UMULL2 (vector): Unsigned Multiply long (vector).
UQADD: Unsigned saturating Add.
UQRSHL: Unsigned saturating Rounding Shift Left (register).

UQRSHRN, UQRSHRN2: Unsigned saturating Rounded Shift Right Narrow (immediate).

UQSHL (immediate): Unsigned saturating Shift Left (immediate).

UQSHL (register): Unsigned saturating Shift Left (register).

UQSHRN, UQSHRN2: Unsigned saturating Shift Right Narrow (immediate).

UQSUB: Unsigned saturating Subtract.

Page 20

A64 -- SIMD and Floating-point Instructions (alphabetic order)

UQXTN, UQXTN2: Unsigned saturating extract Narrow.

URECPE: Unsigned Reciprocal Estimate.

URHADD: Unsigned Rounding Halving Add.

URSHL: Unsigned Rounding Shift Left (register).

URSHR: Unsigned Rounding Shift Right (immediate).

URSQRTE: Unsigned Reciprocal Square Root Estimate.

URSRA: Unsigned Rounding Shift Right and Accumulate (immediate).
USHL: Unsigned Shift Left (register).

USHLL, USHLL2: Unsigned Shift Left Long (immediate).

USHR: Unsigned Shift Right (immediate).
USQADD: Unsigned saturating Accumulate of Signed value.
USRA: Unsigned Shift Right and Accumulate (immediate).

USUBL, USUBL2: Unsigned Subtract Long.

USUBW, USUBW?2: Unsigned Subtract Wide.

UXTL, UXTL2: Unsigned extend Long: an alias of USHLL, USHLL2.

UZP1: Unzip vectors (primary).
UZP2: Unzip vectors (secondary).
XAR: Exclusive OR and Rotate.

XTN, XTN2: Extract Narrow.

ZIP1: Zip vectors (primary).

ZIP2: Zip vectors (secondary).

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 21

ABS

Absolute value (vector). This instruction calculates the absolute value of each vector element in the source SIMD&FP register, puts the result

into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2 1 0
lo 1/0o[1 1 1 1 0fsizez[1 0 0 0 0[O 1 0 1 1[1 0] Rn Rd |
U
Scalar
ABS <V><d>, <V><n>
integer d = UInt (Rd);
integer n = UInt (Rn);
if size != '11' then ReservedValue() ;
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean neg = (U == '1");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2 1 0
lolQflo[o 1 1 1 0of[sizez[1 0 0 0 0[O 1 0 1 1[1 0] Rn Rd |
U
Vector

ABS <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if size:Q == '110' then ReservedValue();
integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

boolean neg = (U == '1");

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <vV>
Ox RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

ABS

Page 22

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 28
10 1 45
11 0 RESERVED
11 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation
CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
bits (datasize) result;

integer element;
for e = 0 to
element
if neg then
element
else
element
Elem[result,

V[d] = result;

elements-1
SInt (Elem[operand,

e, esizel);

-element;

Abs (element) ;
e, esize] element<esize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ABS

Page 23

ADC

Add with Carry adds two register values and the Carry flag value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Ist/[o[0[1 1 0 1 0 0 0 O] Rm |0 0 0 0 0 O] Rn | Rd |
op S

32-bit (sf == 0)

ADC <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ADC <Xd>, <Xn>, <Xm>

integer d = UInt(Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;

bits (datasize) operandl = X[n];
bits (datasize) operand2 = X[m];
(result, -) = AddWithCarry (operandl, operand2, PSTATE.C);

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC Page 24

ADCS

Add with Carry, setting flags, adds two register values and the Carry flag value, and writes the result to the destination register. It updates the

condition flags based on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

Ist[o[1]1 1 0 1 0 0 0 O] Rm |0 0 0 0 0 O] Rn | Rd |
op S
32-bit (sf == 0)
ADCS <Wd>, <Wn>, <Wm>
64-bit (sf == 1)
ADCS <Xd>, <Xn>, <Xm>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wd>
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
Operation

bits(datasize) result;

bits (datasize) operandl = X[n];

bits (datasize) operand2 = X[m];

bits(4) nzcv;

(result, nzcv) = AddWithCarry (operandl, operand2, PSTATE.C);

PSTATE.<N, Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADCS

Page 25

ADD (extended register)

Add (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left shift amount, and writes the
result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

IsfloJoJo 1 0 1 1[0 o[1] Rm | option | imm3 | Rn | Rd |
op S
32-bit (sf == 0)

ADD <Wd|WSP>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;

ExtendType extend type = DecodeRegExtend(option);
integer shift = Ulnt (imm3);
if shift > 4 then ReservedValue();

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<R> Is a width specifier, encoded in “option™:
option <R>

00x W

010 W

x11 X

10x W

110 W
<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB

001 UXTH

010 LSL|UXTW

011 UXTX

100 SXTB

101 SXTH

110 SXTW

111 SXTX

If"Rd" or "Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'". In all other
cases <extend> is required and must be UXTW when "option" is '010'.

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

ADD (extended register) Page 26

option <extend>

000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rd" or "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other
cases <extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Operation

bits (datasize) result;
bits (datasize) operandl = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend type, shift);

(result, -) = AddWithCarry(operandl, operand2, '0');
if d == 31 then

SP[] = result;
else

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (extended register) Page 27

ADD (immediate)

Add (immediate) adds a register value and an optionally-shifted immediate value, and writes the result to the destination register.

This instruction is used by the alias MOV (to/from SP).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isflo]0]1 0 0 0 1] shift | imm12 | Rn | Rd |
op S
32-bit (sf == 0)

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

ADD <Xd|SP>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);

integer n = UInt (Rn);

integer datasize = if sf == 'l' then 64 else 32;
bits (datasize) imm;

case shift of
when '00' imm = ZeroExtend(imml2, datasize);
when '01' imm = ZeroExtend (imml2:Zeros(l2), datasize);
when 'lx' ReservedValue () ;

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:
shift <shift>

00 LSL #0

01 LSL #12

1x RESERVED

Alias Conditions

Alias Is preferred when
MOV (to/ shift == '00' && imml2 == '000000000000' && (Rd == '11111' || Rn == '11111"')
from SP)

Operation

bits (datasize) result;

bits (datasize) operandl = if n == 31 then SP[] else X[n];
(result, -) = AddWithCarry(operandl, imm, '0');
if d == 31 then
SP[] = result;
else
X[d] = result;

ADD (immediate) Page 28

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate) Page 29

ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

Ist/[o[0o[0 1 0 1 1] shift [0] Rm imm6 | Rn | Rd |
op S
32-bit (sf == 0)
ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
64-bit (sf == 1)
ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
if shift == '11' then ReservedValue() ;
if sf == '0' && imm6<5> == '1l' then ReservedValue();

ShiftType shift type
integer shift amount =

= DecodeShift (shift);
UInt (imm6) ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.
Operation
bits(datasize) result;
bits (datasize) operandl = X[n];
bits(datasize) operand2 = ShiftReg(m, shift type, shift amount);
(result, -) = AddWithCarry(operandl, operand2, '0');
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (shifted register)

Page 30

ADD (vector)

Add (vector). This instruction adds corresponding elements in the two source SIMD&FP registers, places the results into a vector, and writes the

vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]/0[1 1 1 1 0 size [1] Rm |1 0 0 0 O0f1] Rn Rd
U
Scalar
ADD <V><d>, <V><n>, <V><m>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size != '11' then ReservedValue() ;
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean sub op = (U == "'1");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lolQfof[o 1 1 1 0 size [1] Rm 1 0 0 0 O0[1] Rn Rd |
U

Vector

ADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);
1

if size:Q == '110' then ReservedValue();
integer esize = 8 << Ulnt(size);

integer datasize = if == '1' then 128 else 64;
integer elements = datasize DIV esize;

boolean sub op = (U == "'1");

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <vV>
Ox RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

ADD (vector)

Page 31

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 28

10 1 45

11 0 RESERVED

11 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;
bits(esize) elementl;
bits(esize) element?2;
for e = 0 to elements-1
elementl = Elem[operandl,
element2 = Elem[operand2,
if sub op then
Elem[result, e, esize]
else
Elem[result, e, esize]

V[d] = result;

esize];
esize];

elementl - element?2;

elementl + element2;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (vector) Page 32

ADDHN, ADDHN2

Add returning High Narrow. This instruction adds each vector element in the first source SIMD&FP register to the corresponding vector element
in the second source SIMD&FP register, places the most significant half of the result into a vector, and writes the vector to the lower or upper
half of the destination SIMD&FP register.

The results are truncated. For rounded results, see RADDHN.

The

ADDHNZ instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

ADDHN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 0] size [1] Rm o 1]o]JoJo o] Rn | Rd |
U o1

Three registers, not all the same type

ADDHN {2} <Vd>.<Tb>, <Vn>.<Ta>, <Vm>.<Ta>

integer
integer
integer

if size
integer
integer
integer
integer

boolean
boolean

d UlInt (Rd) ;
n UInt (Rn) ;
m = UInt (Rm) ;

== '11' then ReservedValue() ;

esize = 8 << Ulnt(size);
datasize = 64;

part = UInt(Q);

elements = datasize DIV esize;
sub op = (ol == '1");

round = (U == '1");

Assembler Symbols

<Vd>
<Tb>

<Vn>

<Ta>

<Vm>

Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding

the narrower elements, and is encoded in “Q”:

Q 2
0 [absent]
1 [present]

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

Is an arrangement specifier, encoded in “size:Q”:

size Q <Th>
00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 23

10 1 4S

11 X RESERVED

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is an arrangement specifier, encoded in “size”:

size <Ta>

00 8H

01 4S

10 2D

11 RESERVED

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

ADDHN, ADDHN2

Page 33

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(2*datasize) operandl
bits(2*datasize) operand?2
bits (datasize) result;
integer round const = if round then 1 << (esize - 1) else 0;
bits(2*esize) elementl;

bits(2*esize) element?2;

bits (2*esize) sum;

for e = 0 to elements-1
elementl = Elem[operandl, e, 2*esize];
element2 = Elem[operand2, e, 2*esize];
if sub op then
sum = elementl - element2;
else
sum = elementl + element2;
sum = sum + round const;
Elem[result, e, esize] = sum<2*esize-l:esize>;

Vpart[d, part] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDHN, ADDHN2 Page 34

ADDP (scalar)

Add Pair of elements (scalar). This instruction adds two vector elements in the source SIMD&FP register and writes the scalar result into the

destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

[0 1]o[1 1 1 1 0ofsizez[1 1 0 0 0[1 1 0 1

Advanced SIMD

ADDP <V><d>, <Vn>.<T>

integer d UInt (Rd) ;
integer n = UInt (Rn);

if size != '11' then ReservedValue () ;
integer esize = 8 << Ulnt(size);
integer datasize = esize * 2;

integer elements 28

ReduceOp op = ReduceOp ADD;

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:
size <V>
0x RESERVED
10 RESERVED
11 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> Is the source arrangement specifier, encoded in “size”:
size <T>

0x RESERVED
10 RESERVED
11 2D

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
V[d] = Reduce(op, operand, esize);

ADDP (scalar)

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 35

ADDP (vector)

Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP register after the

vector elements of the second source S
pair of values together, places the resul

IMD&FP register, reads each pair of adjacent vector elements from the concatenated vector, adds each
t into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 0] size [1] Rm 1.0 1 1 1]1] Rn | Rd |
Three registers of the same type
ADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UlInt (Rd);

integer n = UlInt (Rn);

integer m = UInt (Rm);

if size:Q == '110' then ReservedValue () ;

integer esize = 8 << Ulnt(size);

integer datasize = if == '1'" then 128 else 64;

integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 25

10 1 43

11 0 RESERVED

11 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;
bits(2*datasize) concat = operand2:operandl;
bits(esize) elementl;
bits(esize) element2;
for e = 0 to elements-1
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
Elem[result, e, esize] = elementl + element2;

V[d] result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDP (vector) Page 36

ADDS (extended register)

Add (extended register), setting flags, adds a register value and a sign or zero-extended register value, followed by an optional left shift amount,
and writes the result to the destination register. The argument that is extended from the <Rm> register can be a byte, halfword, word, or
doubleword. It updates the condition flags based on the result.

This instruction is used by the alias CMN (extended register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isflo]1]0 1 0 1 1[0 0[1] Rm | option | imm3 | Rn | Rd |
op S
32-bit (sf == 0)

ADDS <Wd>, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
ExtendType extend type = DecodeRegExtend (option);
integer shift = Ulnt (imm3);

if shift > 4 then ReservedValue();

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<R> Is a width specifier, encoded in “option™:
option <R>

00x W

010 W

x11 X

10x W

110 W
<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB

001 UXTH

010 LSL|UXTW

011 UXTX

100 SXTB

101 SXTH

110 SXTW

111 SXTX

If"Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTW when "option" is '010".
For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

ADDS (extended register) Page 37

option <extend>

000 UXTB
001 UXTH
010 UXTW
011 LSL|UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'". In all other cases
<extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Alias Conditions

Alias Is preferred when
CMN (extended register) Rd == '"11111"'
Operation
bits(datasize) result;
bits (datasize) operandl = if n == 31 then SP[] else X[n];
bits(datasize) operand2 = ExtendReg(m, extend type, shift);
bits (4) nzcv;
(result, nzcv) = AddWithCarry (operandl, operand2, '0'");

PSTATE.<N, Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (extended register) Page 38

ADDS (immediate)

Add (immediate), setting flags, adds a register value and an optionally-shifted immediate value, and writes the result to the destination register. It

updates the condition flags based on the result.

This instruction is used by the alias CMN (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
Isflo]1]1 0 0 0 1] shift | imm12 | Rn | Rd |
op S

32-bit (sf == 0)

ADDS <Wd>, <Wn|WSP>, #<imm>{, <shift>}

64-bit (sf == 1)

ADDS <Xd>, <Xn|SP>, #<imm>{, <shift>}

integer d = UInt(Rd);

integer n = UInt (Rn);

integer datasize = if sf == 'l' then 64 else 32;
bits (datasize) imm;

case shift of
when '00' imm = ZeroExtend(imml2, datasize);
when '01' imm = ZeroExtend (imml2:Zeros(l2), datasize);
when 'lx' ReservedValue () ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:
shift <shift>
00 LSL #0
01 LSL #12
1x RESERVED
Alias Conditions
Alias Is preferred when
CMN (immediate) Rd == '11111"'
Operation
bits (datasize) result;
bits (datasize) operandl = if n == 31 then SP[] else X[n];

bits (4) nzcv;

(result, nzcv) =

PSTATE.<N,Z,C, V>

X[d] = result;

AddWithCarry (operandl, imm, '0');

= nzcv;

ADDS (immediate)

Page 39

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (immediate) Page 40

ADDS (shifted register)

Add (shifted register), setting flags, adds a register value and an optionally-shifted register value, and writes the result to the destination register.
It updates the condition flags based on the result.

This instruction is used by the alias CMN (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Isflo]1]0 1 0 1 1] shit [0] Rm | imm6 | Rn | Rd |
op S
32-bit (sf == 0)
ADDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
64-bit (sf == 1)
ADDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;

if shift
if sf ==

o

'11l'" then ReservedValue();
&& 1mm6<5> == '1' then ReservedValue () ;

ShiftType shift type = DecodeShift (shift);
integer shift amount = UInt (imm6) ;

Assembler Symbols

<Wd>
<Wn>
<Wm>
<Xd>
<Xn>
<Xm>

<shift>

<amount>

Alias Conditions

Alias

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:

shift <shift>
00 LSL

01 LSR

10 ASR

11 RESERVED

For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Is preferred when

CMN (shifted register) Rd == '11111"

ADDS (shifted register)

Page 41

Operation

bits(datasize) result;

(
bits(datasize) operandl = X[n];
bits(datasize) operand2 = ShiftReg(m, shift type, shift amount);
bits (4) nzcv;
(result, nzcv) = AddWithCarry (operandl, operand2, '0'");

PSTATE.<N, Z,C,V> = nzcv;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDS (shifted register) Page 42

ADDV

Add across Vector. This instruction adds every vector element in the source SIMD&FP register together, and writes the scalar result to the

destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

13 12 11

10 9 8 7 6 5 4 3 2 1 0

loJQJoJo 1 1 1 0ofsize [1 1

0 0 0[1 10

1

1] 1

0 | Rn | Rd |

Advanced SIMD

ADDV <V><d>, <Vn>.<T>

integer d UInt (Rd) ;
integer n = UInt (Rn);

if size:Q == '100'

if size == '1l1' then ReservedValue /() ;
integer esize = 8 << Ulnt(size);
integer datasize = if Q == '1'

integer elements = datasize DIV esize;

ReduceOp op = ReduceOp ADD;

Assembler Symbols

<V> Is the destination width specifier, encoded in “size”:
size <V>
00 B
01 H
10 S
11 RESERVED
<d>
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> Is an arrangement specifier, encoded in “size:Q”:
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 RESERVED
10 1 43
11 X RESERVED
Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
V[d] = Reduce (op, operand,

esize);

then ReservedvValue();

then 128 else 64;

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADDV

Page 43

ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
|0]immlo|1 0 0 0 0] immhi | Rd |
op

Literal

ADR <Xd>, <label>

integer d = UInt(Rd);
bits(64) imm;

imm = SignExtend (immhi:immlo, 64);
Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction, in the range +/-1MB, is
encoded in "immbhi:immlo".

Operation

bits(64) base = PC[];

X[d] = base + imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 44

ADRP

Form PC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits, to the PC value to form a PC-relative address, with
the bottom 12 bits masked out, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| 1]immlo/1 0 0 0 0] immhi | Rd |
op

Literal

ADRP <Xd>, <label>

integer d = UInt (Rd);
bits(64) imm;

imm = SignExtend (immhi:immlo:Zeros(12), 64);
Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated. Its offset from the page address of this instruction, in the
range +/-4GB, is encoded as "immbhi:immlo" times 4096.

Operation

bits(64) base = PC[];

base<11:0> = Zeros (12);

X[d] = base + imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADRP Page 45

AESD

AES single round decryption.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

lo 10011 10[0o0[10100[0O0T1o0[1][1 0] Rn | Rd

D

Advanced SIMD

AESD <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt (Rn);
if !HaveCryptoExt () then UnallocatedEncoding() ;

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckCryptoEnabled64 () ;

bits (128) operandl =
bits (128) operand2 =
bits (128) result;
result = operandl EOR operand?2;

result = AESInvSubBytes (AESInvShiftRows (result));
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESD Page 46

AESE

AES single round encryption.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2 1 0
lo 10011 10[0o0[10100[0O0T1o0[0[1 0] Rn Rd |
D

Advanced SIMD

AESE <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt (Rn);
if !HaveCryptoExt () then UnallocatedEncoding() ;

Assembler Symbols

<Vd> Is the name of the SIMD&FP source and destination register, encoded in the "Rd" field.
<Vn> Is the name of the second SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckCryptoEnabled64 () ;

bits (128) operandl = V
bits (128) operand2 = V[n];
bits (128) result;

result = operandl EOR operand?2;

result = AESSubBytes (AESShiftRows (result));

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESE

Page 47

AESIMC

AES inverse mix columns.

10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
001 0 0 1 1 0/0 0o[/1 0 1 0 0[O0 0 1 1[1][1 0] Rn | Rd |
D

Advanced SIMD

AESIMC

integer d
integer n

if !HaveCryptoExt ()

<Vd>.16B, <Vn>.16B

= UInt (Rd);

= UInt (Rn);
then UnallocatedEncoding() ;

Assembler Symbols

<Vd>

<Vn>

Operation

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the name of the SIMD&FP source register, encoded in the "Rn" field.

CheckCryptoEnabled64 () ;

bits (128) operand = V[n];

bits (128) result;

result = AESInvMixColumns (operand) ;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESIMC Page 48

AESMC

AES mix columns.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o001 0 01 1 10[00[10

0 0/]0o 0 1 1|01 O] Rn | Rd |

Advanced SIMD

AESMC <Vd>.16B, <Vn>.16B

integer d = UInt(Rd);
integer n = UInt (Rn);

D

if !HaveCryptoExt () then UnallocatedEncoding() ;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckCryptoEnabled64 () ;

bits (128) operand = V[n];

bits (128) result;

result = AESMixColumns (operand) ;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESMC Page 49

AND (vector)

Bitwise AND (vector). This instruction performs a bitwise AND between the two source SIMD&FP registers, and writes the result to the
destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 ofJo of1] Rm o 0 0 1 1]1] Rn | Rd |
size

Three registers of the same type

AND <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn)
Rm)
= 1

~

integer m = Ulnt(;
integer datasize f Q == "1'" then 128 else 64;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “Q”:
Q <T>
0 8B
1 16B
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

result = operandl AND operand2;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (vector) Page 50

AND (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isf[0 0[1 0 0 1 0 O[N] immr imms | Rn | Rd |
opc
32-bit (sf == 0 && N == 0)
AND <Wd|WSP>, <Wn>, #<imm>
64-bit (sf == 1)
AND <Xd|SP>, <Xn>, #<imm>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize = if sf == 'l' then 64 else 32;
bits (datasize) imm;
if sf == '0' && N != '0' then ReservedValue () ;
(imm, -) = DecodeBitMasks (N, imms, immr, TRUE) ;

Assembler Symbols

<Wd|WSP>
<Wn>
<Xd|SP>
<Xn>

<imm>

Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Operation

result;
operandl

bits (datasize)
bits (datasize)

X[n];

result = operandl AND imm;
if d == 31 then

SP[] = result;
else

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (immediate)

Page 51

AND (shifted register)

Bitwise AND (shifted register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the result to the
destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Isf]0 0J]0 1 0 1 0] shit [0] Rm imm6 | Rn | Rd |
opc N

32-bit (sf == 0)
AND <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
64-bit (sf == 1)

AND <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = Ulnt (R
integer n = UInt (Rn
R

integer m = Ulnt(;
integer datasize f sf == '1'" then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue () ;

ShiftType shift type DecodeShift (shift);
integer shift amount = UInt (imm6) ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operandl X[n];
bits(datasize) operand2 = ShiftReg(m, shift type, shift amount);

result = operandl AND operand2;
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND (shifted register) Page 52

ANDS (immediate)

Bitwise AND (immediate), setting flags, performs a bitwise AND of a register value and an immediate value, and writes the result to the

destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
Isf][1 1]1 0 0 1 0 O[N] immr imms | Rn Rd
opc
32-bit (sf == 0 && N == 0)
ANDS <Wd>, <Wn>, #<imm>
64-bit (sf == 1)
ANDS <Xd>, <Xn>, #<imm>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize = if sf == 'l' then 64 else 32;
bits (datasize) imm;
if sf == '0' && N != '0' then ReservedValue () ;
(imm, -) = DecodeBitMasks (N, imms, immr, TRUE) ;
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".

For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".

Alias Conditions

Alias Is preferred when
TST (immediate) Rd == '"11111"
Operation

bits(datasize) result;
bits (datasize) operandl = X[n];

result = operandl AND imm;

PSTATE.<N, Z,C,V> = result<datasize-1>:IsZeroBit (result):'00"';

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (immediate)

Page 53

ANDS (shifted register)

Bitwise AND (shifted register), setting flags, performs a bitwise AND of a register value and an optionally-shifted register value, and writes the
result to the destination register. It updates the condition flags based on the result.

This instruction is used by the alias TST (shifted register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
Isf][1 1]0 1 0 1 0] shit [0] Rm imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

ANDS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

ANDS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer datasize = if sf == 'l' then 64 else 32;

if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift type = DecodeShift (shift);
integer shift amount = UInt (imm6) ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Alias Conditions

Alias Is preferred when
TST (shifted register) Rd == '"11111"

ANDS (shifted register) Page 54

Operation

bits (datasize) operandl
bits (datasize) operand?2

X[n];
ShiftReg(m, shift type, shift amount);

result = operandl AND operand2;
PSTATE.<N,Z,C,V> = result<datasize-1>:IsZeroBit (result):'00"';

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ANDS (shifted register) Page 55

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign bit, and writes the result to
the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the

first source register is right-shifted.

This is an alias of ASRV. This means:

» The encodings in this description are named to match the encodings of ASRV.
* The description of ASRV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

IsfloJo]1 1 0 1 0 1 1 0 0 1 0]1 0] Rn | Rd |
op2
32-bit (sf == 0)
ASR <Wd>, <Wn>, <Wm>
is equivalent to
ASRV <Wd>, <Wn>, <Wm>
and is always the preferred disassembly.
64-bit (sf == 1)
ASR <Xd>, <Xn>, <Xm>
is equivalent to
ASRV <Xd>, <Xn>, <Xm>
and is always the preferred disassembly.
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,

encoded in the "Rm" field.

Operation

The description of ASRV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (register) Page 56

ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of the sign bit in the upper bits
and zeros in the lower bits, and writes the result to the destination register.

This is an alias of SBFM. This means:

» The encodings in this description are named to match the encodings of SBEM.
* The description of SBFM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Isf]l0 0]1 0 0 1 1 O[N] immr Ix 1. 1.1 1 1] Rn | Rd |
opc imms
32-bit (sf == 0 && N == 0 && imms == 011111)
ASR <Wd>, <Wn>, #<shift>
is equivalent to
SBFM <Wd>, <Wn>, #<shift>, #31
and is always the preferred disassembly.
64-bit (sf ==1 && N == 1 && imms == 111111)
ASR <Xd>, <Xn>, #<shift>
is equivalent to
SBFM <Xd>, <Xn>, #<shift>, #63
and is always the preferred disassembly.
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<shift> For the 32-bit variant: is the shift amount, in the range 0 to 31, encoded in the "immr" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, encoded in the "immr" field.

Operation

The description of SBFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate) Page 57

ASRV

Arithmetic Shift Right Variable shifts a register value right by a variable number of bits, shifting in copies of its sign bit, and writes the result to
the destination register. The remainder obtained by dividing the second source register by the data size defines the number of bits by which the

first source register is right-shifted.

This instruction is used by the alias ASR (register).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
IsfloJo]1 1 0 1 0 1 1 0] Rm |0 0 1 0]1 0] Rn | Rd |
op2

32-bit (sf == 0)

ASRV <Wd>, <Wn>, <Wm>

64-bit (sf == 1)

ASRV <Xd>, <Xn>, <Xm>

integer d = Ulnt (R
integer n = UInt (Rn
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
ShiftType shift type = DecodeShift (op2);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register holding a shift amount from 0 to 31 in its bottom 5 bits,
encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register holding a shift amount from 0 to 63 in its bottom 6 bits,

encoded in the "Rm" field.

Operation

bits(datasize) result;
bits (datasize) operand2 = X[m];

result = ShiftReg(n, shift type, Ulnt (operand2) MOD datasize);
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRV Page 58

AT

Address Translate. For more information, see 464 system instructions for address translation.
This is an alias of SYS. This means:

* The encodings in this description are named to match the encodings of SYS.
» The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

17101 01010 0[0[0 1] opt [0 1 1 1[1 0 0 x| op2 | Rt

L CRn CRm
System

AT <at op>, <Xt>
is equivalent to
SYS #<opl>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp (opl, '0111',CRm, 0p2) == Sys AT.
Assembler Symbols

<at_op> Is an AT instruction name, as listed for the AT system instruction group, encoded in “opl:CRm<0>:0p2”:

opl CRm<(0> op2 <at_op> Architectural Feature

000 0 000 S1EIR -

000 0 001 S1E1W -

000 0 010 S1EOR -

000 0 011 S1EOW -

000 1 000 S1E1RP ARMVS.2-ATS1E1

000 1 001 S1E1WP ARMvS.2-ATS1EI

100 0 000 S1E2R -

100 0 001 S1E2W -

100 0 100 S12E1R -

100 0 101 S12E1W -

100 0 110 S12EO0R -

100 0 111 S12E0W -

110 0 000 S1E3R -

110 0 001 S1E3W -
<opl> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.
<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AT

Page 59

AUTDA, AUTDZA

Authenticate Data address, using key A. This instruction authenticates a data address, using a modifier and key A.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

+ In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDA.

 The value zero, for AUTDZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the
upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(ARMvS.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]1]0o]1 1 0 1 0 1 1 0[/0o 0 0 0 1]ofo]z[1 1 0] Rn | Rd |

AUTDA (Z == 0)

AUTDA <Xd>, <Xn|SP>

AUTDZA (Z ==1 && Rn == 11111)

AUTDZA <Xd>

boolean source is sp = FALSE;
integer d = UInt (Rd);
integer n = UInt (Rn);

if !'HavePACExt () then
UnallocatedEncoding () ;

if Z == '0' then // AUTDA

if n == 31 then source is sp = TRUE;
else // AUTDZA

if n !'= 31 then UnallocatedEncoding() ;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if source is sp then

X[d] = AuthDA (X[d], SP[]);
else
X[d] = AuthDA(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDA, AUTDZA Page 60

AUTDB, AUTDZB

Authenticate Data address, using key B. This instruction authenticates a data address, using a modifier and key B.
The address is in the general-purpose register that is specified by <Xd>.
The modifier is:

+ In the general-purpose register or stack pointer that is specified by <Xn|SP> for AUTDB.

 The value zero, for AUTDZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the
upper bits are corrupted and any subsequent use of the address results in a Translation fault.

Integer
(ARMvS.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1]1]0o]1 1 0 1 0 1 1 0[/0o 0 0 0 1]ofo]z[1 1 1] Rn | Rd |

AUTDB (Z == 0)

AUTDB <Xd>, <Xn|SP>

AUTDZB (Z ==1 && Rn == 11111)

AUTDZB <Xd>

boolean source is sp = FALSE;
integer d = UInt (Rd);
integer n = UInt (Rn);

if !'HavePACExt () then
UnallocatedEncoding () ;

if Z == '0' then // AUTDB

if n == 31 then source is sp = TRUE;
else // AUTDZB

if n !'= 31 then UnallocatedEncoding() ;

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if source is sp then

X[d] = AuthDB(X[d], SP[]);
else
X[d] = AuthDB(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTDB, AUTDZB Page 61

AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA

Authenticate Instruction address, using key A. This instruction authenticates an instruction address, using a modifier and key A.

The address is:
* In the general-purpose register that is specified by <Xd> for
+ InX17, for AUTIAl716.
« In X30, for AUTIASP and AUTIAZ.

The modifier is:

AUTIA and

* In the general-purpose register or stack pointer that is specified by <Xn|SP> for

* The value zero, for AUTIZA and AUTIAZ.
+ In X16, for AUTIAl716.
e InSP, for AUTIASP.

AUTIA.

AUTIZA.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the

upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(ARMv8.3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 0
[1]1]0o[1 1 0 1 0 1 1 0[0 0 0 0 1[0of[0]Zz][1 0 0] Rn Rd |
AUTIA (Z==0)
AUTIA <Xd>, <Xn|SP>
AUTIZA (Z ==1 && Rn == 11111)
AUTIZA <Xd>
boolean source is sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HavePACExt () then
UnallocatedEncoding () ;
if Z == '0' then // AUTIA
if n == 31 then source is sp = TRUE;
else // AUTIZA
if n !'= 31 then UnallocatedEncoding() ;
System
(ARMv8.3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 0
[1 101 01 010 o0[0[0 0]O0O 1 1[0 0 0/0 0 x 1]1 0 x][1 1 1 |
CRm op2
AUTIA, AUTIA1716, AUTIASP,
Page 62

AUTIAZ, AUTIZA

AUTIA1716 (CRm == 0001 && op2 == 100)

AUTIAL716

AUTIASP (CRm == 0011 && op2 == 101)

AUTIASP

AUTIAZ (CRm == 0011 && op2 == 100)

AUTIAZ

integer d;
integer n;

boolean source is_sp = FALSE;
case CRm:op2 of
when '0011 100°' // AUTIAZ
el = 30g
n = 31;
when '0011 101" // AUTIASP
el = 30g
source is sp = TRUE;
when '0001 100' // AUTIA1716
d=17;
n = 16;
when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 110' SEE "AUTIB";
when '0011 00x' SEE "PACIA";
when '0011 Olx' SEE "PACIB";
when '0011 11x' SEE "AUTIB";
when '0000 111' SEE "XPACLRI";

otherwise SEE "HINT";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if HavePACExt () then
if source is sp then
X[d] = AuthIA(X[d],
else
X[d] =

SP[]);

AuthIA(X[d], X[nl]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIA, AUTIA1716, AUTIASP,

AUTIAZ, AUTIZA Page 63

AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB

Authenticate Instruction address, using key B. This instruction authenticates an instruction address, using a modifier and key B.

The address is:
* In the general-purpose register that is specified by <Xd> for
+ InX17, for AUTIB1716.
« In X30, for AUTIBSP and AUTIBZ.

The modifier is:

AUTIBand

* In the general-purpose register or stack pointer that is specified by <Xn|SP> for

* The value zero, for AUTIZB and AUTIBZ.
+ In X16, for AUTIB1716.
e InSP, for AUTIBSP.

AUTIB.

AUTIZB.

If the authentication passes, the upper bits of the address are restored to enable subsequent use of the address. If the authentication fails, the

upper bits are corrupted and any subsequent use of the address results in a Translation fault.

It has encodings from 2 classes: Integer and System

Integer
(ARMv8.3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 0
[1]1]0o[1 1 0 1 0 1 1 0[0 0 0 0 1][0f[0]Zz][1 0 1] Rn | Rd |
AUTIB (Z == 0)
AUTIB <Xd>, <Xn|SP>
AUTIZB (Z ==1 && Rn == 11111)
AUTIZB <Xd>
boolean source is sp = FALSE;
integer d = UInt(Rd);
integer n = UInt(Rn);
if !HavePACExt () then
UnallocatedEncoding () ;
if Z == '0' then // AUTIB
if n == 31 then source is sp = TRUE;
else // AUTIZB
if n !'= 31 then UnallocatedEncoding() ;
System
(ARMv8.3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2 0
[1 101 01 010 o0[0[0 0]O0O 1 1[0 0 0/0 0 x 1]1 1 x]|[1 1 1 |
CRm op2
AUTIB, AUTIB1716, AUTIBSP,
Page 64

AUTIBZ, AUTIZB

AUTIB1716 (CRm == 0001 && op2 == 110)

AUTIB1716

AUTIBSP (CRm == 0011 && op2 == 111)

AUTIBSP

AUTIBZ (CRm == 0011 && op2 == 110)

AUTIBZ

integer d;
integer n;

boolean source is_sp = FALSE;
case CRm:op2 of
when '0011 110°' // AUTIBZ
el = 30g
n = 31;
when '0011 111 // AUTIBSP
el = 30g
source is sp = TRUE;
when '0001 110°' // AUTIB1716
d=17;
n = 16;
when '0001 000' SEE "PACIA";
when '0001 010' SEE "PACIB";
when '0001 100' SEE "AUTIA";
when '0011 00x' SEE "PACIA";
when '0011 Olx' SEE "PACIB";
when '0011 10x' SEE "AUTIA";
when '0000 111' SEE "XPACLRI";

Assembler Symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn|SP> Is the 64-bit name of the general-purpose source register or stack pointer, encoded in the "Rn" field.
Operation

if HavePACExt () then
if source is sp then
X[d] = AuthTB(X[d],
else
X[d] =

SP[]);

AuthIB(X[d], X[n]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZB Page 65

B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
01 0 1 0 1 0/[0] imm19 [0] ocond |

19-bit signed PC-relative branch offset

B.<cond> <label>

bits(64) offset = SignExtend (imml9:'00', 64);
bits(4) condition = cond;

Assembler Symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is
encoded as "imm19" times 4.

Operation

if ConditionHolds (condition) then
BranchTo (PC[] + offset, BranchType JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B.cond Page 66

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJo 0 1 0 1] imm26
op

26-bit signed PC-relative branch offset

B <label>

bits (64) offset = SignExtend (imm26:'00', 64);
Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in the range +/-128MB,
is encoded as "imm26" times 4.

Operation

BranchTo (PC[] + offset, BranchType JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B Page 67

BCAX

Bit Clear and Exclusive OR performs a bitwise AND of the 128-bit vector in a source SIMD&FP register and the complement of the vector in
another source SIMD&FP register, then performs a bitwise exclusive OR of the resulting vector and the vector in a third source SIMD&FP
register, and writes the result to the destination SIMD&FP register.

This instruction is implemented only when ARMvS.2-SHA is implemented.

Advanced SIMD
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/110 0 1 110 0][0 1] Rm 0] Ra | Rn | Rd |

Advanced SIMD

BCAX <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.1l6B

if !HaveCryptoExt2 () then UnallocatedEncoding() ;
integer d = UInt (Rd

integer n = UInt (Rn
integer m = UInt (Rm

) 14
) ;
) .

’

integer a = UlInt(Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.
Operation

bits (128) Vm V[m];

bits(128) Vn = V[n];

bits(128) Va = V[al;

V[d] = Vn EOR (Vm AND NOT (Va)) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BCAX Page 68

BFC

Bitfield Clear, leaving other bits unchanged.
This is an alias of BEM. This means:

» The encodings in this description are named to match the encodings of BEM.
» The description of BEM gives the operational pseudocode for this instruction.

Leaving other bits unchanged
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[sf[0 11 0 0 1 1 O[N] immr imms [1 1
opc Rn

32-bit (sf == 0 && N == 0)

BFC <Wd>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, WZR, #(-<lsb> MOD 32), #(<width>-1)
and is the preferred disassembly when UInt (imms) < UInt (immr).
64-bit (sf==1&& N==1)

BFC <Xd>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, XZR, #(-<lsb> MOD 64), #(<width>-1)

and is the preferred disassembly when UInt (imms) < UInt (immr).

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<lIsb> For the 32-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<lsb>.
For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<lsb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFC Page 69

BFI

Bitfield Insert copies any number of low-order bits from a source register into the same number of adjacent bits at any position in the destination

register, leaving other bits unchanged.

This is an alias of BEM. This means:

» The encodings in this description are named to match the encodings of BEM.
» The description of BEM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

Isf]l0 1]1 0 0 1 1 O[N] immr imms | 1= 11111 | Rd |
opc Rn
32-bit (sf == 0 && N == 0)
BFI <Wd>, <Wn>, #<lsb>, #<width>

is equivalent to

BFM <Wd>, <Wn>, #(-<lsb> MOD 32),

and is the preferred disassembly when UInt (imms)

64-bit (sf==1 && N == 1)

BFI <Xd>, <Xn>, #<lsb>, #<width>

is equivalent to

BFM <Xd>, <Xn>, #(-<lsb> MOD 64),

and is the preferred disassembly when UInt (imms)
Assembler Symbols

<Wd>
<Wn>
<Xd>
<Xn>

<lsb>

(<width>-1)

< UInt (immr).

(<width>-1)

< UInt (immr).

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.

For the 32-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the destination bitfield, in the range 0 to 63.

<width>

For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<Isb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<Isb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BF1

Page 70

BFM

Bitfield Move copies any number of low-order bits from a source register into the same number of adjacent bits at any position in the destination

register, leaving other bits unchanged.

This instruction is used by the aliases BFC, BFI, and BEXIL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Isfl0 1]1 0 0 1 1 O[N] immr imms | Rn | Rd |
opc
32-bit (sf == 0 && N == 0)
BFM <Wd>, <Wn>, #<immr>, #<imms>
64-bit (sf==1 && N ==1)
BFM <Xd>, <Xn>, #<immr>, #<imms>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize = if sf == 'l' then 64 else 32;
integer R;
bits (datasize) wmask;
bits (datasize) tmask;
if sf == '1'" && N != '1'" then ReservedValue () ;
if sf == '0' && (N != '0" || immr<5> != '0' || imms<5> != '0') then ReservedValue/();
R = UInt (immr) ;
(wmask, tmask) = DecodeBitMasks (N, imms, immr, FALSE);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<immr> For the 32-bit variant: is the right rotate amount, in the range 0 to 31, encoded in the "immr" field.
For the 64-bit variant: is the right rotate amount, in the range 0 to 63, encoded in the "immr" field.
<imms> For the 32-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 31, encoded in the "imms"

field.

For the 64-bit variant: is the leftmost bit number to be moved from the source, in the range 0 to 63, encoded in the "imms"

field.

Alias Conditions

Alias Is preferred when

BEC Rn == '11111' && UInt (imms) < UInt (immr)
BFI Rn != '"11111' && UInt (imms) < UInt (immr)
BFXIL UInt (imms) >= UInt (immr)

BFM

Page 71

Operation

bits(datasize) dst = X
bits(datasize) src = X[n];

// perform bitfield move on low bits
bits(datasize) bot = (dst AND NOT (wmask)) OR (ROR(src, R) AND wmask);

// combine extension bits and result bits
X[d] = (dst AND NOT (tmask)) OR (bot AND tmask);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFM Page 72

BFXIL

Bitfield extract and insert at low end copies any number of low-order bits from a source register into the same number of adjacent bits at the low
end in the destination register, leaving other bits unchanged.

This is an alias of BEM. This means:

» The encodings in this description are named to match the encodings of BEM.
» The description of BEM gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Isf]l0 1]1 0 0 1 1 O[N] immr imms | Rn | Rd |
opc
32-bit (sf == 0 && N == 0)
BFXIL <Wd>, <Wn>, #<lsb>, #<width>
is equivalent to
BFM <Wd>, <Wn>, #<lsb>, # (<lsb>+<width>-1)
and is the preferred disassembly when UInt (imms) >= UInt (immr).
64-bit (sf==1 && N ==1)
BFXIL <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to
BFM <Xd>, <Xn>, #<lsb>, # (<lsb>+<width>-1)
and is the preferred disassembly when UInt (imms) >= UInt (immr).
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<lIsb> For the 32-bit variant: is the bit number of the 1sb of the source bitfield, in the range 0 to 31.

For the 64-bit variant: is the bit number of the Isb of the source bitfield, in the range 0 to 63.

<width> For the 32-bit variant: is the width of the bitfield, in the range 1 to 32-<Isb>.

For the 64-bit variant: is the width of the bitfield, in the range 1 to 64-<Isb>.

Operation

The description of BFM gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFXIL Page 73

BIC (vector, immediate)

Bitwise bit Clear (vector, immediate). This instruction reads each vector element from the destination SIMD&FP register, performs a bitwise
AND between each result and the complement of an immediate constant, places the result into a vector, and writes the vector to the destination
SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 2
loJQJ1]Jo 1 1 1 1 0 0 0 0 0O[albfc|[x x x 1]o[1][d]elflg]h] Rd |
op cmode

16-bit (cmode == 10x1)

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

32-bit (cmode == 0xx1)

BIC <Vd>.<T>, #<imm8>{, LSL #<amount>}

integer

rd = UInt (Rd);

integer datasize = if Q == 'l' then 128 else 64;

bits (dat
bits (64)

asize) imm;
imm64;

Immediat

case cmo
when
when
when
when
when
when
when

imm64 =
imm = Re

eOp operation;

de:op of
'0xx01"' operation = ImmediateOp MVNI;
'0xx11'" operation = ImmediateOp BIC;
'10x01"' operation = ImmediateOp MVNI;
'10x11"' operation = ImmediateOp BIC;
'110x1"' operation = ImmediateOp MVNI;
'1110x"' operation = ImmediateOp MOVI;
'11111"

// FMOV Dn, #imm is in main FP instruction set

if Q == '0' then UnallocatedEncoding() ;

operation = ImmediateOp MOVI;

AdvSIMDExpandImm (op, cmode, a:b:c:d:e:f:g:h);

plicate (imm64, datasize DIV 64);

Assembler Symbols

<Vd>

<T>

<imm8>

<amount>

Is the name of the SIMD&FP register, encoded in the "Rd" field.
For the 16-bit variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H

For the 32-bit variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 23
1 4s

Is an 8-bit immediate encoded in "a:b:c:d:e:fig:h".

For the 16-bit variant: is the shift amount encoded in “cmode<1>":

cmode<1> <amount>
0 0
1 8

defaulting to 0 if LSL is omitted.

BIC (vector, immediate)

Page 74

For the 32-bit variant: is the shift amount encoded in “cmode<2:1>"":

cmode<2:1> <amount>
00 0
01 8
10 16
11 24

defaulting to 0 if LSL is omitted.

Operation

CheckFPAdvSIMDEnabledo64 () ;
bits(datasize) operand;
bits(datasize) result;

case operation of

when ImmediateOp MOVI
result = imm;

when ImmediateOp MVNI
result = NOT (imm) ;

when ImmediateOp ORR
operand = V[rd];
result = operand OR imm;

when ImmediateOp BIC
operand = V[rd];

result = operand AND NOT (imm) ;

V[rd] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vector, immediate)

Page 75

BIC (vector, register)

Bitwise bit Clear (vector, register). This instruction performs a bitwise AND between the first source SIMD&FP register and the complement of
the second source SIMD&FP register, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 oo 1]1] Rm o 0 0 1 1]1] Rn | Rd |
size

Three registers of the same type

BIC <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn
R

)

)
m)

i

~

integer m = Ulnt(;
integer datasize f Q == "1'" then 128 else 64;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “Q”:
Q <T>
0 8B
1 16B
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

operand2 = NOT (operand?2) ;

result = operandl AND operand2;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (vector, register) Page 76

BIC (shifted register)

Bitwise Bit Clear (shifted register) performs a bitwise AND of a register value and the complement of an optionally-shifted register value, and

writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

Isf/[0 0[O0 1 0 1 0] shift [1] Rm imm6 | Rn | Rd |
opc N
32-bit (sf == 0)
BIC <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
64-bit (sf == 1)
BIC <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue () ;

ShiftType shift type
integer shift amount =

DecodeShift (shift);
UInt (imm6) ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
Operation
bits (datasize) operandl = X[n];
bits(datasize) operand2 = ShiftReg(m, shift type, shift amount);

operand2 = NOT (operand?) ;

result = operandl AND operand2;
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC (shifted register)

Page 77

BICS (shifted register)

Bitwise Bit Clear (shifted register), setting flags, performs a bitwise AND of a register value and the complement of an optionally-shifted
register value, and writes the result to the destination register. It updates the condition flags based on the result.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
Isf][1 1]0 1 0 1 0] shift [1] Rm imm6 | Rn | Rd |
opc N

32-bit (sf == 0)

BICS <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit (sf == 1)

BICS <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer datasize = if sf == 'l' then 64 else 32;

if sf == '0' && imm6<5> == '1' then ReservedValue();

ShiftType shift type = DecodeShift (shift);
integer shift amount = UInt (imm6) ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>

00 LSL

01 LSR

10 ASR

11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

Operation

bits(datasize) operandl X[n];
bits(datasize) operand2 = ShiftReg(m, shift type, shift amount);

operand2 = NOT (operand?2) ;

result = operandl AND operand2;
PSTATE.<N, Z,C,V> = result<datasize-1>:IsZeroBit (result):'00';

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

BICS (shifted register) Page 78

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BICS (shifted register) Page 79

BIF

Bitwise Insert if False. This instruction inserts each bit from the first source SIMD&FP register into the destination SIMD&FP register if the
corresponding bit of the second source SIMD&FP register is 0, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJ1]Jo 1 1 1 o1 1]1] Rm o 0 0 1 1]1] Rn | Rd |
opc2

Three registers of the same type

BIF <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn
R

)
)
m)
i

~

integer m = Ulnt(;
integer datasize f Q == "1'" then 128 else 64;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “Q”:
Q <T>
0 8B
1 16B
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl;
bits (datasize) operand3;

bits (datasize) operand4 = V[n];
operandl = VI[d];
operand3 = NOT (V[m]) ;

V[d] = operandl EOR ((operandl EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIF Page 80

BIT

Bitwise Insert if True. This instruction inserts each bit from the first source SIMD&FP register into the SIMD&FP destination register if the
corresponding bit of the second source SIMD&FP register is 1, otherwise leaves the bit in the destination register unchanged.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 o1 of1] Rm o 0 0 1 1]1] Rn | Rd |
opc2

Three registers of the same type

BIT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn
R

)
)
m)
i

~

integer m = Ulnt(;
integer datasize f Q == "1'" then 128 else 64;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “Q”:
Q <T>
0 8B
1 16B
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl;

bits (datasize) operand3;

bits (datasize) operand4 = V[n];

operandl = VI[d];
operand3 = V[m];
V[d] = operandl EOR ((operandl EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIT Page 81

BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a subroutine call.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1]0 0 1 0 1] imm26
op

26-bit signed PC-relative branch offset

BL <label>

bits (64) offset = SignExtend (imm26:'00', 64);
Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction, in the range +/-128MB,
is encoded as "imm26" times 4.

Operation

X[30] = BC[] + 4;

BranchTo (PC[] + offset, BranchType CALL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BL Page 82

BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

/1101 0 1 1]/0ofloJo 1[1 1 1 1 1[0 0 0 0f[0]0] Rn [0 0 0 0 O]
z op A M Rm

Integer

BLR <Xn>
integer n = UInt (Rn);
Assembler Symbols
<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

Operation

bits (64) target = X[n];
X[30] = PC[] + 4;
BranchTo (target, BranchType CALL) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLR Page 83

BLRAA, BLRAAZ, BLRAB, BLRABZ

Branch with Link to Register, with pointer authentication. This instruction authenticates the address in the general-purpose register that is
specified by <Xn>, using a modifier and the specified key, and calls a subroutine at the authenticated address, setting register X30 to PC+4.

The modifier is:

* In the general-purpose register or stack pointer that is specified by <Xm|SP> for BLRAA and BLRAB.
* The value zero, for BLRAAZ and BLRABZ.
Key A is used for BLRAA and BLRAAZ, and key B is used for BLRAB and BLRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.
The authenticated address is not written back to the general-purpose register.

Integer
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

110 1 0 1 1]z]ofJo 1[1 1 1 1 1[0 0 0 0[1[M] Rn | Rm

op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)

BLRAAZ <Xn>
Key A, register modifier (Z==1 && M == 0)

BLRAA <Xn>, <Xm|SP>
Key B, zero modifier (Z == 0 && M == 1 && Rm == 11111)

BLRABZ <Xn>
Key B, register modifier (Z ==1 && M == 1)

BLRAB <Xn>, <Xm|SP>

integer n = UInt (Rn);
integer m = UInt (Rm);
boolean use key a = (M

== '0");
boolean source is sp = ((Z2 == '1') && (m == 31));
if !HavePACExt () then
UnallocatedEncoding () ;
if Z == '0' & m != 31 then
UnallocatedEncoding () ;
Assembler Symbols
<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.
<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded in the "Rm" field.

BLRAA, BLRAAZ, BLRAB,
BLRABZ

Page 84

Operation

bits (64) target = X[n];
bits(64) modifier = if source is sp then SP[] else X[m];

if use key a then

target = AuthIA (target, modifier);
else

target = AuthIB(target, modifier);

X[30] = PC[] + 4;
BranchTo (target, BranchType CALL);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLRAA, BLRAAZ, BLRAB,

BLRABZ Page 85

BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

/1101 0 1 1][ofloJo of1 1 1 1 1[0 0 0 0f[0]0] Rn [0 0 0 0 O]
z op A M Rm

Integer

BR <Xn>
integer n = UInt (Rn);
Assembler Symbols
<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.

Operation

bits (64) target = X[n];
BranchTo (target, BranchType JMP) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BR Page 86

BRAA, BRAAZ, BRAB, BRABZ

Branch to Register, with pointer authentication. This instruction authenticates the address in the general-purpose register that is specified by
<Xn>, using a modifier and the specified key, and branches to the authenticated address.

The modifier is:

* In the general-purpose register or stack pointer that is specified by <Xm|SP> for BRAA and BRAB.
* The value zero, for BRAAYZ and BRABZ.
Key A is used for BRAA and BRAAZ, and key B is used for BRAB and BRABZ.

If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.

The authenticated address is not written back to the general-purpose register.

Integer
(ARMvS.3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
110 1 0 1 1]z]oJo o[1 1 1 1 1[0 0 0 0[1[M] Rn | Rm
op A

Key A, zero modifier (Z == 0 && M == 0 && Rm == 11111)
BRAAZ <Xn>

Key A, register modifier (Z==1 && M == 0)
BRAA <Xn>, <Xm|SP>

Key B, zero modifier (Z == 0 && M == 1 && Rm == 11111)
BRABZ <Xn>

Key B, register modifier (Z ==1 && M == 1)

BRAB <Xn>, <Xm|SP>

integer n = UInt (Rn);
integer m = UInt (Rm);
boolean use key a = (M

== '0");
boolean source is sp = ((Z2 == '1') && (m == 31));
if !HavePACExt () then
UnallocatedEncoding () ;
if Z == '0' & m != 31 then
UnallocatedEncoding () ;
Assembler Symbols
<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to, encoded in the "Rn" field.
<Xm|SP> Is the 64-bit name of the general-purpose source register or stack pointer holding the modifier, encoded in the "Rm" field.

BRAA, BRAAZ, BRAB, BRABZ

Page 87

Operation

bits (64) target = X[n];
bits(64) modifier = if source is sp then SP[] else X[m];

if use key a then

target = AuthIA (target, modifier);
else

target = AuthIB(target, modifier);

BranchTo (target, BranchType JMP) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRAA, BRAAZ, BRAB, BRABZ Page 88

BRK

Breakpoint instruction generates a Breakpoint Instruction exception. The PE records the exception in ESR_ELx, using the EC value 0x3c, and
captures the value of the immediate argument in ESR_ELx.ISS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
/1710 1 0 1 0 0[0 0 1] imm16 o 0 o|/0 0
System

BRK #<imm>

bits(16) comment = imml6;
Assembler Symbols

<imm> Is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm16" field.

Operation

AArcho64.SoftwareBreakpoint (comment) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BRK Page 89

BSL

Bitwise Select. This instruction sets each bit in the destination SIMD&FP register to the corresponding bit from the first source SIMD&FP
register when the original destination bit was 1, otherwise from the second source SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 oo 1]1] Rm o 0 0 1 1]1] Rn | Rd |
opc2

Three registers of the same type

BSL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn
R

)
)
m)
i

~

integer m = Ulnt(;
integer datasize f Q == "1'" then 128 else 64;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “Q”:
Q <T>
0 8B
1 16B
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl;

bits (datasize) operand3;

bits (datasize) operand4 = V[n];

operandl = V[m];
operand3 = V[d];
V[d] = operandl EOR ((operandl EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BSL Page 90

CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is performed, the read and write
occur atomically such that no other modification of the memory location can take place between the read and write.

. CASA and CASATL load from memory with acquire semantics.
. CASL and CASAL store to memory with release semantics.
. CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, or <Xs>, is restored to the value
held in the register before the instruction was executed.

No offset
(ARMvS.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
|1 x]0o 0 1 0 0 of1]L[1] Rs lo0]1 1 1 1 1] Rn Rt |
size

CAS, CASA, CASAL, CASL Page 91

32-bit, acquire (size == 10 && L == 1 && 00 == 0)

CASA <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, acquire and release (size == 10 && L == 1 && 00 == 1)

CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, no memory ordering (size == 10 && L == 0 && 00 == 0)

CAS <Ws>, <Wt>, [<Xn|SP>{,#0}]

32-bit, release (size == 10 && L == 0 && 00 == 1)

CASL <Ws>, <Wt>, [<Xn|SP>{,#0}]

64-bit, acquire (size == 11 && L == 1 && 00 == 0)

CASA <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, acquire and release (size == 11 && L == 1 && 00 == 1)

CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, no memory ordering (size == 11 && L == 0 && 00 == 0)

CAS <Xs>, <Xt>, [<Xn|SP>{,#0}]

64-bit, release (size ==11 && L == 0 && 00 == 1)

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}]

if !HaveAtomicExt () then UnallocatedEncoding() ;

integer n = UInt(Rn);
integer UInt (Rt);
integer s = UInt(Rs);

o+
Il

integer datasize = 8 << Ulnt (size);

integer regsize = if datasize == 64 then 64 else 32;

AccType ldacctype = if L == 'l' then AccType ORDEREDRW else AccType ATOMICRW;
AccType stacctype = if o0 == 'l' then AccType ORDEREDRW else AccType ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.
<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CAS, CASA, CASAL, CASL

Page 92

Operation

bits
bits
bits
bits

64) address;

datasize) comparevalue;
datasize) newvalue;
datasize) data;

comparevalue = X[s];

newvalue = X[t];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = Mem[address, datasize DIV 8, ldacctypel;

if data == comparevalue then
// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, datasize DIV 8, stacctype] = newvalue;

X[s] = ZeroExtend(data, regsize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CAS, CASA, CASAL, CASL Page 93

CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held in a first register. If the comparison
is equal, the value in a second register is written to memory. If the write is performed, the read and write occur atomically such that no other
modification of the memory location can take place between the read and write.

. CASAB and CASALB load from memory with acquire semantics.
. CASLB and CASALB store to memory with release semantics.
. CASB has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.
If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is restored to the values held in

the register before the instruction was executed.

No offset
(ARMv8.1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 0[]0 0 1 0 0 Oof[1]L][1] Rs lo0[1 1 1 1 1] Rn Rt
size
Acquire (L ==1 && 00 == 0)
CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}]
Acquire and release (L ==1 && 00 == 1)
CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}]
No memory ordering (L == 0 && 00 == 0)
CASB <Ws>, <Wt>, [<Xn|SP>{,#0}]
Release (L == 0 && 00 == 1)
CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}]
if !HaveAtomicExt () then UnallocatedEncoding() ;
integer n = UInt (Rn);
integer t = UInt (Rt);
integer s = UInt (Rs);
AccType ldacctype = if L == 'l' then AccType ORDEREDRW else AccType ATOMICRW;
AccType stacctype = if o0 == 'l' then AccType ORDEREDRW else AccType ATOMICRW;
Assembler Symbols
<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASB, CASAB, CASALB, CASLB

Page 94

Operation

bits (64) address;
bits (8) comparevalue;
bits (8) newvalue;
bits (8) data;

comparevalue = X[s];

newvalue = X[t];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = Mem[address, 1, ldacctypel;

if data == comparevalue then
// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, 1, stacctype] = newvalue;

X[s] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASB, CASAB, CASALB, CASLB Page 95

CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value held in a first register. If the
comparison is equal, the value in a second register is written to memory. If the write is performed, the read and write occur atomically such that
no other modification of the memory location can take place between the read and write.

. CASAH and CASALH load from memory with acquire semantics.
. CASLH and CASALH store to memory with release semantics.
. CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.
If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is restored to the values held in

the register before the instruction was executed.

No offset
(ARMv8.1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]/0 0 1. 0 0 of[1]L[1] Rs lo0[1 1 1 1 1] Rn Rt
size
Acquire (L ==1 && 00 == 0)
CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}]
Acquire and release (L ==1 && 00 == 1)
CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}]
No memory ordering (L == 0 && 00 == 0)
CASH <Ws>, <Wt>, [<Xn|SP>{,#0}]
Release (L == 0 && 00 == 1)
CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}]
if !HaveAtomicExt () then UnallocatedEncoding() ;
integer n = UInt (Rn);
integer t = UInt (Rt);
integer s = UInt (Rs);
AccType ldacctype = if L == 'l' then AccType ORDEREDRW else AccType ATOMICRW;
AccType stacctype = if o0 == 'l' then AccType ORDEREDRW else AccType ATOMICRW;
Assembler Symbols
<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the "Rs" field.
<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the "Rt" field.
<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASH, CASAH, CASALH, CASLH

Page 96

Operation

bits (64) address;

bits (16) comparevalue;
bits(16) newvalue;
bits(1l6) data;

comparevalue = X[s];

newvalue = X[t];

if n == 31 then
CheckSPAlignment () ;
address = SP[];

else
address = X[n];

data = Mem[address, 2, ldacctypel;

if data == comparevalue then
// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, 2, stacctype] = newvalue;

X[s] = ZeroExtend(data, 32);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASH, CASAH, CASALH, CASLH Page 97

CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords from memory, and compares
them against the values held in the first pair of registers. If the comparison is equal, the values in the second pair of registers are written to
memory. If the writes are performed, the reads and writes occur atomically such that no other modification of the memory location can take place
between the reads and writes.

. CASPA and CASPAL load from memory with acquire semantics.
. CASPL and CASPAL store to memory with release semantics.
. CAS has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.
For information about memory accesses see Load/Store addressing modes.
The architecture permits that the data read clears any exclusive monitors associated with that location, even if the compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws> and <W(s+1)>, or <Xs> and
<X(s+1)>, are restored to the values held in the registers before the instruction was executed.

No offset
(ARMvS.1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0]sz[0 0 1 0 0 ofoO|L[1] Rs lo0[1 1 1 1 1] Rn Rt |
Rt2

CASP, CASPA, CASPAL, CASPL Page 98

32-bit, acquire (sz==0 && L ==1 && 00 == 0)

CASPA <Ws>, <W(s+1l)>, <Wt>, <W(t+1l)>, [<Xn|SP>{,#0}]

32-bit, acquire and release (sz==0 && L ==1 && 00 == 1)

CASPAL <Ws>, <W(s+1l)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}]

32-bit, no memory ordering (sz==0 && L == 0 && 00 == 0)

CASP <Ws>, <W(s+1l)>, <Wt>, <W(t+1l)>, [<Xn|SP>{,#0}]

32-bit, release (sz==0 && L == 0 && o0 == 1)

CASPL <Ws>, <W(s+1l)>, <Wt>, <W(t+1l)>, [<Xn|SP>{,#0}]

64-bit, acquire (sz==1 && L ==1 && 00 ==0)

CASPA <Xs>, <X (s+1l)>, <Xt>, <X(t+1l)>, [<Xn|SP>{,#0}]

64-bit, acquire and release (sz==1 && L ==1 && 00 == 1)

CASPAL <Xs>, <X(s+1l)>, <Xt>, <X (t+1l)>, [<Xn|SP>{,#0}]

64-bit, no memory ordering (sz==1 && L == 0 && 00 == 0)

CASP <Xs>, <X (s+l)>, <Xt>, <X (t+l)>, [<Xn|SP>{,#0}]

64-bit, release (sz==1 && L == 0 && 00 == 1)

CASPL <Xs>, <X (s+1l)>, <Xt>, <X(t+1l)>, [<Xn|SP>{,#0}]

if !HaveAtomicExt () then UnallocatedEncoding() ;
if Rs<0> == '1l' then UnallocatedEncoding();
if Rt<0> == '1l' then UnallocatedEncoding() ;

integer n = UInt (Rn);
integer UInt (Rt);
integer s = UInt(Rs);

o+
Il

integer datasize = 32 << Ulnt(sz);
AccType ldacctype = if L == 'l' then AccType ORDEREDRW else AccType ATOMICRW;
AccType stacctype = if o0 == 'l' then AccType ORDEREDRW else AccType ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs" field.
<W(st+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt" field.
<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded in the "Rs" field.
<X(st1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in the "Rt" field.
<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

CASP, CASPA, CASPAL, CASPL Page 99

Operation

bits (64) address;

bits(2*datasize) comparevalue;

bits(2*datasize) newvalue;

bits (2*datasize) data;

bits (datasize) sl = X[s];

bits(datasize) s2 = X[s+1];

bits (datasize) tl = X[t];

bits(datasize) t2 = X[t+1];

comparevalue = if BigEndian() then sl:s2 else s2:sl;

newvalue = if BigEndian () then tl:t2 else t2:tl;

if n == 31 then
CheckSPAlignment () ;
address = SP[];
else
address = X[n];
data = Mem[address, (2*datasize) DIV 8, ldacctype]l;
if data == comparevalue then
// All observers in the shareability domain observe the
// following load and store atomically.
Mem[address, (2*datasize) DIV 8, stacctype] = newvalue;

if BigEndian () then
X[s] = ZeroExtend(data<2*datasize-l:datasize>, datasize);
X[s+1] = ZeroExtend(data<datasize-1:0>, datasize);

else

[ZeroExtend(data<datasize-1:0>, datasize);

X[s] =
X[s+l] = ZeroExtend(data<2*datasize-l:datasize>, datasize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CASP, CASPA, CASPAL, CASPL Page 100

CBNZz

Compare and Branch on Nonzero compares the value in a register with zero, and conditionally branches to a label at a PC-relative offset if the
comparison is not equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect the condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
Isf]l0 1 1. 0 1 0[1] imm19 Rt |

op

32-bit (sf == 0)
CBNZ <Wt>, <label>
64-bit (sf == 1)

CBNZ <Xt>, <label>
integer t = UInt (Rt);

integer datasize = if sf == 'l' then 64 else 32;
bits(64) offset = SignExtend (imml9:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is

encoded as "imm19" times 4.

Operation

bits (datasize) operandl = X[t];

if IsZero(operandl) == FALSE then
BranchTo (PC[] + offset, BranchType JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBNZ Page 101

cBz

Compare and Branch on Zero compares the value in a register with zero, and conditionally branches to a label at a PC-relative offset if the
comparison is equal. It provides a hint that this is not a subroutine call or return. This instruction does not affect condition flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
Isf]l0 1 1. 0 1 0[0] imm19 Rt |
op

32-bit (sf == 0)
CBZ <Wt>, <label>
64-bit (sf == 1)

CBZ <Xt>, <label>
integer t = UInt (Rt);

integer datasize = if sf == 'l' then 64 else 32;
bits(64) offset = SignExtend (imml9:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<Xt> Is the 64-bit name of the general-purpose register to be tested, encoded in the "Rt" field.
<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction, in the range +/-1MB, is

encoded as "imm19" times 4.

Operation

bits (datasize) operandl = X[t];

if IsZero(operandl) == TRUE then
BranchTo (PC[] + offset, BranchType JMP);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBZ Page 102

CCMN (immediate)

Conditional Compare Negative (immediate) sets the value of the condition flags to the result of the comparison of a register value and a negated
immediate value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5

4 3 2 1 0

Isflo]1]1 1 0 1 0 0 1 0] imm5 | cond [1]0] Rn 0] nzev
op
32-bit (sf == 0)
CCMN <Wn>, #<imm>, #<nzcv>, <cond>
64-bit (sf == 1)
CCMN <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt (Rn);

integer datasize = if sf == 'l' then 64 else 32;
bits(4) flags = nzcv;
bits(datasize) imm = ZeroExtend (imm5, datasize);

Assembler Symbols

<Wn>
<Xn>
<imm>

<nzcv>

Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

encoded in the "nzcv" field.

<cond>

Operation

bits (datasize)

if ConditionHol

operandl = X[n];

ds (cond) then

(-, flags)

= AddWithCarry (operandl, imm, '0');

PSTATE.<N, Z,C,V> = flags;

Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,

Is one of the standard conditions, encoded in the "cond" field in the standard way.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (immediate)

Page 103

CCMN (register)
Conditional Compare Negative (register) sets the value of the condition flags to the result of the comparison of a register value and the inverse of

another register value if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
Isflo]1]1 1 0 1 0 0 1 0] Rm cond [0]0] Rn 0] nzev

op

32-bit (sf == 0)

CCMN <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMN <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt (Rn);

integer m = UInt (Rm);

integer datasize = if sf == 'l' then 64 else 32;
bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.
Operation
bits (datasize) operandl = X[n];
bits (datasize) operand2 = X[m];

if ConditionHolds (cond) then
(-, flags) = AddWithCarry (operandl, operand2, '0'");
PSTATE.<N, Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMN (register) Page 104

CCMP (immediate)

Conditional Compare (immediate) sets the value of the condition flags to the result of the comparison of a register value and an immediate value

if the condition is TRUE, and an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

Isf][1]1]1 1 0 1 0 0 1 0] imm5

| cond

[1]0] Rn

0] nzcv

op
32-bit (sf == 0)

CCMP <Wn>, #<imm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMP <Xn>, #<imm>, #<nzcv>, <cond>

integer n = UInt (Rn);

integer datasize = if sf == 'l' then 64 else 32;

bits(4) flags = nzcv;

bits(datasize) imm = ZeroExtend (imm5, datasize);

Assembler Symbols

<Wn>
<Xn>
<imm>

<nzcv>
encoded in the "nzcv" field.

<cond>

Operation

bits (datasize)
bits (datasize)

operandl = X[n];
operand?2;
if ConditionHolds (cond) then

operand2 = NOT (imm) ;

(-, flags) = AddWithCarry (operandl,
PSTATE.<N,Z,C,V> = flags;

Is a five bit unsigned (positive) immediate encoded in the "imm5" field.

operand2,

1)

Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,

Is one of the standard conditions, encoded in the "cond" field in the standard way.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (immediate)

Page 105

CCMP (register)

Conditional Compare (register) sets the value of the condition flags to the result of the comparison of two registers if the condition is TRUE, and

an immediate value otherwise.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
Isf][1]1]1 1 0 1 0 0 1 0] Rm cond [0]0] Rn 0] nzev

op

32-bit (sf == 0)

CCMP <Wn>, <Wm>, #<nzcv>, <cond>

64-bit (sf == 1)

CCMP <Xn>, <Xm>, #<nzcv>, <cond>

integer n = UInt (Rn);

integer m = UInt (Rm);

integer datasize = if sf == 'l' then 64 else 32;
bits(4) flags = nzcv;

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.
Operation
bits (datasize) operandl = X[n];
bits (datasize) operand2 = X[m];

if ConditionHolds (cond) then

operand2 = NOT (operand2) ;

(-, flags) = AddWithCarry (operandl, operand2, 'l');
PSTATE.<N, Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CCMP (register) Page 106

CINC

Conditional Increment returns, in the destination register, the value of the source register incremented by 1 if the condition is TRUE, and

otherwise returns the value of the source register.

This is an alias of CSINC. This means:

* The encodings in this description are named to match the encodings of CSINC.
» The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isf[ofo[1 1 0 1 0 1 0 0 !=11111

1= 111x

[o]1] =111 | Rd |

op Rm

32-bit (sf == 0)

CINC <Wd>, <Wn>, <cond>

is equivalent to

CSINC <Wd>, <Wn>, <Wn>, invert (<cond>)

and is the preferred disassembly when Rn == Rm.
64-bit (sf == 1)

CINC <Xd>, <Xn>, <cond>

is equivalent to

CSINC <Xd>, <Xn>, <Xn>, invert (<cond>)

and is the preferred disassembly when Rn == Rm.
Assembler Symbols

<Wd>
<Wn>
<Xd>
<Xn>

<cond>

Operation

cond

The description of CSINC gives the operational pseudocode for this instruction.

02 Rn

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINC

Page 107

CINV

Conditional Invert returns, in the destination register, the bitwise inversion of the value of the source register if the condition is TRUE, and

otherwise returns the value of the source register.

This is an alias of CSINV. This means:

» The encodings in this description are named to match the encodings of CSINV.
* The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

Isf[1[0[1 1 0 1 0 1 0 0 !=11111

1= 111x

[o]o]| 1=11111 | Rd |

op Rm

32-bit (sf == 0)

CINV <Wd>, <Wn>, <cond>

is equivalent to

CSINV <Wd>, <Wn>, <Wn>, invert (<cond>)

and is the preferred disassembly when Rn == Rm.
64-bit (sf == 1)

CINV <Xd>, <Xn>, <cond>

is equivalent to

CSINV <Xd>, <Xn>, <Xn>, invert (<cond>)

and is the preferred disassembly when Rn == Rm.
Assembler Symbols

<Wd>
<Wn>
<Xd>
<Xn>

<cond>

Operation

cond

The description of CSINV gives the operational pseudocode for this instruction.

02 Rn

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.
Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CINV

Page 108

CLREX

Clear Exclusive clears the local monitor of the executing PE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
1101010 1o0o0f/0[0o0[0O11[/00 1 1] CRm [0 1 0[1 1 1 1 |
System
CLREX {#<imm>}
// CRm field is ignored
Assembler Symbols
<imm> Is an optional 4-bit unsigned immediate, in the range 0 to 15, defaulting to 15 and encoded in the "CRm" field.

Operation

ClearExclusiveLocal (ProcessorID()) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLREX Page 109

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

CLS (vector)

Count Leading Sign bits (vector). This instruction counts the number of consecutive bits following the most significant bit that are the same as
the most significant bit in each vector element in the source SIMD&FP register, places the result into a vector, and writes the vector to the

destination SIMD&FP register. The count does not include the most significant bit itself.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

10 9

8 7 6 5 4 3 2 1 0

loJQJoJo 1 1 1 0]sizz|[1 0 0 0 0[O0 0 1 0 0[1 O]

Rn | Rd |

u

Vector

CLS <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if size == '1l1' then ReservedValue /() ;

integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = 1if U == '1l' then CountOp CLZ else CountOp CLS;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 28

10 1 4s

11 X RESERVED
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;

integer count;
for e = 0 to elements-1

if countop == CountOp CLS then

count = CountlLeadingSignBits (Elem[operand, e, esize]);
else

count = CountlLeadingZeroBits (Elem[operand, e, esize]);
Elem[result, e, esize] = count<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS (vector) Page 110

CLS

Count leading sign bits: Rd = CLS (Rn).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

[sf[1]o]1 1 0 1 0 1 1 0[0 0 0 0 0[O 0 0 1 0f1] Rn

op

32-bit (sf == 0)

CLS <Wd>, <Wn>

64-bit (sf == 1)

CLS <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation

integer result;
bits (datasize) operandl = X[n];

result = CountleadingSignBits (operandl) ;

X[d] = result<datasize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLS Page 111

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

CLZ (vector)

Count Leading Zero bits (vector). This instruction counts the number of consecutive zeros, starting from the most significant bit, in each vector
element in the source SIMD&FP register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

10 9

8 7 6 5 4 3 2 1 0

loJQ]1]0 1 1 1 0]sizz|[1 0 0 0 0[O0 0 1 0 0[1 O]

Rn | Rd |

u

Vector

CLZ <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if size == '11' then ReservedValue () ;

integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CountOp countop = 1if U == '1l' then CountOp CLZ else CountOp CLS;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 28

10 1 4s

11 X RESERVED
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;

integer count;
for e = 0 to elements-1

if countop == CountOp CLS then

count = CountlLeadingSignBits (Elem[operand, e, esize]);
else

count = CountlLeadingZeroBits (Elem[operand, e, esize]);
Elem[result, e, esize] = count<esize-1:0>;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ (vector) Page 112

CLZ

Count leading zero bits: Rd = CLZ (Rn).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[sf[1]o]1 1 0 1 0 1 1 0[/0o 0 0 0 0[O 0 0 1 0f0] Rn Rd
op

32-bit (sf == 0)

CLZ <Wd>, <Wn>

64-bit (sf == 1)

CLZ <Xd>, <Xn>

integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
Operation

integer result;
bits (datasize) operandl = X[n];

result = CountleadingZeroBits (operandl) ;
X[d] = result<datasize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ Page 113

CMEQ (register)

Compare bitwise Equal (vector). This instruction compares each vector element from the first source SIMD&FP register with the corresponding
vector element from the second source SIMD&FP register, and if the comparison is equal sets every bit of the corresponding vector element in
the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to

Z€ro.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
0 1]1]1 1 1 1 0 size [1] Rm 1. 0 0 0 1]1] Rn Rd |
U
Scalar
CMEQ <V><d>, <V><n>, <V><m>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size != '11' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean and test = (U == '0");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lolQ[1][0 1 1 1 0 size [1] Rm 1 0 0 0 1][1] Rn Rd |
U
Vector
CMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean and test = (U == '0");
Assembler Symbols
<V> Is a width specifier, encoded in “size”:
size <vV>

0x RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

CMEQ (register)

Page 114

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 28

10 1 45

11 0 RESERVED

11 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits (datasize) result;

bits (esize) elementl;
bits (esize) element2;
boolean test passed;

for e = 0 to elements-1
elementl = Elem[operandl,
element2 = Elem[operand2,

if and test then

e, esize];
e, esize]l;

test passed =

else
test passed
Elem[result, e,

V[d] = result;

esize] =

!TsZero (elementl AND element?2);

(elementl

== element2);
if test passed then Ones()

else Zeros();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMEQ (register)

Page 115

CMEQ (zero)

Compare bitwise Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the value is equal to
zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding
vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
lo 1/0[1 1 1 1 0fsizez[1 0 0 0 0[O0 1 0 0[1][1 0] Rn | Rd |
u op

Scalar

CMEQ <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt (Rn);

if size != '11' then ReservedValue() ;
integer esize = 8 << Ulnt(size);
integer datasize = esize;

integer elements = 1;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
lolaQfo[o 1 1 1 0ofsizez[1 0 0 0 0[O 1 0 0[1][1 0] Rn | Rd |
U op

Vector

CMEQ <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt (Rd);

integer n = UInt (Rn);

if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
when '00' comparison
when '0l1' comparison
when '10' comparison
when 'l1l' comparison

CompareOp GT;
CompareOp GE;
CompareOp EQ;
CompareOp LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMEQ (zero) Page 116

size <V>
Ox RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> [s an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 258

10 1 4s

11 0 RESERVED

11 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()

bits (datasize) operand = V[n];
bits (datasize) result;

integer element;

boolean test passed;

for e = 0 to elements-1

v

(dl

element = SInt (Elem[operand, e, esizel);
case comparison of
when CompareOp GT test passed = element > 0;
when CompareOp GE test passed element >= 0;
when CompareOp EQ test passed element == 0;
when CompareOp LE test passed element <= 0;
when CompareOp LT test passed = element < 0;
Elem[result, e, esize] = if test passed then Ones() else Zeros();

= result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMEQ (zero)

Page 117

CMGE (register)

Compare signed Greater than or Equal (vector). This instruction compares each vector element in the first source SIMD&FP register with the
corresponding vector element in the second source SIMD&FP register and if the first signed integer value is greater than or equal to the second
signed integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of

the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]/0[1 1 1 1 0 size [1] Rm o 0 1 1]1]1] Rn Rd |
U eq
Scalar
CMGE <V><d>, <V><n>, <V><m>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size != '11' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lolQfo[o 1 1 1 0 size [1] Rm o 0 1 1]1]1] Rn Rd |
U eq
Vector

CMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Assembler Symbols
<V> Is a width specifier, encoded in “size”:
size <vV>

0x RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMGE (register)

Page 118

Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

integer elementl;

integer element2;

boolean test passed;

<m>
<Vd>
<T> Is an arrangement specifier, encoded in “size:Q”:
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 28
10 1 45
11 0 RESERVED
11 1 2D
<Vn>
<Vm>
Operation

for e = 0 to elements-1
elementl = Int(Elem[operandl, e,
element2 = Int (Elem[operand2, e,

test passed = if cmp eq then elementl >= element2 else elementl > element2;

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

esize], unsigned);
esize], unsigned);

Elem[result, e, esize] = if test passed then Ones|()

V[d] = result;

else Zeros();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGE (register)

Page 119

CMGE (zero)

Compare signed Greater than or Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the
signed integer value is greater than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to
one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
lo 1[1[1 1 1 1 0fsizez[1 0 0 0 0[O0 1 0 0[0[1 0] Rn | Rd |
u op

Scalar

CMGE <V><d>, <V><n>, #0

integer d = UInt(Rd);
integer n = UInt (Rn);

if size != '11' then ReservedValue() ;
integer esize = 8 << Ulnt(size);
integer datasize = esize;

integer elements = 1;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

lolaQ[1][0 1 1 1 0of[sizez[1 0 0 0 0[O0 1 0 0of[0[1 0] Rn | Rd

u op

Vector

CMGE <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt (Rd);

integer n = UInt (Rn);

if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
when '00' comparison
when '0l1' comparison
when '10' comparison
when 'l1l' comparison

CompareOp GT;
CompareOp GE;
CompareOp EQ;
CompareOp LE;

Assembler Symbols
<V> Is a width specifier, encoded in “size”:

CMGE (zero)

Page 120

size <V>
Ox RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> [s an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 258

10 1 4s

11 0 RESERVED

11 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()

bits (datasize) operand = V[n];
bits (datasize) result;

integer element;

boolean test passed;

for e = 0 to elements-1

v

(dl

element = SInt (Elem[operand, e, esizel);
case comparison of
when CompareOp GT test passed = element > 0;
when CompareOp GE test passed element >= 0;
when CompareOp EQ test passed element == 0;
when CompareOp LE test passed element <= 0;
when CompareOp LT test passed = element < 0;
Elem[result, e, esize] = if test passed then Ones() else Zeros();

= result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGE (zero)

Page 121

CMGT (register)

Compare signed Greater than (vector). This instruction compares each vector element in the first source SIMD&FP register with the
corresponding vector element in the second source SIMD&FP register and if the first signed integer value is greater than the second signed
integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the

corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 2
[0 1]/0[1 1 1 1 0 size [1] Rm lo 0 1 1]0]1] Rn Rd |
U eq
Scalar
CMGT <V><d>, <V><n>, <V><m>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size != '11' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 2
lolQfo[o 1 1 1 0 size [1] Rm o 0 1 1]0]1] Rn Rd |
U eq
Vector
CMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = if == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Assembler Symbols
<V> Is a width specifier, encoded in “size”:
size <vV>
Ox RESERVED
10 RESERVED
11 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMGT (register)

Page 122

Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

integer elementl;

integer element2;

boolean test passed;

<m>
<Vd>
<T> Is an arrangement specifier, encoded in “size:Q”:
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 28
10 1 45
11 0 RESERVED
11 1 2D
<Vn>
<Vm>
Operation

for e = 0 to elements-1
elementl = Int(Elem[operandl, e,
element2 = Int (Elem[operand2, e,

test passed = if cmp eq then elementl >= element2 else elementl > element2;

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

esize], unsigned);
esize], unsigned);

Elem[result, e, esize] = if test passed then Ones|()

V[d] = result;

else Zeros();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGT (register)

Page 123

CMGT (zero)

Compare signed Greater than zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed integer
value is greater than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit

of the corresponding vector element in the destination SIMD&FP register to zero.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lo 1/0[1 1 1 1 0fsizez[1 0 0 0 0[O 1 0 0[0[1 0] Rn Rd
U op
Scalar
CMGT <V><d>, <V><n>, #0
integer d = UInt(Rd);
integer n = UInt (Rn);
if size != '11' then ReservedValue() ;
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
CompareOp comparison;
case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lolaQfo[o 1 1 1 0of[sizez[1 0 0 0 0[O0 1 0 0f[0[1 0] Rn Rd |
U op

Vector

CMGT <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt (Rd);

integer n = UInt (Rn);

if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
when '00' comparison
when '0l1' comparison
when '10' comparison
when 'l1l' comparison

CompareOp GT;
CompareOp GE;
CompareOp EQ;
CompareOp LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMGT (zero)

Page 124

size <V>
Ox RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> [s an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 258

10 1 4s

11 0 RESERVED

11 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()

bits (datasize) operand = V[n];
bits (datasize) result;

integer element;

boolean test passed;

for e = 0 to elements-1

v

(dl

element = SInt (Elem[operand, e, esizel);
case comparison of
when CompareOp GT test passed = element > 0;
when CompareOp GE test passed element >= 0;
when CompareOp EQ test passed element == 0;
when CompareOp LE test passed element <= 0;
when CompareOp LT test passed = element < 0;
Elem[result, e, esize] = if test passed then Ones() else Zeros();

= result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMGT (zero)

Page 125

CMHI (register)

Compare unsigned Higher (vector). This instruction compares each vector element in the first source SIMD&FP register with the corresponding
vector element in the second source SIMD&FP register and if the first unsigned integer value is greater than the second unsigned integer value

sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding

vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 2
0 1]1]1 1 1 1 0 size [1] Rm o 0 1 1]o]1] Rn Rd |
U eq
Scalar
CMHI <V><d>, <V><n>, <V><m>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size != '11' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 2
lolQ[1][0 1 1 1 0 size [1] Rm o 0 1 1]0]1] Rn Rd |
U eq
Vector

CMHI <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Assembler Symbols
<V> Is a width specifier, encoded in “size”:
size <vV>

0x RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMHI (register)

Page 126

Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

integer elementl;

integer element2;

boolean test passed;

<m>
<Vd>
<T> Is an arrangement specifier, encoded in “size:Q”:
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 28
10 1 45
11 0 RESERVED
11 1 2D
<Vn>
<Vm>
Operation

for e = 0 to elements-1
elementl = Int(Elem[operandl, e,
element2 = Int (Elem[operand2, e,

test passed = if cmp eq then elementl >= element2 else elementl > element2;

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

esize], unsigned);
esize], unsigned);

Elem[result, e, esize] = if test passed then Ones|()

V[d] = result;

else Zeros();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMHI (register)

Page 127

CMHS (register)

Compare unsigned Higher or Same (vector). This instruction compares each vector element in the first source SIMD&FP register with the
corresponding vector element in the second source SIMD&FP register and if the first unsigned integer value is greater than or equal to the
second unsigned integer value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets

every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
0 1]1]1 1 1 1 0 size [1] Rm o 0o 1 1]1]1] Rn Rd |
U eq
Scalar
CMHS <V><d>, <V><n>, <V><m>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size != '11' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lolQ[1][0 1 1 1 0 size [1] Rm o 0 1 1]1]1] Rn Rd |
U eq
Vector

CMHS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if == '1' then 128 else 64;
integer elements = datasize DIV esize;
boolean unsigned = (U == '1"'");
boolean cmp eq = (eq == '1'");
Assembler Symbols
<V> Is a width specifier, encoded in “size”:
size <vV>

0x RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

CMHS (register)

Page 128

Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

integer elementl;

integer element2;

boolean test passed;

<m>
<Vd>
<T> Is an arrangement specifier, encoded in “size:Q”:
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 28
10 1 45
11 0 RESERVED
11 1 2D
<Vn>
<Vm>
Operation

for e = 0 to elements-1
elementl = Int(Elem[operandl, e,
element2 = Int (Elem[operand2, e,

test passed = if cmp eq then elementl >= element2 else elementl > element2;

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

esize], unsigned);
esize], unsigned);

Elem[result, e, esize] = if test passed then Ones|()

V[d] = result;

else Zeros();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMHS (register)

Page 129

CMLE (zero)

Compare signed Less than or Equal to zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed

integer value is less than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one,

otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lo 1[1[1 1 1 1 0fsizez[1 0 0 0 0[O0 1 0 0[1][1 0] Rn Rd
U op
Scalar
CMLE <V><d>, <V><n>, #0
integer d = UInt(Rd);
integer n = UInt (Rn);
if size != '11' then ReservedValue() ;
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
CompareOp comparison;
case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
0 | Rn Rd |

lolQ[1][0 1 1 1 0ofsize[1 0 0 0 0[O0 1 0 O0[1]1

u

Vector

CMLE <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt (Rd);

integer n = UInt (Rn);

if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;
case op:U of
when '00' comparison
when '0l1' comparison
when '10' comparison
when 'l1l' comparison

CompareOp GT;
CompareOp GE;
CompareOp EQ;
CompareOp LE;

Assembler Symbols

<V> Is a width specifier, encoded in “size”:

CMLE (zero)

op

Page 130

size <V>
Ox RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> [s an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 258

10 1 4s

11 0 RESERVED

11 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()

bits (datasize) operand = V[n];
bits (datasize) result;

integer element;

boolean test passed;

for e = 0 to elements-1

v

(dl

element = SInt (Elem[operand, e, esizel);
case comparison of
when CompareOp GT test passed = element > 0;
when CompareOp GE test passed element >= 0;
when CompareOp EQ test passed element == 0;
when CompareOp LE test passed element <= 0;
when CompareOp LT test passed = element < 0;
Elem[result, e, esize] = if test passed then Ones() else Zeros();

= result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMLE (zero)

Page 131

CMLT (zero)

Compare signed Less than zero (vector). This instruction reads each vector element in the source SIMD&FP register and if the signed integer

value is less than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of

the corresponding vector element in the destination SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lo 1/0o[1 1 1 1 0fsizez[1 0 0 0 0[O 1 0 1 0[1 0] Rn Rd
Scalar
CMLT <V><d>, <V><n>, #0
integer d = UInt(Rd);
integer n = UInt (Rn);
if size != '11' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
CompareOp comparison = CompareOp LT;
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
Rn Rd

lolaQflo[o 1 1 1 0of[sizez[1 0 0 0 0[O 1 0 1 0[1 0]

Vector

CMLT <Vd>.<T>, <Vn>.<T>, #0

integer d = UInt (Rd);
integer n = UInt (Rn);

if size:Q == '110' then ReservedValue();

integer esize = 8 << Ulnt(size);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp LT;
Assembler Symbols

<V> Is a width specifier, encoded in “size”:

size <vV>
Ox RESERVED
10 RESERVED

11 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

CMLT (zero)

Page 132

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 28
10 1 45
11 0 RESERVED
11 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
bits (datasize) result;

integer element;

boolean test passed;

for e = 0 to elements-1

element = SInt(Elem[operand, e, esizel);

case comparison of
when CompareOp GT test passed = element > 0;
when CompareOp GE test passed = element >= 0;
when CompareOp EQ test passed = element == 0;
when CompareOp LE test passed = element <= 0;
when CompareOp LT test passed = element < 0;

Elem[result, e, esize] = if test passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMLT (zero) Page 133

CMN (extended register)

Compare Negative (extended register) adds a register value and a sign or zero-extended register value, followed by an optional left shift amount.
The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the
result, and discards the result.

This is an alias of ADDS (extended register). This means:

» The encodings in this description are named to match the encodings of ADDS (extended register).
» The description of ADDS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 0

Isflo]1]0 1 0 1 1[0 0[1] Rm | option | imm3 | Rn (111 1 1]
op S Rd

32-bit (sf == 0)

CMN <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
is equivalent to
ADDS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.
64-bit (sf == 1)

CMN <Xn|SP>, <R><m>{, <extend> {#<amount>}}
is equivalent to
ADDS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<R> Is a width specifier, encoded in “option”:
option <R>

00x W

010 W

x11 X

10x W

110 W
<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB

001 UXTH

010 LSL|UXTW

011 UXTX

100 SXTB

101 SXTH

110 SXTW

111 SXTX

If"Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTW when "option" is '010'.

CMN (extended register) Page 134

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL | UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'". In all other cases
<extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Operation

The description of ADDS (extended register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (extended register) Page 135

CMN (immediate)

Compare Negative (immediate) adds a register value and an optionally-shifted immediate value. It updates the condition flags based on the
result, and discards the result.

This is an alias of ADDS (immediate). This means:

» The encodings in this description are named to match the encodings of ADDS (immediate).
» The description of ADDS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 0

Isf[o[1]1 0 0 0 1] shift | imm12 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMN <Wn |WSP>, #<imm>{, <shift>}
is equivalent to
ADDS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMN <Xn|SP>, #<imm>{, <shift>}

is equivalent to

ADDS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:
shift <shift>

00 LSL #0

01 LSL #12

1x RESERVED
Operation

The description of ADDS (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (immediate) Page 136

CMN (shifted register)

Compare Negative (shifted register) adds a register value and an optionally-shifted register value. It updates the condition flags based on the

result, and discards the result.

This is an alias of ADDS (shifted register). This means:

» The encodings in this description are named to match the encodings of ADDS (shifted register).
» The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 0

Isflo]1]0 1 0 1 1] shit [0] Rm imm6 | Rn [1 1 1 1 |
op S Rd

32-bit (sf == 0)

CMN <Wn>, <Wm>{, <shift> #<amount>}
is equivalent to
ADDS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMN <Xn>, <Xm>{, <shift> #<amount>}
is equivalent to
ADDS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

The description of ADDS (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (shifted register)

Page 137

CMP (extended register)

Compare (extended register) subtracts a sign or zero-extended register value, followed by an optional left shift amount, from a register value.
The argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword. It updates the condition flags based on the
result, and discards the result.

This is an alias of SUBS (extended register). This means:

* The encodings in this description are named to match the encodings of SUBS (extended register).
» The description of SUBS (extended register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Isf][1]1]0 1 0 1 1[0 0[1] Rm | option | imm3 | Rn (111 1 1]
op S Rd

32-bit (sf == 0)

CMP <Wn|WSP>, <Wm>{, <extend> {#<amount>}}
is equivalent to
SUBS WZR, <Wn|WSP>, <Wm>{, <extend> {#<amount>}}

and is always the preferred disassembly.
64-bit (sf == 1)

CMP <Xn|SP>, <R><m>{, <extend> {#<amount>}}
is equivalent to
SUBS XZR, <Xn|SP>, <R><m>{, <extend> {#<amount>}}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn|SP> Is the 64-bit name of the first source general-purpose register or stack pointer, encoded in the "Rn" field.
<R> Is a width specifier, encoded in “option”:
option <R>

00x W

010 W

x11 X

10x W

110 W
<m> Is the number [0-30] of the second general-purpose source register or the name ZR (31), encoded in the "Rm" field.
<extend> For the 32-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>

000 UXTB

001 UXTH

010 LSL|UXTW

011 UXTX

100 SXTB

101 SXTH

110 SXTW

111 SXTX

If"Rn" is '11111' (WSP) and "option" is '010' then LSL is preferred, but may be omitted when "imm3" is '000'. In all other cases
<extend> is required and must be UXTW when "option" is '010'.

CMP (extended register) Page 138

For the 64-bit variant: is the extension to be applied to the second source operand, encoded in “option”:

option <extend>
000 UXTB
001 UXTH
010 UXTW
011 LSL | UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

If "Rn" is '11111' (SP) and "option" is '011' then LSL is preferred, but may be omitted when "imm3" is '000'". In all other cases
<extend> is required and must be UXTX when "option" is '011".

<amount> Is the left shift amount to be applied after extension in the range 0 to 4, defaulting to 0, encoded in the "imm3" field. It must
be absent when <extend> is absent, is required when <extend> is LSL, and is optional when <extend> is present but not
LSL.

Operation

The description of SUBS (extended register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (extended register) Page 139

CMP (immediate)

Compare (immediate) subtracts an optionally-shifted immediate value from a register value. It updates the condition flags based on the result,
and discards the result.

This is an alias of SUBS (immediate). This means:

» The encodings in this description are named to match the encodings of SUBS (immediate).
» The description of SUBS (immediate) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 0

Isf[1][1]1 0 0 0 1] shift | imm12 | Rn [1 1 1 1 1]
op S Rd

32-bit (sf == 0)

CMP <Wn |WSP>, #<imm>{, <shift>}
is equivalent to
SUBS WZR, <Wn|WSP>, #<imm> {, <shift>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMP <Xn|SP>, #<imm>{, <shift>}

is equivalent to

SUBS XZR, <Xn|SP>, #<imm> {, <shift>}

and is always the preferred disassembly.

Assembler Symbols

<Wn|WSP> Is the 32-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the "Rn" field.
<imm> Is an unsigned immediate, in the range 0 to 4095, encoded in the "imm12" field.
<shift> Is the optional left shift to apply to the immediate, defaulting to LSL #0 and encoded in “shift”:
shift <shift>

00 LSL #0

01 LSL #12

1x RESERVED
Operation

The description of SUBS (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (immediate) Page 140

CMP (shifted register)

Compare (shifted register) subtracts an optionally-shifted register value from a register value. It updates the condition flags based on the result,

and discards the result.

This is an alias of SUBS (shifted register). This means:

» The encodings in this description are named to match the encodings of SUBS (shifted register).
» The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Isf][1]1]0 1 0 1 1] shit [0] Rm imm6 | Rn [1 1 1 1 |
op S Rd

32-bit (sf == 0)

CMP <Wn>, <Wm>{, <shift> #<amount>}
is equivalent to
SUBS WZR, <Wn>, <Wm> {, <shift> #<amount>}

and is always the preferred disassembly.
64-bit (sf == 1)

CMP <Xn>, <Xm>{, <shift> #<amount>}
is equivalent to
SUBS XZR, <Xn>, <Xm> {, <shift> #<amount>}

and is always the preferred disassembly.

Assembler Symbols

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 RESERVED
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field.

Operation

The description of SUBS (shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (shifted register)

Page 141

CMTST

Compare bitwise Test bits nonzero (vector). This instruction reads each vector element in the first source SIMD&FP register, performs an AND
with the corresponding vector element in the second source SIMD&FP register, and if the result is not zero, sets every bit of the corresponding

vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination

SIMD&FP register to zero.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector

Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]/0[1 1 1 1 0 size [1] Rm 1 0 0 0 1][1] Rn Rd |
U
Scalar
CMTST <V><d>, <V><n>, <V><m>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size != '11' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = esize;
integer elements = 1;
boolean and test = (U == '0");
Vector
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lolQfo[o 1 1 1 0 size [1] Rm 1 0 0 0 1][1] Rn Rd |
U
Vector
CMTST <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if size:Q == '110' then ReservedValue();
integer esize = 8 << Ulnt(size);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean and test = (U == '0");
Assembler Symbols
<V> Is a width specifier, encoded in “size”:
size <vV>
Ox RESERVED
10 RESERVED
11 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
CMTST

Page 142

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 0 8B

00 1 16B

01 0 4H

01 1 8H

10 0 28

10 1 45

11 0 RESERVED

11 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl =
bits (datasize)
bits (datasize) result;
bits (esize) elementl;
bits (esize) element2;
boolean test passed;

[

Vin
operand2 = V[m

]
]

’
’

for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
element?2 = Elem[operand2, e, esize];

if and test then

test passed =

else
test passed
Elem[result, e,

V[d] = result;

!TsZero (elementl AND element?2);

(elementl == element?2);
esize] = if test passed then Ones|()

else Zeros();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMTST

Page 143

CNEG

Conditional Negate returns, in the destination register, the negated value of the source register if the condition is TRUE, and otherwise returns
the value of the source register.

This is an alias of CSNEG. This means:

* The encodings in this description are named to match the encodings of CSNEG.
» The description of CSNEG gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isf/[1]0]1 1 0 1 0 1 0 0] Rm | 1=111x Jo]1] Rn | Rd |
op cond 02
32-bit (sf == 0)

CNEG <Wd>, <Wn>, <cond>

is equivalent to

CSNEG <Wd>, <Wn>, <Wn>, invert (<cond>)

and is the preferred disassembly when Rn == Rm.
64-bit (sf == 1)

CNEG <Xd>, <Xn>, <cond>

is equivalent to

CSNEG <Xd>, <Xn>, <Xn>, invert (<cond>)

and is the preferred disassembly when Rn == Rm.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" and "Rm" fields.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.
Operation

The description of CSNEG gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNEG Page 144

CNT

Population Count per byte. This instruction counts the number of bits that have a value of one in each vector element in the source SIMD&FP
register, places the result into a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 0]sizz|[1 0 0 0 0[O0 0 1 0 1[1 0] Rn | Rd |
Vector
CNT <Vd>.<T>, <Vn>.<T>

integer d = UInt(Rd);

integer n = UInt(Rn);

if size != '00' then ReservedValue () ;

integer esize = 8;

integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV 8;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:
size Q <T>
00 0 8B
00 1 16B
01 X RESERVED
1x X RESERVED
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation
CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;

integer count;
for e =
count =

V[d] = result;

0 to elements-1
BitCount (Elem[operand, e,
Elem[result, e,

esizel);

esize] = count<esize-1:0>;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CNT

Page 145

CRC32B, CRC32H, CRC32W, CRC32X

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an

input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value.
The second source operand can be 8, 16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the
operation, and the polynomial 0x04C11DB?7 is used for the CRC calculation.

In ARMv8-A, this is an OPTIONAL instruction, and in ARMvS.1 it is mandatory for all implementations to implement it.
ID AA64ISAR0_ELI.CRC32 indicates whether this instruction is supported.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
IsfloJo]1 1 0 1 0 1 1 0] Rm |0 1 0]o] sz | Rn | Rd |
C

CRC32B (sf == 0 && sz == 00)

CRC32B <Wd>, <Wn>, <Wm>
CRC32H (sf == 0 && sz == 01)

CRC32H <Wd>, <Wn>, <Wm>
CRC32W (sf == 0 && sz == 10)

CRC32W <Wd>, <Wn>, <Wm>
CRC32X (sf==1 && sz ==11)

CRC32X <Wd>, <Wn>, <Xm>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

if sf == '1'" && sz != '11' then UnallocatedEncoding() ;

if sf == '0' && sz == '11' then UnallocatedEncoding() ;

integer size = 8 << Ulnt(sz);

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.
<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.

Operation

if !HaveCRCExt () then
UnallocatedEncoding () ;

bits(32) acc = X[n]; // accumulator
bits(size) val = X[m]; // input value
bits (32) poly = 0x04C11DB7<31:0>;

bits (32+size) tempacc = BitReverse (acc) :Zeros(size);
bits(size+32) tempval = BitReverse(val) :Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse (Poly32Mod2 (tempacc EOR tempval, poly));

CRC32B, CRC32H, CRC32W,

CRC32X Page 146

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32B, CRC32H, CRC32W,

CRC32X Page 147

CRC32CB, CRC32CH, CRC32CW, CRC32CX

CRC32 checksum performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an
input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value.

The second source operand can be 8, 16, 32, or 64 bits. To align with common usage, the bit order of the values is reversed as part of the

operation, and the polynomial 0x1EDC6F41 is used for the CRC calculation.

In ARMv8-A, this is an OPTIONAL instruction, and in ARMvS.1 it is mandatory for all implementations to implement it.

ID AA64ISAR0_ELI.CRC32 indicates whether this instruction is supported.

CRC32CX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 0
Istflofo[1 1 0 1 0 1 1 0] Rm 0 1 0[1] sz | Rn |
C
CRC32CB (sf == 0 && sz == 00)
CRC32CB <Wd>, <Wn>, <Wm>
CRC32CH (sf == 0 && sz == 01)
CRC32CH <Wd>, <Wn>, <Wm>
CRC32CW (sf == 0 && sz == 10)
CRC32CW <Wd>, <Wn>, <Wm>
CRC32CX (sf==1 && sz == 11)
CRC32CX <Wd>, <Wn>, <Xm>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sf == '1'" && sz != '11' then UnallocatedEncoding() ;
if sf == '0' && sz == '11' then UnallocatedEncoding() ;
integer size = 8 << Ulnt(sz);
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose accumulator output register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose accumulator input register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the general-purpose data source register, encoded in the "Rm" field.
<Wm> Is the 32-bit name of the general-purpose data source register, encoded in the "Rm" field.
Operation
if !HaveCRCExt () then
UnallocatedEncoding () ;
bits(32) acc = X[n]; // accumulator
bits(size) val = X[m]; // input value
bits (32) poly = 0x1EDC6F41<31:0>;
bits (32+size) tempacc = BitReverse (acc) :Zeros(size);
bits(size+32) tempval = BitReverse(val) :Zeros(32);
// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
X[d] = BitReverse (Poly32Mod2 (tempacc EOR tempval, poly));
CRC32CB, CRC32CH, CRC32CW,
Page 148

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32CB, CRC32CH, CRC32CW,

CRC32CX Page 149

CSEL

Conditional Select returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise returns the
value of the second source register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Ist[of0o[1 1 0 1 0 1 0 O] Rm cond [0]0] Rn | Rd |
op 02
32-bit (sf == 0)

CSEL <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSEL <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer datasize = if sf == 'l' then 64 else 32;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

Operation

bits (datasize) result;
bits (datasize) operandl =
bits (datasize) operand2 =

if ConditionHolds (cond) then
result = operandl;

else
result = operand2;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSEL Page 150

CSET

Conditional Set sets the destination register to 1 if the condition is TRUE, and otherwise sets it to 0.
This is an alias of CSINC. This means:

* The encodings in this description are named to match the encodings of CSINC.
* The description of CSINC gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

IsfloJo]1 1 0 1 0 1 0 0[1 1 1 1 1] 1=1Mx [o[1[1 1 1 1 1] Rd |
op Rm cond 02 Rn
32-bit (sf == 0)

CSET <Wd>, <cond>

is equivalent to
CSINC <Wd>, WZR, WZR, invert (<cond>)

and is always the preferred disassembly.
64-bit (sf == 1)

CSET <Xd>, <cond>

is equivalent to

CSINC <Xd>, XZR, XZR, invert (<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.
Operation

The description of CSINC gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSET Page 151

CSETM

Conditional Set Mask sets all bits of the destination register to 1 if the condition is TRUE, and otherwise sets all bits to 0.
This is an alias of CSINV. This means:

» The encodings in this description are named to match the encodings of CSINV.
* The description of CSINV gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isf][1]0]1 1 0 1 0 1 0 0[1 1 1 1 1] 1=1Mx [of[o[1 1 1 1 1] Rd |
op Rm cond 02 Rn
32-bit (sf == 0)

CSETM <Wd>, <cond>

is equivalent to
CSINV <Wd>, WZR, WZR, invert (<cond>)

and is always the preferred disassembly.
64-bit (sf == 1)

CSETM <Xd>, <cond>

is equivalent to

CSINV <Xd>, XZR, XZR, invert (<cond>)

and is always the preferred disassembly.

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<cond> Is one of the standard conditions, excluding AL and NV, encoded in the "cond" field with its least significant bit inverted.
Operation

The description of CSINV gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSETM Page 152

CSINC

Conditional Select Increment returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise
returns the value of the second source register incremented by 1.

This instruction is used by the aliases CINC, and CSET.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

IsfloJo]1 1 0 1 0 1 0 0] Rm cond [0[1] Rn | Rd |
op 02
32-bit (sf == 0)

CSINC <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINC <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.
Alias Conditions
Alias Is preferred when
CINC Rm != "11111" && cond != '"1l1llx' && Rn != '11111' && Rn == Rm
CSET Rm == '"11111' && cond != '11llx' && Rn == '11111"'

Operation

bits (datasize) result;
bits (datasize) operandl =
bits (datasize) operand?2

if ConditionHolds (cond) then
result = operandl;

else
result = operand2 + 1;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINC Page 153

CSINV

Conditional Select Invert returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise returns
the bitwise inversion value of the second source register.

This instruction is used by the aliases CINV, and CSETM.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isf[1[0[1 1 0 1 0 1 0 O] Rm cond [0]0] Rn | Rd |
op 02
32-bit (sf == 0)

CSINV <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSINV <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.
Alias Conditions
Alias Is preferred when
CINV Rm != "11111"' && cond != '1lllx' && Rn != '11111' && Rn == Rm
CSETM Rm == '11111' && cond != '11llx' && Rn == '11111"'

Operation

bits (datasize) result;
bits (datasize) operandl =
bits (datasize) operand?2

if ConditionHolds (cond) then
result = operandl;

else
result = NOT (operand?2) ;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSINV Page 154

CSNEG

Conditional Select Negation returns, in the destination register, the value of the first source register if the condition is TRUE, and otherwise
returns the negated value of the second source register.

This instruction is used by the alias CNEG.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Isf/[1]0]1 1 0 1 0 1 0 0] Rm cond [0[1] Rn | Rd |
op 02
32-bit (sf == 0)

CSNEG <Wd>, <Wn>, <Wm>, <cond>

64-bit (sf == 1)

CSNEG <Xd>, <Xn>, <Xm>, <cond>

integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
Assembler Symbols
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.
Alias Conditions
Alias Is preferred when
CNEG cond != '1lllx' && Rn == Rm

Operation

bits(datasize) result;
bits (datasize) operandl = X[n];
bits(datasize) operand2 X[m];

if ConditionHolds (cond) then

result = operandl;

else
result = NOT (operand2) ;
result = result + 1;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSNEG Page 155

DC

Data Cache operation. For more information, see 464 system instructions for cache maintenance.
This is an alias of SYS. This means:

* The encodings in this description are named to match the encodings of SYS.
» The description of SYS gives the operational pseudocode for this instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
17101010 100[0[0 1] opt [0 1 1 1] CRm | op2 | Rt |
L CRn

System

DC <dc op>, <Xt>
is equivalent to
SYS #<opl>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp (opl, '0111',CRm,0p2) == Sys DC.
Assembler Symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded in “opl:CRm:op2”:

opl CRm op2 <dc_op> Architectural Feature
000 0110 001 IVAC -

000 0110 010 Isw -

000 1010 010 CSw -

000 1110 010 CISW -

011 0100 001 ZVA -

011 1010 001 CVAC -

011 1011 001 CVAU -

011 1100 001 CVAP ARMvS.2-DCPoP
011 1110 001 CIVAC -

<opl> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.
<Cm> Is a name 'Cm', with 'm' in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.
<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.
Operation

The description of SYS gives the operational pseudocode for this instruction.

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DC Page 156

DCPS1

Debug Change PE State to EL1, when executed in Debug state:
+ If executed at ELO changes the current Exception level and SP to EL1 using SP_EL1.
* Otherwise, if executed at ELx, selects SP_ELx.
The target exception level of a DCPSI instruction is:
» EL1 if the instruction is executed at ELO.
* Otherwise, the Exception level at which the instruction is executed.
When the target Exception level of a DCPSI instruction is ELx, on executing this instruction:
* ELR ELx becomes UNKNOWN.
* SPSR ELx becomes UNKNOWN.
* ESR ELx becomes UNKNOWN.
* DLR ELO and DSPSR EL0 become UNKNOWN.
* The endianness is set according to SCTLR_ELx.EE.
This instruction is UNDEFINED at ELO in Non-secure state if EL2 is implemented and HCR EL2.TGE ==
This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
/1710 10 10 0[1 0 1] imm16 o 0 ofo0 1]
LL
System
DCPS1 {#<imm>}
if !'Halted() then AArcho64.UndefinedFault () ;
Assembler Symbols
<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction (LL) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS1 Page 157

DCPS2

Debug Change PE State to EL2, when executed in Debug state:

+ Ifexecuted at ELO or EL1 changes the current Exception level and SP to EL2 using SP_EL2.

* Otherwise, if executed at ELx, selects SP_ELx.
The target exception level of a DCPS2 instruction is:
« EL2 if the instruction is executed at an exception level that is not EL3.
» EL3 if the instruction is executed at EL3.
When the target Exception level of a DCPS2 instruction is ELx, on executing this instruction:
* ELR ELx becomes UNKNOWN.
* SPSR ELx becomes UNKNOWN.
* ESR ELx becomes UNKNOWN.
* DLR ELO and DSPSR EL0 become UNKNOWN.
* The endianness is set according to SCTLR_ELx.EE.
This instruction is UNDEFINED at the following exception levels:
» All exception levels if EL2 is not implemented.
* AtELO and EL1 in Secure state if EL2 is implemented.
This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 4 3 2 1 0
[1 101 01 0 0[1 0 1] imm16 0 0 0[1 0]
LL
System
DCPS2 {#<imm>}
if !Halted() then AArch64.UndefinedFault () ;
Assembler Symbols
<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction (LL) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS2

Page 158

DCPS3

Debug Change PE State to EL3, when executed in Debug state:

» Ifexecuted at EL3 selects SP_EL3.
* Otherwise, changes the current Exception level and SP to EL3 using SP_EL3.

The target exception level of a DCPS3 instruction is EL3.
On executing a DCPS3 instruction:
* ELR EL3 becomes UNKNOWN.
* SPSR _EL3 becomes UNKNOWN.
* ESR EL3 becomes UNKNOWN.
* DLR EL(Oand DSPSR_EL(become UNKNOWN.
* The endianness is set according to SCTLR_EL3.EE.
This instruction is UNDEFINED at all exception levels if either:
* EDSCR.SDD ==1.
» EL3 is not implemented.
This instruction is always UNDEFINED in Non-debug state.
For more information on the operation of the DCPSn instructions, see DCPS.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
/1710 10 10 0[1 0 1] imm16 o 0o o1 1]
LL
System
DCPS3 {#<imm>}
if !'Halted() then AArcho64.UndefinedFault () ;
Assembler Symbols
<imm> Is an optional 16-bit unsigned immediate, in the range 0 to 65535, defaulting to 0 and encoded in the "imm16" field.

Operation

DCPSInstruction (LL) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS3 Page 159

DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data Memory Barrier.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

1 1 0 1

6 5 4 3 2 0
01 010o0[o[o o001 1]001 1] cRm [1]0 1]1 1 1 1 1]

System

opc

DMB <option>|#<imm>

MBRegDomain domain;
MBRegTypes types;

case CRm<3:2> of

when
when
when
when

'00' domain = MBRegDomain OuterShareable;
'01l' domain = MBRegDomain Nonshareable;
'10' domain = MBRegDomain InnerShareable;
'11' domain = MBRegDomain FullSystem;

case CRm<1:0> of

when
when
when
othe

'01l' types = MBReqgTypes Reads;
'10' types = MBReqTypes Writes;
'11l'" types = MBRegTypes All;

rwise

types = MBReqTypes All;

domain = MBRegDomain FullSystem;

Assembler Symbols

<option>

Specifies the limitation on the barrier operation. Values are:

SY
Full system is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. This option is referred to as the full system barrier. Encoded as CRm = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and
writes are the required access types after the barrier instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier
instruction. Encoded as CRm = 0b0111.

NSHST

Non-shareable is the required shareability domain, writes are the required access type before the barrier instruction, and reads
and writes are the required type after the barrier instruction. Encoded as CRm = 0b0110.

DMB Page 160

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm> syntax. It is
IMPLEMENTATION DEFINED whether options other than SY are implemented. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more information on whether an
access is before or after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier (DSB).

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

DataMemoryBarrier (domain, types);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DMB Page 161

DRPS

Debug restore process state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/110101 1]0o101[11111[/000000[11111]0o000 0]
System
DRPS
if !Halted() || PSTATE.EL == ELO then UnallocatedEncoding();
Operation

DRPSInstruction () ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DRPS Page 162

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data Synchronization Barrier.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

1 1 0 1

6 5 4 3 2 0
01 010o0[o[o o001 1]001 1] cRm [1]0 0]1 1 1 1 1]

System

opc

DSB <option>|#<imm>

MBRegDomain domain;
MBRegTypes types;

case CRm<3:2> of

when
when
when
when

'00' domain = MBRegDomain OuterShareable;
'01l' domain = MBRegDomain Nonshareable;
'10' domain = MBRegDomain InnerShareable;
'11' domain = MBRegDomain FullSystem;

case CRm<1:0> of

when '0l1' types = MBReqgTypes Reads;
when '10' types = MBReqTypes Writes;
when 'll' types = MBRegTypes All;
otherwise

types = MBReqTypes All;
domain = MBRegDomain FullSystem;

Assembler Symbols

<option>

Specifies the limitation on the barrier operation. Values are:

SY
Full system is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. This option is referred to as the full system barrier. Encoded as CRm = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and
writes are the required access types after the barrier instruction. Encoded as CRm = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier
instruction. Encoded as CRm = 0b0111.

NSHST

Non-shareable is the required shareability domain, writes are the required access type before the barrier instruction, and reads
and writes are the required type after the barrier instruction. Encoded as CRm = 0b0110.

DSB Page 163

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as CRm = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as CRm = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm> syntax. It is
IMPLEMENTATION DEFINED whether options other than SY are implemented. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more information on whether an
access is before or after a barrier instruction, see Data Memory Barrier (DMB) or see Data Synchronization Barrier (DSB).

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

DataSynchronizationBarrier (domain, types);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSB Page 164

DUP (element)

Duplicate vector element to vector or scalar. This instruction duplicates the vector element at the specified element index in the source
SIMD&FP register into a scalar or each element in a vector, and writes the result to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

This instruction is used by the alias MOV (scalar).

It has encodings from 2 classes: Scalar and Vector

Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1/0[1 1 1 1 0 0 0 O] imm5 lo/o 0 0 Of1] Rn | Rd |

Scalar

DUP <V><d>, <Vn>.<T>[<index>]

integer d = UInt(Rd);
integer n = UInt (Rn);
integer size = LowestSetBit (imm5) ;

if size > 3 then UnallocatedEncoding();

integer index = UInt (imm5<4:size+l1>);
integer idxdsize = if imm5<4> == '1l' then 128 else 64;

integer esize = 8 << size;
integer datasize = esize;
integer elements = 1;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
lolQlo[0o 1 1 1 0 0 0 O] imm5 lo[o 0 0 Of1] Rn | Rd |

Vector

DUP <Vd>.<T>, <Vn>.<Ts>[<index>]

integer d = UInt (Rd);
integer n = UInt (Rn);

integer size = LowestSetBit (immb5) ;
if size > 3 then UnallocatedEncoding() ;

integer index = UInt (imm5<4:size+l1>);

integer idxdsize = if imm5<4> == '1l' then 128 else 64;
if size == 3 && Q == '0' then ReservedValue();
integer esize = 8 << size;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<T> For the scalar variant: is the element width specifier, encoded in “imm5”:

DUP (element) Page 165

imm5 <T>

x0000 RESERVED
xxxx1 B
xxx10 H
xx100 S
%1000 D

For the vector variant: is an arrangement specifier, encoded in “imm5:Q”:

imm5 Q <T>
x0000 X RESERVED
XXXX1 0 8B
xxxx1 1 16B
xxx10 0 4H
xxx10 1 8H
xx100 0 25
xx100 1 4S
%1000 0 RESERVED
%1000 1 2D
<Ts> Is an element size specifier, encoded in “immS5”:
imm5 <Ts>
x0000 RESERVED
XXxXX1 B
xxx10 H
xx100 S
x1000 D
<V> Is the destination width specifier, encoded in “imm5”:
imm5 <V>
x0000 RESERVED
Xxxx1 B
xxx10 H
xx100 S
x1000 D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<index> Is the element index encoded in “imm5”:
imm5 <index>
x0000 RESERVED
XXXX1 imm5<4:1>
xxx10 imm5<4:2>
xx100 imm5<4:3>
%1000 imm5<4>

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
Operation

CheckFPAdvSIMDEnabled64 () ;
bits (idxdsize) operand = V[n];
bits(datasize) result;
bits(esize) element;

element = Elem[operand, index, esize];
for e = 0 to elements-1
Elem[result, e, esize] = element;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (element) Page 166

DUP (general)

Duplicate general-purpose register to vector. This instruction duplicates the contents of the source general-purpose register into a scalar or each
element in a vector, and writes the result to the SIMD&FP destination register.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o[aQ]of0o 1 1 1 0 0 0 O] imm5 [oJ[o 0 0 1][1] Rn | Rd |
Advanced SIMD
DUP <Vd>.<T>, <R><n>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer size = LowestSetBit (immb5) ;
if size > 3 then UnallocatedEncoding() ;
// imm5<4:size+1> is IGNORED
if size == 3 && Q == '0' then ReservedValue () ;
integer esize = 8 << size;
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “imm5:Q”:
immS5 Q <T>
x0000 X RESERVED
XXXX1 0 8B
XXXX1 1 16B
xxx10 0 4H
xxx10 1 8H
xx100 0 25
xx100 1 43
x1000 0 RESERVED
%1000 1 2D
<R> Is the width specifier for the general-purpose source register, encoded in “imm5”:
imm5 <R>
x0000 RESERVED
XxxxX1 W
xxx10 W
xx100 W
%1000 X
Unspecified bits in "imm5" are ignored but should be set to zero by an assembler.
<n> Is the number [0-30] of the general-purpose source register or ZR (31), encoded in the "Rn" field.
Operation
CheckFPAdvSIMDEnabled64 () ;
bits(esize) element = X[n];
bits (datasize) result;
for e = 0 to elements-1
Elem[result, e, esize] = element;
V[d] = result;
DUP (general) Page 167

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DUP (general) Page 168

EON (shifted register)

Bitwise Exclusive OR NOT (shifted register) performs a bitwise Exclusive OR NOT of a register value and an optionally-shifted register value,

and writes the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Isf[1 0]0 1 0 1 0] shift [1] Rm imm6 | Rn | Rd |
opc N
32-bit (sf == 0)
EON <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
64-bit (sf == 1)
EON <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue () ;

ShiftType shift type
integer shift amount

UInt (imm6) ;

Assembler Symbols

DecodeShift (shift);

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:

For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,

<Wd>
<Wn>
<Wm>
<Xd>
<Xn>
<Xm>
<shift>
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount>
Operation
bits (datasize) operandl = X[n];
bits(datasize) operand2 = ShiftReg(m,

operand?

NOT (operand?2) ;

result

operandl EOR operand2;

X[d] = result;

shift type,

shift amount);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EON (shifted register) Page 169

EOR3

Three-way Exclusive OR performs a three-way exclusive OR of the values in the three source SIMD&FP registers, and writes the result to the
destination SIMD&FP register.
This instruction is implemented only when ARMvS.2-SHA is implemented.

Advanced SIMD
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
/1710 0 1 110 0[]0 0] Rm 0] Ra | Rn | Rd |

Advanced SIMD

EOR3 <Vd>.16B, <Vn>.16B, <Vm>.16B, <Va>.1l6B

if !HaveCryptoExt2 () then UnallocatedEncoding() ;
integer d = UInt (Rd

integer n = UInt (Rn
integer m = UInt (Rm

) ;
) ;
).

’

integer a = UInt (Ra);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<Va> Is the name of the third SIMD&FP source register, encoded in the "Ra" field.
Operation

bits(128) Vm = V[m];

bits(128) Vn = V[n];

bits (128) Va = Vl[al;

V[d] = Vn EOR Vm EOR Va;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR3 Page 170

EOR (vector)

Bitwise Exclusive OR (vector). This instruction performs a bitwise Exclusive OR operation between the two source SIMD&FP registers, and
places the result in the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 oo of1] Rm o 0 0 1 1]1] Rn | Rd |
opc2

Three registers of the same type

EOR <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn
R

)
)
m)
i

~

integer m = Ulnt(;
integer datasize f Q == "1'" then 128 else 64;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “Q”:
Q <T>
0 8B
1 16B
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl;
bits (datasize) operand2;
bits (datasize) operand3;

()

bits (datasize) operand4 = V[n];
operandl = V[m];

operand2 = Zeros();

operand3 = Ones();

V[d] = operandl EOR ((operand2 EOR operand4) AND operand3);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (vector) Page 171

EOR (immediate)

Bitwise Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and writes the result to the

destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Isf[1 0]1 0 0 1 0 O[N] immr imms | Rn | Rd |
opc
32-bit (sf == 0 && N == 0)
EOR <Wd|WSP>, <Wn>, #<imm>
64-bit (sf == 1)
EOR <Xd|SP>, <Xn>, #<imm>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize = if sf == 'l' then 64 else 32;
bits (datasize) imm;
if sf == '0' && N != '0' then ReservedValue () ;
(imm, -) = DecodeBitMasks (N, imms, immr, TRUE) ;

Assembler Symbols

<Wd|WSP> Is the 32-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<imm> For the 32-bit variant: is the bitmask immediate, encoded in "imms:immr".
For the 64-bit variant: is the bitmask immediate, encoded in "N:imms:immr".
Operation
bits (datasize) result;
bits (datasize) operandl = X[n];
result = operandl EOR imm;
if d == 31 then
SP[] = result;
else
X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (immediate) Page 172

EOR (shifted register)

Bitwise Exclusive OR (shifted register) performs a bitwise Exclusive OR of a register value and an optionally-shifted register value, and writes

the result to the destination register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Isf][1 0]0 1 0 1 0] shit [0] Rm imm6 | Rn | Rd |
opc N
32-bit (sf == 0)
EOR <Wd>, <Wn>, <Wm>{, <shift> #<amount>}
64-bit (sf == 1)
EOR <Xd>, <Xn>, <Xm>{, <shift> #<amount>}
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
if sf == '0' && imm6<5> == '1' then ReservedValue () ;

ShiftType shift type
integer shift amount =

DecodeShift (shift);
UInt (imm6) ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the optional shift to be applied to the final source, defaulting to LSL and encoded in “shift”:
shift <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the "imm6" field.
For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the "imm6" field,
Operation
bits (datasize) operandl = X[n];
bits(datasize) operand2 = ShiftReg(m, shift type, shift amount);

result = operandl EOR operand2;

X[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR (shifted register)

Page 173

ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores PSTATE from the SPSR, and
branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from AArch64 state.
ERET is UNDEFINED at ELO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
110101 1]/o[1 0 0[1 111 1][0o0 o0 o0f0f0[1 1 1 11
A M Rn op4

System

ERET

if PSTATE.EL == ELO then UnallocatedEncoding() ;

Operation

AArch64.CheckForERetTrap (FALSE, TRUE) ;
bits(64) target = ELR[];

AArcho64.ExceptionReturn (target, SPSRI[]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERET Page 174

ERETAA, ERETAB

Exception Return, with pointer authentication. This instruction authenticates the address in ELR, using SP as the modifier and the specified key,
the PE restores PSTATE from the SPSR for the current Exception level, and branches to the authenticated address.

Key A is used for ERETAA, and key B is used for ERETAB.
If the authentication passes, the PE continues execution at the target of the branch. If the authentication fails, a Translation fault is generated.
The authenticated address is not written back to ELR.
The PE checks the SPSR for the current Exception level for an illegal return event. See lllegal return events from AArch64 state.
ERET is UNDEFINED at ELO.

Integer

(ARMvS.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 1 0

1710101 1]o]100[1 111 1][00 0 0[1[M[1T 1 11 1]1 111 1]
A Rn op4

ERETAA (M == 0)

ERETAA

ERETAB (M == 1)

ERETAB
if PSTATE.EL == ELO then UnallocatedEncoding() ;
boolean use key a = (M == '0'");

if !HavePACExt () then
UnallocatedEncoding () ;

Operation

AArch64.CheckForERetTrap (TRUE, use key a);
bits (64) target;

if use key a then

target = AuthIA(ELR[], SP[]);
else

target = AuthIB(ELR[], SP[]);

AArcho64.ExceptionReturn (target, SPSRI[]);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERETAA, ERETAB Page 175

ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR_EL1 and VDISR EL2.

This instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error Synchronization Barrier in the
ARM(R) Reliability, Availability, and Serviceability (RAS) Specification, ARMvS, for ARMVS-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.

System
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
110101010 o0/0[f0o 0[O0 1 1[0 0 1 0[/0 01 0[O0 0 0]
CRm op2

4 3 2 1 0
11 1 1 1|

System

ESB

if !HaveRASExt () then EndOfInstruction();

Operation

ErrorSynchronizationBarrier (MBRegDomain FullSystem, MBReqgTypes All);

AArch64 .ESBOperation () ;

if HaveEL(EL2) && !IsSecure() && PSTATE.EL IN {ELO, EL1} then AArché64.vESBOperation();
TakeUnmaskedSErrorInterrupts () ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESB Page 176

EXT

Extract vector from pair of vectors. This instruction extracts the lowest vector elements from the second source SIMD&FP register and the
highest vector elements from the first source SIMD&FP register, concatenates the results into a vector, and writes the vector to the destination
SIMD&FP register vector. The index value specifies the lowest vector element to extract from the first source register, and consecutive elements
are extracted from the first, then second, source registers until the destination vector is filled.

The following figure shows an example of the operation of EXT doubleword operation for Q = 0 and imm4<2:0> = 3.

76543210 76543210

v L v [I T

va [TTTTTT]

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

[o]Q@]1 0 1 1 1 0o]Jo oJo] Rm o] imm4 JO] Rn | Rd |
Advanced SIMD
EXT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<index>
integer d = UInt (Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);
if == '0' && imm4<3> == '1l' then UnallocatedEncoding() ;
integer datasize = if Q == 'l' then 128 else 64;
integer position = Ulnt (imm4) << 3;
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “Q”:
Q <T>
0 8B
1 16B
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<index> Is the lowest numbered byte element to be extracted, encoded in “Q:imm4”:
Q imm4<3> <index>
0 0 imm4<2:0>
0 1 RESERVED
1 X imm4
Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) hi = V[m];
bits(datasize) lo = V[n];
bits(datasize*2) concat = hi:lo;

V[d] = concat<position+datasize-l:position>;

EXT

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Page 177

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXT Page 178

EXTR

Extract register extracts a register from a pair of registers.
This instruction is used by the alias ROR (immediate).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7

Isf]l0 0]1 0 0 1 1 1[N[O] Rm imms

| Rn |

32-bit (sf == 0 && N == 0 && imms == 0xxxxXx)

EXTR <Wd>, <Wn>, <Wm>, #<lsb>
64-bit (sf==1 && N ==1)
EXTR <Xd>, <Xn>, <Xm>, #<lsb>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer datasize = if sf == 'l' then 64 else 32;
integer 1lsb;
if N !'= sf then UnallocatedEncoding() ;
if sf == '0' && imms<5> == 'l' then ReservedValue () ;
lsb = UInt (imms) ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.
<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.
<lsb>

field.

For the 32-bit variant: is the least significant bit position from which to extract, in the range 0 to 31, encoded in the "imms"

For the 64-bit variant: is the least significant bit position from which to extract, in the range 0 to 63, encoded in the "imms"

field.

Alias Conditions

Alias Is preferred when
ROR (immediate) Rn == Rm
Operation
bits(datasize) result;
bits (datasize) operandl = X[n];
bits (datasize) operand2 = X[m];
bits(2*datasize) concat = operandl:operand2;
result = concat<lsb+datasize-1:1sb>;
X[d] = result;
EXTR

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Page 179

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EXTR Page 180

FABD

Floating-point Absolute Difference (vector). This instruction subtracts the floating-point values in the elements of the second source SIMD&FP
register, from the corresponding floating-point values in the elements of the first source SIMD&FP register, places the absolute value of each

result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-

precision and double-precision

Scalar half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 2 0
[0 1[1]1 1 1 1 o[1]1 0] Rm [0 o[0 1 of1] Rn Rd |
Scalar half precision
FABD <Hd>, <Hn>, <Hm>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer m = UInt (Rm) ;
integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 2
[0 1[1]1 1 1 1 of1]sz][1] Rm [1 1 0 1 01] Rn Rd |
Scalar single-precision and double-precision
FABD <V><d>, <V><n>, <V><m>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;
boolean abs = TRUE;
Vector half precision
(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 2
loJQ]1]Jo 1 1 1 of1]1 o] Rm o oJo 1 o]1] Rn Rd |
]
FABD

Page 181

Vector half precision

FABD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer
integer
integer
integer
integer
integer
boolean

d = UInt (Rd);

n = UInt (Rn);

m = UInt (Rm) ;

esize = 16;

datasize = if == ']1'" then 128 else 64;
elements = datasize DIV esize;

abs = (U == "'1");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 2 0
loJQf1]o 1 1 1 of1]sz[1] Rm 1 1.0 1 0]1] Rn | Rd |
u

Vector single-precision and double-precision

FABD

integer
integer
integer
if sz:Q
integer
integer
integer
boolean

<Vd>.<T>, <Vn>.<T>, <Vm>.<T>

d = UInt (Rd);
n = UInt (Rn);
m = UInt (Rm) ;

= '10' then ReservedValue()
esize = 32 << Ulnt(sz);

datasize = if Q == 'l' then 128 else 64;
elements = datasize DIV esize;
abs = (U == "'1");

Assembler Symbols

<Hd>
<Hn>

<Hm>

<V>

<d>
<n>
<m>

<Vd>

<T>

<Vn>

<Vm>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is a width specifier, encoded in “sz”:

SZ <vV>
0 S
1 D

Is the number of the SIMD&FP destination register, in the "Rd" field.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 43

1 0 RESERVED
1 1 2D

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FABD

Page 182

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl =
bits (datasize) operand?2
bits (datasize) result;

bits(esize) elementl;
(
(

bits(esize) element2;
bits(esize) diff;

for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];
diff = FPSub(elementl, element2, FPCR);
Elem[result, e, esize] = if abs then FPAbs(diff) else diff;

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABD Page 183

FABS (vector)

Floating-point Absolute value (vector). This instruction calculates the absolute value of each vector element in the source SIMD&FP register,
writes the result to a vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMVS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

13 12 1 10 9 8 7 6 5 4 3 2 1 0

[o]QJoJo 1 1 1 of1[1 1 1 1 0 o]0 1 1

1 1]1 o] Rn | Rd |

u

Half-precision

FABS <Vd>.<T>, <Vn>.<T>

if !HaveFPl6Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1");

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14

13 12 1 10 9 8 7 6 5 4 3 2 1 0

lolaflofo 1 1 1 of[1]sz[]1 0 0 0 0[O 1 1 1 1[1 0] Rn | Rd |
U
Single-precision and double-precision
FABS <Vd>.<T>, <Vn>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
if sz:Q == '10' then ReservedValue():;
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1");
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

to}

FABS (vector) Page 184

Sz Q <T>
0 0 2S
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
bits (datasize) result;

bits (esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
if neg then
element = FPNeg(element) ;

else
element = FPAbs (element) ;
Elem[result, e, esize] = element;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABS (vector) Page 185

FABS (scalar)

Floating-point Absolute value (scalar). This instruction calculates the absolute value in the SIMD&FP source register and writes the result to the

SIMD&FP destination register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

[o]o]o[1 1 1 1 oftype[1]0 0 0 0[O0 1[1 0 0 0 0] Rn | Rd |
opc
Half-precision (type == 11)
(ARMvS.2)
FABS <Hd>, <Hn>
Single-precision (type == 00)
FABS <Sd>, <Sn>
Double-precision (type == 01)
FABS <Dd>, <Dn>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize;
case type of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPl6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) result;
bits (datasize) operand = V[n];

result = FPAbs (operand) ;
V[d] = result;

FABS (scalar)

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Page 186

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FABS (scalar) Page 187

FACGE

Floating-point Absolute Compare Greater than or Equal (vector). This instruction compares the absolute value of each floating-point value in the
first source SIMD&FP register with the absolute value of the corresponding floating-point value in the second source SIMD&FP register and if
the first value is greater than or equal to the second value sets every bit of the corresponding vector element in the destination SIMD&FP register

to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 o]Jo[1 0] Rm [0 o1 of1]1] Rn Rd |
U E ac
Scalar half precision
FACGE <Hd>, <Hn>, <Hm>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 ofo0]sz][1] Rm [1 1 1 0[1]1] Rn Rd |
U E ac
FACGE

Page 188

Scalar single-precision and double-precision

FACGE <V><d>, <V><n>, <V><m>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 32 << Ulnt(sz);

integer datasize = esize;

integer elements = 1;

CompareOp cmp;

boolean abs;

case E:U:ac of
when '000' cmp = CompareOp EQ; abs = FALSE;
when '010' cmp = CompareOp GE; abs = FALSE;
when '011' cmp = CompareOp GE; abs = TRUE;
when '110' cmp = CompareOp GT; abs = FALSE;
when '111' cmp = CompareOp GT; abs = TRUE;

otherwise UnallocatedEncoding() ;

Vector half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQ]1]o 1 1 1 ofJo[1 o] Rm o o]1 of1]1] Rn Rd |
] E ac
Vector half precision
FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if !HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = if == '1l' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs = FALSE;
when '010' cmp = CompareOp GE; abs = FALSE;
when '011' cmp = CompareOp GE; abs = TRUE;
when '110' cmp = CompareOp GT; abs = FALSE;
when '111' cmp = CompareOp GT; abs = TRUE;
otherwise UnallocatedEncoding() ;
Vector single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQl1]o 1 1 1 ofo]sz[1] Rm 1 1 1 0o]1]1] Rn Rd |
u E ac
FACGE

Page 189

Vector single-precision and double-precision

FACGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer
integer
integer
if sz:Q
integer
integer
integer
CompareOp cmp;
boolean abs;

d
n
m
e

d
e

= UInt (Rd);
UInt (Rn) ;
= UInt (Rm) ;
= '10' then ReservedValue();

size = 32 << Ulnt(sz);
atasize = if Q == '1l' then 128 else 64;
lements = datasize DIV esize;

case E:U:ac of

when
when
when
when
when

'000" cmp = CompareOp EQ; abs = FALSE;
'010" cmp = CompareOp GE; abs = FALSE;
'011' cmp = CompareOp GE; abs = TRUE;
'110" cmp = CompareOp GT; abs = FALSE;
'111" cmp = CompareOp GT; abs = TRUE;

otherwise UnallocatedEncoding() ;

Assembler Symbols

<Hd>
<Hn>

<Hm>

<V>

<d>
<n>
<m>

<Vd>

<T>

<Vn>

<Vm>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is a width specifier, encoded in “sz”:

Sz <vV>
0 S
1 D

Is the number of the SIMD&FP destination register, in the "Rd" field.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

to}

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 28

0 1 4

1 0 RESERVED
1 1 2D

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FACGE

Page 190

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl =
bits (datasize) operand?2
bits (datasize) result;
bits(esize) elementl;
bits(esize) element2;
boolean test passed;

for e = 0 to elements-1

elementl = Elem[operandl, e, esize];

element2 = Elem[operand2, e, esize];

if abs then
elementl = FPAbs (elementl);
element?2 = FPAbs (element?2) ;

case cmp of
when CompareOp EQ test passed = FPCompareEQ (elementl, element2, FPCR);
when CompareOp GE test passed = FPCompareGE (elementl, element2, FPCR);
when CompareOp GT test passed = FPCompareGT (elementl, element2, FPCR);

Elem[result, e, esize] = if test passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACGE Page 191

FACGT

Floating-point Absolute Compare Greater than (vector). This instruction compares the absolute value of each vector element in the first source
SIMD&FP register with the absolute value of the corresponding vector element in the second source SIMD&FP register and if the first value is

greater than the second value sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets

every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 0o]1[1 0] Rm [0 o1 of1]1] Rn Rd |
U E ac
Scalar half precision
FACGT <Hd>, <Hn>, <Hm>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 of[1]sz][1] Rm [1 1 1 0[1]1] Rn Rd |
U E ac
FACGT

Page 192

Scalar single-precision and double-precision

FACGT <V><d>, <V><n>, <V><m>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 32 << Ulnt(sz);

integer datasize = esize;

integer elements = 1;

CompareOp cmp;

boolean abs;

case E:U:ac of
when '000' cmp = CompareOp EQ; abs = FALSE;
when '010' cmp = CompareOp GE; abs = FALSE;
when '011' cmp = CompareOp GE; abs = TRUE;
when '110' cmp = CompareOp GT; abs = FALSE;
when '111' cmp = CompareOp GT; abs = TRUE;

otherwise UnallocatedEncoding() ;

Vector half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQ]1]o 1 1 1 of1]1 o] Rm o o]1 of1]1] Rn Rd |
] E ac
Vector half precision
FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if !HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = if == '1l' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs = FALSE;
when '010' cmp = CompareOp GE; abs = FALSE;
when '011' cmp = CompareOp GE; abs = TRUE;
when '110' cmp = CompareOp GT; abs = FALSE;
when '111' cmp = CompareOp GT; abs = TRUE;
otherwise UnallocatedEncoding() ;
Vector single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQl1]o 1 1 1 of1]sz[1] Rm 1 1 1 0o]1]1] Rn Rd |
u E ac
FACGT

Page 193

Vector single-precision and double-precision

FACGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer
integer
integer
if sz:Q
integer
integer
integer
CompareOp cmp;
boolean abs;

d
n
m
e

d
e

= UInt (Rd);
UInt (Rn) ;
= UInt (Rm) ;
= '10' then ReservedValue();

size = 32 << Ulnt(sz);
atasize = if Q == '1l' then 128 else 64;
lements = datasize DIV esize;

case E:U:ac of

when
when
when
when
when

'000" cmp = CompareOp EQ; abs = FALSE;
'010" cmp = CompareOp GE; abs = FALSE;
'011' cmp = CompareOp GE; abs = TRUE;
'110" cmp = CompareOp GT; abs = FALSE;
'111" cmp = CompareOp GT; abs = TRUE;

otherwise UnallocatedEncoding() ;

Assembler Symbols

<Hd>
<Hn>

<Hm>

<V>

<d>
<n>
<m>

<Vd>

<T>

<Vn>

<Vm>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is a width specifier, encoded in “sz”:

Sz <vV>
0 S
1 D

Is the number of the SIMD&FP destination register, in the "Rd" field.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
Is the number of the second SIMD&FP source register, encoded in the "Rm" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

to}

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 28

0 1 4

1 0 RESERVED
1 1 2D

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FACGT

Page 194

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl =
bits (datasize) operand?2
bits (datasize) result;
bits(esize) elementl;
bits(esize) element2;
boolean test passed;

for e = 0 to elements-1

elementl = Elem[operandl, e, esize];

element2 = Elem[operand2, e, esize];

if abs then
elementl = FPAbs (elementl);
element?2 = FPAbs (element?2) ;

case cmp of
when CompareOp EQ test passed = FPCompareEQ (elementl, element2, FPCR);
when CompareOp GE test passed = FPCompareGE (elementl, element2, FPCR);
when CompareOp GT test passed = FPCompareGT (elementl, element2, FPCR);

Elem[result, e, esize] = if test passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FACGT Page 195

FADD (vector)

Floating-point Add (vector). This instruction adds corresponding vector elements in the two source SIMD&FP registers, writes the result into a

vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 2
loJQJoJo 1 1 1 ofJo[1 o] Rm [0 oJo 1 o]1] Rn Rd |
U
Half-precision
FADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQJoJo 1 1 1 ofo]sz[1] Rm [1 10 1 0]1] Rn Rd |
U

Single-precision and double-precision

FADD

integer
integer
integer
if sz:Q
integer
integer
integer

boolean

<Vd>.<T>, <Vn>.<T>, <Vm>.<T>

d = UInt (Rd);
n = UInt (Rn) ;
m = UInt (Rm) ;

== '10' then ReservedValue()
esize = 32 << Ulnt(sz);

datasize = if Q == 'l' then 128 else 64;
elements = datasize DIV esize;
pair = (U == '1");

Assembler Symbols

<Vd>

<T>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FADD (vector)

th}

Page 196

Sz Q <T>

0 0 2S

0 1 45

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabledo64 () ;
bits (datasize) operandl = V[n];
bits (datasize) operand2 V[m];
bits(datasize) result;
bits (2*datasize) concat = operand2:operandl;
(
(

bits(esize) elementl;
bits(esize) element2;
for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPAdd(elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (vector)

Page 197

FADD (scalar)

Floating-point Add (scalar). This instruction adds the floating-point values of the two source SIMD&FP registers, and writes the result to the
destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
loJoJo]1 1 1 1 oftype [1] Rm o 0o 1]o]1 0] Rn | Rd |
op

Half-precision (type == 11)
(ARMv8.2)

FADD <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FADD <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FADD <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);

integer datasize;
case type of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding () ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FADD (scalar) Page 198

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

result = FPAdd(operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADD (scalar) Page 199

FADDP (scalar)

Floating-point Add Pair of elements (scalar). This instruction adds two floating-point vector elements in the source SIMD&FP register and
writes the scalar result into the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1]o[1 1 1 1 ofoJo[1 1 0 0 0[]0 1 1 0 1[1 0] Rn | Rd |
Sz

Half-precision

FADDP <V><d>, <Vn>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer esize = 16;

integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 ofo]sz[1 1 0 0 0[]0 1 1 0 1[1 0] Rn | Rd |

Single-precision and double-precision

FADDP <V><d>, <Vn>.<T>

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:
SZ <V>
0 H

1 RESERVED

s

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FADDP (scalar) Page 200

SZ <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

SZ <T>
0 28
1 2D

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
V[d] = Reduce (ReduceOp FADD, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDP (scalar) Page 201

FADDP (vector)

Floating-point Add Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP
register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated
vector, adds each pair of values together, places the result into a vector, and writes the vector to the destination SIMD&FP register. All the values
in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 ofJof1 o] Rm [0 oJo 1 o]1] Rn | Rd |
U

Half-precision

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1");

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 ofo]sz[1] Rm [1 10 1 0]1] Rn | Rd |
u

Single-precision and double-precision

FADDP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm) ;

if sz:Q == '10' then ReservedValue();

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1");

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FADDP (vector) Page 202

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPAdd(elementl, element2, FPCR);

V[d] = result;

th}

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FADDP (vector)

Page 203

FCADD

Floating-point Complex Add.
This instruction adds corresponding complex numbers from the two source vector registers and writes the resulting complex numbers into the
destination vector register. The number of complex numbers that can be stored in the source and the destination vector registers is calculated as
the vector register size divided by the length of each complex number. Each complex number is represented in a SIMD&FP register as a pair of
elements with the imaginary part of the number being placed in the more significant element, and the real part of the number being placed in the
less significant element. Both real and imaginary parts of the source and the resulting complex number are represented as floating-point values.
One of the two vector elements that are read from each of the numbers in the second source SIMD&FP register can be optionally negated based
on the rotation value:

+ If'the rotation is 90, the odd-numbered vector elements are negated.

+ If'the rotation is 270, the even-numbered vector elements are negated.
This instruction can generate a floating-point exception. Depending on the settings in F/PCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR _ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Three registers of the same type
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o]Q]1]0 1 1 1 0] size O] Rm [1]1 1]rotJO] 1] Rn | Rd |

Three registers of the same type

FCADD <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

if 'HaveFCADDEXt ()
integer d = UInt (Rd
integer n = UInt (Rn
integer m = UInt (Rm);

if size == '00' then ReservedValue();

if Q == '0' && size == 'l1l' then ReservedValue () ;
integer esize = 8 << Ulnt(size);

if 'HaveFPl6Ext () && esize == 16 then ReservedValue();
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

then UnallocatedEncoding() ;

) ;
) ;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:
size Q <T>
00 X RESERVED
01 0 4H
01 1 8H
10 0 25
10 1 4s
11 0 RESERVED
11 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<rotate> Is the rotation, encoded in “rot”:
rot <rotate>
0 90
1 270

FCADD Page 204

Operation

CheckFPAdvSIMDEnabled64 () ;

bits(datasize) operandl = V[n];
bits(datasize) operand2 = V[m];
bits(datasize) operand3 = V[d];

(
(
bits (datasize) result;
bits(esize) elementl;
bits(esize) element3;
for e = 0 to (elements DIV 2)-1
case rot of
when '0'
elementl = FPNeg(Elem[operand2, e*2+1, esize]);
element3 = Elem[operand2, e*2, esize];
when '1'
elementl = Elem[operand2, e*2+1, esize];
element3 = FPNeg(Elem[operand2, e*2, esize]l);
Elem[result, e*2, esize] = FPAdd(Elem[operandl, e*2, esize], elementl, FPCR);
Elem[result, e*2+1l, esize] = FPAdd(Elem[operandl, e*2+1, esize], element3, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCADD Page 205

FCCMP

Floating-point Conditional quiet Compare (scalar). This instruction compares the two SIMD&FP source register values and writes the result to
the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

It raises an Invalid Operation exception only if either operand is a signaling NaN.
A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8

7 6 5 4 3 2 1 0

[ofofofH

1 1 1 0] type [1] Rm cond [0 1]

Rn [0] nzcv

Half-precision (type == 11)

(ARMV8.2)

FCCMP <Hn>,

<Hm>, #<nzcv>, <cond>

Single-precision (type == 00)

FCCMP <Sn>,

<Sm>, #<nzcv>, <cond>

Double-precision (type == 01)

FCCMP <Dn>,

integer n
integer m =

<Dm>, #<nzcv>, <cond>

UInt (Rn);
UInt (Rm) ;

integer datasize;
case type of

when
when
when
when

bits (4)

VOOI
‘Ol'
‘10'
llll
if HaveFPl6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;

datasize 32;
datasize 64;
UnallocatedEncoding () ;

flags = nzcv;

Assembler Symbols

<Dn>
<Dm>
<Hn>
<Hm>
<Sn>
<Sm>

<nzcv>

<cond>

NaNs

Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

op

Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,

encoded in the "nzcv" field.

Is one of the standard conditions, encoded in the "cond" field in the standard way.

FCCMP

Page 206

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are

NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand?2) are false. This case
results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits(datasize) operandl = V[n];
bits (datasize) operand2;

operand2 = V[m];
if ConditionHolds (cond) then

flags = FPCompare (operandl,
PSTATE.<N, Z,C,V> = flags;

operand2, FALSE,

FPCR) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCCMP

Page 207

FCCMPE

Floating-point Conditional signaling Compare (scalar). This instruction compares the two SIMD&FP source register values and writes the result
to the PSTATE.{N, Z, C, V} flags. If the condition does not pass then the PSTATE.{N, Z, C, V} flags are set to the flag bit specifier.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

[oJo]o[1 1 1 1 oftype [1] Rm cond [0 1] Rn [1] nzev
op
Half-precision (type == 11)
(ARMVS.2)
FCCMPE <Hn>, <Hm>, #<nzcv>, <cond>
Single-precision (type == 00)
FCCMPE <Sn>, <Sm>, #<nzcv>, <cond>
Double-precision (type == 01)
FCCMPE <Dn>, <Dm>, #<nzcv>, <cond>
integer n = UInt (Rn);
integer m = UInt (Rm);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPl6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
bits(4) flags = nzcv;

Assembler Symbols

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<nzcv> Is the flag bit specifier, an immediate in the range 0 to 15, giving the alternative state for the 4-bit NZCV condition flags,
encoded in the "nzcv" field.
<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.
NaNs

FCCMPE

Page 208

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are

NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand?2) are false. This case
results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

F'CCMPE raises an Invalid Operation exception if either operand is any type of NaN, and is suitable for testing for <, <=, >, >=, and
other predicates that raise an exception when the operands are unordered.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits(datasize) operand2;

operand2 = V[m];
if ConditionHolds (cond) then

flags = FPCompare (operandl, operand2, TRUE, FPCR);
PSTATE.<N, Z,C,V> = flags;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCCMPE Page 209

FCMEQ (register)

Floating-point Compare Equal (vector). This instruction compares each floating-point value from the first source SIMD&FP register, with the
corresponding floating-point value from the second source SIMD&FP register, and if the comparison is equal sets every bit of the corresponding

vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination

SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]o][1 1 1 1 0o]Jo[1 0] Rm [0 o[1 ofJo[1] Rn Rd |
U E ac
Scalar half precision
FCMEQ <Hd>, <Hn>, <Hm>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]o[1 1 1 1 ofo0]sz]1] Rm [1 1 1 0o]0o[1] Rn Rd |
U E ac

FCMEQ (register)

Page 210

Scalar single-precision and double-precision

FCMEQ <V><d>, <V><n>, <V><m>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp EQ; abs
when '010' cmp = CompareOp GE; abs
when '011' cmp = CompareOp GE; abs
when '110' cmp = CompareOp GT; abs
when '111' cmp = CompareOp GT; abs
otherwise UnallocatedEncoding() ;

Vector half precision

FALSE;
FALSE;
TRUE;
FALSE;
TRUE;

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lo[a]o]o 1 1 1 ofJo[1 0] Rm o o[1 ofJo[1] Rn Rd |
] E ac
Vector half precision
FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if !HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = if == '1l' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Vector single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQJoJo 1 1 1 ofo]sz[1] Rm 1 1 1 0oJo]1] Rn Rd |
u E ac

FCMEQ (register)

Page 211

Vector single-precision and double-precision

FCMEQ <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sz:Q == '10' then ReservedValue() ;
integer esize = 32 << Ulnt(sz);

integer datasize =
integer elements =
CompareOp cmp;
boolean abs;

case E:U:ac of

1E © = 717
datasize DIV esize;

then 128

when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Assembler Symbols
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in “sz”:
SZ <V>
0 S
1 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 2S

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

else 64;

FCMEQ (register)

to}

Page 212

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl =
bits (datasize) operand?2
bits (datasize) result;
bits(esize) elementl;
bits(esize) element2;
boolean test passed;

for e = 0 to elements-1

elementl = Elem[operandl, e, esize];

element2 = Elem[operand2, e, esize];

if abs then
elementl = FPAbs (elementl);
element?2 = FPAbs (element?2) ;

case cmp of
when CompareOp EQ test passed = FPCompareEQ (elementl, element2, FPCR);
when CompareOp GE test passed = FPCompareGE (elementl, element2, FPCR);
when CompareOp GT test passed = FPCompareGT (elementl, element2, FPCR);

Elem[result, e, esize] = if test passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMEQ (register) Page 213

FCMEQ (zero)

Floating-point Compare Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value
is equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the

corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-

precision and double-precision

Scalar half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]o[1 1 1 1 0of1]1 1 1 1 0 0of[0o 1 1 0o[1][1 0] Rn Rd |
U op
Scalar half precision
FCMEQ <Hd>, <Hn>, #0.0
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp comparison;
case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'll' comparison = CompareOp LE;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]o[1 1 1 1 of1]sz[1 0 0 0 0[]0 1 1 o[1][1 0] Rn Rd |
U op

Scalar single-precision and double-precision

FCMEQ <V><d>, <V><n>, #0.0

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when '11' comparison = CompareOp LE;

FCMEQ (zero)

Page 214

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of]1]1 1 1 1 0 00 1 1 0[1][1 0] Rn | Rd |
u op

Vector half precision

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt (Rd);

integer n = UInt(Rn);

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of1]sz[1 0 0 0 0[O0 1 1 of[1[1 0] Rn | Rd |
u op

Vector single-precision and double-precision

FCMEQ <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt (Rd);

integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMEQ (zero) Page 215

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:
SZ Q <T>
0 0 25
0 1 43
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()
bits (datasize) operand
bits (datasize) result;
bits (esize) zero FPZero ('0") ;
bits (esize) element;
boolean test passed;

Vin]l;

for e 0 to elements-1
element Elem[operand,
case comparison of

e, esize];

when CompareOp GT test passed = FPCompareGT (element, zero, FPCR);
when CompareOp GE test passed = FPCompareGE (element, zero, FPCR);
when CompareOp EQ test passed = FPCompareEQ (element, zero, FPCR);
when CompareOp LE test passed = FPCompareGE (zero, element, FPCR);
when CompareOp LT test passed = FPCompareGT (zero, element, FPCR);
Elem[result, e, esize] = if test passed then Ones() else Zeros();
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMEQ (zero)

Page 216

FCMGE (register)

Floating-point Compare Greater than or Equal (vector). This instruction reads each floating-point value in the first source SIMD&FP register and

if the value is greater than or equal to the corresponding floating-point value in the second source SIMD&FP register sets every bit of the

corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the
destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 o]Jo[1 0] Rm [0 o[1 ofJo[1] Rn Rd |
U E ac
Scalar half precision
FCMGE <Hd>, <Hn>, <Hm>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 ofo0]sz][1] Rm [1 1 1 0o]0o[1] Rn Rd |
U E ac

FCMGE (register)

Page 217

Scalar single-precision and double-precision

FCMGE <V><d>, <V><n>, <V><m>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp EQ; abs
when '010' cmp = CompareOp GE; abs
when '011' cmp = CompareOp GE; abs
when '110' cmp = CompareOp GT; abs
when '111' cmp = CompareOp GT; abs
otherwise UnallocatedEncoding() ;

Vector half precision

FALSE;
FALSE;
TRUE;
FALSE;
TRUE;

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lo[a[1]0 1 1 1 o]Jo[1 0] Rm o o[1 ofJo[1] Rn Rd |
] E ac
Vector half precision
FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if !HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = if == '1l' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Vector single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQl1]o 1 1 1 ofo]sz[1] Rm 1 1 1 0oJo]1] Rn Rd |
u E ac

FCMGE (register)

Page 218

Vector single-precision and double-precision

FCMGE <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sz:Q == '10' then ReservedValue() ;
integer esize = 32 << Ulnt(sz);

integer datasize =
integer elements =
CompareOp cmp;
boolean abs;

case E:U:ac of

1E © = 717
datasize DIV esize;

then 128

when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Assembler Symbols
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in “sz”:
SZ <V>
0 S
1 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 2S

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

else 64;

FCMGE (register)

to}

Page 219

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl =
bits (datasize) operand?2
bits (datasize) result;
bits(esize) elementl;
bits(esize) element2;
boolean test passed;

for e = 0 to elements-1

elementl = Elem[operandl, e, esize];

element2 = Elem[operand2, e, esize];

if abs then
elementl = FPAbs (elementl);
element?2 = FPAbs (element?2) ;

case cmp of
when CompareOp EQ test passed = FPCompareEQ (elementl, element2, FPCR);
when CompareOp GE test passed = FPCompareGE (elementl, element2, FPCR);
when CompareOp GT test passed = FPCompareGT (elementl, element2, FPCR);

Elem[result, e, esize] = if test passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGE (register) Page 220

FCMGE (zero)

Floating-point Compare Greater than or Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register
and if the value is greater than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one,

otherwise sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-

precision and double-precision

Scalar half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[o 1[1]1 1 1 1 0o[1]1 1 1 1 0 0o[o 1 1 of[o[1 0] Rn Rd |
U op
Scalar half precision
FCMGE <Hd>, <Hn>, #0.0
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp comparison;
case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when '1l1' comparison = CompareOp LE;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]1]1 1 1 1 of1]sz[1 0 0 0 0[]0 1 1 ofJo[1 0] Rn Rd |
U op

Scalar single-precision and double-precision

FCMGE <V><d>, <V><n>, #0.0

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when '11' comparison = CompareOp LE;

FCMGE (zero)

Page 221

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 of]1]1 1 1 1 0 0o[0o 1 1 ofo[1 o] Rn | Rd |
u op

Vector half precision

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt (Rd);

integer n = UInt(Rn);

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJ1]o 1 1 1 of1]sz[1 0 0 0 0[O0 1 1 ofo[1 O] Rn | Rd |
u op

Vector single-precision and double-precision

FCMGE <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt (Rd);

integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMGE (zero) Page 222

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:
SZ Q <T>
0 0 25
0 1 43
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()
bits (datasize) operand
bits (datasize) result;
bits (esize) zero FPZero ('0") ;
bits (esize) element;
boolean test passed;

Vin]l;

for e 0 to elements-1
element Elem[operand,
case comparison of

e, esize];

when CompareOp GT test passed = FPCompareGT (element, zero, FPCR);
when CompareOp GE test passed = FPCompareGE (element, zero, FPCR);
when CompareOp EQ test passed = FPCompareEQ (element, zero, FPCR);
when CompareOp LE test passed = FPCompareGE (zero, element, FPCR);
when CompareOp LT test passed = FPCompareGT (zero, element, FPCR);
Elem[result, e, esize] = if test passed then Ones() else Zeros();
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGE (zero)

Page 223

FCMGT (register)

Floating-point Compare Greater than (vector). This instruction reads each floating-point value in the first source SIMD&FP register and if the
value is greater than the corresponding floating-point value in the second source SIMD&FP register sets every bit of the corresponding vector
element in the destination SIMD&FP register to one, otherwise sets every bit of the corresponding vector element in the destination SIMD&FP

register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 0o]1[1 0] Rm [0 o[1 ofJo[1] Rn Rd |
U E ac
Scalar half precision
FCMGT <Hd>, <Hn>, <Hm>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1[1]1 1 1 1 of[1]sz][1] Rm [1 1 1 0o]0o[1] Rn Rd |
U E ac

FCMGT (register)

Page 224

Scalar single-precision and double-precision

FCMGT <V><d>, <V><n>, <V><m>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp cmp;
boolean abs;

case E:U:ac of
when '000' cmp = CompareOp EQ; abs
when '010' cmp = CompareOp GE; abs
when '011' cmp = CompareOp GE; abs
when '110' cmp = CompareOp GT; abs
when '111' cmp = CompareOp GT; abs
otherwise UnallocatedEncoding() ;

Vector half precision

FALSE;
FALSE;
TRUE;
FALSE;
TRUE;

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lo[a[1]0 1 1 1 of]1[1 0] Rm o o[1 ofJo[1] Rn Rd |
] E ac
Vector half precision
FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if !HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = if == '1l' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp cmp;
boolean abs;
case E:U:ac of
when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Vector single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQl1]o 1 1 1 of1]sz[1] Rm 1 1 1 0oJo]1] Rn Rd |
u E ac

FCMGT (register)

Page 225

Vector single-precision and double-precision

FCMGT <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sz:Q == '10' then ReservedValue() ;
integer esize = 32 << Ulnt(sz);

integer datasize =
integer elements =
CompareOp cmp;
boolean abs;

case E:U:ac of

1E © = 717
datasize DIV esize;

then 128

when '000' cmp = CompareOp EQ; abs FALSE;
when '010' cmp = CompareOp GE; abs FALSE;
when '011' cmp = CompareOp GE; abs TRUE;
when '110' cmp = CompareOp GT; abs FALSE;
when '111' cmp = CompareOp GT; abs TRUE;
otherwise UnallocatedEncoding() ;
Assembler Symbols
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in “sz”:
SZ <V>
0 S
1 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 2S

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

else 64;

FCMGT (register)

to}

Page 226

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl =
bits (datasize) operand?2
bits (datasize) result;
bits(esize) elementl;
bits(esize) element2;
boolean test passed;

for e = 0 to elements-1

elementl = Elem[operandl, e, esize];

element2 = Elem[operand2, e, esize];

if abs then
elementl = FPAbs (elementl);
element?2 = FPAbs (element?2) ;

case cmp of
when CompareOp EQ test passed = FPCompareEQ (elementl, element2, FPCR);
when CompareOp GE test passed = FPCompareGE (elementl, element2, FPCR);
when CompareOp GT test passed = FPCompareGT (elementl, element2, FPCR);

Elem[result, e, esize] = if test passed then Ones() else Zeros();

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGT (register) Page 227

FCMGT (zero)

Floating-point Compare Greater than zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the
value is greater than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit

of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-

precision and double-precision

Scalar half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]o[1 1 1 1 0o[1]1 1 1 1 0 0o[o 1 1 of[o[1 0] Rn Rd |
U op
Scalar half precision
FCMGT <Hd>, <Hn>, #0.0
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp comparison;
case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when '1l1' comparison = CompareOp LE;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]o[1 1 1 1 of1]sz[1 0 0 0 0[]0 1 1 ofJo[1 O] Rn Rd |
U op

Scalar single-precision and double-precision

FCMGT <V><d>, <V><n>, #0.0

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when '11' comparison = CompareOp LE;

FCMGT (zero)

Page 228

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of]1]1 1 1 1 0 0o[0o 1 1 ofo[1 0] Rn | Rd |
u op

Vector half precision

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt (Rd);

integer n = UInt(Rn);

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of1]sz[1 0 0 0 0[O0 1 1 ofo[1 O] Rn | Rd |
u op

Vector single-precision and double-precision

FCMGT <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt (Rd);

integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMGT (zero) Page 229

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:
SZ Q <T>
0 0 25
0 1 43
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()
bits (datasize) operand
bits (datasize) result;
bits (esize) zero FPZero ('0") ;
bits (esize) element;
boolean test passed;

Vin]l;

for e 0 to elements-1
element Elem[operand,
case comparison of

e, esize];

when CompareOp GT test passed = FPCompareGT (element, zero, FPCR);
when CompareOp GE test passed = FPCompareGE (element, zero, FPCR);
when CompareOp EQ test passed = FPCompareEQ (element, zero, FPCR);
when CompareOp LE test passed = FPCompareGE (zero, element, FPCR);
when CompareOp LT test passed = FPCompareGT (zero, element, FPCR);
Elem[result, e, esize] = if test passed then Ones() else Zeros();
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMGT (zero)

Page 230

FCMLA (by element)

Floating-point Complex Multiply Accumulate (by element).
This instruction multiplies the complex numbers in the first source vector register by the specified complex number in the second source vector
register, and adds the results to the corresponding complex numbers in the destination vector register. The number of complex numbers that can
be stored in the source and the destination vector registers is calculated as the vector register size divided by the length of each complex number.
Each complex number is represented in a SIMD&FP register as a pair of elements with the imaginary part of the number being placed in the
more significant element, and the real part of the number being placed in the less significant element. Both real and imaginary parts of the source
and the resulting complex number are represented as floating-point values.
None, one, or both of the two vector elements that are read from each of the numbers in the second source SIMD&FP register can be negated
based on the rotation value:

+ If'the rotation is 0, none of the vector elements are negated.

+ If'the rotation is 90, the odd-numbered vector elements are negated.

+ If'the rotation is 180, both vector elements are negated.

+ If'the rotation is 270, the even-numbered vector elements are negated.
The indexed element variant of this instruction is available for half-precision and single-precision number values. For this variant, the index
value determines the position in the specified element of the second source vector register of the single source value that is multiplied with each
of the complex numbers in the first source vector register.
This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Vector
(ARMv8.3)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
loJQ]1]o 1 1 1 1] size [L[M] Rm [0] rot [1]H]O] Rn | Rd |
(size == 01)

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>
(size == 10)

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>], #<rotate>

if !'HaveFCADDExt then UnallocatedEncoding() ;

()

integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt (M:Rm);

if size == '00' || size == '1l1l' then ReservedValue():;

if size == '01' then index = UInt (H:L);

if size == '10' then index = UInt (H):;

integer esize = 8 << Ulnt(size);

if !'HaveFPloExXt () && esize == 16 then ReservedValue () ;

integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV esize;

if size == '10"' && (L == '"1'" || Q == '0') then ReservedValue():;

if size == '01' && H == "'"1'" && Q == '0' then ReservedValue();
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

FCMLA (by element) Page 231

size Q <T>
00 X RESERVED
01 0 4H
01 1 8H
10 0 RESERVED
10 1 45
11 X RESERVED
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields.
<Ts> Is an element size specifier, encoded in “size”:
size <Ts>
00 RESERVED
01 H
10 S
11 RESERVED
<index> Is the element index, encoded in “size:H:L”:
size <index>
00 RESERVED
01 H:L
10 H
11 RESERVED
<rotate> Is the rotation, encoded in “rot”:
rot <rotate>
00 0
01 90
10 180
11 270
Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[m];
bits (datasize) operand2 = V[n];
bits (datasize) operand3 = V[d];
bits (datasize) result;
for e = 0 to (elements DIV 2)-1
case rot of
when '00'
elementl = Elem[operandl, index*2, esize];
element2 = Elem[operand2, e*2, esize];
element3 = Elem[operandl, index*2+1, esize];
element4 = Elem[operand2, e*2, esize];
when '01°'
elementl = FPNeg(Elem[operandl, index*2+1, esize]);
element2 = Elem[operand2, e*2+1, esize];
element3 = Elem[operandl, index*2, esize];
element4 = Elem[operand2, e*2+1, esize];
when '10'
elementl = FPNeg(Elem[operandl, index*2, esize]);
element2 = Elem[operand2, e*2, esize];
element3 = FPNeg(Elem[operandl, index*2+1, esize]);
element4 = Elem[operand2, e*2, esize];
when '11'
elementl = Elem[operandl, index*2+1, esize];
element2 = Elem[operand2, e*2+1, esize];
element3 = FPNeg(Elem[operandl, index*2, esize]);
element4 = Elem[operand2, e*2+1, esize];
Elem[result, e*2, esize] = FPMulAdd (Elem[operand3, e*2, esize], element2, elementl, FPCR);
Elem[result, e*2+1, esize] = FPMulAdd (Elem[operand3, e*2+1l, esize], elementd4, element3, FPCR);

V[d] = result;

FCMLA (by element) Page 232

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA (by element) Page 233

FCMLA

Floating-point Complex Multiply Accumulate.
This instruction multiplies corresponding complex numbers from the two source vector registers and adds the results to the corresponding
complex numbers in the destination vector register. The number of complex numbers that can be stored in the source and the destination vector
registers is calculated as the vector register size divided by the length of each complex number. Each complex number is represented in a
SIMD&FP register as a pair of elements with the imaginary part of the number being placed in the more significant element, and the real part of
the number being placed in the less significant element. Both real and imaginary parts of the source and the resulting complex number are
represented as floating-point values.
None, one, or both of the two vector elements that are read from each of the numbers in the second source SIMD&FP register can be negated
based on the rotation value:

+ If'the rotation is 0, none of the vector elements are negated.

+ If'the rotation is 90, the odd-numbered vector elements are negated.

+ If'the rotation is 180, both vector elements are negated.

+ If'the rotation is 270, the even-numbered vector elements are negated.
This instruction can generate a floating-point exception. Depending on the settings in F/PCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Three registers of the same type
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o]Q]1]0 1 1 1 0] size O] Rm [1]1 0] rot [1] Rn | Rd |

Three registers of the same type

FCMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>, #<rotate>

if !'HaveFCADDEXt ()
integer d = UInt (Rd
integer n = UInt (Rn
integer m = UInt (Rm);

if size == '00' then ReservedValue() ;

if == '0' && size == '"11' then ReservedValue();
integer esize = 8 << Ulnt(size);

if 'HaveFPl6Ext () && esize == 16 then ReservedValue();
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

then UnallocatedEncoding() ;

) ;
) ;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> Is an arrangement specifier, encoded in “size:Q”:

size Q <T>

00 X RESERVED

01 0 4H

01 1 8H

10 0 25

10 1 4s

11 0 RESERVED

11 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
<rotate> Is the rotation, encoded in “rot”:

FCMLA Page 234

rot <rotate>
00 0

01 90

10 180

11 270

Operation
CheckFPAdvSIMDEnabledo64 () ;
bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits (datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) elementl;
bits(esize) element?2;
bits(esize) element3;
bits(esize) elementd;
for e = 0 to (elements DIV 2)-1
case rot of
when '00'
elementl = Elem[operand2, e*2, esize];
element2 = Elem[operandl, e*2, esize];
element3 = Elem[operand2, e*2+1, esize];
element4 = Elem[operandl, e*2, esize];
when '01'
elementl = FPNeg(Elem[operand2, e*2+1, esize]);
element2 = Elem[operandl, e*2+1, esize];
element3 = Elem[operand2, e*2, esize];
element4 = Elem[operandl, e*2+1, esize];
when '10'
elementl = FPNeg(Elem[operand2, e*2, esize]);
element2 = Elem[operandl, e*2, esize];
element3 = FPNeg(Elem[operand2, e*2+1, esize]);
element4 = Elem[operandl, e*2, esize];
when '11'
elementl = Elem[operand2, e*2+1, esize];
element2 = Elem[operandl, e*2+1, esize];
element3 = FPNeg(Elem[operand2, e*2, esize]);
element4 = Elem[operandl, e*2+1, esize];
Elem[result, e*2, esize] = FPMulAdd(Elem[operand3, e*2, esize],
Elem[result, e*2+1l, esize] = FPMulAdd (Elem[operand3, e*2+1l, esize],

V[d] = result;

element2,

element4,

elementl,

element3,

FPCR) ;

FPCR) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLA

Page 235

FCMLE (zero)

Floating-point Compare Less than or Equal to zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and
if the value is less than or equal to zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise

sets every bit of the corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-

precision and double-precision

Scalar half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 111 1 1 1 0o[1]1 1 1 1 0 0f[0o 1 1 0[1][1 0] Rn Rd |
U op
Scalar half precision
FCMLE <Hd>, <Hn>, #0.0
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
CompareOp comparison;
case op:U of
when '00' comparison = CompareOp GT;
when '0l' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when '1l1' comparison = CompareOp LE;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]1]1 1 1 1 of1]sz[1 0 0 0 0[]0 1 1 o[1][1 0] Rn Rd |
U op

Scalar single-precision and double-precision

FCMLE <V><d>, <V><n>, #0.0

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when '11' comparison = CompareOp LE;

FCMLE (zero)

Page 236

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 of]1]1 1 1 1 0 00 1 1 0[1][1 0] Rn | Rd |
u op

Vector half precision

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt (Rd);

integer n = UInt(Rn);

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJ1]o 1 1 1 of1]sz[1 0 0 0 0[O0 1 1 of[1[1 0] Rn | Rd |
u op

Vector single-precision and double-precision

FCMLE <Vd>.<T>, <Vn>.<T>, #0.0

integer d = UInt (Rd);

integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison;

case op:U of
when '00' comparison = CompareOp GT;
when '01' comparison = CompareOp GE;
when '10' comparison = CompareOp EQ;
when 'l1l' comparison = CompareOp LE;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.

FCMLE (zero) Page 237

<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H
For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:
SZ Q <T>
0 0 25
0 1 43
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 ()
bits (datasize) operand
bits (datasize) result;
bits (esize) zero FPZero ('0") ;
bits (esize) element;
boolean test passed;

Vin]l;

for e 0 to elements-1
element Elem[operand,
case comparison of

e, esize];

when CompareOp GT test passed = FPCompareGT (element, zero, FPCR);
when CompareOp GE test passed = FPCompareGE (element, zero, FPCR);
when CompareOp EQ test passed = FPCompareEQ (element, zero, FPCR);
when CompareOp LE test passed = FPCompareGE (zero, element, FPCR);
when CompareOp LT test passed = FPCompareGT (zero, element, FPCR);
Elem[result, e, esize] = if test passed then Ones() else Zeros();
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLE (zero)

Page 238

FCMLT (zero)

Floating-point Compare Less than zero (vector). This instruction reads each floating-point value in the source SIMD&FP register and if the value
is less than zero sets every bit of the corresponding vector element in the destination SIMD&FP register to one, otherwise sets every bit of the
corresponding vector element in the destination SIMD&FP register to zero.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[o 1]o[1 1 1 1 0o[1]1 1 1 1 0 0[0 1 1 1 0[1 0] Rn Rd |
Scalar half precision
FCMLT <Hd>, <Hn>, #0.0

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = Ulnt (Rd);

integer n = Ulnt (Rn);

integer esize = 16;

integer datasize = esize;

integer elements = 1;

CompareOp comparison = CompareOp LT;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]o[1 1 1 1 of1]sz[1 0 0 0 0[]0 1 1 1 0[1 0] Rn Rd |
Scalar single-precision and double-precision

FCMLT <V><d>, <V><n>, #0.0

integer d = UInt (Rd);

integer n = UInt (Rn);

integer esize = 32 << Ulnt(sz);

integer datasize = esize;

integer elements = 1;

CompareOp comparison = CompareOp LT;
Vector half precision
(ARMv8S.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQ@JoJo 1 1 1 of]1]1 1 1 1 0 00 1 1 1 0[1 0] Rn Rd |

FCMLT (zero)

Page 239

Vector half precision

FCMLT <Vd>.<T>, <Vn>.<T>, #0.0

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

CompareOp comparison = CompareOp LT;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

loJQJoJo 1 1 1 of1]sz[1 0 0 0 0[O0 1 1 1 0[1 0] Rn | Rd |
Vector single-precision and double-precision
FCMLT <Vd>.<T>, <Vn>.<T>, #0.0
integer d = UInt(Rd);
integer n = UInt(Rn);
if sz:Q == '10' then ReservedValue () ;
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
CompareOp comparison = CompareOp LT;
Assembler Symbols
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:
SZ <V>
0 S
1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCMLT (zero) Page 240

Operation

CheckFPAdvSIMDEnabled64 ()

bits(datasize) operand = V[n];

bits (datasize) result;

bits(esize) zero = FPZero('0');

bits(esize) element;
boolean test passed;

for e = 0 to elements-1

element = Elem[operand, e, esize];

case comparison of
when CompareOp GT
when CompareOp GE
when CompareOp EQ
when CompareOp LE
when CompareOp LT

Elem[result, e, esize]

V[d] = result;

test passed
test passed
test passed
test passed
test passed

= FPCompareGT

FPCompareGE
FPCompareEQ
FPCompareGE

element,
element,
element,
zero,
FPCompareGT (zero,
= 1if test passed then Ones ()

zero, FPCR);
zero, FPCR);
zero, FPCR);

element, FPCR);
element, FPCR);
else Zeros();

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMLT (zero)

Page 241

FCMP

Floating-point quiet Compare (scalar). This instruction compares the two SIMD&FP source register values, or the first SIMD&FP source register
value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

It raises an Invalid Operation exception only if either operand is a signaling NaN.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[oJo]o[1 1 1 1 oftype [1] Rm o 0[1 0 0 O] Rn [0 x[0 0 0]
opc

Half-precision (type == 11 && opc == 00)
(ARMVS.2)

FCMP <Hn>, <Hm>

Half-precision, zero (type == 11 && Rm == (00000) && opc == 01)
(ARMVS.2)

FCMP <Hn>, #0.0

Single-precision (type == 00 && opc == 00)

FCMP <Sn>, <Sm>

Single-precision, zero (type == 00 && Rm == (00000) && opc == 01)

FCMP <Sn>, #0.0

Double-precision (type == 01 && opc == 00)

FCMP <Dn>, <Dm>

Double-precision, zero (type == 01 && Rm == (00000) && opc == 01)

FCMP <Dn>, #0.0

integer n UInt (Rn) ;
integer m = UInt (Rm); // ignored when opc<0> == '1'

integer datasize;
case type of
when '00' datasize = 32;
when '01' datasize 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPl6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;

boolean signal all nans = (opc<l> == '1");
boolean cmp with zero = (opc<0> == '1");

Assembler Symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

FCMP Page 242

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
NaNs
The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are

NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand?2) are false. This case

results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(datasize) operandl = V[n];
bits (datasize) operand2;

operand2 = if cmp with zero then FPZero('0') else V[m];

PSTATE.<N, Z,C,V> = FPCompare (operandl, operand2, signal all nans, FPCR);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMP

Page 243

FCMPE

Floating-point signaling Compare (scalar). This instruction compares the two SIMD&FP source register values, or the first SIMD&FP source
register value and zero. It writes the result to the PSTATE.{N, Z, C, V} flags.

If either operand is any type of NaN, or if either operand is a signaling NaN, the instruction raises an Invalid Operation exception.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[oJo]o[1 1 1 1 oftype [1] Rm o 0[1 0 0 O] Rn [1 x[0 0 0]
opc

Half-precision (type == 11 && opc == 10)
(ARMVS.2)

FCMPE <Hn>, <Hm>

Half-precision, zero (type == 11 && Rm == (00000) && opc == 11)
(ARMVS.2)

FCMPE <Hn>, #0.0

Single-precision (type == 00 && opc == 10)

FCMPE <Sn>, <Sm>

Single-precision, zero (type == 00 && Rm == (00000) && opc == 11)

FCMPE <Sn>, #0.0

Double-precision (type == 01 && opc == 10)

FCMPE <Dn>, <Dm>

Double-precision, zero (type == 01 && Rm == (00000) && opc == 11)

FCMPE <Dn>, #0.0

integer n UInt (Rn) ;
integer m = UInt (Rm); // ignored when opc<0> == '1'

integer datasize;
case type of
when '00' datasize = 32;
when '01' datasize 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPl6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;

boolean signal all nans = (opc<l> == '1");
boolean cmp with zero = (opc<0> == '1");

Assembler Symbols

<Dn> For the double-precision variant: is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

FCMPE Page 244

For the double-precision, zero variant: is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hn> For the half-precision variant: is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
For the half-precision, zero variant: is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sn> For the single-precision variant: is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

For the single-precision, zero variant: is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
NaNs
The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or both of the operands are

NaNs, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2) and (Operand1 > Operand?2) are false. This case
results in the FPSCR flags being set to N=0, Z=0, C=1, and V=1.

F'CMPE raises an Invalid Operation exception if either operand is any type of NaN, and is suitable for testing for <, <=, >, >=, and
other predicates that raise an exception when the operands are unordered.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits(datasize) operand2;

operand2 = if cmp with zero then FPZero('0') else V[m];

PSTATE.<N, 7Z,C,V> = FPCompare (operandl, operand2, signal all nans, FPCR);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCMPE Page 245

FCSEL

Floating-point Conditional Select (scalar). This instruction allows the SIMD&FP destination register to take the value from either one or the

other

of two SIMD&FP source registers. If the condition passes, the first SIMD&FP source register value is taken, otherwise the second

SIMD&FP source register value is taken.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

[oJo]of[1 1 1 1 oftype [1] Rm cond [1 1] Rn | Rd |

Half-precision (type == 11)
(ARMVS.2)

FCSEL <Hd>, <Hn>, <Hm>, <cond>

Single-precision (type == 00)

FCSEL <Sd>, <Sn>, <Sm>, <cond>

Double-precision (type == 01)

FCSEL <Dd>, <Dn>, <Dm>, <cond>

integer d UInt (Rd) ;
integer n UInt (Rn) ;
integer m = UInt (Rm);

integer datasize;

case type of
when '00' datasize = 32;
when '01' datasize = 64;

when '10' UnallocatedEncoding() ;
when '11'
if HaveFPl6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;

bits(4) condition = cond;

Assembler Symbols

<Dd>
<Dn>
<Dm>
<Hd>
<Hn>
<Hm>
<Sd>
<Sn>
<Sm>

<cond>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is one of the standard conditions, encoded in the "cond" field in the standard way.

FCSEL Page 246

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

result = if ConditionHolds (condition) then V[n] else V[m];

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCSEL Page 247

FCVT

Floating-point Convert precision (scalar). This instruction converts the floating-point value in the SIMD&FP source register to the precision for
the destination register data type using the rounding mode that is determined by the FPCR and writes the result to the SIMD&FP destination

register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

[o]o]o[1 1 1 1 oftype[1]0 0 0 1[opc[1 0 0 0 0]
Half-precision to single-precision (type == 11 && opc == 00)
FCVT <Sd>, <Hn>
Half-precision to double-precision (type == 11 && opc == 01)
FCVT <Dd>, <Hn>
Single-precision to half-precision (type == 00 && opc == 11)
FCVT <Hd>, <Sn>
Single-precision to double-precision (type == 00 && opc == 01)
FCVT <Dd>, <Sn>
Double-precision to half-precision (type == 01 && opc == 11)
FCVT <Hd>, <Dn>
Double-precision to single-precision (type == 01 && opc == 00)
FCVT <Sd>, <Dn>
integer d = UInt (Rd);
integer n = UInt (Rn);
if type == opc then UnallocatedEncoding() ;
integer srcsize;
case type of
when '00' srcsize = 32;
when '0l' srcsize = 64;
when '10' UnallocatedEncoding() ;
when 'l1l' srcsize = 16;
integer dstsize;
case opc of
when '00' dstsize = 32;
when '01' dstsize = 64;
when '10' UnallocatedEncoding() ;
when '1l1l' dstsize = 16;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FCVT

Page 248

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits (dstsize) result;
bits (srcsize) operand = V[n];

result = FPConvert (operand, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVT Page 249

FCVTAS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector). This instruction converts each element in a vector from
a floating-point value to a signed integer value using the Round to Nearest with Ties to Away rounding mode and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofo]1 1 1 1 0 0[1 1 1 0 0[1 0] Rn | Rd |
U

Scalar half precision

FCVTAS <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofo]sz[1 0 0 0 0[1 1 1 0 0[1 0] Rn | Rd |
u

Scalar single-precision and double-precision

FCVTAS <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 ofJo]1 1 1 1 0 o0[1 1 10 0[1 0] Rn | Rd |
u

FCVTAS (vector) Page 250

Vector half precision

FCVTAS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

12 1

10 9

8

7

6

loJQJoJo 1 1 1 o]olsz[1 0 0 0 0f1 1

1

0

01

0]

Rn

<Hd>

<Hn>

u

Vector single-precision and double-precision

FCVTAS <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1"'");

Assembler Symbols

<V> Is a width specifier, encoded in “sz”:

SZ <V>
0 S
1 D

<d>
<n>

<Vd>

<T>

<Vn>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 4H
1 8H

SZ Q <T>

25
45
RESERVED
2D

= BB O O
o =

=

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAS (vector)

For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

Page 251

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAS (vector) Page 252

FCVTAS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest with Ties to Away rounding mode, and writes the result

to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9

8

7

6

5

4

3

2

1

0

Isflofo[1 1 1 1 0of[type[1][0 0]1 0 0[O0 0 0 0 0 O]

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)

FCVTAS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTAS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)
FCVTAS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTAS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)
FCVTAS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTAS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer intsize = if sf == 'l' then 64 else 32;

integer fltsize;

case type of

when '00'
fltsize = 32;
when '01°'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'

if HaveFPlo6Ext () then
fltsize = 16;

else
UnallocatedEncoding () ;

FCVTAS (scalar)

Page 253

Assembler Symbols

<Wd>
<Xd>
<Sn>

<Hn>

<Dn>

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (fltsize)
bits (intsize)

fltval = V[n];

intval = FPToFixed(fltval,

X[d] = intval;

FPCR, FPRounding TIEAWAY) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAS (scalar) Page 254

FCVTAU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector). This instruction converts each element in a vector
from a floating-point value to an unsigned integer value using the Round to Nearest with Ties to Away rounding mode and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o 1]1]1 1 1 1 0ofo]1 1 1 1 0 0[1 1 1 0 o0[1 0] Rn | Rd |
U

Scalar half precision

FCVTAU <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 ofo]sz[1 0 0 0 0[1 1 1 0 0[1 0] Rn | Rd |
u

Scalar single-precision and double-precision

FCVTAU <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 ofJo]1 1 1 1 0 o0[1 1 10 0[1 0] Rn | Rd |
u

FCVTAU (vector) Page 255

Vector half precision

FCVTAU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

12 1

10 9

8

7

6

loJQ]1]o 1 1 1 o]olsz[1 0 0 0 0f1 1

1

0

01

0]

Rn

<Hd>

<Hn>

u

Vector single-precision and double-precision

FCVTAU <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPRounding TIEAWAY;
boolean unsigned = (U == '1"'");

Assembler Symbols

<V> Is a width specifier, encoded in “sz”:

SZ <V>
0 S
1 D

<d>
<n>

<Vd>

<T>

<Vn>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.

Is the number of the SIMD&FP source register, encoded in the "Rn" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

0 4H
1 8H

SZ Q <T>

25
45
RESERVED
2D

= BB O O
o =

=

Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTAU (vector)

For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

Page 256

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAU (vector) Page 257

FCVTAU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar). This instruction converts the floating-point value in
the SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to Nearest with Ties to Away rounding mode, and writes the

result to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9

8

7

6

5

4

3

2

1

0

Isflofo[1 1 1 1 0f[type[1][0 0]1 0 1[0 0 0 0 0 O]

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTAU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTAU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)
FCVTAU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTAU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)
FCVTAU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTAU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer intsize = if sf == 'l' then 64 else 32;

integer fltsize;

case type of

when '00'
fltsize = 32;
when '01°'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'

if HaveFPlo6Ext () then
fltsize = 16;

else
UnallocatedEncoding () ;

FCVTAU (scalar)

Page 258

Assembler Symbols

<Wd>
<Xd>
<Sn>

<Hn>

<Dn>

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (fltsize)
bits (intsize)

fltval = V[n];

intval = FPToFixed(fltval,

X[d] = intval;

FPCR, FPRounding TIEAWAY) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTAU (scalar) Page 259

FCVTL, FCVTL2

Floating-point Convert to higher precision Long (vector). This instruction reads each element in a vector in the SIMD&FP source register,
converts each value to double the precision of the source element using the rounding mode that is determined by the FPCR, and writes each

result to the equivalent element of the vector in the SIMD&FP destination register.

Where the operation lengthens a 64-bit vector to a 128-bit vector, the
the source register.

FCVTL2 variant operates on the elements in the top 64 bits of

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 oJolsz[1 0 0 0 0o[1 0 1 1 1[1 0] Rn | Rd |
Vector single-precision and double-precision
FCVTL{2} <Vd>.<Ta>, <Vn>.<Tb>
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16 << Ulnt(sz);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
Assembler Symbols
2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:
Q 2
0 [absent]
1 [present]
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Ta> Is an arrangement specifier, encoded in “sz”:
SZ <Ta>
0 43
1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<Tb> Is an arrangement specifier, encoded in “sz:Q”:
SZ Q <Tb>
0 0 4H
0 1 8H
1 0 28
1 1 45
Operation
CheckFPAdvSIMDEnabledo64 () ;
bits(datasize) operand = Vpart|[n, part];
bits(2*datasize) result;
for e = 0 to elements-1
Elem[result, e, 2*esize] = FPConvert (Elem[operand, e, esize], FPCR);

V[d] = result;

FCVTL, FCVTL2

Page 260

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTL, FCVTL2 Page 261

FCVTMS (vector)

Floating-point Convert to Signed integer, rounding toward Minus infinity (vector). This instruction converts a scalar or each element in a vector
from a floating-point value to a signed integer value using the Round towards Minus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofo]1 1 1 1 0 0f[1 1 0 1][1][1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTMS <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofo]sz[1 0 0 0 Oo[1 1 0 1[1]1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTMS <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 ofJo]1 1 1 1 0 01 10 1[1][1 0] Rn | Rd |
U 02 o1

FCVTMS (vector) Page 262

Vector half precision

FCVTMS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 oJolsz[1 0 0 0 o[1 1 0 1[1[1 0] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTMS <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMS (vector) Page 263

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMS (vector) Page 264

FCVTMS (scalar)

Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar). This instruction converts the floating-point value in the

SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Minus Infinity rounding mode, and writes the result to the

general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9

8

7

6

5

4

3

2

1

0

Isflofo[1 1 1 1 0f[type[1][1 0J]O 0 0[O0 0 0 0 0 O]

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)

FCVTMS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTMS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)
FCVTMS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTMS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)
FCVTMS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTMS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;

FPRounding rounding;

case type of

when '00'
fltsize = 32;
when '01°'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'

if HaveFPlo6Ext () then
fltsize = 16;

else
UnallocatedEncoding () ;

rounding = FPDecodeRounding (rmode) ;

FCVTMS (scalar)

Page 265

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMS (scalar)

Page 266

FCVTMU (vector)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector). This instruction converts a scalar or each element in a
vector from a floating-point value to an unsigned integer value using the Round towards Minus Infinity rounding mode, and writes the result to
the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 0of0o]1 1 1 1 0 0[1 1 0 1][1][1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTMU <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 ofo]sz[1 0 0 0 0[1 1 0 1[1]1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTMU <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 ofJo]1 1 1 1 0 01 1 0 1[1][1 0] Rn | Rd |
U 02 o1

FCVTMU (vector) Page 267

Vector half precision

FCVTMU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 oJo]sz[1 0 0 0 o[1 1 0 1[1[1 0] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTMU <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTMU (vector) Page 268

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMU (vector) Page 269

FCVTMU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Minus Infinity rounding mode, and writes the result to

the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9

8

7

6

5

4

3

2

1

0

Isflofo[1 1 1 1 0f[type[1][1 0J]O 0 1/0 0 0 0 0 O]

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)

FCVITMU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTMU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)
FCVTMU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTMU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)
FCVTMU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTMU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;

FPRounding rounding;

case type of

when '00'
fltsize = 32;
when '01°'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'

if HaveFPlo6Ext () then
fltsize = 16;

else
UnallocatedEncoding () ;

rounding = FPDecodeRounding (rmode) ;

FCVTMU (scalar)

Page 270

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTMU (scalar)

Page 271

FCVTN, FCVTN2

Floating-point Convert to lower precision Narrow (vector). This instruction reads each vector element in the SIMD&FP source register, converts
each result to half the precision of the source element, writes the final result to a vector, and writes the vector to the lower or upper half of the
destination SIMD&FP register. The destination vector elements are half as long as the source vector elements. The rounding mode is determined

by the FPCR.

The F'CVTN instruction writes the vector to the lower half of the destination register and clears the upper half, while the

FCVTN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR_EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the

instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 o]Josz[1 0 0 0 0o[1 0 1 1 0[1 O] Rn | Rd |
Vector single-precision and double-precision
FCVIN{2} <Vd>.<Tb>, <Vn>.<Ta>
integer d = UInt(Rd);
integer n = UInt(Rn);
integer esize = 16 << Ulnt(sz);
integer datasize = 64;
integer part = UInt(Q);
integer elements = datasize DIV esize;
Assembler Symbols
2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:
Q 2
0 [absent]
1 [present]
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Tb> Is an arrangement specifier, encoded in “sz:Q”:
SZ Q <Tb>
0 0 4H
0 1 8H
1 0 2S
1 1 45
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<Ta> Is an arrangement specifier, encoded in “sz”:
SZ <Ta>
0 45
1 2D
Operation
CheckFPAdvSIMDEnabledo64 () ;
bits(2*datasize) operand = V[n];
bits(datasize) result;
for e = 0 to elements-1
Elem[result, e, esize] = FPConvert (Elem[operand, e, 2*esize], FPCR);

Vpart[d, part] = result;

FCVTN, FCVTN2

Page 272

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTN, FCVTN2 Page 273

FCVTNS (vector)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector). This instruction converts a scalar or each element in a
vector from a floating-point value to a signed integer value using the Round to Nearest rounding mode, and writes the result to the SIMD&FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofo]1 1 1 1 0 0of[1 1 0 1]/0[1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTNS <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofo]sz[1 0 0 0 o[1 1 0 1]0[1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTNS <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 ofJo]1 1 1 1 0 0[1 1 0 1]0o[1 0] Rn | Rd |
U 02 o1

FCVTNS (vector) Page 274

Vector half precision

FCVTNS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 oJolsz[1 0 0 0 o[1 1 0 1]0o[1 O] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTNS <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNS (vector) Page 275

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNS (vector) Page 276

FCVTNS (scalar)

Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round to Nearest rounding mode, and writes the result to the general-

purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

12 11 10 9

8

7

6

5

4

3

2

1

0

IsfloJo]1 1 1 1

0|type [1][0 0/0 0 0J]O 0 O

0 0 0

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)
FCVTNS <Wd>,

<Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTNS <Xd>, <Hn>
Single-precision to 32-bit (sf == 0 && type == 00)

FCVINS <wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTNS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVINS <wWd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTNS <Xd>, <Dn>
integer d = UInt(Rd);

integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;
FPRounding rounding;
case type of
when '00'
fltsize = 32;
when '01'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'
if HaveFP1l6Ext () then
fltsize = 16;
else
UnallocatedEncoding () ;
rounding = FPDecodeRounding (rmode) ;

FCVTNS (scalar)

Page 277

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNS (scalar)

Page 278

FCVTNU (vector)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector). This instruction converts a scalar or each element in a
vector from a floating-point value to an unsigned integer value using the Round to Nearest rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 0ofo]1 1 1 1 0 0[1 1 0 1]/0[1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTNU <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 ofo]sz[1 0 0 0 0o[1 1 0 1]0[1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTNU <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 ofJo]1 1 1 1 0 0o[1 1 0 1]0o[1 0] Rn | Rd |
U 02 o1

FCVTNU (vector) Page 279

Vector half precision

FCVTNU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 oJolsz[1 0 0 0 o[1 1 0 1]o[1 O] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTNU <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTNU (vector) Page 280

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNU (vector) Page 281

FCVTNU (scalar)

Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round to Nearest rounding mode, and writes the result to the general-

purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9

8

7

6

5

4

3

2

1

0

Isflofo[1 1 1 1 0f[type[1][0 0J]O 0 1/0 0 0 0 0 O]

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)

FCVINU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTNU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)
FCVTNU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTNU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)
FCVTNU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTNU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;

FPRounding rounding;

case type of

when '00'
fltsize = 32;
when '01°'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'

if HaveFPlo6Ext () then
fltsize = 16;

else
UnallocatedEncoding () ;

rounding = FPDecodeRounding (rmode) ;

FCVTNU (scalar)

Page 282

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTNU (scalar)

Page 283

FCVTPS (vector)

Floating-point Convert to Signed integer, rounding toward Plus infinity (vector). This instruction converts a scalar or each element in a vector
from a floating-point value to a signed integer value using the Round towards Plus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 0of1]1 1 1 1 0 0of[1 1 0 1]0[1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTPS <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 of1]sz[1 0 0 0 0[1 1 0 1]0[1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTPS <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of]1]1 1 1 1 0 0o[1 1 0 1]o[1 0] Rn | Rd |
U 02 o1

FCVTPS (vector) Page 284

Vector half precision

FCVTPS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of1]sz[1 0 0 0 o[1 1 0 1]o[1 O] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTPS <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPS (vector) Page 285

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPS (vector) Page 286

FCVTPS (scalar)

Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar). This instruction converts the floating-point value in the

SIMD&FP source register to a 32-bit or 64-bit signed integer using the Round towards Plus Infinity rounding mode, and writes the result to the

general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

12 11 10 9

8

7

6

5

4

3

2

1

0

IsfloJo]1 1 1 1

0|type [1][0 1/0 0 0J]0O 0 ©

0 0 0

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)
FCVTPS <Wd>,

<Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTPS <Xd>, <Hn>
Single-precision to 32-bit (sf == 0 && type == 00)

FCVTPS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTPS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTPS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTPS <Xd>, <Dn>
integer d = UInt(Rd);

integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;
FPRounding rounding;
case type of
when '00'
fltsize = 32;
when '01'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'
if HaveFP1l6Ext () then
fltsize = 16;
else
UnallocatedEncoding () ;
rounding = FPDecodeRounding (rmode) ;

FCVTPS (scalar)

Page 287

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPS (scalar)

Page 288

FCVTPU (vector)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector). This instruction converts a scalar or each element in a vector
from a floating-point value to an unsigned integer value using the Round towards Plus Infinity rounding mode, and writes the result to the
SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1[1]1 11 1 0o[1]1 1 1 1 0 0o[1 1 0 1]0][1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTPU <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 of1]sz[1 0 0 0 0[1 1 0 1]0[1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTPU <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ@]1]Jo 1 1 1 of]1]1 1 1 1 0 01 1 0 1]o[1 0] Rn | Rd |
U 02 o1

FCVTPU (vector) Page 289

Vector half precision

FCVTPU <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 of1]sz[1 0 0 0 0o[1 1 0 1]o[1 O] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTPU <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTPU (vector) Page 290

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPU (vector) Page 291

FCVTPU (scalar)

Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar). This instruction converts the floating-point value in the
SIMD&FP source register to a 32-bit or 64-bit unsigned integer using the Round towards Plus Infinity rounding mode, and writes the result to

the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

12 11 10 9

8

7

6

5

4

3

2

1

0

Isf[o[0[1 1 1 1 0f[type[1][0 1[0 O

1]0 0 0

0 0 O]

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)
FCVTPU <Wd>,

<Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTPU <Xd>, <Hn>
Single-precision to 32-bit (sf == 0 && type == 00)

FCVTPU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTPU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)

FCVTPU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTPU <Xd>, <Dn>
integer d = UInt(Rd);

integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;
FPRounding rounding;
case type of
when '00'
fltsize = 32;
when '01'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'
if HaveFP1l6Ext () then
fltsize = 16;
else
UnallocatedEncoding () ;
rounding = FPDecodeRounding (rmode) ;

FCVTPU (scalar)

Page 292

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTPU (scalar)

Page 293

FCVTXN, FCVTXN2

Floating-point Convert to lower precision Narrow, rounding to odd (vector). This instruction reads each vector element in the source SIMD&FP
register, narrows each value to half the precision of the source element using the Round to Odd rounding mode, writes the result to a vector, and
writes the vector to the destination SIMD&FP register.

This instruction uses the Round to Odd rounding mode which is not defined by the IEEE 754-2008 standard. This rounding mode ensures that if
the result of the conversion is inexact the least significant bit of the mantissa is forced to 1. This rounding mode enables a floating-point value to
be converted to a lower precision format via an intermediate precision format while avoiding double rounding errors. For example, a 64-bit
floating-point value can be converted to a correctly rounded 16-bit floating-point value by first using this instruction to produce a 32-bit value
and then using another instruction with the wanted rounding mode to convert the 32-bit value to the final 16-bit floating-point value.

The F'CVTXN instruction writes the vector to the lower half of the destination register and clears the upper half, while the
FCVTXN2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector
Scalar

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 ofo]sz[1 0 0 0 0[1 0 1 1 0[1 0] Rn | Rd |

Scalar

FCVTXN <Vb><d>, <Va><n>

integer d = UInt(Rd);
integer n = UInt(Rn);

if sz == '0' then ReservedValue();
integer esize = 32;
integer datasize = esize;
integer elements = 1;
integer part = 0;
Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 o]o]sz[1 0 0 0 0[1 0 1 1 01 O] Rn | Rd |

Vector

FCVTXN{2} <Vd>.<Tb>, <Vn>.<Ta>

integer d UInt (Rd);
integer n = UInt (Rn);

if sz == '0' then ReservedValue();
integer esize = 32;

integer datasize = 64;

integer elements = 2;

integer part = UInt (Q);

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding
the narrower elements, and is encoded in “Q”:

FCVTXN, FCVTXN2 Page 294

[absent]

Q 2
0
1 [present]

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<Tb> [s an arrangement specifier, encoded in “sz:Q”:
Sz Q <Tb>
0 X RESERVED
1 0 258
1 1 4S
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<Ta> Is an arrangement specifier, encoded in “sz”:
SZ <Ta>
0 RESERVED
1 2D
<Vb> Is the destination width specifier, encoded in “sz”:
SZ <Vb>
0 RESERVED
1 S
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Va> Is the source width specifier, encoded in “sz”:
SZ <Va>
0 RESERVED
1 D
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64

(
bits (2*datasize) operand

)i

Vi[nl;
bits (datasize) result;
for e = 0 to elements-1
Elem[result, e, esize] = FPConvert(Elem[operand, e, 2*esize],
Vpart([d, part] = result;

FPCR, FPRounding ODD) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTXN, FCVTXN2

Page 295

FCVTZS (vector, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from
floating-point to fixed-point signed integer using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector
Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[0 1]o[1 1 1 1 1 0] 1=0000 | immb [1 1 1 1 1[1] Rn | Rd |
U immh

Scalar

FCVTZS <V><d>, <V><n>, #<fbits>

integer d UInt (Rd) ;
integer n = UInt(Rn);

if immh == '000x"'" || (immh == '001lx' && !HaveFPlo6Ext ()) then ReservedValue():;
integer esize = if immh == 'lxxx' then 64 else if immh == '0Olxx' then 32 else 16;
integer datasize = esize;

integer elements = 1;

integer fracbits = (esize * 2) - Ulnt (immh:immb) ;

boolean unsigned = (U == '1'");

FPRounding rounding = FPRounding ZERO;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 1 o] '=0000 [immb [1 1 1 1 1[1] Rn | Rd |
U immh

Vector

FCVTZS <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d UInt (Rd);
integer n = UInt (Rn);

if immh == '0000' then SEE (asimdimm) ;

if immh == '000x' || (immh == '001lx' && !HaveFPl6Ext ()) then ReservedValue();

if immh<3>:Q == '10' then ReservedValue();

integer esize = if immh == 'lxxx' then 64 else if immh == '0lxx' then 32 else 16;
integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - Ulnt (immh:immb) ;

boolean unsigned = (U == '1"'");

FPRounding rounding = FPRounding ZERO;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

FCVTLZS (vector, fixed-point) Page 296

immh <V>

000x RESERVED

001x H

01lxx S

1xxx D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> [s an arrangement specifier, encoded in “immh:Q”:

immh Q <T>

0000 X SEE Advanced SIMD modified immediate

0001 X RESERVED

001x 0 4H

001x 1 8H

0lxx 0 2S

0lxx 1 43

1xxx 0 RESERVED

1xxx 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in “immh:immb”:

immh <fbits>

000x RESERVED

001x (32-Uint (immh:immb))

01xx (64-UInt (immh:immb))

1xxx (128-UInt (immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in “immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED

001x (32-Uint (immh:immb))
01xx (64-UInt (immh:immb))
1xxx (128-UInt (immh:immb))

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTLZS (vector, fixed-point) Page 297

FCVTZS (vector, integer)

Floating-point Convert to Signed integer, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from a
floating-point value to a signed integer value using the Round towards Zero rounding mode, and writes the result to the SIMD&FP destination
register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 0of1]1 1 1 1 0 01 1 0 1[1][1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTZS <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 of1]sz[1 0 0 0 0[1 1 0 1[1][1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTZS <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of]1]1 1 1 1 0 01 1 0 1[1][1 0] Rn | Rd |
U 02 o1

FCVTZS (vector, integer) Page 298

Vector half precision

FCVTZS <Vd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of1]sz[1 0 0 0 o[1 1 0 1[1[1 0] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTZS <Vd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZS (vector, integer) Page 299

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZS (vector, integer) Page 300

FCVTZS (scalar, fixed-point)

Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP
source register to a 32-bit or 64-bit fixed-point signed integer using the Round towards Zero rounding mode, and writes the result to the general-

purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the

instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

11

10

9

8

7

6

5

4

3

2

1

0

Isf[o[0o[1 1 1 1 0f[type|[O0][1 1]/0 0 O] scale

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)

FCVTZS <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTZS <Xd>, <Hn>, #<fbits>
Single-precision to 32-bit (sf == 0 && type == 00)
FCVTZS <Wd>, <Sn>, #<fbits>
Single-precision to 64-bit (sf == 1 && type == 00)
FCVTZS <Xd>, <Sn>, #<fbits>
Double-precision to 32-bit (sf == 0 && type == 01)
FCVTZS <Wd>, <Dn>, #<fbits>
Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZS <Xd>, <Dn>, #<fbits>

integer d
integer n

= UInt (Rd);
UInt (Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;

case type of
when '00' fltsize 32;
when '01' fltsize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPlo6Ext () then
fltsize = 16;
else
UnallocatedEncoding () ;

if sf == '0' && scale<5> == '0' then UnallocatedEncoding() ;

integer fracbits = 64 - Ulnt (scale);

FCVTLZS (scalar, fixed-point)

Page 301

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after

the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after
the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, fracbits, FALSE, FPCR, FPRounding ZERO) ;
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTLZS (scalar, fixed-point) Page 302

FCVTZS (scalar, integer)

Floating-point Convert to Signed integer, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP
source register to a 32-bit or 64-bit signed integer using the Round towards Zero rounding mode, and writes the result to the general-purpose

destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9

8

7

6

5

4

3

2

1

0

Isflofo[1 1 1 1 0f[type[1][1 1]0 0 0[O0 0 0 0 0 O]

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)

FCVTZS <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTZS <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)
FCVTZS <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTZS <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)
FCVTZS <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZS <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;

FPRounding rounding;

case type of

when '00'
fltsize = 32;
when '01°'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'

if HaveFPlo6Ext () then
fltsize = 16;

else
UnallocatedEncoding () ;

rounding = FPDecodeRounding (rmode) ;

FCVTLZS (scalar, integer)

Page 303

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, FALSE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTLZS (scalar, integer)

Page 304

FCVTZU (vector, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector
from floating-point to fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Scalar and Vector
Scalar
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[0 1]1]1 1 1 1 1 0] 1=0000 [immb [1 1 1 1 1[1] Rn | Rd |
U immh

Scalar

FCVTZU <V><d>, <V><n>, #<fbits>

integer d UInt (Rd) ;
integer n = UInt(Rn);

if immh == '000x"'" || (immh == '001lx' && !HaveFPlo6Ext ()) then ReservedValue():;
integer esize = if immh == 'lxxx' then 64 else if immh == '0Olxx' then 32 else 16;
integer datasize = esize;

integer elements = 1;

integer fracbits = (esize * 2) - Ulnt (immh:immb) ;

boolean unsigned = (U == '1'");

FPRounding rounding = FPRounding ZERO;

Vector

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 1 o] '=0000 [immb [1 1 1 1 1[1] Rn | Rd |
U immh

Vector

FCVTZU <Vd>.<T>, <Vn>.<T>, #<fbits>

integer d UInt (Rd);
integer n = UInt (Rn);

if immh == '0000' then SEE (asimdimm) ;

if immh == '000x' || (immh == '001lx' && !HaveFPl6Ext ()) then ReservedValue();

if immh<3>:Q == '10' then ReservedValue();

integer esize = if immh == 'lxxx' then 64 else if immh == '0lxx' then 32 else 16;
integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV esize;

integer fracbits = (esize * 2) - Ulnt (immh:immb) ;

boolean unsigned = (U == '1"'");

FPRounding rounding = FPRounding ZERO;

Assembler Symbols

<V> Is a width specifier, encoded in “immh”:

FCVTZU (vector, fixed-point) Page 305

immh <V>

000x RESERVED

001x H

01lxx S

1xxx D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> [s an arrangement specifier, encoded in “immh:Q”:

immh Q <T>

0000 X SEE Advanced SIMD modified immediate

0001 X RESERVED

001x 0 4H

001x 1 8H

0lxx 0 2S

0lxx 1 43

1xxx 0 RESERVED

1xxx 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<fbits> For the scalar variant: is the number of fractional bits, in the range 1 to the operand width, encoded in “immh:immb”:

immh <fbits>

000x RESERVED

001x (32-Uint (immh:immb))

01xx (64-UInt (immh:immb))

1xxx (128-UInt (immh:immb))

For the vector variant: is the number of fractional bits, in the range 1 to the element width, encoded in “immh:immb”:

immh <fbits>
0000 SEE Advanced SIMD modified immediate
0001 RESERVED

001x (32-Uint (immh:immb))
01xx (64-UInt (immh:immb))
1xxx (128-UInt (immh:immb))

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
bits(datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, fracbits, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (vector, fixed-point) Page 306

FCVTZU (vector, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (vector). This instruction converts a scalar or each element in a vector from a
floating-point value to an unsigned integer value using the Round towards Zero rounding mode, and writes the result to the SIMD&FP
destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the
instruction is executed, an attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-
precision and double-precision

Scalar half precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 111 11 1 0o[1]1 1 1 1 0 0[1 1 0 1][1][1 0] Rn | Rd |
U 02 o1

Scalar half precision

FCVTZU <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = esize;
integer elements g

FPRounding rounding = FPDecodeRounding(ol:o02) ;
boolean unsigned = (U == '1'");

Scalar single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 of1]sz[1 0 0 0 0o[1 1 0 1[1][1 0] Rn | Rd |
U 02 o1

Scalar single-precision and double-precision

FCVTZU <V><d>, <V><n>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector half precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ@]1]Jo 1 1 1 of]1]1 1 1 1 0 01 1 0 1[1][1 0] Rn | Rd |
U 02 o1

FCVTZU (vector, integer) Page 307

Vector half precision

FCVTZU <vVd>.<T>, <Vn>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]o 1 1 1 of1]sz[1 0 0 0 o[1 1 0 1[1[1 0] Rn | Rd |
U 02 o1

Vector single-precision and double-precision

FCVTZU <vVd>.<T>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

FPRounding rounding = FPDecodeRounding (ol:02) ;
boolean unsigned = (U == '1"'");

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<n> Is the number of the SIMD&FP source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>
0 28
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

FCVTZU (vector, integer) Page 308

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];
bits (datasize) result;
bits(esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
Elem[result, e, esize] = FPToFixed(element, 0, unsigned, FPCR, rounding);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (vector, integer) Page 309

FCVTZU (scalar, fixed-point)

Floating-point Convert to Unsigned fixed-point, rounding toward Zero (scalar). This instruction converts the floating-point value in the

SIMD&FP source register to a 32-bit or 64-bit fixed-point unsigned integer using the Round towards Zero rounding mode, and writes the result

to the general-purpose destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR _ELI, CPTR _EL2, and CPTR_EL3 registers, and the Security state and Exception level in which the

instruction is executed, an attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

11

10

9

8

7

6

5

4

3

2

1

0

Isf[o[0o[1 1 1 1 0of[type|[O0][1 1]0 0 1] scale

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMvS.2)

FCVTZU <Wd>, <Hn>, #<fbits>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTZU <Xd>, <Hn>, #<fbits>
Single-precision to 32-bit (sf == 0 && type == 00)
FCVTZU <Wd>, <Sn>, #<fbits>
Single-precision to 64-bit (sf == 1 && type == 00)
FCVTZU <Xd>, <Sn>, #<fbits>
Double-precision to 32-bit (sf == 0 && type == 01)
FCVTZU <Wd>, <Dn>, #<fbits>
Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZU <Xd>, <Dn>, #<fbits>

integer d
integer n

= UInt (Rd);
UInt (Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;

case type of
when '00' fltsize 32;
when '01' fltsize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPlo6Ext () then
fltsize = 16;
else
UnallocatedEncoding () ;

if sf == '0' && scale<5> == '0' then UnallocatedEncoding() ;

integer fracbits = 64 - Ulnt (scale);

FCVTZU (scalar, fixed-point)

Page 310

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<fbits> For the double-precision to 32-bit, half-precision to 32-bit and single-precision to 32-bit variant: is the number of bits after

the binary point in the fixed-point destination, in the range 1 to 32, encoded as 64 minus "scale".

For the double-precision to 64-bit, half-precision to 64-bit and single-precision to 64-bit variant: is the number of bits after
the binary point in the fixed-point destination, in the range 1 to 64, encoded as 64 minus "scale".

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (fltsize) fltval;
bits(intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, fracbits, TRUE, FPCR, FPRounding ZERO) ;
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (scalar, fixed-point) Page 311

FCVTZU (scalar, integer)

Floating-point Convert to Unsigned integer, rounding toward Zero (scalar). This instruction converts the floating-point value in the SIMD&FP
source register to a 32-bit or 64-bit unsigned integer using the Round towards Zero rounding mode, and writes the result to the general-purpose

destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

1 10 9

8

7

6

5

4

3

2

1

0

Isf[of0o[1 1 1 1 of[type[1][1 1]0 0 1/0 0 0 O

0 0|

Rn

Rd

rmode opcode

Half-precision to 32-bit (sf == 0 && type == 11)
(ARMv8.2)

FCVTZU <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11)
(ARMVvS.2)

FCVTZU <Xd>, <Hn>

Single-precision to 32-bit (sf == 0 && type == 00)
FCVTZU <Wd>, <Sn>

Single-precision to 64-bit (sf == 1 && type == 00)
FCVTZU <Xd>, <Sn>

Double-precision to 32-bit (sf == 0 && type == 01)
FCVTZU <Wd>, <Dn>

Double-precision to 64-bit (sf == 1 && type == 01)

FCVTZU <Xd>, <Dn>

integer d = UInt(Rd);
integer n = UInt(Rn);

integer intsize = if sf == 'l' then 64 else 32;
integer fltsize;

FPRounding rounding;

case type of

when '00'
fltsize = 32;
when '01°'
fltsize = 64;
when '10'
UnallocatedEncoding () ;
when '11'

if HaveFPlo6Ext () then
fltsize = 16;

else
UnallocatedEncoding () ;

rounding = FPDecodeRounding (rmode) ;

FCVTZU (scalar, integer)

Page 312

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.

<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize) fltval;
bits (intsize) intval;

fltval = V[n];
intval = FPToFixed(fltval, 0, TRUE, FPCR, rounding);
X[d] = intval;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FCVTZU (scalar, integer)

Page 313

FDIV (vector)

Floating-point Divide (vector). This instruction divides the floating-point values in the elements in the first source SIMD&FP register, by the
floating-point values in the corresponding elements in the second source SIMD&FP register, places the results in a vector, and writes the vector
to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQ]1]Jo 1 1 1 ofJo[1 o] Rm [0 o1 1 1]1] Rn Rd |
Half-precision
FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = Ulnt (Rd);

integer n = Ulnt (Rn);

integer m = Ulnt (Rm) ;

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV esize;
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQ]1]Jo 1 1 1 ofo]sz[1] Rm [1 1 1 1 1]1] Rn Rd |

Single-precision and double-precision

FDIV <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d =

integer n
integer m
if sz:Q ==

UInt (Rd) ;
UInt (Rn);
UInt (Rm) ;

'10" then ReservedValue():;

integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 4H

1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FDIV (vector)

th}

Page 314

Sz Q <T>

0 0 2S

0 1 45

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits(esize) elementl;
bits(esize) element2;
for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];
Elem[result, e, esize] = FPDiv(elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIV (vector) Page 315

FDIV (scalar)

Floating-point Divide (scalar). This instruction divides the floating-point value of the first source SIMD&FP register by the floating-point value
of the second source SIMD&FP register, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

lolofo[1 1 1 1 0ftype [1]

o 0 0 1]1 0]

Half-precision (type == 11)
(ARMv8.2)

FDIV <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FDIV <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FDIV <Dd>, <Dn>, <Dm>

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt (Rm);

integer datasize;

case type of
when '00' datasize = 32;
when '01' datasize = 64;

when '10' UnallocatedEncoding () ;

when '11'
if HaveFPlo6Ext () then
datasize = 16;
else

UnallocatedEncoding () ;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
FDIV (scalar)

Page 316

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

result = FPDiv (operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FDIV (scalar) Page 317

FJCVTZS

Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero. This instruction converts the double-precision floating-point
value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero rounding mode, and writes the result to the
general-purpose destination register. If the result is too large to be accommodated as a signed 32-bit integer, then the result is the integer modulo
232, as held in a 32-bit signed integer.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

Double-precision to 32-bit
(ARMv8.3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[olo]o[1 1 1 1 ofo 1[1][1 1]1 1 0[]0 0 0 0 0 O] Rn | Rd |
sf type rmode opcode

Double-precision to 32-bit

FJCVTZS <Wd>, <Dn>

integer d UInt (Rd);
integer n = UInt (Rn);

if !'HaveFJCVTZSExt () then UnallocatedEncoding() ;

Assembler Symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(04) fltval;
bits(32) intval;

fltval = V[n];

intval = FPToFixedJS (fltval, FPCR, TRUE);
X[d] = ZeroExtend(intval<31:0>, 64);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FICVTZS Page 318

FMADD

Floating-point fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, adds the product to

the value of the third SIMD&FP source register, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being

set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJoJo]1 1 1 1 1]type [0] Rm 0] Ra | Rn | Rd |
o1 o0

Half-precision (type == 11)
(ARMv8.2)

FMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (type == 00)

FMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (type == 01)

FMADD <Dd>, <Dn>, <Dm>, <Da>

integer d = Ulnt (Rd);
integer a = Ulnt (Ra);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;

integer datasize;

case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;

Assembler Symbols

<Dd>
<Dn>
<Dm>
<Da>
<Hd>
<Hn>
<Hm>
<Ha>
<Sd>
<Sn>
<Sm>

<Sa>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

FMADD Page 319

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operanda = V[a];
bits(datasize) operandl = V[n];
bits(datasize) operand2 = V[m];

result = FPMulAdd (operanda, operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMADD Page 320

FMAX (vector)

Floating-point Maximum (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers, places the
larger of each of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQJoJo 1 1 1 ofJo[1 o] Rm [0 o1 1 o]1] Rn | Rd |
U o1

Half-precision
FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = (Rm)
integer
integer

integer

esize = 16;
datasize = if Q == '1l' then 128 else 64;
elements = datasize DIV esize;

(U == '1');
(01 == '1');

boolean
boolean

pair =
minimum =

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQJoJo 1 1 1 ofo]sz[1] Rm [1 1 1 1 01] Rn | Rd |
U o1
Single-precision and double-precision
FMAX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << Ulnt(sz);
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (ol == '1"'")

Assembler Symbols

<Vd>

<T>

FMAX (vector)

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Page 321

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMin(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMax (elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (vector) Page 322

FMAX (scalar)

Floating-point Maximum (scalar). This instruction compares the two source SIMD&FP registers, and writes the larger of the two floating-point

values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

lolofof[1 1 1 1 0ftype [1]

o 1[0 0[1 O]

op
Half-precision (type == 11)
(ARMvS.2)
FMAX <Hd>, <Hn>, <Hm>
Single-precision (type == 00)
FMAX <Sd>, <Sn>, <Sm>
Double-precision (type == 01)
FMAX <Dd>, <Dn>, <Dm>
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;
integer datasize;
case type of
when '00' datasize = 32;
when '0l1' datasize = 64;
when '10' UnallocatedEncoding () ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMAX (scalar)

Page 323

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

I
<<
E

result = FPMax (operandl, operand2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAX (scalar) Page 324

FMAXNM (vector)

Floating-point Maximum Number (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers,
writes the larger of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result placed in
the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F/PCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]QJoJo 1 1 1 ofJo[1 0] Rm o oJo 0 0]1] Rn | Rd |
U a
Half-precision
FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if !HaveFPl6Ext () then UnallocatedEncoding() ;
integer d = UInt (Rd);
integer n = UlInt (Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (a == "'1");
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lolQfofo 1 1 1 of[0]sz]1] Rm 1 1.0 0 0[1] Rn | Rd |
U o1
Single-precision and double-precision
FMAXNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sz:Q == '10' then ReservedValue():;
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (ol == '1");

Assembler Symbols

<Vd>

<T>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAXNM (vector)

Page 325

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMinNum(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMaxNum(elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (vector) Page 326

FMAXNM (scalar)

Floating-point Maximum Number (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the larger
of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result that is

placed in the vector is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F/PCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

[ofofofH

1

1 1 0] type [1] Rm o 1[1 0o]1 0]

op

Half-precision (type == 11)
(ARMVS.2)

FMAXNM <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FMAXNM <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FMAXNM <Dd>, <Dn>, <Dm>

integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);

integer datasize;

case type of

when '00' datasize = 32;

when '01' datasize = 64;

when '10' UnallocatedEncoding() ;
when '11'

if HaveFPl6Ext () then

else

datasize = 16;

UnallocatedEncoding () ;

Assembler Symbols

<Dd>
<Dn>
<Dm>
<Hd>
<Hn>
<Hm>
<Sd>
<Sn>

<Sm>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMAXNM (scalar)

Page 327

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

I
<<
E

result = FPMaxNum (operandl, operand2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNM (scalar) Page 328

FMAXNMP (scalar)

Floating-point Maximum Number of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register
and writes the largest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofoJo[1 1 0 0 0[]0 1 1 0 0[1 0] Rn | Rd |
ol sz

Half-precision

FMAXNMP <V><d>, <Vn>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 ofo]sz[1 1 0 0 0[]0 1 1 0 0[1 0] Rn | Rd |
o1

Single-precision and double-precision

FMAXNMP <V><d>, <Vn>.<T>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:
SZ <V>
0 H

1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMAXNMP (scalar) Page 329

SZ <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

SZ <T>
0 28
1 2D

Operation

CheckFPAdvSIMDEnabled64 () ;
bits(datasize) operand = V[n];

V[d] = Reduce (ReduceOp FMKXNUM, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMP (scalar)

Page 330

FMAXNMP (vector)

Floating-point Maximum Number Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two
source SIMD&FP registers, writes the largest of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All
the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result is the
numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F/PCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMVvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o]Q]1]0 1 1 1 ofJo[1 0] Rm o oJo 0 0]1] Rn | Rd |
U a

Half-precision

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFPl6Ext () then UnallocatedEncoding() ;

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 16;

integer datasize = if == '1"'" then 128 else 64;

integer elements = datasize DIV esize;

boolean pair = (U == '1");
boolean minimum = (a == "'1");

Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lolQ[1]0 1 1 1 of0]sz]1] Rm 1 1.0 0 0[1] Rn | Rd |
U o1

Single-precision and double-precision

FMAXNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

if sz:Q == '10' then ReservedValue():;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1");

boolean minimum = (ol == '1");

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMAXNMP (vector) Page 331

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMinNum(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMaxNum(elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMP (vector) Page 332

FMAXNMV

Floating-point Maximum Number across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes
the largest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result of the

comparison is the numerical value, otherwise the result is identical to FMAX (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F’PCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMVvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

[o]QJoJo 1 1 1 ofJoJo[1 1 0 0 0[O0 1 1 0 01

0 | Rn | Rd |

o1

Half-precision

FMAXNMV <V><d>, <Vn>.<T>

if !HaveFPl6Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

lolaQ[1]0o 1 1 1 ofo]sz[]1 1 0 0 0[O0 1 1 0 01

0 | Rn | Rd |

o1

Single-precision and double-precision

FMAXNMV <V><d>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q0 != '01l' then ReservedValue () ; // .4S only
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

SZ <V>
0 S
1 RESERVED

2

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
FMAXNMV Page 333

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 X RESERVED
1 0 4S

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
V[d] = Reduce (ReduceOp FMAXNUM, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXNMV Page 334

FMAXP (scalar)

Floating-point Maximum of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes
the largest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 ofoJo[1 1 0 0 0[O0 1 1 1 1][1 0] Rn | Rd |
ol sz

Half-precision

FMAXP <V><d>, <Vn>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 ofo]sz[1 1 0 0 0[O0 1 1 1 1][1 0] Rn | Rd |
o1

Single-precision and double-precision

FMAXP <V><d>, <Vn>.<T>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:
SZ <V>
0 H

1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMAXP (scalar) Page 335

SZ <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

SZ <T>
0 28
1 2D

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
V[d] = Reduce (ReduceOp FMAX, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXP (scalar) Page 336

FMAXP (vector)

Floating-point Maximum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP
register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated
vector, writes the larger of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this

instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQ]1]Jo 1 1 1 ofJof1 o] Rm [0 o1 1 0o]1] Rn | Rd |
U o1

Half-precision
FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = (Rm)
integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV esize;

(U =="1");
(01 == '1");

boolean
boolean

pair =
minimum =

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQ]1]Jo 1 1 1 ofo]sz[1] Rm [1 1 1 1 01] Rn | Rd |
U o1
Single-precision and double-precision
FMAXP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm) ;
if sz:Q == '10' then ReservedValue() ;
integer esize = 32 << Ulnt(sz);
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (ol == '1"'")

Assembler Symbols

<Vd>

<T>

FMAXP (vector)

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Page 337

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMin(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMax (elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXP (vector) Page 338

FMAXV

Floating-point Maximum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the largest
of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 ofJoJo[1 1 0 0 0[O0 1 1 1 1][1 0] Rn | Rd |
o1

Half-precision

FMAXV <V><d>, <Vn>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 oJo]sz[1 1 0 0 0[O0 1 1 1 1[1 0] Rn | Rd |
o1

Single-precision and double-precision

FMAXV <V><d>, <Vn>.<T>

integer d = UInt (Rd);

integer n = UInt (Rn);

if sz:Q != '01' then ReservedValue();

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

Sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMAXV Page 339

e}

0
1

<T>
4H
8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 X RESERVED
1 0 4S

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize)

operand = V[n];

V[d] = Reduce (ReduceOp FMKX, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMAXV

Page 340

FMIN (vector)

Floating-point minimum (vector). This instruction compares corresponding elements in the vectors in the two source SIMD&FP registers, places
the smaller of each of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQJoJo 1 1 1 of1]1 o] Rm [0 o1 1 o]1] Rn | Rd |
U o1

Half-precision
FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = (Rm)
integer
integer

integer

esize = 16;
datasize = if Q == '1l' then 128 else 64;
elements = datasize DIV esize;

(U == '1');
(01 == '1');

boolean
boolean

pair =
minimum =

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQJoJo 1 1 1 of1]sz[1] Rm [1 1 1 1 01] Rn | Rd |
U o1
Single-precision and double-precision
FMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sz:Q == '10' then ReservedValue();
integer esize = 32 << Ulnt(sz);
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (ol == '1"'")

Assembler Symbols

<Vd>

<T>

FMIN (vector)

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Page 341

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMin(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMax (elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (vector) Page 342

FMIN (scalar)

Floating-point Minimum (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the smaller of the

two floating-point values to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

lolofof[1 1 1 1 0ftype [1]

o 1]0 1]1 o]

op
Half-precision (type == 11)
(ARMvS.2)
FMIN <Hd>, <Hn>, <Hm>
Single-precision (type == 00)
FMIN <Sd>, <Sn>, <Sm>
Double-precision (type == 01)
FMIN <Dd>, <Dn>, <Dm>
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;
integer datasize;
case type of
when '00' datasize = 32;
when '0l1' datasize = 64;
when '10' UnallocatedEncoding () ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMIN (scalar)

Page 343

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

I
<<
E

result = FPMin (operandl, operand2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMIN (scalar) Page 344

FMINNM (vector)

Floating-point Minimum Number (vector). This instruction compares corresponding vector elements in the two source SIMD&FP registers,
writes the smaller of the two floating-point values into a vector, and writes the vector to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result placed in
the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F’PCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[o]QJoJo 1 1 1 o]1]1 0] Rm o oJo 0 0]1] Rn | Rd |
U a
Half-precision
FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if !HaveFPl6Ext () then UnallocatedEncoding() ;
integer d = UInt (Rd);
integer n = UlInt (Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (a == "'1");
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
lolQfofo 1 1 1 of1]sz]1] Rm 1 1.0 0 0[1] Rn | Rd |
U o1
Single-precision and double-precision
FMINNM <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
if sz:Q == '10' then ReservedValue():;
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (ol == '1");

Assembler Symbols

<Vd>

<T>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMINNM (vector)

Page 345

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMinNum(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMaxNum(elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (vector) Page 346

FMINNM (scalar)

Floating-point Minimum Number (scalar). This instruction compares the first and second source SIMD&FP register values, and writes the

smaller of the two floating-point values to the destination SIMD&FP register.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result that is

placed in the vector is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F’PCR, the exception results in either a flag being set in

FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

[ofofofH

1

1 1 0] type [1] Rm o 1[1 1]1 0]

op

Half-precision (type == 11)
(ARMVS.2)

FMINNM <Hd>, <Hn>, <Hm>

Single-precision (type == 00)

FMINNM <Sd>, <Sn>, <Sm>

Double-precision (type == 01)

FMINNM <Dd>, <Dn>, <Dm>

integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);

integer datasize;
case type of

when '00' datasize = 32;

when '01' datasize = 64;

when '10' UnallocatedEncoding() ;
when '11'

if HaveFPl6Ext () then

else

datasize = 16;

UnallocatedEncoding () ;

Assembler Symbols

<Dd>
<Dn>
<Dm>
<Hd>
<Hn>
<Hm>
<Sd>
<Sn>

<Sm>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.

FMINNM (scalar)

Page 347

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

result = FPMinNum (operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNM (scalar) Page 348

FMINNMP (scalar)

Floating-point Minimum Number of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register
and writes the smallest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 o[1]0o][1 1 0 0 0[]0 1 1 0 0[1 0] Rn | Rd |
ol sz

Half-precision

FMINNMP <V><d>, <Vn>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 of1]sz[1 1 0 0 0[]0 1 1 0 0[1 0] Rn | Rd |
o1

Single-precision and double-precision

FMINNMP <V><d>, <Vn>.<T>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:
SZ <V>
0 H

1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMINNMP (scalar) Page 349

SZ <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

SZ <T>
0 28
1 2D

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
V[d] = Reduce (ReduceOp FMINNUM,

operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMP (scalar)

Page 350

FMINNMP (vector)

Floating-point Minimum Number Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source
SIMD&FP register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements in the two
source SIMD&FP registers, writes the smallest of each pair of floating-point values into a vector, and writes the vector to the destination
SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result is the
numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F/PCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMVvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o]Q1]0 1 1 1 oJ1[1 o] Rm o 0Jo 0 of1] Rn | Rd |
U a

Half-precision

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFPl6Ext () then UnallocatedEncoding() ;

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 16;

integer datasize = if == '1"'" then 128 else 64;

integer elements = datasize DIV esize;

boolean pair = (U == '1");
boolean minimum = (a == "'1");

Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lolQ[1]0 1 1 1 of1]sz]1] Rm 1 1.0 0 0[1] Rn | Rd |
U o1

Single-precision and double-precision

FMINNMP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

if sz:Q == '10' then ReservedValue():;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

boolean pair = (U == '1");

boolean minimum = (ol == '1");

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMINNMP (vector) Page 351

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMinNum(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMaxNum(elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMP (vector) Page 352

FMINNMV

Floating-point Minimum Number across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes
the smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

NaNs are handled according to the IEEE 754-2008 standard. If one vector element is numeric and the other is a quiet NaN, the result of the

comparison is the numerical value, otherwise the result is identical to FMIN (scalar).

This instruction can generate a floating-point exception. Depending on the settings in F’PCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMVvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

[o]QJoJo 1 1 1 of1]Jo]1 1 0 0 0[]0 1 1 0 01

0 | Rn | Rd |

o1

Half-precision

FMINNMV <V><d>, <Vn>.<T>

if !HaveFPl6Ext () then UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

lolaQ[1]0o 1 1 1 of[1]sz[]1 1 0 0 0[O0 1 1 0 01

0 | Rn | Rd |

o1

Single-precision and double-precision

FMINNMV <V><d>, <Vn>.<T>

integer d = UInt (Rd);
integer n = UInt (Rn);

if sz:Q0 != '01l' then ReservedValue () ; // .4S only
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

SZ <V>
0 S
1 RESERVED

2

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
FMINNMV Page 353

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 X RESERVED
1 0 4S

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
V[d] = Reduce (ReduceOp FMINNUM, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINNMV Page 354

FMINP (scalar)

Floating-point Minimum of Pair of elements (scalar). This instruction compares two vector elements in the source SIMD&FP register and writes
the smallest of the floating-point values as a scalar to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]o[1 1 1 1 of1]0o][1 1 0 0 0[O0 1 1 1 1][1 0] Rn | Rd |
ol sz

Half-precision

FMINP <V><d>, <Vn>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = 32;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]1]1 1 1 1 0of1]sz[1 1 0 0 0[]0 1 1 1 1][1 0] Rn | Rd |
o1

Single-precision and double-precision

FMINP <V><d>, <Vn>.<T>

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer esize = 32;
integer datasize = 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, encoded in “sz”:
SZ <V>
0 H

1 RESERVED

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> For the half-precision variant: is the source arrangement specifier, encoded in “sz”:

FMINP (scalar) Page 355

SZ <T>
0 2H
1 RESERVED

For the single-precision and double-precision variant: is the source arrangement specifier, encoded in “sz”:

SZ <T>
0 28
1 2D

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
V[d] = Reduce (ReduceOp FMIN, operand, esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINP (scalar) Page 356

FMINP (vector)

Floating-point Minimum Pairwise (vector). This instruction creates a vector by concatenating the vector elements of the first source SIMD&FP
register after the vector elements of the second source SIMD&FP register, reads each pair of adjacent vector elements from the concatenated
vector, writes the smaller of each pair of values into a vector, and writes the vector to the destination SIMD&FP register. All the values in this

instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQ]1]Jo 1 1 1 of1]1 o] Rm [0 o1 1 0o]1] Rn | Rd |
U o1

Half-precision
FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = (Rm)
integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV esize;

(U =="1");
(01 == '1");

boolean
boolean

pair =
minimum =

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

110 9 8 7 6 5 4 3 2 1 0

loJQJ1]Jo 1 1 1 of1]sz[1] Rm [1 1 1 1 01] Rn | Rd |
U o1
Single-precision and double-precision
FMINP <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rm) ;
if sz:Q == '10' then ReservedValue() ;
integer esize = 32 << Ulnt(sz);
integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;
boolean pair = (U == '1");
boolean minimum = (ol == '1"'")

Assembler Symbols

<Vd>

<T>

FMINP (vector)

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Page 357

Q <T>
0 4H
1 8H

th}

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 0 28

0 1 4S

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operandl = V[n];
bits (datasize) operand2 = V[m];
bits(datasize) result;

bits (esize) elementl;

(
(
bits(2*datasize) concat = operand2:operandl;
(
bits (esize) element2;

for e = 0 to elements-1
if pair then
elementl = Elem[concat, 2*e, esize];
element?2 = Elem[concat, (2*e)+1l, esize];
else
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];

if minimum then

Elem[result, e, esize] = FPMin(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMax (elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINP (vector) Page 358

FMINV

Floating-point Minimum across Vector. This instruction compares all the vector elements in the source SIMD&FP register, and writes the
smallest of the values as a scalar to the destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of]1]Jo]1 1 0 0 0[O0 1 1 1 1][1 0] Rn | Rd |
o1

Half-precision

FMINV <V><d>, <Vn>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UInt(Rd);
integer n UInt (Rn);

integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ@]1]Jo 1 1 1 of1]sz[1 1 0 0 0[O0 1 1 1 1][1 0] Rn | Rd |
o1

Single-precision and double-precision

FMINV <V><d>, <Vn>.<T>

integer d = UInt (Rd);

integer n = UInt (Rn);

if sz:Q != '01' then ReservedValue();

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;

Assembler Symbols

<V> For the half-precision variant: is the destination width specifier, H.

For the single-precision and double-precision variant: is the destination width specifier, encoded in “sz”:

Sz <V>
0 S
1 RESERVED

<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

FMINV Page 359

e}

0
1

<T>
4H
8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 X RESERVED
1 0 4S

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize)
V[d] = Reduce (ReduceOp FMIN,

operand = V[n];

operand,

esize);

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMINV

Page 360

FMLA (by element)

Floating-point fused Multiply-Add to accumulator (by element). This instruction multiplies the vector elements in the first source SIMD&FP
register by the specified value in the second source SIMD&FP register, and accumulates the results in the vector elements of the destination
SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-
precision and double-precision

Scalar, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]0o[1 1 1 1 1]0 o[L[M] Rm [o]o]0o 1[H]O] Rn | Rd |
02

Scalar, half-precision

FMLA <Hd>, <Hn>, <Vm>.H[<index>]

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
index = UInt (H:L:M);

integer d = UInt(Rd);
integer n UInt (Rn);
integer m UInt (Rm) ;

integer esize = 16;

integer datasize = esize;
integer elements g
boolean sub op = (02 == '1");

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]0o[1 1 1 1 1[1]sz[]L[M] Rm [o]o]o 1[H]O0] Rn | Rd |
02

FMLA (by element) Page 361

Scalar, single-precision and double-precision

FMLA <V><d>,

integer idxdsize

integer index;

bit Rmhi = M;

case sz:L of
when '0Ox'
when '10'
when '11'

<V><n>,

if H == "1"

index = UInt (H:L);
index = UInt (H);
UnallocatedEncoding () ;

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer m = UInt (Rmhi:Rm) ;

integer esize =

32

integer datasize
integer elements

boolean sub op

Vector, half-precision
(ARMvS.2)

<< Ulnt (sz);
esize;
1;

(02 == '1");

<Vm>.<Ts>[<index>]

then 128 else 64;

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQJoJo 1 1 1 1[0 o[L[M] Rm loJoJo 1]H]0] Rn Rd |
02
Vector, half-precision
FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer idxdsize = if H == 'l' then 128 else 64;

integer index;

index = UInt (H:L:M);

integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt (Rm);

integer esize = 16;

integer datasize = if == '1'" then 128 else 64;

integer elements = datasize DIV esize;

boolean sub op = (02 == '1");
Vector, single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQJoJo 1 1 1 1[1]sz[L[M] Rm loJoJo 1]H]0] Rn Rd |

02
FMLA (by element)

Page 362

Vector, single-precision and double-precision

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
when '0x' index = UInt (H:L);
when '10' index = UInt (H);
when '11' UnallocatedEncoding() ;
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rmhi:Rm) ;
if sz:Q == '10' then ReservedValue();
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub op = (02 == '1");

Assembler Symbols

<Hd>

<Hn>

<V>

<d>
<n>

<Vd>

<T>

<Vn>

<Vm>

<Ts>

<index>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is a width specifier, encoded in “sz”:

SZ <V>
0 S
1 D

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 0 25

0 1 RESERVED
1 0 45

1 1 2D

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

For the half-precision variant: is the name of the second SIMD&FP source register, in the range VO to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

Is an element size specifier, encoded in “sz”:

Sz <Ts>
0 S
1 D

For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMLA (by element) Page 363

SZ L <index>
0 X H:L

1 0 H

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (idxdsize) operand2 = V[m];
bits (datasize) operand3 = V[d];

(
(
bits(datasize) result;
(
(

bits(esize) elementl;
bits(esize) element2 = Elem[operand2, index, esize];
for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
if sub op then elementl = FPNeg(elementl);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (by element) Page 364

FMLA (vector)

Floating-point fused Multiply-Add to accumulator (vector). This instruction multiplies corresponding floating-point values in the vectors in the
two source SIMD&FP registers, adds the product to the corresponding vector element of the destination SIMD&FP register, and writes the result
to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being

set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQJoJo 1 1 1 ofJof1 o] Rm [o oJo 0 1]1] Rn Rd |
a
Half-precision
FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer d = UlInt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub op = (a == 'l1");
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQJoJo 1 1 1 ofo]sz[1] Rm [1 10 0 1]1] Rn Rd |
op

Single-precision and double-precision

FMLA <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer
integer
integer
if sz:Q
integer
integer
integer

boolean

d —
n
m = UInt (Rm) ;

== '10' then ReservedValue()
esize = 32 << Ulnt(sz);

[
c|a
e
ol o)
|t

datasize = if == ']1"'" then 128 else 64;
elements = datasize DIV esize;
sub op = (op == '1'");

Assembler Symbols

<Vd>

<T>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

FMLA (vector)

Page 365

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

Sz Q <T>

0 0 2S

0 1 45

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabledo64 () ;
bits (datasize) operandl = V[n];

bits (datasize) operand2 = V[m];
bits (datasize) operand3 = V[d];
bits(datasize) result;
bits(esize) elementl;
bits(esize) element?2;
for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];
if sub op then elementl = FPNeg(elementl);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLA (vector) Page 366

FMLS (by element)

Floating-point fused Multiply-Subtract from accumulator (by element). This instruction multiplies the vector elements in the first source
SIMD&FP register by the specified value in the second source SIMD&FP register, and subtracts the results from the vector elements of the
destination SIMD&FP register. All the values in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-
precision and double-precision

Scalar, half-precision
(ARMv8.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1]0o[1 1 1 1 1]0 o[L[M] Rm [o]1]0 1[H]O] Rn | Rd |
02

Scalar, half-precision

FMLS <Hd>, <Hn>, <Vm>.H[<index>]

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
index = UInt (H:L:M);

integer d = UInt(Rd);
integer n UInt (Rn);
integer m UInt (Rm) ;

integer esize = 16;

integer datasize = esize;
integer elements g
boolean sub op = (02 == '1");

Scalar, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[0 1]0o[1 1 1 1 1[1]sz[]L[M] Rm [o]1]0 1]H]O] Rn | Rd |
02

FMLS (by element) Page 367

Scalar, single-precision and double-precision

FMLS <V><d>,

integer idxdsize

integer index;

bit Rmhi = M;

case sz:L of
when '0Ox'
when '10'
when '11'

<V><n>,

if H == "1"

index = UInt (H:L);
index = UInt (H);
UnallocatedEncoding () ;

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer m = UInt (Rmhi:Rm) ;

integer esize =

32

integer datasize
integer elements

boolean sub op

Vector, half-precision
(ARMvS.2)

<< Ulnt (sz);
esize;
1;

(02 == '1");

<Vm>.<Ts>[<index>]

then 128 else 64;

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQJoJo 1 1 1 1[0 o[L[M] Rm loJ1]0 1]H]0] Rn Rd |
02
Vector, half-precision
FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer idxdsize = if H == 'l' then 128 else 64;

integer index;

index = UInt (H:L:M);

integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt (Rm);

integer esize = 16;

integer datasize = if == '1'" then 128 else 64;

integer elements = datasize DIV esize;

boolean sub op = (02 == '1");
Vector, single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQJoJo 1 1 1 1[1]sz[L[M] Rm loJ1]0 1]H]0] Rn Rd |

02

FMLS (by element)

Page 368

Vector, single-precision and double-precision

FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
when '0x' index = UInt (H:L);
when '10' index = UInt (H);
when '11' UnallocatedEncoding() ;
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rmhi:Rm) ;
if sz:Q == '10' then ReservedValue();
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean sub op = (02 == '1");

Assembler Symbols

<Hd>

<Hn>

<V>

<d>
<n>

<Vd>

<T>

<Vn>

<Vm>

<Ts>

<index>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is a width specifier, encoded in “sz”:

SZ <V>
0 S
1 D

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 0 25

0 1 RESERVED
1 0 45

1 1 2D

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

For the half-precision variant: is the name of the second SIMD&FP source register, in the range VO to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

Is an element size specifier, encoded in “sz”:

Sz <Ts>
0 S
1 D

For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMLS (by element) Page 369

SZ L <index>
0 X H:L

1 0 H

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (idxdsize) operand2 = V[m];
bits (datasize) operand3 = V[d];

(
(
bits(datasize) result;
(
(

bits(esize) elementl;
bits(esize) element2 = Elem[operand2, index, esize];
for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
if sub op then elementl = FPNeg(elementl);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (by element) Page 370

FMLS (vector)

Floating-point fused Multiply-Subtract from accumulator (vector). This instruction multiplies corresponding floating-point values in the vectors
in the two source SIMD&FP registers, negates the product, adds the result to the corresponding vector element of the destination SIMD&FP
register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being
set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
loJQJoJo 1 1 1 of1]1 o] Rm [o oJo 0 1]1] Rn | Rd |
a
Half-precision
FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = UlInt (Rd)

integer n = UInt (Rn)

integer m = UInt (Rm)

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;

integer elements = datasize DIV esize;

boolean sub op = (a == 'l1");
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 of1]sz[1] Rm [1 10 0 1]1] Rn | Rd |

op
Single-precision and double-precision
FMLS <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

if sz:Q == '10' then ReservedValue();

integer esize = 32 << Ulnt(sz);

integer datasize = if == '1"'" then 128 else 64;

integer elements = datasize DIV esize;

boolean sub op = (op == '1");

Assembler Symbols

<Vd>

<T>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

FMLS (vector)

Page 371

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

Sz Q <T>

0 0 2S

0 1 45

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
Operation

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];

bits (datasize) operand2 = V[m];

bits (datasize) operand3 = V[d];

bits(datasize) result;

bits(esize) elementl;

bits(esize) element?2;

for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
element2 = Elem[operand2, e, esize];
if sub op then elementl = FPNeg(elementl);
Elem[result, e, esize] = FPMulAdd(Elem[operand3, e, esize], elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMLS (vector) Page 372

FMOV (vector, immediate)

Floating-point move immediate (vector). This instruction copies an immediate floating-point constant into every element of the SIMD&FP
destination register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMVS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[o]QJoJo 1 1 1 1 0 0 0 0 0Jalbfc|[1 1 1 1[1[1][d]elf]lg]h] Rd |

Half-precision

FMOV <Vd>.<T>, #<imm>

if !HaveFPl6Ext () then UnallocatedEncoding() ;

integer rd = UInt(Rd);

integer datasize = if Q == 'l' then 128 else 64;
bits (datasize) imm;

imm8 = a:b:c:d:e:f:g:h;
imml6 = imm8<7>:NOT (imm8<6>) :Replicate (imm8<6>, 2) :imm8<5:0>:Zeros (6);

imm = Replicate (imml6, datasize DIV 16);
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lo]Qlop/0 1 1 1 1 0 0 0 0 O[albfc|[1 1 1 1]o[1][d][e|[flg]|h] Rd |
cmode

Single-precision (op == 0)

FMOV <Vd>.<T>, #<imm>

Double-precision (Q == 1 && op == 1)

FMOV <Vd>.2D, #<imm>
integer rd = UInt(Rd);
integer datasize = if Q == 'l' then 128 else 64;

bits (datasize) imm;
bits (64) imm64;

if cmode:op == '11111' then
// FMOV Dn,#imm is in main FP instruction set
if Q == '0' then UnallocatedEncoding() ;

imm64 = AdvSIMDExpandImm (op, cmode, a:b:c:d:e:f:g:h);
imm = Replicate (imm64, datasize DIV 64);

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

FMOV (vector, immediate) Page 373

<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the single-precision variant: is an arrangement specifier, encoded in “Q”:

<T>
2S

Q
0
1 48

<imm> Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h". For
details of the range of constants available and the encoding of <imm>, see Modified immediate constants in A64 floating-
point instructions.

Operation

CheckFPAdvSIMDEnabled64 () ;

V[rd] = imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (vector, immediate) Page 374

FMOV (register)

Floating-point Move register without conversion. This instruction copies the floating-point value in the SIMD&FP source register to the

SIMD&FP destination register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[o]o]o[1 1 1 1 oftype[1]0 0 0 0[O0 0[1 0 0 0 0] Rn | Rd |

Half-precision (type == 11)
(ARMVS.2)

FMOV <Hd>, <Hn>
Single-precision (type == 00)

FMOV <Sd>, <Sn>
Double-precision (type == 01)

FMOV <Dd>, <Dn>

integer d UInt (Rd) ;
integer n = UInt (Rn);

integer datasize;

case type of
when '00' datasize = 32;
when '01' datasize 64;

when '10' UnallocatedEncoding() ;

when '11'

if HaveFPl6Ext () then

datasize = 16;
else

UnallocatedEncoding () ;

Assembler Symbols

opc

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) operand = V[n];

V[d] = operand;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (register) Page 375

FMOV (general)

Floating-point Move to or from general-purpose register without conversion. This instruction transfers the contents of a SIMD&FP register to a
general-purpose register, or the contents of a general-purpose register to a SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[sf[o]o[1 1 1 1 oftype[1]0 x[1 1 x[0 0 0 0 0 0] Rn | Rd |
rmode opcode

FMOV (general) Page 376

Half-precision to 32-bit (sf == 0 && type == 11 && rmode == 00 && opcode == 110)
(ARMv8.2)

FMOV <Wd>, <Hn>

Half-precision to 64-bit (sf == 1 && type == 11 && rmode == 00 && opcode == 110)
(ARMv8.2)

FMOV <Xd>, <Hn>

32-bit to half-precision (sf == 0 && type == 11 && rmode == 00 && opcode == 111)
(ARMvS.2)

FMOV <Hd>, <Wn>

32-bit to single-precision (sf == 0 && type == 00 && rmode == 00 && opcode == 111)

FMOV <Sd>, <Wn>

Single-precision to 32-bit (sf == 0 && type == 00 && rmode == 00 && opcode == 110)

FMOV <Wd>, <Sn>

64-bit to half-precision (sf == 1 && type == 11 && rmode == 00 && opcode == 111)
(ARMvS.2)

FMOV <Hd>, <Xn>

64-bit to double-precision (sf == 1 && type == 01 && rmode == 00 && opcode == 111)

FMOV <Dd>, <Xn>

64-bit to top half of 128-bit (sf == 1 && type == 10 && rmode == 01 && opcode == 111)

FMOV <Vd>.D[1], <Xn>

Double-precision to 64-bit (sf == 1 && type == 01 && rmode == 00 && opcode == 110)

FMOV <Xd>, <Dn>

Top half of 128-bit to 64-bit (sf == 1 && type == 10 && rmode == 01 && opcode == 110)

FMOV <Xd>, <Vn>.D[1]

FMOV (general)

Page 377

integer d
integer n

integer intsize =
integer fltsize;
FPConvOp op;
FPRounding roundi
boolean unsigned;
integer part;

case type of
when '00'
fltsize
when '01°'
fltsize
when '10'
if opcode
fltsize =
when '11'

UInt (Rd) ;
UInt (Rn) ;

if sf == '1' then 64 else 32;

ng;

32;

64;

<2:1>:rmode != '11 01' then UnallocatedEncoding() ;

128;

if HaveFP

fltsi
else
Unall

16Ext () then
ze = 16;

ocatedEncoding() ;

case opcode<2:1>:
when '00 xx'

rmode of
// FCVT[NPMZ] [US]

rounding = FPDecodeRounding (rmode) ;
unsigned = (opcode<0> == '1"');
op = FPConvOp CVT FtoI;
when '01 00' // [US]CVTF
rounding = FPRoundingMode (FPCR) ;
unsigned = (opcode<0> == '1"');
op = FPConvOp CVT ItoF;
when '10 00' // FCVTA[US]
rounding = FPRounding TIEAWAY;
unsigned = (opcode<0> == '1"');
op = FPConvOp CVT FtoI;
when '11 00' // FMOV
if fltsize != 16 && fltsize != intsize then UnallocatedEncoding() ;
op = if opcode<0> == '1l' then FPConvOp MOV ItoF else FPConvOp MOV FtoI;
part = 0;
when '11 01' // FMOV D[1]
if intsize != 64 || fltsize != 128 then UnallocatedEncoding() ;
op = if opcode<0> == '1l' then FPConvOp MOV ItoF else FPConvOp MOV FtoI;
part = 1;
fltsize = 64; // size of D[1l] is 64
when '11 11°' // FEJCVTZS
if !'HaveFJCVTZSExt () then UnallocatedEncoding() ;
rounding = FPRounding ZERO;
unsigned = (opcode<0> == '1"');
op = FPConvOp CVT FtoI JS;
otherwise
UnallocatedEncoding () ;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Wn> Is the 32-bit name of the general-purpose source register, encoded in the "Rn" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the general-purpose source register, encoded in the "Rn" field.
<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

FMOV (general)

Page 378

<Xd>

Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
Operation

CheckFPAdvSIMDEnabled64 () ;

bits(fltsize)
bits (intsize)

fltval;
intval;

case op of

when FPConvOp CVT Ftol
fltval Vi[n];
intval = FPToFixed(fltval, O,
X[d] = intval;

when FPConvOp CVT ItoF
intval = X[n];
fltval = FixedToFP (intval, O,
v[d] = fltval;

when FPConvOp MOV Ftol
fltval = Vpart[n, part];
intval = ZeroExtend(fltval,
X[d] = intval;

when FPConvOp MOV ItoF
intval = X[n];
fltval = intval<fltsize-1:0>;
Vpart([d, part] = fltval;

when FPConvOp CVT Ftol JS
fltval = V[n];
intval = FPToFixedJS (fltval, FPCR, TRUE);
X[d] = ZeroExtend(intval<31:0>, 64);

unsigned, FPCR,

unsigned, FPCR,

intsize);

rounding) ;

rounding) ;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (general)

Page 379

FMOV (scalar, immediate)

Floating-point move immediate (scalar). This instruction copies a floating-point immediate constant into the SIMD&FP destination register.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10

4 3 2 1 0

9 8 7 6 5
0 00 0 0]

[oJo]o[1 1 1 1 oftype [1] imm8 [1 0 0] Rd |
Half-precision (type == 11)
(ARMVS.2)

FMOV <Hd>, #<imm>

Single-precision (type == 00)

FMOV <Sd>, #<imm>

Double-precision (type == 01)

FMOV <Dd>, #<imm>

integer d = UInt (Rd);

integer datasize;
case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPl6Ext () then
datasize = 16;
else

UnallocatedEncoding () ;

bits(datasize) imm = VFPExpandImm (imm8) ;

Assembler Symbols

<Dd>
<Hd>
<Sd>

<imm>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

Is a signed floating-point constant with 3-bit exponent and normalized 4 bits of precision, encoded in the "imm8" field. For

details of the range of constants available and the encoding of <imm>, see Modified immediate constants in A64 floating-

point instructions.

Operation

CheckFPAdvSIMDEnabled64 () ;

imm;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMOV (scalar, immediate)

Page 380

FMSUB

Floating-point Fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, negates the
product, adds that to the value of the third SIMD&FP source register, and writes the result to the SIMD&FP destination register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being

set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJoJo]1 1 1 1 1]type [0] Rm | 1] Ra | Rn | Rd |
o1 o0

Half-precision (type == 11)
(ARMv8.2)

FMSUB <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (type == 00)

FMSUB <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (type == 01)

FMSUB <Dd>, <Dn>, <Dm>, <Da>

integer d UInt (Rd) ;
integer a UInt (Ra);
integer n UInt (Rn);
integer m UInt (Rm) ;
integer datasize;

case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else

UnallocatedEncoding () ;

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

FMSUB Page 381

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operanda = V[a];
bits(datasize) operandl = V[n];
bits(datasize) operand2 = V[m];

operandl = FPNeg (operandl) ;
result = FPMulAdd (operanda, operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMSUB Page 382

FMUL (by element)

Floating-point Multiply (by element). This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value
in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register. All the values

in this instruction are floating-point values.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-

precision and double-precision

Scalar, half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]0o[1 1 1 1 1]0 o[L[M] Rm [1 0 0 1[H|O] Rn Rd |
U
Scalar, half-precision
FMUL <Hd>, <Hn>, <Vm>.H[<index>]
if 'HaveFP1l6Ext () then UnallocatedEncoding() ;
integer idxdsize = if H == 'l' then 128 else 64;
integer index;
index = UInt (H:L:M);
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;
integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean mulx op = (U == '1");
Scalar, single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[0 1]0o[1 1 1 1 1[1]sz[]L[M] Rm [1 0 0 1[H|O] Rn Rd |
U

FMUL (by element)

Page 383

Scalar, single-precision and double-precision

FMUL <V><d>, <V><n>,

integer idxdsize = if H
integer index;

bit Rmhi = M;

case sz:L of

<Vm>.<Ts>[<index>]

== '1"'" then 128 else 64;

when '0x' index = UInt (H:L);
when '10' index = UInt (H);
when '11' UnallocatedEncoding() ;

integer d
integer n

UInt (Rd) ;
UInt (Rn);

integer m = UInt (Rmhi:Rm) ;

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

boolean mulx op = (U == '1");

Vector, half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQJoJo 1 1 1 1[0 o[L[M] Rm |1 0 0 1]H]0] Rn Rd |
U
Vector, half-precision
FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer idxdsize = if H == 'l' then 128 else 64;

integer index;

index = UInt (H:L:M);

integer d = UInt(Rd);

integer n = UInt(Rn);

integer m = UInt (Rm);

integer esize = 16;

integer datasize = if == '1'" then 128 else 64;

integer elements = datasize DIV esize;

boolean mulx op = (U == '1");
Vector, single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
loJQJoJo 1 1 1 1[1]sz[L[M] Rm |1 0 0 1]H]0] Rn Rd |

u

FMUL (by element)

Page 384

Vector, single-precision and double-precision

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
when '0x' index = UInt (H:L);
when '10' index = UInt (H);
when '11' UnallocatedEncoding() ;
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rmhi:Rm) ;
if sz:Q == '10' then ReservedValue();
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx op = (U == '1");

Assembler Symbols

<Hd>

<Hn>

<V>

<d>
<n>

<Vd>

<T>

<Vn>

<Vm>

<Ts>

<index>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is a width specifier, encoded in “sz”:

SZ <V>
0 S
1 D

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 0 25

0 1 RESERVED
1 0 45

1 1 2D

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

For the half-precision variant: is the name of the second SIMD&FP source register, in the range VO to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

Is an element size specifier, encoded in “sz”:

Sz <Ts>
0 S
1 D

For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMUL (by element) Page 385

SZ L <index>
0 X H:L

1 0 H

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (idxdsize) operand2 = V[m];
bits(datasize) result;
bits(esize) elementl;
bits(esize) element2 = Elem[operand2, index, esize];
for e = 0 to elements-1
elementl = Elem[operandl, e, esize];

if mulx op then

Elem[result, e, esize] = FPMulX(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMul (elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (by element) Page 386

FMUL (vector)

Floating-point Multiply (vector). This instruction multiplies corresponding floating-point values in the vectors in the two source SIMD&FP
registers, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 ofJo[1 o] Rm [o oo 1 1]1] Rn | Rd |

Half-precision

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = Ulnt (Rd);

integer n = Ulnt (Rn);

integer m = UInt (Rm) ;

integer esize = 16;

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

Single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJ1]Jo 1 1 1 ofo]sz[1] Rm [1 10 1 1]1] Rn | Rd |

Single-precision and double-precision

FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt (Rd);
(Rn

integer n = Ulnt)

integer m = UInt (Rm);

if sz:Q == '10' then ReservedValue() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in “Q””:

Q <T>

0 4H

1 8H

29,

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

Sz Q <T>

0 0 2S

0 1 4

1 0 RESERVED
1 1 2D

FMUL (vector) Page 387

<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits(datasize) operandl = V[n];

bits(datasize) operand2 = V[m];

bits (datasize) result;

bits (esize) elementl;

bits (esize) element2;

for e = 0 to elements-1
elementl = Elem[operandl, e, esize];
element?2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPMul (elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (vector) Page 388

FMUL (scalar)

Floating-point Multiply (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP registers, and writes the result

to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

lolofof[1 1 1 1 0ftype [1]

loj/o 0 0[1 O]

op
Half-precision (type == 11)
(ARMvS.2)
FMUL <Hd>, <Hn>, <Hm>
Single-precision (type == 00)
FMUL <Sd>, <Sn>, <Sm>
Double-precision (type == 01)
FMUL <Dd>, <Dn>, <Dm>
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;
integer datasize;
case type of
when '00' datasize = 32;
when '0l1' datasize = 64;
when '10' UnallocatedEncoding () ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
FMUL (scalar)

Page 389

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

result = FPMul (operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMUL (scalar) Page 390

FMULX (by element)

Floating-point Multiply extended (by element). This instruction multiplies the floating-point values in the vector elements in the first source
SIMD&FP register by the specified floating-point value in the second source SIMD&FP register, places the results in a vector, and writes the

vector to the destination SIMD&FP register.

If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the values is negative,

otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in F’PCR, the exception results in either a flag being set in

FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-

precision and double-precision

Scalar, half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
0 1]1]1 1 1 1 1[0 o[L[M] Rm |1 0 0 1]H]0] Rn Rd |
U
Scalar, half-precision
FMULX <Hd>, <Hn>, <Vm>.H[<index>]
if !HaveFPl6Ext () then UnallocatedEncoding() ;
integer idxdsize = if H == 'l' then 128 else 64;
integer index;
index = UInt(H:L:M);
integer d = UInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer esize = 16;
integer datasize = esize;
integer elements = 1;
boolean mulx op = (U == '1");
Scalar, single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
0 1]1]1 1 1 1 1[1]sz[L[M] Rm |1 0 0 1]H]0] Rn Rd |
U

FMULX (by element)

Page 391

Scalar, single-precision and double-precision

FMULX <V><d>, <V><n>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
when '0x' index = UInt (H:L);
when '10' index = UInt (H);
when '11' UnallocatedEncoding() ;

integer d UInt (Rd) ;
integer n UInt (Rn) ;
integer m = UInt (Rmhi:Rm) ;

integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;

boolean mulx op = (U == '1");

Vector, half-precision
(ARMvS.2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQ]1]Jo 1 1 1 1[0 o[L[M] Rm |1 0 0 1]H]0] Rn | Rd |
u

Vector, half-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>]

if !HaveFP1l6Ext () then UnallocatedEncoding() ;

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
index = UInt (H:L:M);

integer d UInt (Rd);
integer n UInt (Rn);
integer m = UInt (Rm);

integer esize = 16;

integer datasize = if == '1'" then 128 else 64;
integer elements = datasize DIV esize;

boolean mulx op = (U == '1");

Vector, single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQl1]o 1 1 1 1[1]sz[L[M] Rm |1 0 0 1]H]0] Rn | Rd |
u

FMULX (by element) Page 392

Vector, single-precision and double-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>]

integer idxdsize = if H == 'l' then 128 else 64;
integer index;
bit Rmhi = M;
case sz:L of
when '0x' index = UInt (H:L);
when '10' index = UInt (H);
when '11' UnallocatedEncoding() ;
integer d = UInt (Rd);
integer n = UInt (Rn);
integer m = UInt (Rmhi:Rm) ;
if sz:Q == '10' then ReservedValue();
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean mulx op = (U == '1");

Assembler Symbols

<Hd>

<Hn>

<V>

<d>
<n>

<Vd>

<T>

<Vn>

<Vm>

<Ts>

<index>

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.

Is a width specifier, encoded in “sz”:

SZ <V>
0 S
1 D

Is the number of the SIMD&FP destination register, encoded in the "Rd" field.
Is the number of the first SIMD&FP source register, encoded in the "Rn" field.

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

For the vector, half-precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>
0 4H
1 8H

For the vector, single-precision and double-precision variant: is an arrangement specifier, encoded in “Q:sz”:

Q SZ <T>

0 0 25

0 1 RESERVED
1 0 45

1 1 2D

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

For the half-precision variant: is the name of the second SIMD&FP source register, in the range VO to V15, encoded in the
"Rm" field.

For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the
"M:Rm" fields.

Is an element size specifier, encoded in “sz”:

Sz <Ts>
0 S
1 D

For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields.

For the single-precision and double-precision variant: is the element index, encoded in “sz:L:H”:

FMULX (by element) Page 393

SZ L <index>
0 X H:L

1 0 H

1 1 RESERVED

Operation

CheckFPAdvSIMDEnabledo64 () ;

bits (datasize) operandl = V[n];
bits (idxdsize) operand2 = V[m];
bits(datasize) result;
bits(esize) elementl;
bits(esize) element2 = Elem[operand2, index, esize];
for e = 0 to elements-1
elementl = Elem[operandl, e, esize];

if mulx op then

Elem[result, e, esize] = FPMulX(elementl, element2, FPCR);
else

Elem[result, e, esize] = FPMul (elementl, element2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMULX (by element) Page 394

FMULX

Floating-point Multiply extended. This instruction multiplies corresponding floating-point values in the vectors of the two source SIMD&FP

registers, places the resulting floating-point values in a vector, and writes the vector to the destination SIMD&FP register.
If one value is zero and the other value is infinite, the result is 2.0. In this case, the result is negative if only one of the values is negative,

otherwise the result is positive.

This instruction can generate a floating-point exception. Depending on the settings in F/PCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-

precision and double-precision

Scalar half precision

(ARMVvS.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]/0o[1 1 1 1 0of[0]1 0] Rm lo o[o0 1 1][1] Rn Rd |
Scalar half precision
FMULX <Hd>, <Hn>, <Hm>
if !HaveFPl6Ext () then UnallocatedEncoding() ;
integer d = Ulnt (Rd)
integer n = UInt (Rn)
integer m = UInt (Rm)
integer esize = 16;
integer datasize = esize;
integer elements = 1;
Scalar single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[0 1]/0[1 1 1 1 0f[0]sz]1] Rm 1 1.0 1 1][1] Rn Rd |
Scalar single-precision and double-precision
FMULX <V><d>, <V><n>, <V><m>
integer d = UlInt(Rd);
integer n = UInt (Rn);
integer m = UInt (Rm);
integer esize = 32 << Ulnt(sz);
integer datasize = esize;
integer elements = 1;
Vector half precision
(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
lolQfolo 1 1 1 of[0]1 O] Rm o 0o[0 1 1][1] Rn Rd |
FMULX

Page 395

Vector half precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

if !HaveFP16Ext () then UnallocatedEncoding() ;

integer d = UInt (Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

integer esize = 16;

integer datasize = if == '1"'" then 128 else 64;
integer elements = datasize DIV esize;

Vector single-precision and double-precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
loJQJoJo 1 1 1 ofo]sz[1] Rm 1 1.0 1 1]1] Rn | Rd |

Vector single-precision and double-precision

FMULX <Vd>.<T>, <Vn>.<T>, <Vm>.<T>

integer d = UInt(Rd);

integer n = UInt (Rn);

integer m = UInt (Rm);

if sz:Q == '10' then ReservedValue/() ;

integer esize = 32 << Ulnt(sz);

integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;

Assembler Symbols

<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<V> Is a width specifier, encoded in “sz”:

SZ <V>

0 S

1 D
<d> Is the number of the SIMD&FP destination register, in the "Rd" field.
<n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field.
<m> Is the number of the second SIMD&FP source register, encoded in the "Rm" field.
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the vector half precision variant: is an arrangement specifier, encoded in “Q”:

Q <T>

0 41

1 8H

For the vector single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

SZ Q <T>

0 25

0 1 45

1 0 RESERVED

1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
<Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

FMULX Page 396

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operandl
bits (datasize) operand?2
bits (datasize) result;
(
(

bits(esize) elementl;
bits(esize) element2;

for e = 0 to elements-1

elementl = Elem[operandl, e, esize];

element2 = Elem[operand2, e, esize];

Elem[result, e, esize] = FPMulX(elementl, element2, FPCR);
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FMULX Page 397

FNEG (vector)

Floating-point Negate (vector). This instruction negates the value of each vector element in the source SIMD&FP register, writes the result to a

vector, and writes the vector to the destination SIMD&FP register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 2 classes: Half-precision and Single-precision and double-precision

Half-precision

(ARMv8.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
[o]Q]1]0o 1 1 1 oJ1[1 11 1 0 o0J0o 1 11 1]1 0] Rn Rd |
U
Half-precision
FNEG <Vd>.<T>, <Vn>.<T>
if !HaveFPl6Ext () then UnallocatedEncoding() ;
integer d = UInt(Rd);
integer n = UInt (Rn);
integer esize = 16;
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1");
Single-precision and double-precision
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 2
loJQ]1]0 1 1 1 of1]sz[1 0 0 0 0[O0 1 1 1 1[1 0] Rn Rd |
U
Single-precision and double-precision
FNEG <Vd>.<T>, <Vn>.<T>
integer d = UInt (Rd);
integer n = UInt (Rn);
if sz:Q == '10' then ReservedValue():;
integer esize = 32 << Ulnt(sz);
integer datasize = if Q == 'l' then 128 else 64;
integer elements = datasize DIV esize;
boolean neg = (U == '1");
Assembler Symbols
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field.
<T> For the half-precision variant: is an arrangement specifier, encoded in “Q”:
Q <T>
0 4H
1 8H

For the single-precision and double-precision variant: is an arrangement specifier, encoded in “sz:Q”:

FNEG (vector)

to}

Page 398

Sz Q <T>
0 0 2S
0 1 45
1 0 RESERVED
1 1 2D
<Vn> Is the name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) operand = V[n];
bits (datasize) result;

bits (esize) element;

for e = 0 to elements-1
element = Elem[operand, e, esize];
if neg then
element = FPNeg(element) ;

else
element = FPAbs (element) ;
Elem[result, e, esize] = element;
V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNEG (vector) Page 399

FNEG (scalar)

Floating-point Negate (scalar). This instruction negates the value in the SIMD&FP source register and writes the result to the SIMD&FP

destination register.

Depending on the settings in the CPACR_ELI1, CPTR _EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

[o]o]o[1 1 1 1 oftype[1]0 0 0 0[1 0[1 0 0 0 0] Rn | Rd |
opc
Half-precision (type == 11)
(ARMvS.2)
FNEG <Hd>, <Hn>
Single-precision (type == 00)
FNEG <Sd>, <Sn>
Double-precision (type == 01)
FNEG <Dd>, <Dn>
integer d = UInt(Rd);
integer n = UInt (Rn);
integer datasize;
case type of
when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPl6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the SIMD&FP source register, encoded in the "Rn" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the SIMD&FP source register, encoded in the "Rn" field.

Operation

CheckFPAdvSIMDEnabled64 () ;

bits (datasize) result;
bits (datasize) operand = V[n];

result = FPNeg (operand) ;
V[d] = result;

FNEG (scalar)

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Page 400

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNEG (scalar) Page 401

FNMADD

Floating-point Negated fused Multiply-Add (scalar). This instruction multiplies the values of the first two SIMD&FP source registers, negates
the product, subtracts the value of the third SIMD&FP source register, and writes the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in
FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an
attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

loJoJo]1 1 1 1 1]type [1] Rm 0] Ra | Rn | Rd |

o1 o0

Half-precision (type == 11)
(ARMv8.2)

FNMADD <Hd>, <Hn>, <Hm>, <Ha>

Single-precision (type == 00)

FNMADD <Sd>, <Sn>, <Sm>, <Sa>

Double-precision (type == 01)

FNMADD <Dd>, <Dn>, <Dm>, <Da>

integer d = Ulnt (Rd);
integer a = Ulnt (Ra);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;

integer datasize;

case type of

when '00' datasize = 32;
when '01' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;

Assembler Symbols

<Dd>
<Dn>
<Dm>
<Da>
<Hd>
<Hn>
<Hm>
<Ha>
<Sd>
<Sn>
<Sm>

<Sa>

Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
Is the 64-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
Is the 16-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.

Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.

Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
Is the 32-bit name of the third SIMD&FP source register holding the addend, encoded in the "Ra" field.

FNMADD Page 402

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;
bits (datasize

() operanda = V[a]l;
bits(datasize) operandl = V[n];
bits(datasize) operand2 = V[m];

operanda = FPNeg (operanda) ;
operandl = FPNeg (operandl) ;
result = FPMulAdd (operanda, operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMADD Page 403

FNMSUB

Floating-point Negated fused Multiply-Subtract (scalar). This instruction multiplies the values of the first two SIMD&FP source registers,

subtracts the value of the third SIMD&FP source register, and writes the result to the destination SIMD&FP register.

A floating-point exception can be generated by this instruction. Depending on the settings in FPCR, the exception results in either a flag being

set in FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
loJoJo]1 1 1 1 1]type [1] Rm | 1] Ra | Rn | Rd |
o1 o0
Half-precision (type == 11)
(ARMvS.2)
FNMSUB <Hd>, <Hn>, <Hm>, <Ha>
Single-precision (type == 00)
FNMSUB <Sd>, <Sn>, <Sm>, <Sa>
Double-precision (type == 01)
FNMSUB <Dd>, <Dn>, <Dm>, <Da>
integer d = Ulnt (Rd);
integer a = Ulnt (Ra);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;
integer datasize;
case type of
when '00' datasize = 32;
when '0l1' datasize = 64;
when '10' UnallocatedEncoding() ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
<Da> Is the 64-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
<Ha> Is the 16-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register holding the multiplicand, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register holding the multiplier, encoded in the "Rm" field.
<Sa> Is the 32-bit name of the third SIMD&FP source register holding the minuend, encoded in the "Ra" field.

FNMSUB Page 404

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operanda = V[a];
bits(datasize) operandl = V[n];
bits(datasize) operand2 = V[m];

operanda = FPNeg (operanda) ;
result = FPMulAdd (operanda, operandl, operand2, FPCR);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMSUB Page 405

FNMUL (scalar)

Floating-point Multiply-Negate (scalar). This instruction multiplies the floating-point values of the two source SIMD&FP registers, and writes
the negation of the result to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR, or a synchronous exception being generated. For more information, see Floating-point exception traps.

Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

0

lolofof[1 1 1 1 0ftype [1]

l|1/0 0 0[1 O]

op
Half-precision (type == 11)
(ARMvS.2)
FNMUL <Hd>, <Hn>, <Hm>
Single-precision (type == 00)
FNMUL <Sd>, <Sn>, <Sm>
Double-precision (type == 01)
FNMUL <Dd>, <Dn>, <Dm>
integer d = Ulnt (Rd);
integer n = Ulnt (Rn);
integer m = Ulnt (Rm) ;
integer datasize;
case type of
when '00' datasize = 32;
when '0l1' datasize = 64;
when '10' UnallocatedEncoding () ;
when '11'
if HaveFPlo6Ext () then
datasize = 16;
else
UnallocatedEncoding () ;
Assembler Symbols
<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Hm> Is the 16-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Rd" field.
<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Rn" field.
<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Rm" field.
FNMUL (scalar)

Page 406

Operation

CheckFPAdvSIMDEnabled64 () ;
bits (datasize) result;

bits(datasize) operandl
bits (datasize) operand?2

result = FPMul (operandl, operand2, FPCR);

result = FPNeg(result);

V[d] = result;

Internal version only: isa v25.11, AdvSIMD v25.02, pseudocode v32.2

Copyright © 2010-2017 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FNMUL (scalar) Page 407

FRECPE

Floating-point Reciprocal Estimate. This instruction finds an approximate reciprocal estimate for each vector element in the source SIMD&FP
register, places the result in a vector, and writes the vector to the destination SIMD&FP register.

This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in

FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps.
Depending on the settings in the CPACR_ELI, CPTR EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an

attempt to execute the instruction might be trapped.

It has encodings from 4 classes: Scalar half precision , Scalar single-precision and double-precision , Vector half precision and Vector single-

precision and double-precision

Scalar half precision

(ARMvS.2)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 2
[o 1]o[1 1 1 1 0of1]1 1 1 1 0 0[1 1 1 0 1[1 0] Rn Rd |
Scalar half precision
FRECPE <Hd>, <Hn>

if 'HaveFP1l6Ext () then UnallocatedEncoding() ;

integer d = Ulnt